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ABSTRACT

We examine variations of the stellar initial mass function (IMF) in extreme environments within the formalism
derived by Hennebelle & Chabrier. We focus on conditions encountered in progenitors of massive early-type galaxies
and starburst regions. We show that, when applying the concept of turbulent Jeans mass as the characteristic mass
for fragmentation in a turbulent medium, the peak of the IMF in such environments is shifted toward smaller masses,
leading to a bottom-heavy IMF, as suggested by various observations. In very dense and turbulent environments,
we predict that the high-mass tail of the IMF can become even steeper than the standard Salpeter IMF, with a limit
for the power-law exponent α � −2.7, in agreement with recent observational determinations. This steepening is
a direct consequence of the high densities and Mach values in such regions but also of the time dependence of the
fragmentation process, as incorporated in the Hennebelle–Chabrier theory. We provide analytical parameterizations
of these IMFs in such environments to be used in galaxy evolution calculations. We also calculate the star-formation
rates and the mass-to-light ratios expected under such extreme conditions and show that they agree well with the
values inferred in starburst environments and massive high-redshift galaxies. This reinforces the paradigm of star
formation as being a universal process, i.e., the direct outcome of gravitationally unstable fluctuations in a density
field initially generated by large-scale, shock-dominated turbulence. This globally enables us to infer the variations
of the stellar IMF and related properties for atypical galactic conditions.
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1. INTRODUCTION

Stars form from the collapse of prestellar dense cores,
themselves forming in the overdense regions (clumps) of large
molecular gas reservoirs, called giant molecular clouds (GMCs).
The generic properties of the prestellar core mass function
(CMF) and of the resulting stellar initial mass function (IMF)
are intrinsically associated with the general properties of these
clouds. Various determinations of the IMF in the Milky Way
(MW) Galaxy, disk, bulge, and nearby star-forming regions and
young clusters suggest essentially no or very little variation,
with all of the inferred IMFs being consistent within some
expected scatter with the same underlying Chabrier (2005)
IMF5 (Chabrier 2003, 2005; Andersen et al. 2008; Bastian et al.
2010). Similarly, mass-to-light (M/L) ratio determinations in
spiral galaxies are also consistent with this same IMF (e.g.,
Portinari et al. 2004; van Dokkum & Conroy 2010; Brewer
et al. 2012; Tortora et al. 2013, 2014). In contrast, there is now
growing evidence from various observations that the IMF in
massive elliptical early-type galaxies (ETGs) differs from the
previous one, being more “bottom heavy” and revealing a larger
fraction of low-mass stars compared to MW-like environments.
Spectroscopic observations indeed show a marked increase
in the strengths of various spectral line absorption features
with velocity dispersions in the σ = 100–300 km s−1 range,
pointing to the existence of a large population of M dwarf

5 The Chabrier (2005) IMF adopts the same form as the Chabrier (2003) one
but with a lower normalization at the hydrogen burning limit, determined from
the updated nearby luminosity function released at that time (see Chabrier
2005 for details). These two IMFs differ essentially in the brown dwarf domain
but yield similar M/L ratios in the stellar regime (see Section 7).

stars and thus a more bottom-heavy IMF compared to the MW
(van Dokkum & Conroy 2010, 2012; Conroy & van Dokkum
2012a, 2012b; Smith et al. 2012; Spiniello et al. 2012, 2014;
Ferraras et al. 2013; La Barbera et al. 2013; Goudfrooij &
Kruijssen 2013). Furthermore, constraints from observed stellar
kinematics and gravitational lensing confirm that massive ETGs
have large mass-to-light ratios compared to other galaxies (e.g.,
Treu et al. 2010; Thomas et al. 2011; Cappellari et al. 2012,
2013; Sonnenfeld et al. 2012; Conroy et al. 2013; Dutton et al.
2013a, 2013b; Barnabè et al. 2013; Tortora et al. 2013, 2014).
Combined with the former spectroscopic diagnostics, these
results suggest that this large mass arises from an unusually
large low-mass star population rather than from a population
of remnant stars. Further valuable spectroscopic information
is the signature of enhanced [α/Fe] abundance ratios with
increasingly large velocity dispersion in the spectra of massive
ETGs (Thomas et al. 2011; Conroy & van Dokkum 2012a,
2012b; Conroy et al. 2014), suggesting that the IMF evolves
from a Chabrier-like one at abundance ratios close to solar to
a more bottom-heavy one for highly α-enhanced populations.
Under the conventional assumption that these ratios reflect the
star-formation timescale, with higher values corresponding to
shorter timescales, all of these observations suggest that galaxies
harboring α-enhanced stellar populations, formed in rapid and
intense starbursts, tend to generate a larger population of low-
mass stars than galaxies with extended star-formation histories.
The progenitors of massive ETGs, formed in the early universe,
are the emblematic representation of such structures.

The consistent picture that seems to emerge from all of
these data is that the IMF is not completely “universal” but
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varies from MW-like for spiral galaxies, with moderate velocity
dispersion formed at low redshift (z � 2) with “quiescent”
star-formation histories, to Salpeter-like or even steeper over
the entire stellar regime for massive star-forming galaxies, with
velocity dispersion σ � 200 km s−1, in which stars formed
very rapidly in a “burst” mode at early epochs. As discussed
in Section 3, massive ETGs are indeed supposed to be the
result of the merging of compact structures formed within
large gas inflows in the early universe, exhibiting presumably
more extreme star-formation conditions, gas mean density, and
velocity dispersion than the ones prevailing in the MW. In the
local universe, extreme star-forming conditions, resulting from
gas-rich mergers, also prevail in starburst environments like the
central parts of ultraluminous infrared galaxies (ULIRGs; e.g.,
Kartaltepe et al. 2012).

In this paper, we explore this issue by examining the de-
pendence of the IMF on the environment, i.e., the cloud gas
temperature, mean density, and turbulent properties, within the
framework of the Hennebelle & Chabrier (hereafter HC; 2008,
2009, 2013) analytical theory of the IMF. This “gravoturbu-
lent” picture of star formation indeed predicts variations of the
IMF with the level of turbulence, in contrast to the standard,
purely gravitational star-formation scenario, and might natu-
rally explain the aforementioned variations. It should be noted
that Hopkins (2013) recently explored this issue with a different
formalism. Besides the fact that it is important to verify whether
different theories yield similar conclusions, we expand upon
Hopkins’ results in several ways: first by including the time de-
pendence of the IMF in our formalism, second by calculating
the inferred star formation rates (SFRs) and mass-to-light ratios
in such extreme environments, and third by providing analytical
parameterizations of the Chabrier IMF relevant for such con-
ditions. The paper is organized as follows. We first derive in
Section 2 the relations between the normalizations of Larson
relations at a cloud scale and those at a galactic scale so that the
star-forming cloud properties can be inferred directly from the
ones of the host galaxy. In Section 3, we examine the particu-
lar conditions prevailing in massive ETG progenitors and how
they modify the aforementioned normalizations. In Section 4,
we summarize the Hennebelle–Chabrier theory and highlight
its main predictions relevant to the present study. In Section 5,
we calculate the IMFs characteristic of extreme star-forming
conditions, for which we provide analytical parameterizations.
The SFRs and M/L ratios obtained with these different IMFs
are calculated in Section 6 and 7, respectively, and Section 8 is
devoted to the conclusion.

2. FROM CLOUD TO GALACTIC PROPERTIES

2.1. Larson Relations

As mentioned above, stars form inside overdense re-
gions, usually denominated “clumps,within giant molecular gas
clouds.6 We thus consider the properties of the gas in a popu-
lation of star-forming clumps or clouds formed in a given host
galaxy. In the MW, star-forming clumps or clouds are observed
to follow the so-called Larson (1981) scaling relations between

6 Clumps are usually defined as ∼parsec-size overdense regions in larger
(∼10–100 pc) molecular clouds and are the very birth sites of star formation.
They can be self-gravitating or not and are observed in CO absorption or dust
emission. They are somehow a scale-downed version of GMCs, with slightly
smaller sizes and larger mean densities. Their global properties are also similar
to the ones of the clouds, so the term “clump” or “cloud” will be used
indifferently to denominate the star-forming regions.

the cloud H2 mean number density n̄ or three-dimensional (3D)
velocity dispersion Vrms (which includes both rms and thermal
fluctuations) and its size Lc within a domain ranging from ∼one
to several hundreds of parsecs:

n̄(Lc) = d0

(
Lc

1 pc

)−ηd

(1)

Vrms(Lc) ≡ 〈
V 2

rms

〉1/2 = V0

(
Lc

1 pc

)η

. (2)

These relations correspond to the nearly equilibrium state of
molecular clouds immersed in an ambient medium of constant
pressure P (Chièze 1987). As obvious from these equations, d0
and V0 define the density and velocity dispersion normalization
conditions at the 1 pc scale. Observed values in GMCs in the
Galaxy give d0 ∼ 3 × 103 cm−3 and V0 ∼ 0.8–1.0 km s−1.

For a homogeneous self-gravitating cloud of mass Mc and
size Lc, the (molecular) gas surface density and pressure read

Σg � Mc

πL2
c

� ρ̄ Lc/6 (3)

P

kB

= π

2

G

kB

Σ2
g � 3.34 × 103

(
Σg

10 M� pc−2

)2

K cm−3,

(4)

where ρ̄ = μmhn̄, with μ = 2.33 for a cosmic composition
and mh = 1.66 × 10−24 g, denotes the cloud H2 mean mass
density and where we have assumed that essentially all of the
gas in GMCs is in molecular form. A condition of constant
pressure thus yields ηd = 1 in Equation (1). Observations
rather suggest ηd ∼ 0.7–1.0 (Hennebelle & Falgarone 2013)
due to the nonhomogeneous, arguably fractal nature of GMCs,
while the exponent η is found to be η ∼ 0.4–0.5. Strikingly,
these scaling relations, illustrating the connection between
the properties within a cloud and its ambient medium, are
observed to be remarkably universal, not only under MW-
like conditions but also in completely different environments
like high-redshift, star-forming galaxies (e.g., Swinbank et al.
2011) or the MW central molecular zone (CMZ; Shetty et al.
2012; Kruijssen & Longmore 2013). The exponents in these
systems remain similar. The “universality” of the linewidth–size
relation within star-forming GMCs and the fact that it holds
over a large range of spatial scales, in particular, suggests
that the underlying physical processes driving the interstellar
medium (ISM) dynamics are “universal,pointing to supersonic
turbulence, and provides evidence for large-scale (low spatial
frequencies, >10 pc) turbulent driving (Heyer & Brunt 2004;
Kritsuk et al. 2013). This picture is consistent with GMCs
forming on large scales from colliding flows or global galactic
disk instabilities and inheriting the turbulent properties of
these large-scale motions. One can indeed relate the value
of the exponent η to the (3D) index n of the turbulence
velocity power spectrum, PV(k) ∝ k−n, as (e.g., Hennebelle &
Chabrier 2008)

η = n − 3

2
. (5)

Various simulations of compressible (magneto)turbulence (e.g.,
Kritsuk et al. 2007, 2013; Molina et al. 2012) suggest a value
n ∼ 3.8, which yields η ∼ 0.4, the observed value.
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2.2. Normalization on Large Scales

