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Abstract: This paper investigates the manufacturability and performance of advanced 

and lightweight stainless steel cellular lattice structures fabricated via selective laser 

melting (SLM). A unique cell type called gyroid is designed to construct periodic 

lattice structures and utilise its curved cell surface as a self-supported feature which 

avoids the building of support structures and reduces material waste and production 

time. The gyroid cellular lattice structures with a wide range of volume fraction were 

made at different orientations, showing it can reduce the constraints in design for the 

SLM and provide flexibility in selecting optimal manufacturing parameters. The 

lattice structures with different volume fraction were well manufactured by the SLM 

process to exhibit a good geometric agreement with the original CAD models. The 

strut of the SLM-manufactured lattice structures represents a rough surface and its 

size is slightly higher than the designed value. When the lattice structure was 

positioned with half of its struts at an angle of 0o with respect to the building plane, 

which is considered as the worst building orientation for SLM, it was manufactured 

with well-defined struts and no defects or broken cells. The compression strength and 

modulus of the lattice structures increase with the increase in the volume fraction, and 
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two equations based on Gibson-Ashby model have been established to predict their 

compression properties.  
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1. Introduction 

Metal cellular structures are a unique classification of materials, which can 

exhibits a combination of high performance features such as high strength 

accompanied by a relatively low mass, good energy absorption characteristics and 

good thermal and acoustic insulation properties [1, 2]. Metal cellular structures are 

classified into two common types: stochastic porous structures and periodic cellular 

lattice structures. Metal stochastic porous structures typically have a random 

distribution of open or closed voids, whereas metal periodic cellular lattice structures 

have uniform structures that are generated by repeating a unit cell. Periodic lattice 

structures exhibit property profiles greatly superior to those demonstrated by the 

stochastic analogues at the same volume fraction (or weight) [2, 3]. Therefore, metal 

periodic cellular lattice structures can be used to develop light-weight structures that 

can provide advanced or multifunctional performance for high value engineering 

products such as automobile, aerospace and medical products [4]. These periodic 

lattice structures, however, currently face a higher manufacturing complexity and 

costs than the stochastic structures [2]. It can be time and cost consuming to use 

conventional methods (i.e. investment casting, deformation forming, metal wire 

approaches, brazing etc.) to make periodic cellular lattice structures. The structures 

made by conventional methods possess relatively simple geometries and limited 
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design freedoms, and consequently lack advanced functionality to meet more 

advanced requirements and applications. 

Selective laser melting (SLM) is an additive manufacturing (AM) process, 

which can directly make complex three-dimensional metal parts according to a CAD 

data by selectively melting successive layers of metal powders [5, 6]. Manufacture of 

fully dense metal parts (even over 99.9%) without the need of post-processes such as 

infiltration, sintering or HIPing, and a high individuality and degree of geometric 

freedom are considered to be its major advantages [7]. SLM has the capability of 

producing structures of complex freeform geometry. It has been demonstrated to 

manufacture cellular lattice structures with fine features, showing a great potential to 

make advanced lightweight structures and products which are highly desired by 

engineering sectors such as aerospace, automotive and medical industries [8, 9]. In 

addition, the use of low volume lattice structures can prevent the limitations of the 

SLM process being an expensive manufacturing method due to the expensive 

powdered metal materials requiring fine particle sizes and proper morphology, and the 

immense consumption of building time since only considerably small quantities of 

material can be processed per time [10].  

However, SLM requires support structure to build overhang section if its angel 

from the horizontal is less than certain degree. This introduces design and 

manufacturing complications for the SLM of lightweight cellular structures and 

engineering components. A few previous works have investigated the fabrication of 

cellular lattice structures using the SLM process. Brooks et al. [11] examined the 

SLM production of the regular 316L stainless steel lattice structures containing any 

combination of three element types including pillar, diagonal and octahedral elements. 

