
A New Lookup Model for Multiple Flow Tables of

OpenFlow with Implementation and Optimization

Considerations

Zhi Chen
1,2

, Yulei Wu
1
, Jingguo Ge

1
, Yuepeng E

1

1
Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100190, China

2
University of Chinese Academy of Sciences, Beijing, 100049, China

Email: {chenzhi, wuyulei, gejingguo, eyp}@cstnet.cn

Abstract- OpenFlow has become the key standard for the

southbound interface of software defined networking. The

single flow table of OpenFlow implementation can lead to
fast storage space growth, and finally cause table-overflow;
the multiple flow tables can address this problem and pro-

vide greater efficiency and flexibility. Through analyzing the
potential deployment challenges of OpenFlow, this paper
proposes a new lookup model with implementation and op-

timization considerations for multiple flow tables in an
OpenFlow switch. With the developed lookup model, the
original single flow table is split into multiple sub-flow tables,

and the fields in each sub-flow table are further divided into
several categories according to different field types. Prelim-
inary simulation results demonstrate that the proposed solu-

tion can effectively reduce the storage space of flow tables.

Keywords- OpenFlow, lookup model, flow table, sum-

mary table, performance analysis

I. INTRODUCTION

OpenFlow has become the key standard for the

southbound interface of software defined networking

(SDN) [1, 2, 3]. It decouples the control and data for-

warding plane, and has been widely used for the low-cost

configuration and optimization of traffic flows in Da-

ta-center and Campus networks to facilitate the traffic

engineering and improve network performance.

In OpenFlow networks, the forwarding strategy and

bandwidth assignment are determined in the per-flow

basis, and, thus the design of flow table is one of the

dominant issues [5]. Since OpenFlow specification v1.1,

multi-stage flow table processing has been proposed to

achieve an efficient and flexible table lookup; however,

the implementation of such a proposal has not been given,

even in the latest specification v1.3. The packets of traffic

flow are processed against the flow entry in the flow table

where a flow entry is mainly identified by the match fields

and priority. Moreover, the structure of match fields is

becoming more complex in the presence of new Internet

architecture, new application type, and new media format.

Thus, the single flow table of OpenFlow implementation

can lead to fast storage space growth, and finally cause

table-overflow; the multiple flow tables can address this

problem and provide greater efficiency and flexibility [3,

4].

Due to the success achieved in Data-center and

Campus networks [1, 2], the OpenFlow/SDN is demand-

ing the deployment in large-scale environments (e.g.,

wide-area networks) to provide easy traffic engineering

including bandwidth sharing and multipath transmission,

high quality-of-experience (QoE), and the opportunities

for researchers to evaluate their innovative designs with-

out any interference to the practical network operation.

However, the large-scale deployment of OpenFlow tech-

nologies possesses many challenges, due to the explosive

growth of network bandwidth, the development of new

network architectures, the increasing formats of new me-

dia and the diversification of network applications.

Moreover, these factors have significant impact on the size,

the structure and the lookup efficiency of flow table in

OpenFlow: 1) the size of flow table will grow explosively

in the future; 2) the number of fields will be increasing

dramatically, the type of fields will change frequently, the

structure of flow table will become more complex, and

the matching of flow entries will be more costly with the

mixture of diverse field types; 3) the increase in the proc-

essing speed of switch port requires an even higher de-

mand for the efficiency of flow table lookup.

In our previous work [6], we defined the coexistence

and conflict relationships between the fields by analyzing

the match fields in OpenFlow specification v1.3, and

proposed an algorithm H-SOFT to optimize the storage

space of flow table. The proposed algorithm degrades the

complex fields in a single flow table into multiple

sub-flow tables with sub-set of original fields. The storage

space compression of original flow table is achieved by

assigning the fields of each flow entry into multiple

sub-flow tables.

