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The notion of fair scores for ensemble forecasts was introdted recently to
reward ensembles whose members behave as though they and therifying

observation are sampled from the same distribution. In the ase of forecasting
binary outcomes, a characterization is given of a general aks of fair scores
for ensembles that are interpreted as random samples. Thissialso used to
construct classes of fair scores for ensembles that foredasulti-category and

continuous outcomes. The usual Brier, ranked probability,and continuous
ranked probability scores for ensemble forecasts are showro be unfair,

while adjusted versions of these scores are shown to be faik definition of

fairness is also proposed for ensembles whose members ardeipreted as
being dependent, and it is shown that fair scores exist onlyof some forms of
dependence. CopyrightC) 0000 Royal Meteorological Society
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1. Introduction observation, whatever the type of forecastzIfs a scalar
point forecast ang is a verifying observation, for example,
There are many ways to evgiluate the performance {gEn a common scoring rule is the squared erfor.- y)2.
ensemble forecasts (e.g. Weigel, 2012). One approqptz) is binary so thagy = 1 when some event is observed to
converts ensembles to probability distributions and thgg andy = 0 when the event is not observed to occur
applies techniques for evaluating probability forecastg,q if,, [0,1] is a probability forecast for the occurrence
This approach evaluates not only the original ensemble, o event. then the scoring rule — y)? defines the

however, but also the post-processing scheme usedy{a y atic or Brier score (Brier, 1950). Both of these sarin
create the probability forecast. We focus on teChn'qugﬁes are said to beegatively orientetbecause lower values

for evaluating the ensemble alone. Existing techniques
) X : ) rrespond to better forecasts. The performance of a set of
this type mc_lude rank h|sto_grams (Anderson, 1996; Hal .Cﬁ)recasts is often summarized by the mean value of their
and Colucci, 1997), conditional exceedance probabilities

(Masonet al, 2007), generalized discrimination (Masoﬁnd'v'dl_jal SCOres. . )
and Weigel, 2009) and assessments of spread-skilPcoring rules thus provide a way of measuring the
relationships (e.g. Stephenson and Doblas-Reyes, 2d#iformance of individual ensembles. A common idea is
Mason and Stephenson, 2008). As Weigel (2012) noti,use scoring rules for probability forecasts and apply
however, none of these techniques awards to each individi}gm to the empirical distribution function of the ensemble
ensemble its own score; they measure attributes suchmgnbers. In the binary case described above, for example,
reliability that can be calculated only for a set of (usualfpe Brier score is calculated whenis set equal to the
many) ensembles. proportion of ensemble members that predict the occurrence
Scoring rules are an important class of forecaef the event (e.g. Ferro, 2007). Regrettably, this use of
performance measures that are distinguished by the fact #oring rules typically favours ensembles whose members
they quantify the performance of each forecast individualbehave as though they and the verifying observation
Originally developed for probability forecasts (e.g. Wiekk are sampled from different distributions. Consider the
1967), we follow Murphy (1997) and define a scorinfpllowing example with the Brier score. Suppose that the
rule to be any function of a single forecast and verifyinginary verifying observationy, is a random draw from a
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distribution withPr(y = 1) = 1/4. For simplicity, suppose functional, f, and if ¢ represents a forecaster’s belief about
that the ensemble has just one binary membgrand vy then she will optimize her expected score by issufilig)
consider two different forecasts: an independent rand@s her forecast. Alternatively, if a forecaster is beingdsin
draw from either the same distributiongsor a distribution when she states that her issued point forecast represents
with Pr(z =1) = 0. The former forecast exhibits thea particular functional of her belief distribution then she
behaviour that we would want from an ensemble forecasfjl not want to have issued a different forecast when
while the latter forecast exhibits no variability (it is @ws she learns that the evaluation will use a scoring rule that
zero) and would be considered over-confident. The Briisr consistent for that functional. In this sense, conststen
score, however, favours the latter forecast: it receives seoring rules are fair for point forecasts that are inteigufe
average score ofZ{(0 —y)?} = 1/4, while the former as a particular functional of the forecaster’s belief. Froum
forecast receives an average scorédfz — )2} = 3/8.  third viewpoint, if the verifying observation really is dva
Fricker et al. (2013) introduced the concept of faiffrom adistributiong, and the scoring rule is consistent for
scoring rules to overcome this problem and favotinen forecasting: # f(q) will not score better, on average,
ensembles whose members behave as though they thad forecasting ().
the verifying observation are sampled from the sameBy analogy to proper scoring rules for probability
distribution. In section 2, we formalize the definition oforecasts and consistent scoring rules for point forecasts
fair scoring rules for ensemble forecasts when the ensembiieker et al. (2013) introduced the idea of fair scoring
is interpreted as a random sample. We also definerudes for ensemble forecasts. These scoring rules ensure
wide class of fair scoring rules in the case of forecastitigat, if a forecaster is being honest when she states that
binary outcomes, and use this to generate classes of R issued ensemble is a random sample from her belief
scoring rules for forecasts of both multiple categories aféstribution then she will not want to have issued a random
continuous outcomes. In section 3, we discuss the mearsagnple from a different distribution when she learns that
of fair scoring rules for ensembles with dependent membeifse evaluation will use a fair scoring rule. Alternativetfy,
show that fair scoring rules do not always exist in this cagbg verifying observation really is drawn from a distrilmri
and discuss the implications for verification. We close with and the scoring rule is fair in this sense then generating