They tested the minimum angels of elements from the horizontal that could be 
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manufactured, and found that the elements with angles lower than 30o were 

problematic to fabricate. Santorinaios et al. [12] studied the manufacturability of open 

cellular lattice structures with the cell sizes of 1.25, 2.5 and 5mm. The structures only 

consists of vertical and diagonal cross struts, as currently, the SLM process cannot 

build horizontal struts. McKown et al. [13] made a range of metallic lattice structures 

based on two kinds of unit cells possessing octahedral and pillar-octahedral topologies 

by the SLM process, and studied the compression and blast loading behavior of the 

lattice structures. Mullen et al. [8] fabricated periodic cellular titanium structures by 

SLM, which were generated by repeating a single octahedral unit cell. Van Beal et al. 

[14] investigated a micro-CT-based protocol for increasing the controllability of 

porous structures produced by SLM. The porous structures were created using Magics 

software based on the same unit cell consisting of the struts with the angles of 90 o or 

45 o with respect to the horizontal. 

 However, the cellular lattice structures investigated in the previous works do 

not exhibit good manufacturability in SLM. The cellular lattice structures with large 

unit cell size or low strut angles from the horizontal (usually lower than 30 o) could 

not be built using the SLM process because overhanging struts led to the occurrence 

of serious deformation. Consequently, most of the previous cellular lattice structures 

were designed to only include the struts with angles of 90 o or 45 o relative to the build 

plane and manufactured via the SLM process at only one orientation [8, 11-14]. This 

adds considerable constraints on manufacturing versatile and complex cellular 

structures to meet requirements of different functions and applications, sacrificing the 

design freedom of cellular structures and geometrical capability of AM 

manufacturing. To address manufacturability of cellular lattice structures, we 

investigated the design and manufacturing of periodic cellular lattice structures using 
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a novel unit cell type called “Schoen Gyroid”, referred to as gyroid unit cell, to 

enhance the geometrical capability of the SLM process. Unlike the majority of 

previous research works that employed a unit cell with straight beam-like struts and a 

polyhedral core, the gyroid unit cell has circular and smooth struts and a spherical 

core. The inclination angle of the circular and smooth struts of the gyroid unit cell 

continuously varies along the spherical core, which makes layers grow up gradually 

with slight changes in overhanging area and position between two adjacent layers, and 

the previously manufactured layer can, therefore, almost supports next layer in the 

SLM process. This self-supported property opens up new capability for the SLM 

process to manufacture more versatile and advanced cellular lattice structures with 

wide ranges of unit cell size and volume fraction at different orientations without the 

need of support structures. Fabricating such advanced lattice structures with less 

design and manufacturing constraint would enable SLM to make lightweight products 

as well as save the expensive functional materials, build time and energy 

consumption. In our previous works, we reported the computational method for 

generating gyroid cellular lattice structures [15], and proved the manufacturability of 

SLM for the fabrication of gyroid cellular lattice structures with a wide unit cell size 

range from 2 to 8mm and investigated the effect of unit cell size on the strut density 

and compression properties of gyroid lattice structures [16]. This study investigated 

the influences of the volume fraction and orientation on the manufacturability and 

compression properties of the gyroid cellular lattice structures fabricated by SLM 

using a 316L stainless steel powder.  

2. Experimental details 

2.1. Materials 
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Cellular lattice structures were made from a 316L stainless steel powder with 

average particle size of 45 ±10 µm, which was gas atomized and produced by Sandvir 

Osprey Ltd., UK. The SEM micrograph of the stainless steel powder is shown in Fig. 

1. It is seen that the powder has a narrow particle size distribution and a nearly 

spherical shape.  

2.2. Design of advanced cellular lattice structures 

The CAD models of gyroid unit cell and periodic cellular lattice structures 

with the volume fraction of 6, 8, 10, 12 and 15% and fixed unit cell size of 5mm were 

generated through the ScanCAD software provided by Simpleware Ltd. UK. Volume 

fraction is defined as the volume percentage of the solid material in the cellular lattice 

structure. The CAD model of gyroid unit cell is shown in Fig. 2(a). The cellular lattice 

structures that are directly generated by the ScanCAD software always have a strut 

angle of 45o with respect to the horizontal, and are referred to as normal orientation 

cellular structures in this study. A normal orientation cellular lattice structure with 15 

% volume fraction and 5mm unit cell size is shown in Fig. 2(b). The normal 

orientation cellular lattice structure was rotated along the Y axis by 45 degree, and 

thus the worst orientation cellular lattice structure as shown in Fig. 2(c) was obtained. 