This paper further considers the storage space com-

pression of each sub-flow table and the implementation

proposal for the developed flow table lookup model. Spe-

cifically, the fields in each sub-flow table are divided into

four categories: linear match field, exact match field,

longest prefix match field, and range match field. A

summary table is then adopted to make sure the consis-

tency and correctness of the matching results. We further

develop a feasible approach to optimize the summary table

and solve its storage space explosion problem to be raised

in the practical implementation. The preliminary simula-

tion results show that the proposed solution can effectively

reduce the storage space of multi-flow tables with opti-

mized summary table by around 50% under varying

number of flow entries, in comparison with that using

original summary table.

The rest of this paper is organized as follow. Section

II shows the related work on flow table lookup. Section III

presents the proposed lookup model for flow table of

OpenFlow, and the optimization for its storage space. The

feasibility of the proposed lookup model and the effec-

tiveness of the presented optimization approach are vali-

dated through simulation experiments in Section IV. Fi-

nally, Section V concludes this study.

II. RELATED WORK

From the perspective of forwarding theory in com-

puter networks, existing forwarding tables, such as for-

warding information base (FIB) and access control list

(ACL), can be treated as the subset of the flow table [7]. In

OpenFlow architecture, the networking devices usually

need to handle a large number of ACL-like rules. The

compression of such rules is critical for the management

and storage space optimization of networking devices [8].

Liu et al. [9] proposed an ACL Compressor to reduce

the number of rules while maintaining the same semantics.

However, the flow table of OpenFlow is different from the

ACL; the actions in ACL are much simpler than those in

flow tables of OpenFlow. Moreover, in the flow table,

there may exist several entries against a single traffic flow

for the purpose of different control granularities; the

packets match flow entries in priority order.

It is difficult to scale the current TCAM-based or

trie-based solutions for future routing tables due to the

increasing table size and longer/varying prefix length,

which demand for higher throughput [10]. The authors in

[11] proposed the TCAM-based SPliT architecture where a

d-dimensional classifier is split into k (2k) low di-

mensional classifiers, each of which is stored in its own

small-size TCAM. A d-dimensional lookup is then equiv-

alent to the k low dimensional and pipelined lookups with

one lookup on each chip. TCAM is not the most appro-

priate solution for the lookup operation for all types of

fields. In addition, due to power and cost reasons, TCAM

is widely adopted for small-size routing tables [12, 13].

Since the specification v1.1, the OpenFlow has pro-

posed multiple flow table processing to accelerate the

lookup and compress the storage space. However, the

overhead of actual flow table storage is related to the de-

sign of flow table structure which has not been given in the

specification.

The lookup model for flow table of OpenFlow pro-

posed in this paper can perform efficient table lookup

because many match fields (i.e., linear match field, exact

match field, etc.) of flow entries can be handled in parallel.

Since multi-core processors have brought new opportuni-

ties to further improve the performance of flow-based

traffic processing schemes [14], Li and Luo [15] extracted

flow features with multi-core processors which can

achieve 19.3% performance improvement. Using mul-

ti-core processors has been the current dominant trend to

improve the performance of packet processing.

III. THE PROPOSED LOOKUP MODEL

The network programmability of OpenFlow is

achieved through open and dynamic updating on the flow

entries in flow table. The data packets are handled based

on the actions of matched entries. The efficiency of flow

table lookup significantly affects the performance of

OpenFlow switches and the deployment of OpenFlow

technology in large-scale networks. In this section, we

propose a lookup model for flow tables to achieve efficient

lookup and storage space compression of multiple flow

tables in OpenFlow.

A. The Principle and Workflow of Lookup Model

In OpenFlow networks, each switch maintains a flow

table with a set of flow entries; a logically centralized

controller has the connections to all switches to add, up-

date, and delete flow entries in flow tables based on the

OpenFlow protocol. In previous work [6], we presented an

optimized forwarding plane, where the single flow table is

divided into k sub-flow tables using the H-SOFT algo-

rithm, which is shown in the gray box of Fig. 1. In this

paper, the proposed lookup model is based on the k

sub-flow tables.