It is useful to link the dynamical properties of the gas within
star-forming clouds, as given by Equation (2), the relevant scale
for the stellar IMF, to the ones of the host galaxy, characterized
by a typical length scale rd, generally defined as the typical
gas scale height rd ∼ h. Such a limit between clouds and the
surrounding ISM on large scales, however, is rather ill-defined,
both theoretically and observationally, and necessarily retains
large uncertainties. The easiest way to proceed is simply to
extend the scaling relation (2) up to scales Lc ∼ h, typical of the
largest GMCs, by assuming that the largest turbulence injection
scale is Li ∼ Lc ∼ h. The velocity dispersion of the star-
forming gas in GMCs at the galactic characteristic scale r ∼ h is
thus the one given by the condition of a Toomre marginally stable
disk (Q ∼ 1) with gas average volume density ρg and midplane
surface density Σ0 = Σg(z = 0) = 2hρg , corresponding to
a gas mass Mg(r) ≈ πΣ0(r)r2. This assumption, which is in
substance the one adopted by Hopkins (2012a), seems to be
generally observationally verified from normal disk to starburst
galaxies (e.g., Downes & Solomon 1998). The big leap behind
this procedure, however, is the assumption that the dynamical
properties of the gas in star-forming clumps are only marginally
affected by the transition from the H i to H2 gas or by large-
scale gradients, so the atomic and molecular gas belong to the
same turbulent cascade from galactic scales to cloud scales.
Under such an assumption, the gas velocity dispersion versus
size relation for star-forming clumps smoothly decreases from
the largest possible turbulent scale, r = Li ∼ h, to scales
relevant for star formation and the IMF, r 	 h, while the
galactic rotational shear, ω̄r , where ω̄ ≈ √

2Ω is the disk
epicyclic frequency and Ω = vrot/r is its angular frequency,
dominates on scales of r � h (e.g., Hopkins 2012a):

ν2(r) = V 2
rms(r) +

√
3 ω̄2r2, (6)

with ν(r) � Vrms(r) for r 	 h and ν(r) � √
3hΩ for

r � h. Vertical hydrostatic equilibrium for the gas disk at scale
r � h implies (∇P )z(r) ≈ πGΣ2

0(r)/2h ≈ ρg(r)ν2(r)/2h. As
mentioned above, this corresponds to the general scaling relation
for the velocity dispersion in a marginally stable disk (Q(r) ∼ 1)
on scale r ∼ h, which corresponds to the most unstable scale
in a turbulent disk. This leads to the scaling relation at r ∼ h
(within geometrical factors of the order of a few):

ν(r) ≈
√

2πG Σ1/2
0 r1/2 ≈ 5.2

(
Σ0

10 M� pc−2

)1/2

×
(

r

100 pc

)1/2

km s−1 (7)

≈ 6.8

(
P/kB

104 K cm−3

)1/4 (
r

100 pc

)1/2

km s−1. (8)

Equating Equations (8) and (2) at scale r ∼ Lc ∼ h provides the
normalization condition of Equation (2), which gives a measure
of the typical amplitude of turbulent motions at the 1 pc scale,
in terms of the one at scale h:

V0 = 0.16

(
h

100 pc

)−η

νh ≈ 0.82

(
Σ0

10 M� pc−2

)1/2

×
(

h

100 pc

)0.1

≈ 1.1

(
P/kB

104 K cm−3

)1/4 (
h

100 pc

)0.1

km s−1,

(9)

where νh ≡ ν(h) and the numerical factors have been evalu-
ated for η = 0.4.7 Note that, in the above estimates, we have
assumed for the sake of simplicity that the disk consists entirely
of molecular gas in GMCs. Considering that these latter only
contain a fraction of the disk surface density will basically intro-
duce a correcting factor fH2 ≈ fGMC = (ΣGMC/Σ0) in the above
expressions, changing Σ0 by ΣGMC = fH2 Σ0. Assuming that
most of the galaxy molecular gas is collected into large bound
GMCs of size ∼100 pc, fH2 is essentially the galaxy molecular
gas fraction. For MW typical conditions (Σ0)MW � 20 M� pc−2,
(P/kB)MW � 1.5 × 104 K cm−3, Equation (9) recovers the typ-
ical value for V0 mentioned in the previous section.

We can also infer the density normalization. Assuming
again (e.g., Krumholz & McKee 2005) that the mass of the
most massive star-forming clouds is approximately the critical
Toomre mass in the galactic disk (which is similar to the two-
dimensional Jeans mass for Q ∼ 1, with the wavelength of
the fastest growing mode LJ = ν2/πGΣg ∼ h), i.e., Mc ≈
πΣgL

2
J ≈ ν4/πG2Σg (again within numerical or geometrical

factors on the order of a few), one gets, at scale r ∼ LJ ∼ h,

n̄ ≈ 10 fH2

(
Σ0

10 M� pc−2

) (
r

100 pc

)−1

≈ 18 fH2

(
P/kB

104 K cm−3

)1/2 (
r

100 pc

)−1

cm−3, (10)

and thus, using Equation (1),

d0 ≈ 100ηd

(
h

100 pc

)ηd

n̄h ≈ 103 fH2

(
Σ0

10 M� pc−2

)
≈ (1.8 × 103) fH2

(
P/kB

104 K cm−3

)1/2

cm−3, (11)

where n̄h ≡ n̄(h) and where we have used ηd ∼ 1. This yields
a mass–size relation for the GMCs (assuming nearly spherical
clouds):

Mc � π

6
ρ̄L3

c ≈ (3.0 × 105)fH2

(
Σ0

10 M� pc−2

) (
Lc

100 pc

)2

M�

≈ (5.1 × 105) fH2

(
P/kB

104 K cm−3

)1/2 (
Lc

100 pc

)2

M�.

(12)

Equations (9) and (11) enable us to relate the normalizations
of the cloud mean properties at 1 pc in Equations (1) and (2)
to the ones at the galactic scale (h ∼ 100 pc). In order to avoid
the uncertainties in the various numerical coefficients, these
relations can be used relative to the values in the MW:

d0

d0MW

≈ χH2

Σ0

Σ0MW

≈ χ
1/2
H2

(
P

P MW

)1/2

V0

V0MW

≈ χ
1/2
H2

(
Σ0

Σ0MW

)1/2

≈ χ
1/4
H2

(
P

P MW

)1/4

, (13)

where χH2 = fH2/(fH2 )MW is the ratio of the fraction of
molecular gas surface density in the galaxy under consideration
compared with the MW value, a parameter of order unity.

7 We recall that Vrms and V0 denote the 3D velocity dispersion
(Vrms3D = √

3Vrms1D) and that Σ0 denotes the surface density. Sometimes the
projected density is used instead, which, for a sphere, introduces a factor of
four because the projected area is A = π (L/2)2.
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As mentioned above, these relations implicitly assume that
the Larson relations reflecting the cloud mean densities and
dynamical properties apply all the way through from clump
scales to galactic scales, regardless of possible large disconti-
nuities either in mean density or turbulence properties between
star-forming GMCs and the surrounding ISM. Such an approx-
imation is probably of questionable validity for nearby galaxies
like the MW where GMCs are discrete, generally gravitationally
bound entities much denser than the surrounding ISM (typically
n ∼ 100 cm−3 versus ∼ 1 cm−3) and the ISM is dominated by
atomic gas. Starburst and high-z massive galaxies, however, are
characterized by high surface densities and a larger molecular
gas fraction (e.g., Daddi et al. 2010), so the ISM is a rather
continuous star-forming, turbulent medium with a more mod-
est (�10 or so) density contrast with the GMCs (e.g., Dekel
et al. 2009; Ceverino et al. 2010). Moreover, the star-forming
clumps in starburst environments are confined by a nearly con-
stant bounding pressure during their star-formation history, al-
lowing the use of the Larson relations (Chièze 1987). Therefore,
the above relations should provide reasonable estimates of star-
forming cloud conditions in various environments, expressed in
terms of those typical of the MW.

In conditions such as those leading to the formation of massive
ETG progenitors, the external pressure at the surface of the
GMC is directly related to the kinetic pressure of the infalling
(circumgalactic) gas, P � ρinfv

2
inf . In a nearly virialized gas

disk, the infall velocity is on the order of the virial velocity,
vinf(r) ≈ Vrot(r) = (GM/r)1/2 (Genel et al. 2012). However,
although the inflow velocity of cold gas streams is indeed found
to be close to the virialization velocity of the isothermal halo for
local spiral galaxies (e.g., Dekel et al. 2009), this is unlikely to
be the case for high-z, massive clumpy starburst galaxies such
as those leading to the formation of ETG progenitors. This lack
of equilibrium condition prevents a precise determination of the
correlation between gas velocity and virial velocity, in contrast
to the stellar component, ΔV
 ∝ Vrot.

On the other hand, some (potentially large) fraction ξ of the
infall kinetic energy is expected to be converted into turbulent
kinetic energy, leading to a ram pressure, Pturb ∼ ρgV

2
rms/k,

at the surface of the star-forming clouds (e.g., Bournaud et al.
2011; Genel et al. 2012). The turbulent dissipation rate within
the star-forming clouds, Ėdis � (1/2) McVrms

2 τc, where τc =√
3Lc/Vrms is the typical crossing time within the cloud, is thus

related somehow to the gas accretion rate, Ėacc � 2 GMcṀ/Lc,
with some geometrical factor of the order of unity:

1

2

McV
2

rms

τc

≈ 2ξ
GMcṀ

Lc

⇒ Vrms ∝ Ṁ1/3 ⇒ V0 ∝ Ṁ1/3.

(14)

Therefore, at least part of the gas dispersion velocity in the star-
forming clouds is expected to correlate directly with the gas
inflow rate on the galaxy.

3. MASSIVE EARLY-TYPE GALAXIES AND EXTREME
STARBURST ENVIRONMENTS

In the modern paradigm of structure formation, most of the
stars that have ended up today in the cores of massive (M
 �
1010 M�) ETGs formed in small, dense, gas-rich primordial star-
forming galaxies, at redshifts between z ∼ 3 and 5, i.e., within
a rather short timescale Δt ∼ 1–2 Gyr (see, e.g., de Lucia &
Blaizot 2007; Wilman et al. 2013; Naab et al. 2007; Barro et al.
2013). As mentioned in Section 1, measurements of enhanced

α-element abundances in the spectra of these galaxies indeed
suggest a star-formation timescale of a few megayears (Thomas
et al. 2005; Conroy et al. 2014). Hence, star formation in the
progenitors of massive ETGs presumably occurred more in burst
modes than in gradual “disk” modes typical of star-forming
galaxies at lower redshift. Then these primordial structures
continued to grow, mainly through dry (gas-poor), minor merger
events, to eventually lead to the formation of the massive ETGs
observed today, without producing significant new stars (see
references above). The early phases of star formation in massive
ETG progenitors thus involve violent dynamical dissipational
processes, such as gas-rich mergers or dynamical instabilities
fed by strong infalling gas flows from the intergalactic medium
(IGM), that induce compact starbursts in the central regions.
Gas consumption into stars in the central starburst, ram pressure
on dust grains, or outflows driven by stellar or active galactic
nucleus feedback mechanisms then quench star formation on
very short (dynamical) timescales, and the galaxy then evolves
passively. Therefore, according to this paradigm, star formation
in massive ETG progenitors occurred throughout bursts in
dense/compact galaxies and was driven primarily by intense,
cold gas accretion events, originating from gas streams along the
filaments of the cosmic web, efficiently forming stars centrally
rather than in an extended disk (e.g., Genel et al. 2012). The
IMF was imprinted during these early phases of intense gas-rich
accretion and remained barely affected afterward, conditions
quite different from the ones prevailing in quiescent MW-like
spiral galaxies.

3.1. Density

As just mentioned, the high-redshift (z � 2) progenitors of
massive ETGs are much more compact, with sizes smaller by a
factor of ∼six, than bulges or spiral galaxies of similar stellar
mass in the local universe (Barro et al. 2013; Williams et al.
2014). The combination of high masses and small sizes results
in extremely high densities. Similar conditions are expected in
the central regions of massive elliptical galaxies that are thought
to form in compact starbursts (e.g., Diamond-Stanic et al. 2012).
The average gas surface densities in star-forming clouds in
starburst galaxies range from Σg ∼ 103 to 105 M� pc−2 (Turner
et al. 2000; van Dokkum et al. 2008), compared to a typical range
∼1 to 102 M� pc−2 within a typical MW disk GMC (Kennicutt
1998; Bryant & Scoville 1999). After Equation (4), such high
densities correspond to interstellar ISM pressures as high as
P/kB � 107–1011 K cm−3, compared to P/kB ∼ 104 K cm−3

for the typical MW ISM pressure.
According to the relations derived in Section 2.2, such a dense

and highly pressurized ISM leads to the formation of massive
(up to ∼1010 M�) and dense star-forming regions, a factor of
�104× higher than the largest characteristic mass of GMCs
in the MW (e.g., Elmegreen et al. 2007; Swinbank et al. 2012).
Using Equations (11) and (13), the density normalization at 1 pc
is expected to reach values as high as d0 ∼ 106 cm−3 in such
starburst regions. This means that, under such high-pressure
conditions, the molecular gas can be more than ∼1000 times
denser at all scales than the gaseous star-forming clumps in the
MW. Indeed, the compact central starbursts and central regions
of ULIRG-like galaxies (gas-rich mergers) have characteristic
gas densities that are 102–104 times higher than the average
for normal disks, with the dominant gas mass fraction lying at
densities n(H2) � 105 cm−3 (Gao & Solomon 2004; Diamond-
Stanic et al. 2012). Extreme starburst regions like Arp 220 are
larger than ordinary GMCs but are filled with molecular gas at
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a density usually found only in small cloud cores (Downes &
Solomon 1998).