a summary and further discussion in section 4. the ensemble from # ¢ will not score better, on average,
than generating the ensemble frgmin other words, fair

2. Independent ensemble members scoring rules favour ensembles whose members behave as
though they and the verifying observation are sampled from

2.1. Fair scoring rules the same distribution (e.g. Wilks, 2006, p. 315).

As for probability and point forecasts, fair scoring rules

A desirable property of scoring rules for probabilitfor ensemble forecasts depend on the interpretation of the
forecasts,p, is propriety (Winkler and Murphy, 1968).forecast and, in particular, on how the forecast relates to
A scoring rule, s(p,y), is proper if the expectation of the forecaster's belief. In the case of probability forésas
s(p,y) with respect to any probability distribution, for that we are told, or choose, to interpret as the forecaster’s
the verifying observationy, is optimized whenp = ¢. belief distribution, we have described the sense in which
The Brier score is an example of a proper scoring rufgoper scoring rules can be considered fair. In the case of
(e.g. Winkler, 1967). Proper scoring rules can be usedgeint forecasts that we are told, or choose, to interpret as a
elicit a forecaster’s honest beliefs because ifepresents particular functional of the forecaster’s belief distritaun,
a forecaster’s belief abouj then she will optimize her we have described the sense in which consistent scoring
expected score by issuingas her forecast (Good, 1952fules can be considered fair. The situation is more
McCarthy, 1956). Looking at this in another way, if @omplicated for ensemble forecasts, partly because there
forecaster is being honest when she states that her issaedmany possible interpretations of ensemble forecasts an
forecast represents her belief then she will not want fierecasters tend not to specify which interpretation they
have issued a different forecast when she learns that iiend. If an ensemble forecast is interpreted as reprieggnt
evaluation will use a proper scoring rule. In this sensghe forecaster’s belief distribution, for example by assugn
proper scoring rules are fair for probability forecaststhi@ equal probability mass on each of the ensemble members,
interpreted as the forecaster’s belief (Frickerl, 2013). A then a proper scoring rule would be fair. Alternatively,
third view supposes that the verifying observation realy if an ensemble is interpreted as a set of point forecasts
drawn randomly from some distributiog, If the scoring corresponding to specific functionals of the forecaster’s
rule is proper then forecasting# ¢ will not score better, belief distribution, for example by assuming that the
on average, than forecasting the true distributipfBrocker ensemble members correspond to particular quantiles, then
and Smith, 2007). a consistent scoring rule would be fair. For example,

A desirable property of scoring rules for point forecast8rocker (2012) shows that calculating the continuous
x, is consistencyfor a functional (such as the meanianked probability score (CRPS; Brown, 1974; Matheson
median or other quantile) of the probability distributiomnd Winkler, 1976) for the empirical distribution functioh
representing the forecaster's belief (Murphy and Dassm ensemble witln members is consistent for the quantiles
1985; Gneiting, 2011). A scoring rule(zx, y), is consistent (i — 1/2)/m for i =1,...,m. These interpretations of
for a functional, f, if the expectation ofs(x,y) with ensemble forecasts, however, are rarely intended by the
respect to any probability distributiog, for the verifying forecaster. More often, an ensemble is interpreted as a
observationy, is optimized whenz = f(q). The squared sample from a distribution of possible outcomes. Which
error, (z — y)?, for example, is consistent for the mean (e.gcoring rules are fair in this case?
Winkler, 1967). Consistent scoring rules can be used toThe answer to this question depends on our assumptions
elicit specific functionals of a forecaster’s belief dibtriion about how the sample is generated. We shall discuss this
because if we use a scoring rule that is consistent foinamore detail in section 3 but, for now, suppose that
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we interpret the ensemblex, as a random sample in Another way to state this definition is to say that the
which the ensemble members are independent realizatisosring rule for an ensembley = (z4,...,2,,), of m
from some underlying ensemble distribution. Earlier irsthmembers depends only through the order statistics
section, proper scoring rules elicited probability forstsa of the ensemble. This is also equivalent to the scoring
and consistent scoring rules elicited point forecastsile depending on the ensemble only through the empirical
Unfortunately, there are no scoring rules that elicit ramdodistribution function of the ensemble,