Flow Table

Management

Flow Table

OpenFlow

Controller

OpenFlow protocol

Input

port

Output

port

Output

port

Output

port

Input

port

OpenFlow

Switch
Data

OpenFlow

Switches

OpenFlow

SwitchData

OpenFlow Switch

OpenFlow

Switches

Sub- flow table 1
…

Sub-flow table k

Secure

Channel

Fig. 1. The OpenFlow network with the flow table in the switch opti-

mized by H-SOFT algorithm

OpenFlow

Switch

Out

port

Out

port

Out

port

Flow Table

R
esu

lt o
f o

p
era

tio
n
s

Secure

Channel

FTM Module

OpenFlow Protocol

Sub-flow table
Management

OpenFlow

Controller

d
a
ta

R
eceiv

ed
 p

ack
et In

port

In

port

E
x

tract p
ack

et field
 m

o
d

u
le

C
h

o
o

se su
b

-flo
w

 ta
b

le

Sub-flow table 1

Sub-flow table 2

linear matching

exact matching

the longest
prefix matching

range matching

Sub-flow table k

R
esu

lt o
f o

p
era

tio
n
s

F
a
st

m
a
tch

C
h

ip
s in

teg
ratio

n

Field match

Fig. 2. The architecture of the proposed lookup model

As shown in Fig. 2, in the proposed lookup model,

the flow table management (FTM) module is adopted to

manage the flow tables. This module is independent in

each switch and is transparent to the OpenFlow Controller.

The controller can issue rules with the same format to

different switches. The FTM module can adopt different

management algorithms such as H-SOFT [6]. This module

is scalable and can define the required and optional func-

tions, where in this work, the sub-flow table management

is required.

Recall that in Fig. 1, each of the n flow tables is

divided into k sub-flow tables to optimize its storage

space with the coexistence and conflict relationships be-

tween fields of flow entries [6]. The dimension of entries

in sub-flow tables is lower than that of original flow table,

and, thus the number of flow entries in each sub-flow table

is smaller. That is because the entries in sub-flow tables

only contain coexistence-relationship fields and the con-

flict-relationship fields cannot appear to occupy storage

space.

Considering the sub-flow tables may contain various

field types, they are further split into four categories: li-

near match field, exact match field, longest prefix match

field, and range match field; the matching process of each

field can be performed in parallel by different hardware

implementation. We use the chip integration module (CIM)

to handle the matching results of each field, which can be

used to get the matching result of the sub-flow table.

The lookup operation of a received packet can be

performed as follows: 1) the header fields in the arrival

packet are extracted by the extract packet field module; 2)

according to the extracted fields, one or multiple sub-flow

tables are selected for lookup; 3) the fast match module in

sub-flow table is checked first to get the result if matched;

otherwise, go to Step 4; 4) different match fields are

processed in parallel, and the results of each match field

are collected to get the matching result of sub-flow table; 5)

we compare the priority of matched entries in different

sub-flow tables to obtain the final result; 6) According to

the obtained result, the lookup operation ends.

B. The Implementation of Lookup Model

In the lookup model, the relationships between fields

in an entry are broken when the sub-flow table is split. The

values of each field are recoded in the corresponding

matching module. Therefore, a summary table is required

to ensure the consistency and correctness of the matching

result for received packets, which should be semantically

equivalent to that of original flow table and saved in the

CIM.

The lookup model is implemented based on the hy-

pothesis that the sub-flow tables contain at most

two-dimension range match fields, linear match fields, and

exact match fields, where the longest prefix match field

can be treated as a special case of range match field.

Because multiplicative effect exists in the summary

table and the number of entries will be explosively grow-

ing with the number of original entries increasing linearly.

To solve this problem, we leverage a two-level summary

table to compress the storage space of those fields whose

values will be repeated when an entry is expanded to sev-

eral entries in the summary table. Moreover, we only de-

compose one of the two range fields and convert the match

modules of the two range fields to an equivalent tree

structure, which can mitigate the multiplicative effects in

the summary table.

In Fig. 3, an OpenFlow sub-flow table is given, as an

example, to illustrate the implementation of lookup model.