From Fig. 2(c), it is observed that the half of the struts of the worst orientation cellular 

lattice structures is orientated at an angle of 0o with respect to the horizontal building 

platform and completely overhanging during the SLM process. Hence, it is considered 

as the most difficult condition for the SLM to build the lattice structure at this 

orientation due to the maximum amount of overhangs, thus called the worst 

orientation cellular lattice structure. 

2.3. The selective laser melting process 
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The manufacturing process was carried out on a Realizer SLM Workstation 

made by MTT Technologies Group, UK. The SLM machine uses a 100W CW 

Ytterbium fibre laser and focus diameter is 0.1 mm. All processing occurs in an 

Argon atmosphere with less than 1.0% O2. The processing parameters used in this 

study were as follows: the laser power was 95W; the scanning time per point was 250 

µs and the point distance was 40 µm; the scan spacing was 75µm; the layer thickness 

was 75µm. 9 gyroid cellular lattice structures with the dimensions of 25×25×15 mm3 

were built by the SLM process on a base plate, and then cut off from the base plate 

using Electrical Discharge Machining (EDM) wire cutting for various tests. 

2.4. Measurements 

A micro-CT scanner (Benchtop CT 160Xi, X-Tek) at 27 µm resolution using 

120 KV voltage and 182 µA current was used to scan the lattice structures, and 2D 

slice image data were collected. VGstudio MAX2.1 software was used to reconstruct 

the 3D models of the fabricated cellular lattice structures using the 2D slice images 

data obtained from micro-CT scans. By analyzing the reconstruction 3D models, the 

features of the SLM-manufactured lattice structures such as internal defects and 

volume of solid struts were determined. The 316L stainless steel powder and struts of 

the SLM-manufactured gyroid cellular lattice structure underwent micro-

morphological characterization using HITACHI S-3200N Scanning Electron 

Microscope. An optical microscope (Dino-lite Digital Microscope) was used to 

investigate the morphologies of the SLM-fabricated lattice structures and analyze the 

strut size. As the strut diameter of the gyroid unit cell is not uniform as shown in Fig. 

2(a), we took the diameter of the middle and finest part of the struts as strut size.  For 

every optical microscope image, 10 dimensional values of the strut size were 

measured and average value was calculated. Uni-axial compression tests were carried 
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out to assess the compression properties of the lattice structures by using EZ20 

Universal Material Testing Machine, Lloyd Instruments Ltd., UK equipped with a 

20kN load cell. The speed of loading was set a constant of 0.4 mm/min for all of the 

tests.  The stress-strain curves, yield strengths and Young’s moduli of the SLM-

manufactured lattice structures were obtained through the compression tests.  

3. Results and discussion 

3.1. SEM morphological analysis of lattice strut surface  

Fig. 3 shows the SEM images of the SLM-manufactured cellular lattice 

structures with the volume fractions of 6, 8, 10 and 12%. All these structures have the 

same unit cell size of 5mm. It can be seen from the SEM images that the SLM-

manufactured cellular lattice structures show circular struts and spherical cores, which 

is in agreement with the CAD model of the gyroid unit cell shown in Fig. 2(a), and no 

interlayer delamination indicating metallurgical bonding between the layers during 

the manufacturing process. It is also observed that the lattice structures exhibit very 

rough surfaces with curvatures and corrugations. A higher magnification SEM 

micrograph of the strut in Fig. 4(a) demonstrates a staircase-shaped profile and many 

partially melted metal particles bonded on the surfaces of the lattice structures. The 

rough strut surfaces of the SLM-manufactured lattice structures can mainly be 

attributed to the four reasons: (1) Stair stepping effect. As shown in Fig. 4(b), CAD 

model of the part is decomposed into many right-angular polyhedron layers which are 

then built one by one and combined together to form 3D physical part in the SLM 

manufacturing process of the circular strut. For any curved surfaces or inclined plane, 

the effect of laminar build is noticed as stair step, which is referred to as stair stepping 

effect, leading to the staircase-shaped profile of the circular strut as shown in Fig. 4(a). 