3.2. Velocity Dispersion

As mentioned above, the most admitted explanation for the
rapid and significant early mass growth of the progenitors of
the most massive ETGs involve violent dynamical processes,
such as repeated gas-rich (“wet”) mergers or strong accreting
gas flows at high redshift, with most of their stellar mass
being formed by z ∼ 3. Accretion rates onto the galaxy from
the IGM reach values as large as Ṁ = 102–103 M� yr−1, to
be compared with Ṁ ≈ 2 M� yr−1 for the MW (e.g., Dekel
et al. 2009; Ceverino et al. 2010; Klessen & Hennebelle 2010).
These accreting flows produce a highly turbulent velocity field
that pervades the whole region as the gas is entrained into
the flow. Globally, the combined effects of large accretion
rates, larger densities, and higher pressures relative to the
local ISM all yield a systematic enhancement of turbulent
velocities at all scales. According to Equations (9) and (14),
we expect a factor of ∼5–10 increase in the normalization
factor V0 at the 1 pc scale, yielding values as high as V0 ∼
10 km s−1 under the aforementioned conditions. The CMZ, for
instance, characterized by larger ambient pressure and larger
densities and temperatures than the local ISM, is found to
exhibit velocity dispersions systematically higher, resulting in
a scaling coefficient approximately five times larger than for
GMCs in quiescent environments like the standard MW clouds
(e.g., Swinbank et al. 2011, Figure 6; Shetty et al. 2012,
Figure 8). High-redshift galaxies are indeed characterized by a
considerably higher degree of internal turbulence than present-
day galaxies of comparable mass (Genzel et al. 2008).

3.3. Temperature

The temperature of the gas in a molecular cloud depends
on many different physical processes. To the best of our
knowledge, detailed calculations have not been conducted for
ETG progenitors or starburst environments, so it is difficult to
infer the typical gas temperature under such conditions. This
latter, however, is intuitively expected to be significantly larger
than the typical T ∼ 10 K value representative of relatively
quiescent, low-density, star-forming molecular clouds. First of
all, as mentioned above, star formation in the progenitors of
present ETGs is expected to have occurred through an initial
burst at z ∼ 5, yielding a minimum background temperature
of about ∼20 K. Second of all, the predominance of gas
compression due to gas inflows and shock-dominated turbulent
motions yields a large compressional heating rate (∝ √

ρ). At a
first order, the dissipation of this kinetic energy into thermal
energy will raise the gas temperature, even though part of
this energy will be radiated away. In extreme starbursts like
those in low-redshift ULIRGs, the infrared emission peaking at
wavelengths ∼60–100 μm reveals dust heated at temperatures
Td ∼ 60–70 K in molecular clouds (Downes & Solomon 1998;
Greeve et al. 2009). At the high densities typical of the regions of
interest, n̄ � 104 g cm−3, gas–dust energy exchange becomes
quite efficient, so the kinetic temperature of the (thermally
coupled) gas reaches similar values. Of course, what matters
is the temperature of the gas before star formation sets in,
so the comparison with ULIRGs might be questionable. The
consequences of the uncertainties in the gas temperature on the
IMF will be addressed in Section 5.1.

In the calculations below, we will examine the impact of
such high density, pressure, temperature, and velocity dispersion

conditions upon the IMF. A word of caution, however, is
necessary. Despite the support provided by the above general
analysis, our assumption that the physical conditions in ETG
progenitors and in starburst environments are similar could
be questioned. The temperature determination, for example, is
particularly uncertain. The vicinity of an H ii region, common
in spiral galaxies as opposed to ellipticals, or of a black hole, for
instance, might heat up the gas significantly, thereby decreasing
the cloud typical Mach number (M ∝ T −1/2). Dense, high-
pressure environments thus do not necessarily imply highly
turbulent conditions. These uncertainties must be borne in mind
when trying to characterize ETG progenitor conditions.

4. HENNEBELLE–CHABRIER THEORY. GENERAL
FORMALISM AND MAIN FEATURES.

Recently, Hennebelle & Chabrier (2008, hereafter HC08)
have developed an analytical theory of the IMF, extending the
Press & Schechter formalism developed in cosmology for lin-
ear density fluctuations to the gravoturbulent picture of star
formation, characterized by highly nonlinear fluctuations. This
theory successfully reproduces within the same framework the
observed distribution of unbound CO clumps and of gravitation-
ally bound prestellar cores.8 Both the clump and the core mass
functions only depend on one single parameter, namely the in-
dex of the log density and velocity power spectra of turbulence.
This index is indeed found to be similar for both spectra in sim-
ulations of shock-dominated turbulence in the explored range
of Mach values, with a characteristic (3D) value n′ � n � 3.8
(e.g., Kritsuk et al. 2007) between the Kolmogorov and Burgers
values. In the HC formalism, the normalization and the width
of the IMF are then entirely determined by the characteris-
tic conditions of the parent molecular cloud, mean density n̄,
temperature T, and large-scale Mach number M = Vrms/CS ,
where CS � 0.19 (T/10 K)1/2(μ/2.33)−1/2 km s−1 is the
sound velocity.

In a subsequent paper, Hennebelle & Chabrier (2009, here-
after HC09) took into account the thermodynamics of the gas
and showed that it has a significant impact on the low-mass part
of the spectrum. More recently, the same authors have included
the time dependence in their theory, extending the calculations
to an analytical derivation of the SFR (Hennebelle & Chabrier
2011a, 2013, hereafter HC11 and HC13). This leads to some
modifications of the low-mass part of the IMF compared with
the static theory and predicts SFRs in very good agreement with
the observed values in MW molecular clouds (see HC13).

Although alternative IMF theories have been suggested (see,
e.g., Hennebelle & Chabrier 2011b; Offner et al. 2014, for recent
reviews), the most achieved one, besides HC, is the one recently
derived by Hopkins (2012a), based on the so-called excursion
set formalism also used in cosmology. Both the HC and
Hopkins theories rely on the concept of structure (cloud or core)
formation being induced by density fluctuations, δ = ln(ρ/ρ̄),
induced by the small-scale dissipation of large-scale supersonic
turbulence. The random field of density fluctuations is thus given
by the probability density function (pdf; i.e., power spectrum)
of turbulence. For isothermal (magnetized or nonmagnetized)
turbulence, this latter has been found in many studies to be well
reproduced by a lognormal form (see, e.g., Vázquez-Semadeni

8 As discussed below, the HC theory is essentially devoted to the formation
of gravitationally bound prestellar cores and thus is truncated at scales larger
than the cloud scale. Within this limit, the theory correctly accounts for the
cloud-in-cloud problem in the original Press–Schechter formalism (see HC08;
Hopkins 2012b).
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1994; Federrath 2013 and references therein), i.e., a Gaussian
field in logarithm of the density, characterized by a variance
σ (δ). We stress, however, that both HC and Hopkins theories
remain valid for any choice of the pdf, even though a lognormal
form greatly simplifies the calculations. Smoothed at scale R,
the random field of fluctuations δR ≡ δ(R) = log(ρ(R)/ρ̄) is
thus given by

PR(δR) = 1√
2πσ (R)2

exp

{
−δR + σ (R)2/2

2σ (R)2

}
(15)

σ (R)2 =
∫ 2π/R

2π/Lc

δ2(k)W 2
k (R)d3k = σ 2

0

[
1 −

(
R

Lc

)n′−3
]

.

(16)

Here Wk is a window function, chosen to be the sharp-k space-
truncated function. Various simulations of supersonic turbulence
(see above references) yield for the variance of the unsmoothed
density field, σ0,

σ 2
0 = ln [1 + (bM)2], (17)

where b describes the relative importance of the compress-
ible and solenoidal contributions to turbulence forcing, with
b ≈ 0.3 and 1 for purely solenoidal and compressive modes,
respectively, and b ≈ 0.4 for equipartition between the modes
(Federrath et al. 2010). The large-scale Mach number M ≡
M(Lc) = Vrms(Lc)/Cs itself obeys the scaling relations (2)
and (9).

One of the differences between the HC and Hopkins theories
is that, in the first one, the scale dependence (Equation (16)) de-
rives from the turbulent log-density power spectrum, supposed
to obey a power law of index n′ whose value, as mentioned
above, is found in simulations to be similar to the one of the
velocity power spectrum n, with n′ ≈ n ≈ 3.8 (Kritsuk et al.
2007). Although other forms of scale dependence are certainly
possible, this one seems to be reasonable because it relies on the
properties of compressible turbulence inferred in simulations
and seems to be corroborated by studies aimed at exploring
this issue (Hennebelle & Audit 2007; Schmidt et al. 2010). In
contrast, in Hopkins’ theory, the Mach dependence of the vari-
ance σ (R) of the pdf is simply given by the assumption that
Equation (17) applies at all scales, from cores to galactic scales.
Although also plausible, at least for an isothermal gas, this as-
sumption, however, remains to be verified. Indeed, it is not clear
whether such a condition, which intrinsically implies that the
density distribution smoothed on a given scale only depends on
the gas properties at that scale and not at larger scales, adequately
represents the frontier between star-forming molecular clumps
and the ISM, and whether the relation still holds for compact,
clumpy galaxies. The other difference between the two theo-
ries concerns the divergence of the integral in Equation (16)
on large scales. In both formalisms, the size of the largest
turbulence-induced fluctuation is the turbulence outer injec-
tion scale itself. As discussed in Section 2.2, the maximum
value for the latter is typically the galaxy scale height h.
This in turn sets up the maximum size of a fluctuation in
Equation (16), Rmax ∼ Lc ∼ h. It is clear that, when approach-
ing the turbulence injection scale, both the overdensities and the
variance of the fluctuations must vanish. In the HC formalism,
the power spectrum is simply truncated at these scales accord-
ing to Equation (16). As acknowledged in HC08, the HC theory

thus becomes of dubious validity at large scales (R ∼ Lc).
Hopkins provides a solution to avoid this divergence by noting
that on large scales, i.e., when the scale approaches or becomes
typically larger than the galactic scale height, R � h, the gas
velocity becomes dominated by the shear velocity, ω̄R, which
becomes responsible for damping of the density fluctuations
(see Section 2.2). Assuming, as mentioned above, that the re-
lation (17) generalizes on a scale-by-scale basis on all scales,
from R 	 h to R � h, this provides a natural, although no
longer analytic, truncation of σ (R) in Hopkins’ theory.

The above uncertainties in both theories when switching from
cloud scales to galactic ones illustrate the rather ill-defined
border between clouds and the ISM. In the present paper, we will
use the same HC formalism simply by assuming that the cloud
sizes in Equation (16) extend up to Lc ∼ h, typical of the size
of the largest GMCs, with the normalization conditions for the
clouds being related to the galactic properties by the relations
derived in Section 2.2. As mentioned above, in principle the
HC theory becomes dubious at such large scales. The present
study, however, is devoted to the stellar (or prestellar core) mass
function, i.e., to the formation of stars within GMCs, not to the
formation or mass function of the clouds themselves. When
applied to scales relevant for prestellar core formation (R ∼
0.1 pc 	 Lc), the HC formalism has been shown to successfully
reproduce the observed mass functions of both bound prestellar
cores and unbound overdense CO clumps (HC08; HC09).