Rules Mac_Src Mac_Dst Proto Port_Src Port_Dst

1 A1 B1 TCP [1,10] [20,100]

2 A1 B2 TCP [3,5] [30,50]

3 A2 B3 UCP [6,8] [80,81]

4 A3 B2 TCP [3,8] [60,65]

e1

e2

e3

e3

Fig. 3. An example of one sub-flow table

The match fields are split and their values are rec-

orded in Fig. 4. For the two range fields, we decompose

the values of Port_Src field for non-overlapping purpose,

and the output of Port_Src field is the index for the

Port_Dst field matching processing. The results due to the

match fields splitting are shown in Fig. 4.

Mac_Src

A1

A2

A3

a1

a2

a3

b1

b2

b3

Mac_Dst

B1

B2

B3

Proto

TCP

UDP

c1

c2

Port_Src

[1,2]

[3,5]

[6,8]

[9,10]

[20,100]

[20,100]

[30,50]

[60,65]

[20,100]

[20,100]

[80,81]

[60,65]

d1

d2

d3

d4

d5
d6

d7

d8

Port_Dst

Fig. 4. The situation after match field dividing and recoding

Then, the matching results of each match module are

collected by the CIM to produce the final matching result

for the sub-flow table. In this paper, the proposed

two-level summary table is shown in Fig. 5.

a1 b1 c1

a1 b2 c1

a2 b3 c2

a3 b2 c1

x1

x2

x3

x4

x1 d1

x1 d2

x1 d5

x1 d8

x2 d3

x3 d6

x4 d4

x4 d7

e1

e1

e1

e1

e2

e3

e4

e4

Fig. 5. The two-level summary table

From Fig. 5, we can find that the four entries in orig-

inal sub-flow table (see Fig. 3) are expanded to eight en-

tries in the summary table. If all match fields in sub-flow

table are split, the number of entries in original summary

table will increase significantly, which will be analyzed

below.

For the field of Mac_Src, the value of A1 exists in the

entries of e1 and e2. With the field splitting, we need to

save the value of A1 and record it as a1; the other values,

i.e., A2 and A3, of the Mac_Src field are recoded as a2 and

a3, respectively. The fields of Mac_Dst and Proto are

handled in the same manner. For the range match fields,

e.g., Port_Src and Port_Dst, an equivalent two-layer tree

structure is built. In the two-level summary table, the value

(a1, b1, c1) in the first-level table is mapping to x1 which

repeats four times in the second-level table. Through (x1,

d1) in the second-level table, the final matching result e1

can be obtained. The two-level summary table is used to

reduce the storage space of summary table.

In Fig. 4, only the values of Port_Src field are de-

composed for non-overlapping. The set of values in the

field of Port_Src is denoted by 1r , and the number of

values in 1r is | || | 1r . After the value decomposition, 1r

is converted to 1r , and, thus the values in 1r are

non-overlapping and the number of values in it is | || | 1r .

Thus, we have 1| || |2| || | 11  rr [9]. Because a value in

1r is an interval and it can be converted to two points, all

the values in 1r can be converted to | || |2 1r points in the

case of maximization. Then, the maximization of

)1| || |2(1 r intervals can be obtained for non-overlapping

with | || |2 1r points. Therefore, with such kind of de-

composition, the growth in the number of values of range

matching module is linear.

A value in 1r may be expanded to | || | 1r values in

1r . The increase of entries in the summary table is,

therefore, 2n level when there is only one range match

field in the sub-flow table and n is | || | 1r . If the Port_Dst

range field is also decomposed for non-overlapping, mul-

tiplicative effect will be significant and the increase of

entries in summary table is 3n level. In our proposed

approach with two-layer tree structure, the increase of

entries is 2n level with two range fields in the sub-flow

table.

IV. PRILIMINARY SIMULATION RESULTS AND

ANALYSIS

To evaluate the effectiveness of the proposed ap-

proach for summary table optimization in the implemen-

tation of lookup model, we develop a software simulator

based on Python to mimic the behavior of lookup model.