The stair stepping effect has a great influence on the surface quality of SLM parts, and 



  

9 
 

can be diminished by decreasing the layer thickness, but this increases the time 

required to complete the fabrication [17]. (2) Circular struts are partially built on the 

loose powder. To ensure firm combination of adjacent layers, laser melting depth, 

which is the depth of laser melting and permeation into the powder, is slightly higher 

than the layer thickness to form overlaps between layers as shown in Fig. 4(b). 

However, the circular struts with varying inclined angles are partially built on the 

loose powder, and thus some metal particles below each layer will be totally or 

partially melted and then bonded on the bottom of the layer. (3) Thermal diffusion. 

Thermal diffusion occurs between loose powder and solid material due to big 

temperature difference, leading to powder particles sticking to the strut surface [14]. 

(4) Partially melted raw metal particles on the boundary of each layer. A new layer of 

metal particles is scanned by the contour laser track, followed by the hatching laser 

track. Some stainless steel particles on the boundary are partially melted by the 

contour laser track, and thus bonded to the boundary of each new formed layer [16]. 

3.2. Optical microscope analysis of the manufacturability 

Fig. 5 shows the optical microscope images of the SLM-manufactured cellular 

lattice structures with the fixed unit cell size of 5mm and different designed volume 

fractions of 6, 8, 10 and 12%. It is seen that the struts of the lattice structures are well 

manufactured by the SLM process, and the struts are solid, connected and continuous 

although their surfaces are rough.  

The strut sizes of the SLM-manufactured cellular lattice structures were 

measured from the optical microscope images as shown in Fig. 5(d), referred to as 

experimental strut sizes. The designed strut sizes were measured from the CAD 

models of the cellular lattice structures. The experimental and designed strut sizes in 

function of the volume fraction were plotted and compared in Fig. 6. It is found that 
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the experimental strut sizes are higher than the designed values. The experimental 

strut sizes were found to be 0.50, 0.70, 0.86 and 1.01mm against the designed strut 

sizes of 0.42, 0.61, 0.79 and 0.92mm for the lattice structures with the designed 

volume fractions of 6, 8, 10 and 12%, respectively. The increase in the strut size 

compared with the designed values can be attributed to the following: (1) The 

partially melted metal particles bonded on the strut surfaces as shown in the SEM 

micrographs in Fig. 4(a). (2) The melt pool size of the scan vectors that describe 

boundaries of a strut is much higher than the laser spot size although the scan vectors 

are usually shifted half of the laser spot size inwards for compensation [14].  

Similar observations were made when porous metal structures were 

manufactured via the AM technologies. Van Bael et al. [14] evaluated the SLM-

manufactured Ti6Al4V porous structures though micro-CT image analysis and 

noticed the increase in strut size with 112 µm compared to the designed value, and in 

accordance the structure volume and surface area increased significantly. 

Parthasarathy et al. [18] reported a 140 µm increase in the strut size of the EBM-

produced porous Ti6Al4V structures compared with the designed value, and thus 

decreased pore size by 210 µm.  

From Fig. 6, it is also found that the strut size increases with increasing the 

volume fraction at a fixed unit cell size. If the unit cell size is kept unchanged, the unit 

cell number and total strut length of the lattice structure do not vary. Therefore, when 

increasing the volume fraction, the strut will become thicker and thus the strut size 

increases.  

The worst orientation cellular lattice structure with 15% volume fraction and 

5mm unit cell size, the half of whose struts is at an angle of 0o with respect to the 

building platform of the SLM machine, was manufactured with no obvious 
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deformation by the SLM process and the obtained structure is shown in Fig. 7(a). The 

optical microscope images of the SLM-manufactured worst orientation cellular lattice 

structure in top, bottom and lateral view are exhibited in Fig. 7(b), (c) and (d), 

respectively. Inset images in Fig. 7(b), (c) and (d) present the CAD model of the worst 

orientation lattice structure in top, bottom and lateral view respectively for 

comparison. It can be seen from these optical micrographs that there are no defects or 

broken cells in the structures. By comparing the optical microscope images of the 

lattice structure in the different view with the corresponding CAD models, the SLM-

manufactured worst orientation cellular lattice structure is in good agreement with its 

CAD model except for the rough surfaces. Manufacturability of gyroid lattice 

structures with half of its struts orientated at an angle of 0o with respect to the building 

platform by SLM can be attributed to the self-supported feature of the gyroid unit cell. 