In the HC formalism, fluctuations of size R and mass MR =
M(R), which are prone to collapse, leading to the formation of
self-gravitating prestellar cores, are the ones exceeding a density
threshold, δR � δc

R , given by the virial condition (see HC08).
In Hopkins’ excursion set formalism, δc

R represents the density
barrier. Note that, in both formalisms, the threshold or barrier
depends on the scale R, in contrast to the cosmological case. The
mass within a fluctuation of scale R is MR = CmρRR3, where
CmR3 and ρR are the associated typical volume and mean gas
mass density, and Cm is a spatial filtering factor of the random
density field, whose value depends on the window function and
can vary by a factor of a few (Lacey & Cole 1994). The masses
and sizes of the fluctuations will be written in units of the Jeans
mass/length M̃(R) = M(R)/MJ , R̃ = R/λJ with

MJ = aJ

C3
s√

G3ρ̄
= Cmρ̄λ3

J ≈ 0.8

(
aJ

Cm

) (
T

10 K

)3/2

×
( μ

2.33

)−2
(

n̄

104 cm−3

)−1/2

M� (18)

λJ =
(

aJ

Cm

)1/3
Cs√
Gρ̄

≈ 0.1

(
aJ

Cm

)1/3 (
T

10 K

)1/2

×
( μ

2.33

)−1
(

n̄

104 cm−3

)−1/2

pc, (19)

where μ is the mean molecular weight (= 2.33 for cosmic com-
position), T the temperature of the gas, and aJ is a geometrical
factor. For a uniform sphere, aJ = π5/2/6, and a top hat function
in the real space, Cm = π/6, one gets the standard expression,
λJ = √

π CS/(Gρ̄)1/2, with the Jeans mass being the mass en-
closed in a sphere of diameter λJ . Because of the uncertainties in
the smoothing filter (the window function), be they theoretical,
numerical, or observational, and the shape and structure of the
fluctuations, these masses and sizes inevitably retain some de-
gree of uncertainty. If the star-forming clumps are filamentary,
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for instance, the mean thermal Jeans mass will differ by a factor
of ∼0.6 from that of a sphere (Larson 2003). Given this uncer-
tainty, we will simply adopt in the present paper for the Jeans
length λJ � Cs/

√
Gρ̄. Adopting a definition with a prefactor

different from one simply translates into a uniform shift of the
calculated IMF in mass and is thus degenerate with the value of
the CMF-to-IMF (core-to-star) mass conversion efficiency (see
below). All of these factors remain on the order of unity.

In both the Hennebelle–Chabrier and Hopkins theories, tur-
bulence plays a key role in yielding the proper CMF and in
determining the Salpeter-like slope at high masses (Chabrier
& Hennebelle 2011), as confirmed by numerical simulations
(Schmidt et al. 2010). A fundamental outcome of these theories
is the concept of “turbulent Jeans mass, which is the mass at a
given scale R that fulfills the aforementioned threshold condi-
tion for gravitational collapse in a turbulent density field. In the
HC formalism, this mass reads

M̃(R̃) = M(R)

MJ

= R̃ (1 + M2

R̃

2η), (20)

where the parameter M
 measures the importance of turbulence
at the Jeans scale λJ , as opposed to the Mach number M at the
cloud scale Lc (see HC08):

M = V0

Cs

(
Lc

1 pc

)η

= Mh

(
Lc

h

)η

(21)

M
 = 1√
3

V0

Cs

(
λJ

1 pc

)η

= Mh√
3

(
λJ

h

)η

, (22)

where Mh = ν(h)/Cs denotes the Mach value at scale h and
where we have made use of the scaling relations derived in
Section 2.2. As explained in detail in Chabrier & Hennebelle
(2011), the role of turbulence in defining such a characteristic
mass should not be considered in a static (pressure-like) sense
because turbulence has already dissipated by the time the
prestellar core is formed, but rather in a statistical or dynamical
sense, in selecting in the very initial field of density fluctuations
those dense enough to not be dispersed by the flow before they
have a chance to collapse. What matters in turbulence is thus
the rms velocity rather than pressure. Equation (20) determines
the transition between the thermally dominated (M
 → 0)
and the turbulence-dominated (M2


R
2η � 1) regimes, with the

respective scaling relations for collapsing structures

thermal : M(R) ∝ R, ρ(R) ∝ R−2 (23)

turbulent : M(R) ∝ Rn−2, ρ(R) ∝ Rn−5, (24)

where we have used Equation (5). We recall that n ∼ 3.8
denotes the three-dimensional velocity power spectrum index of
turbulence. Note that for n = 4 (Burgers pressureless regime),
i.e., η = 1/2, we recover exactly the scaling relations (8) for
the rms velocity dispersion of star-forming clouds at constant
pressure. It is worth mentioning that relation (24) yields for
the bound prestellar cores M ∝ R1.8, consistent with the
observational determination from Herschel, M ∝ Rβ , with
β ∼ 1–2 (André et al. 2010; Könyves et al. 2010).

The transition limit between thermally dominated and
turbulence-dominated regimes defines the equivalent of a sonic

scale and a sonic mass:

R̃s � M−1/η

 ⇒ Rs � 31/2η

(
V0

Cs

)−1/η

pc � 4.0M−1/η

h h

(25)

M̃s � 2 R̃s ⇒ Ms � 2M

−1/η MJ . (26)

The numerical coefficient in Equation (25) has been evaluated
for n = 3.8, i.e., η = 0.4. These values are similar to those
found in Hopkins (2012a). Equation (25) indicates that, in the
HC formalism, the sonic length is entirely determined by the
Jeans scale and the level of turbulence (Mach number) at this
scale, illustrating the respective roles of gravity and turbulence
in the mass–size relation of collapsing cores. Under typical
MW conditions (V0 � 0.8 km s−1, Cs � 0.2 km s−1, then
M
 ∼ √

2), this corresponds to Rs ∼ λJ , Ms ∼ MJ .
In the time-dependent version of the HC theory (Hennebelle

& Chabrier 2011a, 2013), the number density mass spectrum of
gravitationally bound cores reads

N (M̃R) = dn

dM̃R

= 2

φt

N0
1

R̃6

1 + (1 − η)M2
∗R̃

2η

[1 + (2η + 1)M2∗R̃2η]

×
(

M̃R

R̃3

)−1− 1
2σ2 ln(M̃R/R̃3)

× exp(−σ 2/8)√
2π σ

,

(27)

where N0 = ρ̄/MJ and φt is a dimensionless timescale factor
that determines the typical time τ (R) within which a new
density fluctuation of scale R is generated in the density field
after the former one has collapsed, τ (R) = φtτff(R), where
τff(R) denotes the fluctuation free-fall timescale. Theoretical
estimates (Krumholz & McKee 2005; Hennebelle & Chabrier
2011a) and numerical simulations (Federrath & Klessen 2012)
suggest φt ≈ 2. Strictly speaking, the mass spectrum in the HC
theory entails a second member, which can also be calculated
analytically (see Appendix B of HC08). However, as shown in
HC08, this term becomes significant only when R ∼ Lc and will
only impact the highest mass part of the IMF. For the sake of
simplicity, this term will be dropped in the present calculations.

It should be noticed that the theory yields the mass spectrum
of prestellar cores, i.e., the CMF, not the final IMF. As
mentioned in Section 6, there is observational evidence that the
latter strikingly resembles the former, with a uniform core-to-
star mass conversion efficiency ε = M
/Mcore ∼ 0.3–0.7, due to
the magneto-centrifugational outflows associated with the birth
of the protostar (Matzner & McKee 2000). Because, as noted
above, the ambiguity of the precise value of the geometrical and
filtering parameters and thus of the Jeans length also translates
into a uniform shift of the CMF, there is clearly a degeneracy
between these two factors. This uncertainty, however, does not
affect the general purpose and conclusions of the present study.
Therefore, for the sake of simplicity, we will simply assume that
the CMF (Equation (27)) represents the IMF. As seen from the
above equations, the IMF only depends on the cloud’s mean
density ρ̄ for the normalization and the variance σ 2 of the
turbulence pdf for the shape (width and peak). As shown in
Equation (16), this latter quantity only depends on the index
n′ of the power spectrum of the log(density) of turbulence
Pln ρ(k) ∝ kn′

, with n′ ∼ n ∼ 3.8.
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As demonstrated in HC13, the time dependence affects
the static mass spectrum quantitatively through the normal-
ization factor 1/φt but also qualitatively through the modi-
fication of the exponent, −1 − 1/2σ 2 ln(M̃R/R̃3), instead of
−3/2 − 1/2σ 2 ln(M̃R/R̃3) in the static theory, which arises
from the time dependence of the collapsing cores, proportional
to

√
ρ(R) ∝ (MR/R3)1/2 (see HC13). This yields a steepening

of the high-mass slope of the IMF.9 Physically speaking, this
stems essentially from the fact that, during the collapse of the
cloud, high-mass cores have time to fragment into smaller ones,
an effect not accounted for in a static theory of the IMF. Time
dependence also promotes the number of small cores because of
their shorter free-fall timescale, τff(R) ∝ 1/

√
ρ(R), for a den-

sity fluctuation ρ(R). As examined below, this steepening of the
IMF bears important consequences in very dense and turbulent
environments.

As seen from Equation (27) (see also HC08, Section 5.4), the
mass function entails a lognormal and a power-law contribution.
This latter is dominant in the mass regime:

power law : e−2 σ 2 	 M̃ 	 e+2 σ 2
, (28)

determined by the variance of the pdf, while the lognormal part
produces an exponential cutoff outside these limits at small and
large masses. Therefore, the stronger the turbulence (the higher
the Mach), the larger the mass range covered by the power law
part of the IMF and the smaller the mass at which it turns over a
lognormal form. In the high-mass, turbulence-dominated regime
(M


2R̃2η � 1), the power law part reads N (M̃) ∝ M̃−α , with
α = α1 + α2 and

α1 = 4 + 2η

2η + 1
= n + 1

n − 2

α2 = 6
η − 1

(2η + 1)2

ln(M∗)

σ 2
= 3

n − 5

(n − 2)2

ln(M∗)

σ 2
, (29)

yielding α1 � 2.66, α2 � −1.11 (lnM∗)/σ 2 for n = 3.8.
For the usual MW molecular cloud conditions, M � 10 and

M2

 ∼ 2, the contribution from α2 is not negligible and decreases

the slope to a Salpeter value, α � 2.35. In contrast, for very
dense (λJ 	 Lc) and very turbulent (M � 1) conditions, the
second contribution has a weaker impact, so the slope is steeper
than the canonical Salpeter one. It is interesting to examine
under which conditions this second contribution provides only
a negligible correction to the first one such that the slope remains
close to α1. Clearly this occurs for very large Mach numbers, but
it also implies a condition on M
 and thus on the density. Using
the definitions of M
 and σ , a value |α2| � 1% α1, for instance,
yields as a rough condition (under the condition bM � 1)

n̄ � (4.0 × 103)

(
T

10 K

) (
Lc

10 pc

)−2 (
M
10

)4.8

cm−3.

(30)

For T = 40 K, Lc = 100 pc, M = 50, this corresponds to
n̄ � 4×105 cm−3, for T = 60 K, Lc = 100 pc, M = 60, to n̄ �
106 cm−3, and for T = 80 K, Lc = 100 pc, M = 70, to
n̄ � 3.5×106 cm−3. Therefore, according to the present theory,
in highly turbulent and very dense regions, the high-mass slope

9 It must be kept in mind that R̃ depends on M̃ (see Equation (20) above).
This makes the IMF steeper in the time-dependent case (see Equations (24)
and (25) of HC13).

of the IMF is expected to be steeper than the Salpeter value,
reaching up to a value of α = α1 ∼ 2.7. Not only has such
a steepening of the IMF in massive ETGs been suggested by
various studies (see Section 1), but also this maximum value for
the high-mass slope is in remarkable agreement with the values
inferred from recent spectroscopic observations (Spiniello et al.
2012) and dynamical determinations (Cappellari et al. 2012,
2013; Barnabè et al. 2013), which exclude slopes steeper than
α ≈ 2.8 for ETGs with velocity dispersions in the range
200–335 km s−1.