All simulation results are collected from a personal com-

puter with Windows 7 operating system, Intel Core (TM) 2,

2.66GHz CPU and 3.46GB memory space.

OpenFlow is currently in the process of development,

it is still hard to collect the data of realistic flow tables.

Therefore, in this paper, we convert the header of network

packets into the corresponding entries of flow table. The

real dataset of network packets is collected from the egress

router of Guangzhou branch of China Science and Tech-

nology Network (CSTNet), an academic and research

network in China. The entries in the flow table contain

several match fields: IPv4_SRC, IPv4_DST, IPv6_SRC,

IPv6_DST, IP_PROTO, TCP_SRC, TCP_DST, UDP_SRC, and

UDP_DST.

Through preliminary simulation results with different

scale of sub-flow tables, we separately compute the sto-

rage space of sub-flow tables with original summary table,

optimized summary table, and the initial sub-flow table;

the results are shown in Fig. 6. From the figure, we can

find that the storage space of sub-flow tables with original

summary table is larger than that of initial sub-flow table,

especially under a moderate to large number of entries in

sub-flow tables; the storage space of sub-flow table with

optimized summary table is smaller than that of initial

sub-flow table. In addition, the growth of storage space on

sub-flow table with optimized summary table is slower

than that of sub-flow table with original summary table in

terms of the increased number of entries in sub-flow table.

The phenomenon emphasizes the effectiveness and cor-

rectness of the proposed solution.

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Number of Entries in Sub-flow table

T
h

e
S

to
ra

g
e

S
p

ac
e

with optimized summary table

initial sub-flow table

with original summary table

Fig. 6. The comparison of storage space under different conditions

Fig. 7 depicts the ratio of storage space between the

sub-flow tables with optimized summary table and that

with original summary table against the varying number of

entries in the sub-flow table, i.e., 100, 500, 1000, and 2000

entries. The ratio is calculated based on:

orioriopt SSSR /)( , where optS and oriS are the

storage space of sub-flow tables with optimized summary

table and original summary table, respectively.

100 500 1000 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Entries in Sub-flow table

T
h
e

R
at

io
 o

f
S

to
ra

g
e

S
p
ac

e

Fig. 7. The ratio of storage space between sub-flow table with two

different summary tables

From Fig. 7, we can observe that the ratio is around

50% with the varying number of flow entries in sub-flow

tables, which validates again the effectiveness and cor-

rectness of the proposed scheme.

In addition to the dataset collected from one egress

router of CSTNet (Dataset A), we adopt another real da-

taset of firewall (Dataset B) and convert the rules into the

corresponding entries of flow table. Fig. 8 shows the

comparison of storage space for flow tables with opti-

mized summary table and original summary table using

Dataset A and Dataset B. The figure shows that the storage

space with optimized summary table is always smaller

under different datasets.

Fig. 8. The storage space comparison based on different real datasets

The results demonstrate that the effectiveness and

correctness of the optimization approach for the storage

space of summary table, which is important in the im-

plementation of lookup model for multi-flow tables of

OpenFlow.

V. CONCLUSIONS

This paper has proposed a new lookup model with

implementation and optimization considerations for

multi-flow tables of OpenFlow. In the lookup model, the

flow table is split into multiple sub-flow tables based on

the proposed H-SOFT. The fields in each sub-flow table

are further divided into four categories: linear match field,

exact match field, longest prefix match field, and range

match field. A summary table in the model is used to make

sure the consistency of the matching results. In the im-

plementation of lookup model, we have proposed a feasi-

ble approach to handle the storage space explosion prob-

lem of summary table. Preliminary simulation experi-

ments have shown that the proposed approach can effec-

tively reduce the storage space of sub-flow tables with split

fields. The compression rate of storage space between the

sub-flow tables with original and optimized summary table

is around 50% with varying number of flow entries.

Moreover, the approach is also effective using different

real datasets with diverse match fields.

ACKNOWLEDGEMENTS

This work is partially supported by the National Nat-

ural Science Foundation of China under Grant No.