samples for the forecasts (Fricket al., 2013). This is

because the expectation of a scoring rulér,y), with 1
respect to any distributior, for the verifying observation, — § I(z; <),
y, is a deterministic function ct. Therefore, the optimizing i=1

values for the ensemble members can always be determined
and issued as the forecast in preference to issuing a randgnere! is the indicator function for whicti(A) = 1if Ais
sample. Frickeret al. (2013) proposed the following,true, and/(A) = 0 if A is false.
alternative criterion for a fair scoring rule of ensembles We also restrict our attention to finite scoring rules.
interpreted as random samplegventhat an ensemble,
is a random sample from a probability distributign,the Definition 3. A scoring rule, s(z,y), is finite if
expectation of the scoring rule(z, /), with respect to both |s(x,y)| < oo for all ensemblesg, and verifying observa-
p and any probability distributiong, for  is optimized tions,y.
whenp = q. . - . .
This restriction ensures that the expectation of the sgorin

Definition 1. A scoring rule,s(x,y), is fair for random rule with respect to the ensemble distribution, which we
sample ensembles, if its expectation with respect to bothrequire to be a proper scoring rule foris regular (Gneiting
the ensemble distributiom, and any distributiong, for and Raftery, 2007) and merely rules out some trivial scoring
the verifying observatiory, is optimized whep = ¢. The rules in our setting.
scoring rule isstrictly fair if its expectation isuniquely
optimized whep = g. 2.2. Binary outcomes

Another way to state this definition is to say that the _ ) )
expectation of the scoring ruley(x,y), with respect to We characterize a class of fair scoring rules for random
the ensemble distributiom, is a (strictly) proper scoring Sample ensembles in the special case of binary outcomes so
rule for the probability forecast. Thus, fair scoring rules that the ensemble members,, ..., z,,, and the verifying
effectively evaluate the underlying ensemble distributiooPservationy, take only the values and1. The ensemble
This seems appropriate given that the forecaster distribution is then defined by = Pr(z; = 1) for 0 <p <
constrained to issue a random sample and, therefore, db@§di = 1,...,m, and the distribution of; is defined by
not have full control over the values of the ensembie= Pr(y =1)for0 < ¢ < 1.Inthe binary case, ensemble-
members. Unfair scoring rules will favour ensembleymmetric scoring rules coincide with those scoring rules
generated from imperfect distributions: g. that depend on the ensemble only through t.he number of

Sadly, the only fair scoring rules for ensembles with ju§f’sémble members that equalTherefore, writes; ; for
one membery, are trivial in the sense that the expectatiofie value of the scoring rule wheén,”, z; =i andy = j
of the scoring rule will be optimized for any reasonabl@®r i =0,1,...,m and;j = 0,1. This notation suppresses
ensemble distributions. The reason is that, given a scorin§’e Possible dependencef; onm.
rule, s(z,y), we can calculate its expectation with respecth , ) .
to any distributiong, for y and then determine the seX, T eorem 1. The.negatwely orlented, finite, ensemble—
of values forz that optimize this expectation. ChoosingYMmetric  scoring  rule  defined by {s;; :i =
p such that its support (the set ofvalues for which the U; L; - --»;j = 0,1} is fair for random sample ensembles
probability density or mass function pfis strictly positive) ©f Sizem if
is a subset ofX will then optimize the expectation of the

score taken with respect foandg. If the support of; is not (m —i)(sit1,0 — 8i0) = i(8i—1,1 — Si1) 1)
a subset ofX then the expected score will not be optimized
whenp = ¢. If the support ofq is a subset ofX then any for i =0,1,...,m and s;410 > s;0 for ¢ =0,1,...,

distribution, p, with support equal to that of (a trivial m — 1.

requirement that merely avoids ruling out any outcomes that

are possible) will optimize the expected score. A proof of the theorem is given in the appendix. Some
Before we characterize further a class of fair scorirgptes follow.