In contrast, in low-density and weakly turbulent environ-
ments, the high-mass tail of the IMF can be shallower than
the Salpeter value (see HC09, Figure 8). Such environments,
however, barely form stars. Indeed, there have been claims in
the literature that some dwarf galaxies, characterized by very
low velocity dispersions (<10 km s−1) and SFRs four to five
orders of magnitude smaller than in the MW, may have a shal-
lower than Salpeter IMF slope (e.g., Geha et al. 2013). Although
consistent with the general picture described by the HC theory,
as just mentioned, these results must be taken with caution. The
Geha et al. (2013) analysis relies on the study of a very narrow
stellar mass range, namely 0.5–0.8 M�, and drawing conclu-
sions on the general behavior of the IMF, in particular based on
a single power-law fit, is extremely uncertain. As clearly seen in
the right-most panel of Figure 5 of that paper, narrow observed
stellar mass ranges tend to predict shallower mass slopes, which
might suggest a bias caused by limited statistics. This analysis
must be confirmed over a more significant mass range before
robust conclusions can be drawn.

The characteristic mass of the IMF, i.e., the most prob-
able mass for collapse, is given by the peak of the IMF
(dN (M̃)/dM̃ = 0), which yields10

M̃peak = e−σ 2 ⇒ Mpeak = MJ

[1 + (bM)2]a
� 0.8

(
aJ

Cm

)

×
( μ

2.33

)−2
(

T

10 K

)3/2

[
n̄(Lc)

104 g cm−3

]−1/2

[
1 + b2

(
Vrms(Lc)

Cs

)2
] M�

≈(bM�1)

MJ

(bM)2
, (31)

where b is the turbulence forcing parameter that enters
Equation (17), a = [1 − (R/Lc)(n′−3)] (see Equation (16)),
and T, n̄, and Vrms denote the typical temperature, mean density,
and large-scale velocity dispersion for a cloud of size Lc (mass
Mc), as given by Equations (1), (2), and (12). The peak of the
IMF thus also occurs at smaller masses the larger the typical
Mach value of the cloud. It is interesting to examine the de-
pendence of the peak of the IMF, Mpeak, on the cloud’s mass,
Mc, according to Equation (31). Combining this equation and
Equations (1), (2), (18), and Mc ≈ ρ̄L3

c ∝ d0L
3−ηd
c , one gets

Mpeak ∝ T 5/2d−0.5
0 V −2

0 Lηd/2−2η
c ∝ L−0.3

c − L−0.45
c

Mpeak ∝ T 5/2d−0.3
0 V −2

0 M

ηd /2−2η

3−ηd
c ∝ M−0.15

c − M−0.2
c , (32)

where we have used η = 0.4 and where the two exponents
for Lc and Mc correspond to ηd = 1 and 0.7, respectively.

10 For the sake of simplicity, we assume that the peak occurs in the purely
thermal regime. A finite contribution from a turbulent velocity dispersion will
shift the location toward slightly smaller masses.
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Table 1
Star-forming Cloud Conditions for a Range of Cloud Sizes Lc, Characterized by Different Temperatures and Density

and Velocity Dispersion Normalizations at 1 pc, d0, V0

MW Case 1 Case 2 Case 3

T (K) 10 40 60 80
d0 ( cm−3) 3.5 × 103 3.0 × 105 1.0 × 106 3.0 × 106

V0 (km s−1) 0.8 5.0 5.0 8.0

Cs (km s−1) 0.19 0.38 0.46 0.53
Lc (pc) 1–50 1–100 1–100 1–100
n̄ ( cm−3) 3.5 × 103–2.2 × 102 3.0 × 105–1.2 × 104 1.0 × 106–4.0 × 104 3.0 × 106–1.2 × 105

Mc ( M�) 1.0 × 102–0.8 × 106 8.9 × 103–3.5 × 108 3.0 × 104–1.2 × 109 9 × 104–3.5 × 109

MJ ( M�) 0.7–3.5 0.7–3.8 0.8–3.8 0.7–3.4
λJ (pc) 0.2–0.8 0.04–0.2 0.03–0.15 0.02–0.1
M 4–20 13–83 11–70 15–94
M
 1.3–2.2 2.2–4.2 1.5–2.9 1.8–3.4
αvir 1.2–0.2 0.5–0.05 0.2–0.02 0.15–0.02

As noted in HC08 (their Section 7.1.4), the weak dependence
of the peak mass of the IMF on the cloud’s mass (a factor
of 100 in mass yields a factor of ∼2 in Mpeak) certainly partly
explains the observed universality of the IMF for similar density,
temperature, and velocity dispersion conditions, i.e., similar T,
d0, and V0.

Therefore, a major consequence of the concept of turbulent
Jeans mass is that the characteristic scale or mass for fragmen-
tation in a turbulent medium does not depend simply on the gas
mean density and temperature, as in the standard Jeans mass
concept of purely gravitational fragmentation, but also strongly
on the Mach number. This again illustrates the respective roles
of compressive turbulence motions, which generate the initial
field of density fluctuations in the cloud, and gravity, which
introduces a characteristic (Jeans) scale for gravitational insta-
bility. Physically speaking, comparing Equations (18) and (31),
one can understand this result as the fact that the proper typical
Jeans scale for fragmentation in a turbulent medium is no longer
the one evaluated at the cloud’s mean density but the one at the
cloud’s density compressed to higher values at all scales by
the cascade of shock-dominated turbulence, ρ̄ × [1 + (bM)2]a .
This differs drastically from star-formation theories invoking
only gravitational fragmentation (e.g., Larson 2005), charac-
terized only by the thermal Jeans mass. In the latter case,
Mpeak ≈ MJ ≈ T 3/2/ρ̄1/2, leading to a strong dependence of
fragmentation on gas temperature. In that case, one would expect
systematically bottom-light IMFs in warm (T > 10 K) environ-
ments. In the present theory, however, this temperature depen-
dence is largely counterbalanced by the Mach dependence. As
mentioned above, the reason for the “universality” of the IMF
under MW-like conditions is the modest dispersion around the
normalization values at 1 kpc, set up by the ones at the galactic
scale, which are very similar for local galaxies, corresponding
to a typical accretion rate ∼2 M� yr−1 from the IGM (Klessen
& Hennebelle 2010).

As illustrated by the above relations, the HC theory of the IMF
thus naturally predicts that the IMF of very dense and highly
turbulent environments should have a characteristic (peak) mass
shifted toward smaller masses compared with the standard MW
Chabrier IMF and a high-mass slope that can be steeper than
the Salpeter value. As mentioned above, this larger fraction of
low-mass cores in such environments is a direct consequence of
(1) the enhanced gas compression by highly turbulent motions,
and (2) the shorter free-fall times for the collapsing overdense
regions, increasing the relative fraction of small cores over

massive ones, a process accounted for in the HC time-dependent
formalism.

5. INITIAL MASS FUNCTIONS

5.1. Variations of the Initial Mass Function

Table 1 displays four typical star-forming cloud conditions
characterized by different gas temperature, density, and velocity
normalization values, d0, V0, as inferred in Section 3, within
the expected range of cloud sizes. The characteristic virial
parameter, αvir = 2EK/EG = (5/π )V 2

rms/(Gρ̄L2
c), measures

the ratio of turbulence over gravitational energy within the
clump. The case labeled “MW” is representative of typical MW
conditions, with cloud sizes Lc � 1–50 pc. Cases 1–3 should be
representative of the conditions encountered in the high-redshift
progenitors of massive ETGs and starburst environments, as
discussed in Section 3, with enhanced gas temperatures, mean
densities, and dispersion velocities, for cloud sizes Lc � 1 to
100 pc. Figure 1 portrays the corresponding IMFs, calculated
with Equation (27) with b = 0.5, the value inferred in
simulations for high Mach numbers (Federrath 2013; Kritsuk
et al. 2013). For each case, the two solid lines display the IMFs
corresponding to the aforementioned bracketing cloud sizes. As
mentioned earlier, in ULIRG-type galaxy mergers, the clouds
form a nearly continuous medium rather than an ensemble of
individual entities (Downes & Solomon 1998). For such a case
of spatially close dense clumps, there is no need to sum up over
a clump population because the HC theory naturally takes into
account the clumpy structure of the gas, and the IMF for a given
typical cloud size should be representative of the galaxy-wide
IMF for a galaxy of similar typical scale height. In less dense
environments, where clumps can be spatially well separated
by diffuse gas, however, one must sum up over the clump
population. This is illustrated by the long-dashed lines, which
correspond to a global IMF integrated over a mass spectrum
Nc = dn/dMc of molecular clumps, as given by Equation (16)
of HC08. We recall that the mass spectrum Nc obtained in the
HC theory accurately recovers the one observed for CO clumps
or infrared dark clouds in the MW, dNc/dMc ∝ M−1.7

c (e.g.,
Heithausen et al. 1998; Kramer et al. 1998; Peretto & Fuller
2010) (see HC08). This yields for the clump-integrated IMF

Ntot =
∫ M

sup
c

M inf
c

N (Mc) Vc Nc dMc, (33)
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Figure 1. Initial mass function according to Equation (27) for conditions
corresponding to the MW case and Cases 1, 2, and 3, respectively, from bottom
to top (masses in M�). In each case, the two solid curves correspond to single
clumps of size L = 1 pc (right-most) and 50 pc (left-most), respectively,
for the MW, and L = 1 and 100 pc for the other cases. The long-dashed (red)
curves portray the integrated IMF for a clump mass distribution (Equation (33)),
and the short-dashed (blue) curves correspond to the parameterized IMFs
(Equation (34)). The dot–dashed lines correspond to the Chabrier (2005) object
IMF (bottom, magenta, labeled C05), the Salpeter (1955) IMF (α = 2.35), and
to power-law mass functions dn/dM ∝ M−2.7, the expected steepest slope
according to Equation (29). For the sake of clarity, each group of curves for a
given case has been shifted upward.

(A color version of this figure is available in the online journal.)

where N (Mc) is the mass spectrum of self-gravitating cores
(Equation (27)) for a clump of mass Mc � (π/6)ρ̄L3

c and vol-
ume Vc. The limits M inf

c and M
sup
c correspond to the minimum

and maximum mass for these clumps according to the Larson
relations (Equations (1)) for the clump sizes and density nor-
malizations given in Table 1.

For the sake of simplicity and in order to focus on the very
issue explored in the present paper, namely variations of the
IMF under non-MW-like conditions, the present calculations
have been conducted for the case of an isothermal gas for
the respective temperatures given in Table 1. As shown in
HC09, taking into account the thermodynamics of the gas will
extend the IMF into the low-mass domain for an adiabatic
index γ < 1. Given our lack of a precise knowledge of the
dominant heating and cooling mechanisms in extreme starburst
environments and given the expected large variety of conditions
in such regions, it seems reasonable to stick for now to the
simplest assumption. For the same reason, we do not explore the
modification of the IMF due to binaries, so the IMFs correspond
to unresolved stellar systems. The IMFs of unresolved systems
and for individual objects are very similar in the stellar regime
(Chabrier 2005). Notable differences start to emerge in the
brown dwarf regime, unobservable in ETGs. Corrections due
to binaries, although affecting to some level the IMFs displayed
in Figure 1, should thus remain modest in the present context,
certainly well within the uncertainties pertaining to the exact
density, turbulence, and temperature conditions for extreme

environments. Finally, the pdf of turbulence in the present
calculations is supposed to obey a lognormal form, with the
same value n′ = n for the respective indices of the log-
density and velocity power spectra. Although, as mentioned
earlier, these behaviors are verified in numerical simulations for
moderate Mach values (M � 10), they certainly become more
dubious for higher values (e.g., Kowal et al. 2007; Federrath &
Klessen 2013). Again, the impact of the departure from these
approximations on the results is likely to remain well within
the range of uncertainties and expected variations characteristic
of extreme star-forming conditions. We also recall that the HC
theory does not depend on any specific pdf, although a lognormal
form allows a fully analytical derivation.