61303241, National Program on Key Basic Research

Project (973 Program) under Grant No. 2012CB315803,

the Strategic Priority Research Program of the Chinese

Academy of Sciences under Grant No. XDA06010201 and

the National High-Tech R&D Program of China (863

Program) under Grant No. 2013AA013501.

REFERENCES

[1] Vaughan-Nichols S J. “OpenFlow: The Next Generation of the
Network?” Computer, 2011, 44(8), pp. 13-15.

[2] Mckeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L,
Rexford J, Shenker S, and Turner J. “OpenFlow: Enabling Inno-
vation in Campus Networks,” ACM SIGCOMM Computer Com-
munication Review, 2008, 38(2), pp. 69-74.

[3] OpenFlow 1.3.0 Specification. https://www.opennetwork
-ing.org/images/stories/down-loads/specification/openflow-spec-v
1.3.0.pdf [25 June 2012].

[4] Natarajan S, Ramaiah A, Mathen M. “A Software Defined
Cloud-Gateway Automation System Using OpenFlow,” in Proc.
of 2013 IEEE International Conference on Cloud Networking
(CloudNet), 2013, pp. 219-226.

[5] Matsumoto N and Hayashi M. “Performance Improvement of
Flow Switching with Automatic Maintenance of Hash Table As-
sisted by Wildcard Flow Entries,” in Proc. of 2012 10th Interna-
tional Conference on Optical Internet (COIN), 2012, pp. 12-13.

[6] Ge J, Chen Z, Wu Y, and E Y. "H-SOFT: A Heuristic Storage
space Optimisation Algorithm for Flow Table of OpenFlow,"
Concurrency and Computation: Practice and Experience, 2014,
DOI: 10.1002/cpe.3206

[7] Feng T, Bi J, and Hu H. “OpenRouter: OpenFlow Extension and
Implementation Based on A Commercial Router,” in Proc. of
2011 19th IEEE International Conference on Network Protocols
(ICNP), 2011, pp. 141-142.

[8] Daly J, Liu A X, and Torng E. “A Difference Resolution Ap-
proach to Compressing Access Control Lists,” in Proc. of 32nd
Annual IEEE International Conference on Computer Communi-
cations (INFOCOM), 2013, pp. 2040-2048.

[9] Liu A X, Torng E, and Meiners CR. “Compressing Network
Access Control Lists.” IEEE Transactions on Parallel and Dis-
tributed Systems, 2011, 22(12), pp. 1969-1977.

[10] Huang Z, Lin D, Peir J K, et al. “Fast Routing Table Lookup
Based on Deterministic Multi-hashing,” in Proc. of 2010 18th
IEEE International Conference on Network Protocols (ICNP),
2010, pp. 31-40.

[11] Meiners C R, Liu A X, Torng E, et al. “Split: Optimizing Space,
Power, and Throughput for TCAM-based Classification,” in Proc.
of the 2011 ACM/IEEE Seventh Symposium on Architectures for
Networking and Communications Systems, 2011, pp. 200-210.

[12] Akhbarizadeh M J, Nourani M, Vijayasarathi D S, et al. “PCAM:
A Ternary CAM Optimized for Longest Prefix Matching Tasks,”
in Proc. of Computer Design: VLSI in Computers and Processors,
2004, pp. 6-11.

[13] Noda H, Inoue K, Kuroiwa M, et al. “A Cost-efficient
High-performance Dynamic TCAM with Pipelined Hierarchical
Searching and Shift Redundancy Architecture.” IEEE Journal of
Solid-State Circuits, 2005, 40(1), pp. 245-253.

[14] Wang D, Xue Y, Dong Y. “Memory-efficient Hypercube Flow
Table for Packet Processing on Multi-cores,” in Proc. of Global
Telecommunications Conference (GLOBECOM), 2011, pp. 1-6.

[15] Li S, Luo Y. “High Performance Flow Feature Extraction with
Multi-core Processors,” in Proc. of 2010 IEEE Fifth International
Conference on Networking, Architecture and Storage (NAS), 2010,
pp. 193-201.