The inclination angle of the circular and smooth struts of the gyroid unit cell 

continuously varies along the spherical core, which makes layers grow up gradually 

with slight changes in overhanging area and position between two adjacent layers 

during the SLM process. This curve surface of gyroid overhang structure provides a 

small length overhanging section between the layers. Consequently, the previous 

manufactured layer can almost support next layer indicating a self-supported feature, 

which thus enables the SLM process to manufacture the lattice structures with 0o strut 

angle and relative cell unit size. For the cellular lattice structures with straight beam-

like struts and a polyhedral core proposed and investigated in majority of the previous 

research works, if their strut angles from the horizontal plane are less than a certain 

degree and its overhanging section is over a certain length, deformation will occur 

during the SLM or other direct metal AM processes because the struts are mostly built 

on loose powder, leading to defects or broken cells in produced lattice structures, and 
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even the failure of the manufacturing process. Mullen et al. [8] selected an unit cell 

geometry with 45o strands based on octahedron for its suitability for SLM 

manufacture, and believed that more complex structure such as the dodecahedron do 

not process as well because they contain many horizontal and low angle strands that 

are difficult to build because they are unsupported along their length. Santorinaios et 

al. [12] addressed that this kind of lattice structures with horizontal struts cannot be 

built through the SLM or other direct metal AM processes. Cansizoglu et al. [19] 

observed that lattices whose struts were oriented at an angle of less than 20o with 

respect to the build plane had little or no overlap between the successive melted layers 

resulting in a very week structures. Hence, the gyroid lattice structures represent 

outstanding manufacturability in comparison with previous investigated lattice 

structures (i.e. straight beam-like struts or a polyhedral core shape unit cell). They can 

be built any orientation, even with relatively large cell unit size. This could mitigate 

the constraints in the design and manufacturing process for the SLM fabrication. It 

therefore allows the use of optimal design and processing parameters such as large 

unit size and optimal building orientation to reduce material and energy consumption 

and the production time in the SLM of lightweight products.   

3.3. Micro-CT analysis of volume fractions 

The CT reconstruction models of the SLM-manufactured cellular lattice 

structures with the fixed unit cell size of 5 mm and the different volume fractions of 

6%, 8%, 10%, 12%, 15% (normal orientation) and 15% (worst orientation) are shown 

in Fig. 7(a), (b), (c), (d), (e) and (f) respectively. Micro-CT analysis shows well 

defined struts and no defects or broken cells throughout the lattice structures, 

indicating the ability of SLM to fabricate gyroid cellular lattice structures with a wide 

range of volume fractions as low as 6% and various strut angles relative to the 
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building platform as small as 0o. It is observed that the struts become thinner with the 

decrease in the volume fraction at a constant unit cell size, which is in accordance 

with the results shown in Fig. 6. Consequently, at a very low volume fraction it may 

result in the loss of connectivity between adjacent cells or the struts are too thin to be 

manufactured by the SLM process. For gyroid cellular lattice structures with the unit 

cell size of 5 mm, the minimum volume fraction that can be manufactured by SLM 

using 316L stainless steel is 6%. By analyzing the CT reconstruction models, the 

bounding volume of the lattice structures and volume of solid struts were determined, 

and then the experimental volume fractions of the SLM-manufactured lattice 

structures could be calculated. The designed and experimental volume fractions are 

listed and compared in Table 1. The SLM-manufactured lattice structures designed 

with the volume fractions of 6, 8, 10 and 12% have the experimental volume fractions 

of 6.51, 8.75, 10.66 and 13.12% respectively, which are 8.5, 9.4, 6.6 and 9.3% higher 

in comparison with the corresponding designed values. The difference between the 

theoretical and experimental volume fractions can be attributed to the increase in the 

experimental strut size compared with the designed values, as shown in Fig. 6.  