The Chabrier (2005) IMF is shown for comparison in the fig-
ure, as well as the Salpeter IMF (dn/d ln M ∝ M−(α−1), with
α = 2.35) and a power law IMF with α = 2.7. Even though the
general behavior of the IMF remains the same for all conditions,
with the combination of a power law at large masses and a log-
normal form at smaller masses, large Mach values and high den-
sities shift the peak toward smaller masses compared with the
MW case, with the power law part extending eventually down
to the hydrogen-burning limit, ∼0.1 M�, in spite of the signifi-
cantly larger gas temperatures. This reflects the general analysis
carried out in the previous section. As mentioned earlier, in the
standard Jeans gravitational theory for fragmentation, such high
temperatures would predict the opposite behavior because the
characteristic mass for fragmentation, namely the mean thermal
Jeans mass, would be shifted toward higher masses. As seen in
the figure, for Case 2 and more notably Case 3, which approach
or fulfill the condition (30), the IMF can get steeper than the tra-
ditional Salpeter value over a significant mass range, reaching a
slope value of α ∼ 2.7, as expected from our previous analysis.

As mentioned in Section 3.3, the temperature of the gas in
the progenitors of ETGs and in starburst environments is rather
uncertain, so it is interesting to examine the impact of such an
uncertainty on the resulting IMF. This is illustrated in Figure 2,
where we compare the IMFs obtained with Cases 2 and 3 under
the same density conditions but with different temperatures,
namely T = 80 K for Case 2 and T = 60 K for Case 3. As
expected, a warmer medium implies a larger thermal Jeans
mass and a lower Mach number (larger speed of sound), slightly
shifting the characteristic mass of the IMF toward larger masses,
as expected from Equation (31). The shift, however, remains
relatively modest compared with the one induced by the Mach
number dependence.

The case of globular clusters. An interesting issue can be
raised at this stage concerning globular clusters (GCs). Indeed,
although GCs are thought to have also formed under extreme
conditions (high densities, large Mach numbers), their stellar
mass function is not bottom heavy (see, e.g., Chabrier 2003,
Figure 9). The formation of GCs, however, is still an unsettled
issue (see, e.g., Renzini 2008). There is both photometric and
spectroscopic observational evidence that GC formation oc-
curred through a series of multiple stellar generations. Whether
this happened in a short series of successive bursts or in a
more continuous process is unclear, but the implication is star-
formation episodes in an environment already inhabited by pre-
vious stellar populations. This mode of star formation differs
from the case of GMCs devoid of preexisting stars, as exam-
ined in the present context. Furthermore, GCs have experienced
dynamical evolution and tidal interactions, leading to a mass
segregation of stars with time and space and yielding notably
a deficiency of low-mass stars (Baumgardt & Makino 2003;
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Figure 2. Initial mass function as in Figure 1 for Cases 2 (bottom) and 3 (top)
for two cloud sizes, Lc = 1 pc (right curves) and Lc = 100 pc (left curves),
for the same density conditions as given in Table 1 but different temperatures,
T = 80 K and T = 60 K.

(A color version of this figure is available in the online journal.)

Paust et al. 2010). Recovering the exact IMF from the observed
present-day mass function in GCs requires dedicated dynamical
evolution calculations, which will be highly valuable to explore.

5.2. Large Brown Dwarf Populations?

Looking at the bottom-heavy IMFs displayed in Figure 1,
one may wonder whether the IMF extends to very low masses,
suggesting the presence of a significantly larger brown dwarf
population in these galaxies than in the MW, which has a
star-to-brown dwarf ratio N
/NBD ∼ 4 (see Chabrier et al.
2014 for a recent review). The bottom of the mass function,
however, might be truncated at higher masses than under MW-
like conditions, precluding such a large brown dwarf population.
Indeed, the IMF extends by definition down to the minimum
mass for fragmentation, Mmin, defined as the density at which the
balance between compressional heating and radiative cooling
in a collapsing cloud, which ensures isothermality, breaks
down. At this point, heating by compression of the gas is so
effective against cooling that it stops the collapse, leading to the
formation of a central adiabatic core. As shown by Masunaga
& Inutsuka (1999), however, for a given mean opacity, the
dependence of Mmin on the cloud temperature changes not
only quantitatively but also qualitatively respectively below and
above some temperature. For an opacity κ ∼ 0.01 cm2 g−1,
which corresponds to a dust continuum opacity (the usually
dominant coolant in the ISM) that is independent of the velocity
structure of the cloud (in contrast to line cooling), this change
in behavior occurs around T ∼ 30 K (Figure 3 of Masunaga &
Inutsuka 1999). While Mmin decreases with increasing T below
this value, it increases with T above it. The physical reason for
this behavior is that, if the medium is warm enough, the radiative
cooling rate is too large to be balanced by compressional heating,
and thus the gas in the collapsing core becomes optically thick
before isothermality breaks down, in contrast to what occurs in

a much cooler medium. At this stage, cooling becomes ensured
by radiative diffusion, which drastically reduces the radiative
cooling rate (Λdiff ∝ t−1

diff ∝ τ̄−2, where τ̄ is the gas optical
depth). This increases by the same amount the rate at which
the gravitational energy of the collapsing core is transported
outward before being radiated away, then halting the collapse at
larger Mmin. According to Masunaga & Inutsuka, in this regime
Mmin depends on temperature as Mmin ∝ (T/10 K)(5+2ζ )/6,
where ζ determines the temperature dependence of the opacity,
κ ∝ κ0 × (T/10K)ζ and ζ � 2 in this temperature regime
(Bell & Lin 1994). This yields about a factor of ∼ times 10
increase of Mmin for T ∼ 40 K, and a factor of ∼ times 20
for T ∼ 70 K, yielding in the latter case Mmin ≈ 0.1 M� or
about the hydrogen burning limit. Moreover, above the same
temperature limit, Mmin is found to increase with opacity as
Mmin ∝ κ1/3. Because the metallicity observed in ETGs today
is slightly oversolar, with [α/Fe] � 0.2–0.5 (Thomas et al.
2005), the opacity in these environments is expected to be larger
than for MW GMCs, increasing further the Mmin. Finally, under
such hot and dense environments, compressional heating of the
gas becomes increasingly effective (Γg ∝ C2

S

√
ρ) in heating

up the cloud sufficiently against cooling. Therefore, given the
expected larger gas temperatures, densities, and opacities in the
progenitors of ETGs or in starburst environments, we expect
the minimum mass for fragmentation to be substantially larger
than under standard MW-like conditions, truncating the IMF at
a mass limit closer to the hydrogen-burning limit.

Interestingly enough, recent observations combining gravita-
tional lensing, stellar dynamics, and spectroscopic analysis of
two massive early-type lens galaxies, yielding constraints on
the total and stellar masses, respectively, suggest a Salpeter-like
IMF over the entire stellar regime but with a low-mass limit
∼0.12 M� (Barnabè et al. 2013). If confirmed, these observa-
tions bring support to the above analysis.

5.3. Parameterization of the Initial Mass Function

For practical purposes, the IMFs given by Equation (27) for
the various cases displayed in the figure can be parameterized
under a Chabrier-like form, i.e., a combination of a lognormal
and a power law, respectively, below and above a typical mass
m0, the proper form of the IMF according to the present
gravoturbulent picture of star formation. However, in order to
ensure continuity of the derivative of the IMF, we slightly modify
the original form according to the suggestion of van Dokkum
(2008):

ξ (m) = dn

d log m
=

{
Al m

−x
0 exp

[
− (log m−log mc)2

2 σ 2

]
, m � m0

Ah m−x m � m0,

(34)

with m0 = ncmc. Continuity of the function and its derivative
implies the condition σ 2 = log nc/(x ln 10) for the variance
and Al/Ah = n

x/2
c for the normalizing coefficients. Table 2

gives the values of m0, nc, σ , and x for the different cases
examined in the present study, as well as the peak mass for the
corresponding mass spectrum, dN/dM . These parameterized
IMFs are illustrated by the short-dashed lines in Figure 1. A
seen in the figure, the parameterized IMF labeled “MW” in
Table 2 is very similar to the standard Chabrier (2005) IMF for
resolved objects, characteristic of the MW environment. The
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Table 2
Parameters Defining the IMFs in Equation (34), and the Corresponding Peak
Mass (in dn/dM , see Equation (31)), for the Different Cases Under Study

MW Case 1 Case 2 Case 3

x 1.35 1.35 1.6 1.6
m0 ( M�) 2.0 0.35 0.35 0.25
nc 11.0 14.0 11.0 14.0
σ 0.579 0.607 0.531 0.558
mc ( M�) 0.18 0.025 0.032 0.018
Ah 0.649 0.417 0.390 0.367

Mpeak ( M�) 0.03 4 × 10−3 5 × 10−3 3 × 10−3

Note. The value of the normalization constant Ah corresponds to the mass
integral equal to unity in Equation (36): M = 1.

number and mass integrals can easily be calculated analytically:

N =
∫ msup

minf

ξ (m) d log m =
√

2π

2
σ

(
Al m

−x
0

)
×

{
erf

(
log m0 − log mc√

2 σ

)
− erf

(
log minf − log mc√

2 σ

)}
−

(
Ah

x · ln 10

) (
m−x

sup − m−x
0

)
(35)

M =
∫ msup

minf

m ξ (m) d log m

=
√

2π

2
σ

(
Al m

−x
0

)
exp

(
y ′

c +
σ ′2

2

)
× {erf(X0) − erf(Xinf)}

+
( Ah

(1 − x) · ln 10

) (
m1−x

sup − m1−x
0

)
, (36)

where y ′
i = (log mi) × ln 10, σ ′ = σ × ln 10 and Xi =

[y ′
i − (y ′

c +σ ′2 )]/(
√

2 σ ′). These parameterizations will be useful
in galaxy evolution calculations to explore the consequences of
varying IMFs under nonstandard star-forming conditions such
as the ones explored in the present study.

6. STAR-FORMATION RATES

The SFRs obtained with these different IMFs are calculated
as in Hennebelle & Chabrier (2011a, 2013):

SFRff = ε

∫ Mcut

0

MN (M)dM

ρ̄
, (37)

where N (M) is the (time-dependent) IMF of prestellar cores
given by Equation (27), and Mcut is the largest unstable mass
in the cloud, typically a fraction of the latter (see HC13).
The parameter ε = M
/Mcore is the efficiency with which
the mass within the collapsing prestellar core is converted
into stars, i.e., the fraction of the prestellar core infalling gas
effectively accreted by the nascent star. The other fraction
is expelled by jets and outflows during the collapse (see
Section 4). Then, ε represents the local core-to-star formation
efficiency. Calculations (e.g., Matzner & McKee 2000; Ciardi
& Hennebelle 2010) as well as observations (e.g., André et al.
2010) suggest a value ε � 0.3–0.7, yielding a factor (ε/φt ) ≈
0.1–0.3. Note that SFRff is a dimensionless quantity, namely
the SFR per cloud mean free-fall time τ 0

ff = (3π/32Gρ̄)1/2,

i.e., the fraction of cloud mass converted into stars per cloud
mean free-fall time: SFRff = (Ṁ
/Mc)τ 0

ff (Krumholz & McKee
2005; Hennebelle & Chabrier 2011a, 2013; Federrath 2013).
For star-forming galaxies, supposed to be marginally Toomre
stable, Q ≈ 1, this timescale is approximately the disk orbital
period (Krumholz & McKee 2005; Krumholz et al. 2012). The
SFR at the global cloud scale, however, must also include the
global efficiency, SFE, i.e., the typical fraction of star-forming
(essentially molecular) gas effectively forming stars within
clouds (i.e., within the galaxy, assuming all galactic molecular
gas resides in clouds). Observations (Evans et al. 2009; Lada
et al. 2010) as well as simulations (Federrath & Klessen 2013)
suggest SFE ≈ 1%–6% within GMCs and a similar value for
the galaxy-averaged star-formation efficiency (Kennicutt 1998;
Swinbank et al. 2011). This yields a global SFR of

SFR = SFE × SFRff, (38)

and thus a total volume and projected SFR densities, respec-
tively:

ρ̇
 = ρ


τ 0
ff

= SFR ×
(

ρg

τ 0
ff

)
, (39)

Σ̇
 = Σ


τ 0
ff

= SFR ×
(

Σg

τ 0
ff

)
, (40)

where Σg is here the gas projected density evaluated for the area
under consideration, be it a GMC or a galaxy. For a roughly
homogeneous spherical cloud of size Lc, Σg ≈ ρ̄ Lc, and for a
galaxy of typical disk scale height h, Σg ≈ 2 ρ̄ h. Clearly, the
determinations of both the average free-fall time and gas density
retain significant ambiguities (see, e.g., Krumholz et al. 2012;
Evans et al. 2014). In particular, they both involve some scale
over which they are averaged, assuming the gas distribution is
uniform over this scale. As previously, we assume for simplicity
that all of the galactic molecular gas resides in the GMCs, whose
maximum size is the typical injection scale of turbulence, i.e.,
the galactic scale height (Section 2.2), so that Lc ∼ h (see,
e.g., Krumholz & McKee 2005). Note that in the case where
these two scales differ appreciably with Lc 	 h, Equation (40)
implies a dependence on the scale height as Σ̇
 ∝ (Lc/h)1/2.

The traditional way to look at SFRs is to examine the
relationship between Σ̇
 and Σg , as illustrated by the well-known
Kennicutt–Schmidt relation Σ̇
 ∝ Σ1.4

g . This is portrayed in
Figure 3, as obtained from Equations (37), (38), and (40) for
a global star-formation efficiency SFE = 1% for different cloud
sizes (see figure caption), for the cloud characteristic conditions
explored in the previous section11; we have used the average
value ε/φt = 0.2. Observational results are displayed for
comparison. Open symbols correspond to SFR determinations
in disk local and high-z star-forming galactic regions, and solid
symbols portray various data observed in starburst regions
and high-z galaxies (see figure caption). As mentioned above,
uncertainties both in Σ̇
 and Σg determinations can easily
translate into at least an order of magnitude or so uncertainty
on these values. The dotted lines correspond to the theoretical

11 As mentioned earlier, strictly speaking, the integral in Equation (37) in the
Hennebelle–Chabrier theory involves two terms. The second term provides a
truncation of the IMF at large scales, leading to slightly lower SFR values than
the present ones. For the sake of simplicity, however, this term has been
dropped in the present calculations (see HC11 and HC13 for details).
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Figure 3. Global star-formation rates as a function of gas surface density
for various conditions as obtained by Equation (37), assuming a global star-
formation efficiency SFE = 1%. Thick (black) dotted lines: MW-like conditions
in Table 1 for cloud sizes Lc = 1, 10, and 50 pc, from bottom to top. Thin
(red) dotted line: MW-like condition for a cloud size Lc = 50 pc but a scale
height h = 250 pc (see text). Superposed (barely distinguishable) black solid
lines: density and velocity normalization conditions (d0, V0) corresponding
to Cases 1–3 over a large density range for cloud size Lc = 100 pc. The
corresponding Mach values, M, are given in Table 1. Long-dashed line:
conditions characteristic of SMMJ2135. Short-dashed lines: MW-like density
(d0) conditions but for normalization of the turbulent velocity amplitude at
1 pc, respectively, 5 times (5 × V0) (lower line) and 10 times (10 × V0) (upper
line) the ones of the MW. For all of these calculations, we have adopted the
average parameter value ε/φt = 0.2. Open symbols correspond to disk galaxies:
Kennicutt (1998), blue squares; Daddi et al. (2010), red stars; Tacconi et al.
(2010), cyan hexagons. Megenta asterisk: CMZ (Yusef-Zadeh et al. 2009). Solid
symbols correspond to low-z and high-z starburst galaxies: Kennicutt (1998),
blue squares; Bouché et al. (2007), red triangles; Genzel et al. (2010), solid
black circles.

(A color version of this figure is available in the online journal.)

calculations for MW conditions in Table 2 for SFE = 1%. As
shown in HC11 and HC13, the HC theory adequately reproduces
the observed SFRs in MW molecular clouds (see, e.g., Figure 7
of HC13).

Several conclusions can be drawn from the figure. First,
as shown in HC11 and HC13, star formation still proceeds,
although at small rates, in low-density environments, but mostly
in large enough (Lc � 10 pc) clouds. Indeed, only in such clouds
is turbulence strong enough (according to Larson relations,
see Table 1) to induce dense enough gravitationally unstable
density fluctuations (see HC08). So there is no real “break“ or
“threshold” in star formation but rather a continuous “bending”
of the Σ̇
 versus Σg relation, which seems to be adequately
reproduced by the theory. At higher density, such a scale
dependence becomes weaker because the free-fall timescale
of most density fluctuations becomes short enough for these
regions to collapse before getting a chance to be wiped out by
turbulent motions (see Chabrier & Hennebelle 2011). Second,
the higher SFRs in starburst (SB) systems compared with disk
(D) galaxies at the same gas surface density are well explained
by the higher level of turbulence (higher Mach value) at all
scales, as illustrated by Cases 1 to 3 but also by the short-

dashed lines. These latter display our calculations for a density
normalization d0 at 1 pc typical of the MW conditions but with
a turbulent velocity amplitude normalization, V0, 5 times and
10 times larger than the standard value. Indeed, intense star-
formation activity, typical of starburst conditions, implies a high
rate of supernovae explosions, naturally increasing the level
of turbulence at cloud scales. The (magenta) long-dashed line
displays the results for conditions in star-forming clumps for
the high-z massive galaxy SMMJ2135 (Swinbank et al. 2011).
Star-formation densities in such environments are inferred to
be about 15 ± 5 times higher than typically found locally
(Genzel et al. 2010; Swinbank et al. 2010, 2012), in good
agreement with our theoretical results. Third, the increasing
SFRs with increasing redshift reflect not only the increasing
level of turbulence but also the larger density normalization d0
(more compact structures), yielding shorter dynamical times.

These results suggest that at least part of the spread in the
observed SFRs stems from variations in the general level of
turbulence, illustrating the important role of the latter in star
formation. Larger Mach values yield larger gas compression
and thus higher SFRs. Indeed, both theory (HC11; HC13) and
simulations (Padoan & Nordlund 2011; Federrath & Klessen
2012; Federrath 2013) show that turbulence overall enhances
star-formation efficiency.

The calculations, however, overestimate the SFRs for high-
redshift disk galaxies by up to an order of magnitude. Besides
large uncertainties both in the theoretical parameters (ε, φt ) and
in the observational determinations, as mentioned above, one
can examine possible explanations for this discrepancy. The
first one would be a smaller fraction of molecular gas (fH2 ) in
spirals than in starbursting systems, decreasing the global star-
formation efficiency. Indeed, while the ISM in MW-like disks
is essentially atomic, it is almost fully molecular in ULIRGs.
A global efficiency SFE < 1%, however, is a rather low value.
A second explanation is thicker disks in spirals compared with
starbursts, with h > 100 pc, yielding a larger scale height and
thus a lower projected SFR value. Scale heights in ULIRGS
are indeed found to be substantially smaller than in the MW
(Downes & Solomon 1998). As mentioned above, the SFR
density depends on the scale height as Σ̇
 ∝ h−1/2. Therefore,
using, e.g., a value of h = 250 pc would shift the MW dotted line
obtained for Lc = 50 pc by a factor of log[(Lc/2h)1/2] = −0.5.
This is illustrated by the thin red dotted line in the figure. In
that case, the theoretical relation passes through the data at high
density but lies at the very lower edge of the ones at low density.
Therefore, the most apparent conclusion is that there seems to
be a break in the slope of the Σ̇
 versus Σg relation for disk
galaxies near a gas surface density Σg ≈ 100 M� pc−2, with the
slope becoming shallower above this value, in contrast to the
starburst systems.

The green asterisk symbol in the figure portrays the SFR
inferred for the CMZ for the appropriate gas surface density
(Yusef-Zadeh et al. 2009; Kruijssen et al. 2014). As mentioned
earlier, the velocity dispersions in this region are observed to
be approximately ∼three to five times larger than for typical
GMCs (e.g., Swinbank et al. 2011; Shetty et al. 2012; Kruijssen
& Longmore 2013), resembling our typical Case 1 (see Table 1).
The SFR relation corresponding to this latter case is illustrated
by the lower part of the solid black line. For a gas surface
density Σg = 120 M� pc−2, a cloud size Lc = 50 pc, and
the gas scale height of the CMZ (Table 1 of Kruijssen et al.
2014), the predicted SFR surface density for Case 1 with our
fiducial value SFE = 1% is Σ̇
 � 0.4 M� pc−2 Myr−1, about a
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factor two to three larger than the observational determinations,
0.130.2

0.09 M� pc−2 Myr−1 (Yusef-Zadeh et al. 2009; Kruijssen
et al. 2014). Note, however, that the area actually filled with
dense, star-forming gas is much smaller than the 500 pc globally
averaged value used in the figure (see discussion in Kruijssen
et al. 2014). Averaging gas and stars over the same area moves
the data point to (log Σ̇star, log Σg) = (0.5, 3.5) (S. Longmore,
private communication).

These results clearly show the strong correlation between
the SFR and the gas surface density, with an average slope
consistent with the Kennicutt–Schmidt relation, Σ̇
 ∝ Σg

1.4, as
expected if ρ̇
 ∝ ρg/τff ∝ ρ

3/2
g . It has been suggested that, at

high surface density, feedback, which is due, for example, to
ionization, heating, or winds, overtakes turbulence as the main
regulator of star formation (e.g., Renaud et al. 2012). Then,
the characteristic timescale for star formation is no longer the
free-fall time, but a given time after which the gas becomes
available again for star formation. Because this timescale does
not depend on density, this yields a linear slope ρ̇
 ∝ ρg . Given
the large spread in the observed SFRs, however, it is not possible
to favor one of the two relations, except possibly, as mentioned
above, for the high-z disk galaxies. Feedback at a large (galactic)
scale, however, certainly affects the global SFE, for instance by
disrupting or photoionizing the clouds themselves, eventually
shutting off star formation above some critical formation rate.

All in all, within the aforementioned range of expected global
star-formation efficiencies, SFE ≈ 1%–6%, and local efficien-
cies, (ε/φt ) ≈ 0.1–0.3, i.e., a 1.2 dex vertical spread, the present
calculations well bracket all SFR determinations over five orders
of magnitude in density, from local disk galaxies to high-z star-
burst systems. This strongly supports the idea of star formation
resulting from a dominant, or more specifically two dominant
universal mechanisms: turbulence, which generates the original
field of density fluctuations, and gravity, which determines the
dynamical time of these fluctuations, as described by the present
general time-dependent gravoturbulent theory. The global effi-
ciency, SFE, however, certainly depends upon the environmental
conditions (or equivalently the initial conditions), notably the
strength of turbulence at the injection scale and the mean density
of the medium, which set up the density and velocity amplitude
normalizations in Larson relations at the cloud scale.