3.4. Compression properties 

The stress-strain curves of the compression tests on the gyroid cellular lattice 

structures with 15% volume fraction and 5mm unit cell size at the normal or worst 

orientations are shown in Fig. 9. It is observed that the stress-strain curves show an 

elastic region with a relative high degree of linearity, followed by a stress plateau 

extending up to the onset of densification. From the stress-strain curves in Fig. 9, it is 

also found that the worst orientation lattice structure offers higher mechanical 

properties than the normal orientation lattice structure although both of them have the 

same volume fraction of 15% and unit cell size of 5mm, indicating anisotropy of the 
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gyroid cellular lattice structure. The compression tests results reveal that the Young's 

modulus of the worst orientation lattice structure is 302.57 MPa, which is 20.37% 

greater than that of the normal orientation lattice structure, 251.36 MPa, and the yield 

strength of the worst orientation lattice, 15.53 MPa, is 7.78% higher compared with 

the yield strength of the normal orientation lattice structure, 14.41 MPa. This can be 

attributed to the presence of the vertical struts in the worst orientation lattice structure, 

which are parallel to the loading direction. Similar observations were made in the 

stainless steel lattice structure made by SLM [13]. McKown et al. [13] reported the 

lattices with vertical and 45o struts offer a significantly higher modulus than the 

lattices with only 45o struts despite they possess the similar porosity. Cansizoglu et al. 

[19] believed that lattices whose struts were oriented at an angle of less than 20o had 

little or no overlap between the successive melted layers resulting in a very week 

structures. Consequently, the higher mechanical properties of the worst orientation 

lattice structure further proves that the gyroid cellular lattice structure with struts 

orientated at an angle of 0o with respect to the building platform has been well 

manufactured by the SLM process.  

 For open cellular metal foams, the compressive modulus and strength at 

different relative densities can be estimated by the Gibson-Ashby model using the 

following formulas [20]: 
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where E, ρ and σ are the apparent compressive modulus, density and compressive 

yield strength of open-cellular structures, respectively. E0, ρ0 and σ0 are the elastic 
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modulus, density and compressive yield strength of fully dense materials, respectively. 

Bulk compressive yield strength and elastic modulus of 316L stainless steel alloy are 

taken to be 170 MPa and 193 GPa, respectively. C1 and C2 are the constants and can 

be calculated based on the compression test results after fitting the suggested formulas. 

In this study, C1 and C2 were calculated to be 0.0618 and 1.29, respectively, and two 

equations are, therefore, established to use in future designs to estimate the 

approximate compressive modulus and strength of the SLM-manufactured 316L 

stainless steel gyroid cellular lattice structures without mechanical testing. 

Experimentally tested compressive modulus and strength plotted against volume 

fraction are shown in Fig. 10(a) and (b) respectively, and Gibson-Ashby model 

estimated curves based on Equation (2) and (3) are also drawn in Fig. 10 for 

comparison. It is observed that the compression modulus and strength of the SLM-

manufactured lattice structures both increase with the increase in the volume fraction, 

which is consistent with expectations for porous materials in Gibson-Ashby model. 

From Fig. 10(a) and (b), it is seen that there are differences between experimentally 

tested and Gibson-Ashby model estimated compressive modulus and strength. The 

differences in theoretical and experimentally tested values may be attributed to the 

residual stress inherent to the SLM-manufactured parts, and waviness and roughness 

of strut surfaces.   

4. Conclusions 

This study investigates the selective laser melting (SLM) fabrication of advanced 

gyriod cellular lattice structures that has a self-supported feature to mitigate design 

and manufacturing constraints and offers great potential of making lightweight 

structures with wide ranges of volume fraction and unit cell size at different 
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orientations, and reducing material and energy consumption and production time. The 

major findings of this research are:  

(1) SEM and optical microscope micrographs and CT-scan analysis show that the 

gyroid lattice structures with a wide range of volume fraction as lower as 6% are well 

manufactured by the SLM process and in a good geometric agreement with the 

original CAD models, but exhibit very rough strut surfaces with curvatures and 

corrugations. 

(2) The strut size of the SLM-manufactured lattice structures is higher compared with 

the designed value, and thus the volume fraction of the lattices increases. The 

experimental strut sizes were found to be 0.50, 0.70, 0.86 and 1.01mm against the 

designed strut sizes of 0.42, 0.61, 0.79 and 0.92mm for the lattice structures with the 

volume fractions of 6, 8, 10 and 12%, respectively. The SLM-manufactured lattice 

structures designed with the volume fractions of 6, 8, 10 and 12% have the 

experimental volume fractions of 6.51, 8.75, 10.66 and 13.12% respectively, which 

are 8.5, 9.4, 6.6 and 9.3% higher in comparison with the corresponding designed 

values. 

(3) Optical microscope micrographs and CT-scan analysis shows well defined struts 

and no defects or broken cells throughout the worst orientation lattice structure with 

half of its struts at an angle of 0o with respect to the building platform of the SLM 

machine, which were previous thought difficult or impossible to be made by SLM. 

The worst orientation lattice structure with vertical and 0o struts offers higher 

mechanical properties than the normal orientation lattice structure with 45o struts 

although both of them have the same volume fraction of 15% and unit cell size of 

5mm. 
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(4) The yield strengths and Young’s moduli both increase with the increase in the 

volume fraction of the lattice structures. Two equations based on Gibson-Ashby 

model have been established to use in the future design to estimate the approximate 

compressive modulus and strength of the SLM-manufactured 316L stainless steel 

gyroid cellular lattice structures without mechanical testing.   
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Figure captions: 

Fig. 1 SEM micrograph of the stainless steel powder. 

Fig. 2 CAD models of (a) gyroid unit cell, (b) normally orientation cellular lattice 

structure and (c) worst orientation cellular lattice structure. 

Fig. 3 SEM images of the SLM-manufactured cellular lattice structures with different 

volume fractions and the fixed unit cell size of 5mm 

Fig. 4 (a) High magnification SEM micrograph of the strut and (b) schematic 

illustration of the SLM manufacturing process of the circular strut. 

Fig. 5 Optical microscope images of the SLM-manufactured cellular lattice structures 

with different volume fractions and the fixed unit cell size of 5mm 

Fig. 6 Strut sizes measured from optical microscope images (experimental strut size) 

and CAD models (designed strut size) in function of the volume fraction at a constant 

unit cell size of 5mm 

Fig. 7 (a) Digital camera image, and optical microscope images of the SLM-

manufactured worst orientation cellular lattice structure (15% volume fraction and 

5mm unit cell size) in (b) top, (c) bottom and (d) lateral view. Insets in (b), (c) and (d) 

exhibit the CAD model of the worst orientation lattice structure in top, bottom and 

lateral view, respectively.  

Fig. 8 CT reconstruction models of the SLM-manufactured cellular lattice structures 

with different volume fractions: (a) 6%, (b) 8%, (c) 10%, (d) 12%, (e) 15% (normal 

orientation) and (f) 15% (worst orientation). 

Fig. 9 Stress-strain curves obtained from the compression tests on the gyroid cellular 

lattice structures at the normal or worst orientations. Volume fraction is 15% and unit 

cell size is 5mm. 

Fig. 10 Comparison of experimentally tested and Gibson-Ashby model estimated 

results: (a) compressive modulus and (b) compressive strength as a function of the 

relative density. 
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Table 1 Comparison between the designed and experimental volume fractions  

Volume of the 
lattice structure/ 

mm3 

CT-tested volume 
of the solid struts / 

mm3 

Experimental 
volume fraction 

/% 

Designed 
volume 

fraction /% 

Difference 
/% 

9537.19 620.87 6.51 6 8.5 
9670.54 846.17 8.75 8 9.4 
9548.22 1017.84 10.66 10 6.6 
9530.88 1250.45 13.12 12 9.3 
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Highlights 

 

1. A unique cell type called gyroid is designed to construct lattice structures. 

2. Curved cell surface as a self-supported feature avoids support structures. 

3. Lattice structures with a wide volume fraction range were made. 

4. Lattice structures were made at different orientations. 

5. Strength and modulus increase with the increase in the volume fraction. 

 