It has been suggested (e.g., Krumholz et al. 2012, KDM)
that plotting Σ̇
 as a function of Σg/τff instead of Σg provides a
better representation of the SFR relation than the one displayed
in Figure 3. This is illustrated in Figure 4, still with SFE = 1%
in the calculations, where the observational values, including the
free-fall time (more exactly dynamical time) determinations are
the ones determined in KDM (as in Federrath 2013), keeping
in mind that these values retain significant uncertainties. We
have added to this figure the data for MW molecular clouds
(Heiderman et al. 2010; Gutermuth et al. 2011). The spread
in Σ̇
 is still significant. As noted above and stressed in HC11
and HC13, the SFR not only depends upon density, but also
strongly depends on the cloud’s size or mass, in particular at
low surface density. So strictly speaking there is no “universal“
star formation relationship between Σ̇
 and Σg with a unique
exponent, but rather different relations, depending on the cloud
physical properties, with significant variations leading to a large
dispersion, a point also supported by observational analysis
(Shetty et al. 2013, 2014). As mentioned above, this scale
dependence reflects the dominant role of large-scale turbulence
as the main driver for star formation because the Mach number

Figure 4. Global star-formation rates as a function of the gas surface density
over a dynamical timescale (Equation (40)) for various cloud conditions, as
displayed in the top left corner of the figure, for a global star-formation efficiency
SFE = 1%. Data symbols are the same as in Figure 3, but we have added data for
Milky Way molecular clouds from Heiderman et al. (2010, H) and Gutermuth
et al. (2011, G).

(A color version of this figure is available in the online journal.)

increases with Lc (Equation (2)). There is thus a degeneracy
between the level of turbulence and the global star-formation
efficiency, the two quantities being interconnected. Therefore,
although the data are roughly consistent with an average value
SFR ≈ 1% in Equation (40), i.e., Σ̇
 ≈ 0.01 × (Σg/τ

0
ff), as

suggested by KDM, this global relationship must be taken
with caution. Indeed, such a fixed efficiency does not capture
the aforementioned dependence of star-formation efficiency
on turbulence and thus on the cloud’s scale (see, e.g., Evans
et al. 2014).

7. MASS-TO-LIGHT RATIO

On the one hand, lensing observations constrain the total
(maximum) mass of a galaxy within its Einstein radius. This
comprises the total stellar mass, including stellar remnants,
the ejected gas during stellar evolution, and the dark matter
contribution. The stellar mass contribution, on the other hand,
can be separated from the dark matter one with integral-field
data using galaxy dynamical models (Cappellari et al. 2012,
2013). This eventually yields the stellar mass-to-light ratio,
ϒ
 = (M/L)
. In ETGs, these ratios have been found to be
∼2× or more larger than those corresponding to a Chabrier IMF,
typical of MW-like galaxies (Conroy & van Dokkum 2012a;
Conroy et al., 2013; Cappellari et al. 2012, 2013; Tortora et al.
2013, 2014; Spiniello et al. 2012, 2014).

As mentioned earlier, star formation in the progenitors of
massive ETGs must have taken place within a relatively short
timescale. This is confirmed by the fact that the most massive
galaxies, born in the highest density peaks of the primordial
fluctuations, appear to be enhanced in α-elements (Section 1
and 3). This indicates that the duration of star formation
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Figure 5. Stellar mass-to-light ratio, (M/L)
, as a function of age in various
photometric bands obtained from SSP models using the IMFs corresponding
to the Milky Way disk with the Chabrier 2005 IMF (solid line), the Chabrier
2003 IMF (short-dashed line), the Salpeter IMF (dotted line), and the IMFs
corresponding to Cases 1 (red), 2 (blue), and 3 (magenta) (long-dashed lines
going upward).

(A color version of this figure is available in the online journal.)

decreases with increasing mass, having been shorter than
∼1 Gyr, the typical timescale for the onset of Type Ia SNe
for the most massive galaxies. Hence, we can explore the stellar
M/L ratios predicted by our formalism in these systems by
using spectral evolution models for single stellar populations
(SSPs). Figure 5 illustrates the evolution of ϒ
 as a function of
age in various photometric bands obtained from SSP models
(Bruzual & Charlot 2003) with the IMFs corresponding to
the ones characterized in Table 2 and with a Salpeter IMF.
Table 3 gives the corresponding values at an age of 10 Gyr,
approximately the present age of observed ETGs. Changing
the age of the stellar population in the SSP synthetic spectra
anywhere in the range of ∼8 to 12 Gyr changes the M/L
ratio by less than 20%. Note that these values represent only
the stellar M/L ratios and do not include the brown dwarf
contribution. Indeed, observationally, the stellar M/L ratios
are determined essentially from the comparison of measured
equivalent widths of given spectral lines (e.g., NaI, NaD, Ti02)
characteristic of the low-mass star population with those derived
from SSP synthetic models computed with different IMFs by
fitting integrated spectra. They are thus only sensitive to the
stellar population (note that the constraints on the stellar M/L
from gravity-sensitive line strengths are degenerate with respect
to the functional form chosen for the IMF; La Barbera et al.
2013). Moreover, as discussed in Section 5.2, the mass limit
for star formation in extreme environments might be truncated
at a significantly larger value than in the MW, precluding the
existence of a large brown dwarf population. As seen in Table 3,
the stellar M/L ratios in various passbands are in very good
agreement with the ones inferred from various observations
(e.g., Conroy & van Dokkum 2012b; Conroy et al. 2013).
As mentioned earlier, the present calculations do not consider
corrections to the IMFs due to stellar multiplicity. In order to

Table 3
Mass-to-light Ratios ϒ
 in Various Bands at 10 Gyr Obtained for the Different

IMFs Given in Table 2 and for a Salpeter IMF

B V R I K ϒ/ϒ
,MW

MW 4.7 3.6 2.8 2.3 0.8
Salpeter 9.1 6.9 5.4 4.2 1.5 ∼1.9
Case 1 8.3 6.4 4.9 3.9 1.4 ∼1.7
Case 2 10.3 7.9 6.1 4.8 1.7 ∼2.1–2.2
Case 3 11.1 8.5 6.5 5.1 1.8 ∼2.3

Notes. The last column gives the typical ratio ϒ
/ϒ
,MW. The MW values are
calculated with a Chabrier (2005) IMF. Differences from a Chabrier (2003) IMF
are �10%.

estimate the impact of this correction upon the M/L ratios, we
have calculated these values with the Chabrier (2005) IMF for
unresolved systems and resolved objects, respectively. For all
bands, the difference is less than 8%, significantly smaller than
the differences between the values obtained with the various
IMFs. This is not surprising because fragmentation of systems
into multiple objects affects essentially the low-mass part of the
IMF, and the effect remains modest in the stellar regime (see,
e.g., Chabrier & Hennebelle 2010). Note that, in the cases of
bottom-heavy IMFs, there is no need for a (significant) dark
matter contribution, in agreement with recent observations of
lens massive ETGs (Barnabè et al. 2013).

At this stage, one should add a word of caution. As mentioned
earlier, the metallicity inferred for ETGs is slightly oversolar,
with [α/Fe] � 0.2–0.5. One cannot rule out that the SSP
models used to calculate M/L ratios are not correct for such
metal-rich and α-enhanced stellar populations. One thus cannot
completely exclude that the high inferred M/L values for such
galaxies do not necessarily stem from a variation of the IMF
but from a higher mass fraction in the form of stellar remnants.
The integrated surface brightness of such a remnant population
has been calculated by Chabrier (2004) and, although beyond
present-day observational capabilities, might be detectable with
the James Webb Space Telescope.

8. CONCLUSION

In this paper, we have shown that, under extreme conditions of
very dense and turbulent gas, as encountered in starbursts or in
the progenitors of massive ETGs, the characteristic (peak) mass
of the IMF can extend to lower masses than under conditions
typical of most spiral galaxies, in spite of the expected higher
gas temperature. This is a direct consequence of the dominant
role played by compressive turbulent motions in setting up
the very initial field of density fluctuations that determine
the initial conditions for star formation and the subsequent
IMF. Indeed, in a gravoturbulent picture of star formation, the
characteristic mass for fragmentation is not the mean thermal
Jeans mass, as in the classical gravitational fragmentation
scenario, but the turbulent Jeans mass, which strongly depends
on the cloud’s large-scale Mach number. At small scales, large-
scale turbulence cascades into local shocks that drastically
increase the local gas density, which in turn triggers the collapse
of dense-enough regions into gravitationally bound prestellar
core embryos. The consequences are a characteristic mass
for the IMF in very dense and turbulent environments that
shifts toward smaller masses compared with more quiescent
or less dense conditions. According to the present theory,
above some density the high-mass slope of the IMF in such
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environments can get steeper than the Salpeter value, reaching
a limit of α ∼ 2.7, a consequence, in particular, of the time-
dependence of the turbulence-induced fragmentation process,
as incorporated in Hennebelle & Chabrier’s (2011a, 2013)
theory. The present results thus provide a theoretical foundation
to observational indications that, while (less massive) spiral
galaxies are consistent with a Chabrier IMF, more massive and
dense ones, in particular massive ellipticals, require a Salpeter
or even steeper IMF.

We provide simple estimates of the cloud typical properties,
i.e., mean density d0 and velocity dispersion V0 normalizations
at 1 pc, the relevant scale for the IMF, in terms of those
at the galactic scale. The characteristic mass of the IMF is
thus ultimately related to the prevailing conditions in the host
galaxy, temperature, surface density, and velocity dispersion. As
illustrated by Equation (32), for similar (T , d0, V0) conditions,
the IMF is predicted to exhibit little variation, a consequence of
the similar but opposite scaling dependence of the Jeans mass
and rms velocity on a cloud’s size. The theory then naturally
explains the “universality” of the IMF for similar environments,
i.e., similar values of T , d0, and V0.

We have parameterized IMFs representative of various ex-
treme star-forming conditions to be used in stellar population
calculations aimed at exploring IMF variations in various envi-
ronments. We have also calculated the star-formation rates for
these systems and confirmed that denser gas and larger turbu-
lence significantly increase the SFR. SFRs in the progenitors
of massive ETGs at high redshift should be orders of magni-
tude larger than at later epochs. We have also shown that the
mass-to-light ratios calculated with the IMFs representative of
the examined extreme conditions are consistent with the ob-
servationally inferred values. We speculate that in spite of an
IMF characteristic mass extending to lower masses than for
MW-like conditions, these systems do not necessarily contain
a large brown dwarf population because for the corresponding
temperatures the minimum mass for fragmentation should be
significantly larger than for typical 10 K cloud conditions. In-
ferring the total dynamical mass, corrected for the dark matter
contribution, and using one of the presently determined IMFs
should enable us to confirm or not this suggestion.

The generic conclusion of the present calculations is that
turbulence-induced star formation is indeed a universal mecha-
nism and that star formation in massive, elliptical galaxies pro-
ceeded similarly as within disk and spiral galaxies but that gas
density was much larger and turbulence was much more vigor-
ous due mainly to intense accretion flows or merger events. The
present fragmentation-induced turbulence theory for star for-
mation naturally predicts that the IMF will become increasingly
bottom heavy, and thus the mass-to-light ratio will increase in
such environments, a consequence of the combination of high
turbulence and density. We caution, however, that the evolution
of the IMF does not necessarily correlate with the galaxy mass,
i.e., the stellar velocity dispersion, but with its density and thus
compactness, which is correlated with its mode of formation.
We thus suggest that only massive galaxies having experienced
rapid starburst episodes will have a bottom-heavy IMF, i.e.,
a large fraction of M dwarfs compared with “standards.These
starburst events are a direct consequence of high accretion rates,
which are due to merging events or intense gas flows, which not
only increase the level of turbulence but also the density and
thus the compactness of the galaxy. This might explain why
the giant, low-density, elliptical ESO325-G004 seems to have
an IMF compatible with the MW one, in spite of its large mass

and velocity dispersion (>300 km s−1; Smith & Lucey 2013). A
transition of the IMF might thus have occurred between massive
galaxies that formed at high redshift by the merging of com-
pact primodial structures dominated by strong gas flows and
starbursts, followed by gas-poor merging, and spiral galaxies
formed at lower redshift, where star formation proceeded
essentially internally as a continuous, quiescent process. Be-
cause the progenitors of ETGs are the dominant galaxy pop-
ulation at high redshift, it might be interesting to revise ac-
cordingly the star-formation evolution in the universe using the
various IMFs derived in the present study, although it is unclear
what fraction of the total star formation has taken place in such
extreme environments.
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data used in Figures 3 and 4. This research has received
funding from the European Research Council under the Eu-
ropean Community’s Seventh Framework Programme (FP7/
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