rules, we place two restrictions on the scoring rules that we ) ]

consider. Given that we are interpreting the ensemble to bel. For notational compactness, the equality con-

a random sample, it is inappropriate for the scoring rule to ~ Straints (1) refer to the undefined scores, ; (on

award different scores to two ensembles that differ only in  the right-hand side when= 0) and s, 11,0 (on the

the ordering of their ensemble members. For this reason, left-hand side wheri =m). These can be ignored,

we focus on ensemble-symmetric scoring rules, defined as however, as the right-hand side should be read as zero
follows. wheni = 0, and the left-hand side should be read as

zero wheni = m.
Definition 2. A scoring rule, s(x,y), is ensemble- 2. Theorem 1 remains true if ‘negatively oriented’ is

symmetric ifs(x,y) = s(w(x),y) for all ensembles, replaced by ‘positively oriented’ ang 19 > s;0 IS
verifying observationgy, and permutationsy(x), of x. replaced bys; ;1,0 < s;0.
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3. The proof in the appendix shows that the equa“{)able I. Scoress; ; for negatively oriented fair scc_)ring rules when
constraints (1) are necessary for a scoring rule o= 2 3 and4. The constani, may be any number v, 1/4].
be fair, while the inequalities; 1 9 > s;,0 (which,

through the equality constraints (1), also imply ™ =2 - m=3 - om=4
siy11 < ;1) are merely sufficient. Given that the ¢ =0 j=1 j=0 j=1 j= J=1
scoring rule is to be interpreted as negatively( 0 1 1 0 1
oriented, however, these inequalities are desirable: i 0 0 0 1/3 0 1—3a
is appropriate that the score for an ensemble should 1 0 1/3 0 a a
not increase as the number of members making g 1 0 1 —3a 0
correct forecast increases. 4 1 0

4. If at least one of the inequalities 1,0 > s;0 iS
replaced by a strict inequality then the proof shows

that the expectation af(x,y) with respect to the of scores is known as complement symmetry (Stephenson,

ensemble distribution is a strictly proper scoring ru'EOOO' Ferro and Stephenson, 2011) and means shat
for p, which implies thats(x,y) is a strictly fair beco;nesafunction of jm — j| ;)nly' that iss; o — Sm—i71

scoring rule forx. Of the scoring rules described b)* ri—0.1 The score awarded to an ensemble with
Theorem 1, therefore, the only ones that are fair, by L= Sy

not strictly fair, are the trivial scoring rules that sa}zisfa certain number of its members being correct is then the
o - ;S same whetheyy =0 or y = 1. We can also standardize
80 = 50,0 ANsi g = s, foralli =0,1,..., m. coring rules by awarding perfect forecasts a scor®,of
5. As noted earlier, fair scoring rules are trivial whe ng Y gp ; '
atissg.0 = sm,1 = 0, and by awarding forecasts that are

m = 1. In this case, Theorem 1 requiresy = so o moletely wrona a score of. that is - _
andsg; = s11 SO that the scores may depend on tlfé’ pietely 9 ’ Sm,0 = 50,1 = °-

verifying observation but not on the ensemble. mposing all of these restrictions Iea\(pﬁ/ZJ — 1 degrees

6. One feature of these fair scoring rules is e freedom whenn > 1, where|m,/2| is the integer part of
requirement thats o = 0.0 and S, 11 = Sy 1 m/2. Scoring rules satisfying these restrictions for= 2,
so that ensembles for which all but one membg2nd4 are listed in Table I.

makes a correct forecast score the same as perfedS mentioned in section 1, a popular scoring rule for
forecasts. This is necessary owing to the discreten& emble forecasts of binary outcomes is the Brier score

of the set of possible values fop )", ;. For with the probability forecast set equal to the proportion of
example, if the forecaster's belief, in the event ensemb]e member§ that forecast the efgnt 1}. This is
{y =1} is small, so thap will need to be small e scoring rule defined by
too, then the ensemble is most likely to score )
either s, which will happen with probability (i .
(1—p)™(1—q)~1—mp—gq, s10, which will Sij = <m - J) :
happen with probabilitymp(1 — p)™~1(1 — q) ~
mp, Orf so1, which will happen with probability This scoring rule does not satisfy the necessary equality
(1-p)™g~q. The forecaster can maximize hegonstraints (1) and so is not fair for evaluating ensemble
chance of making a perfect forecast and scorifgrecasts that are interpreted as random samples.
so,0 by hedging and settingy = 0. Hedging is  Ferro (2007) and Ferret al.(2008) proposed an adjusted
precluded, and the scoring rule is made fair, only Byrier score as an unbiased estimator for the score that would
settings,o = so,0. A similar argument explains thepe obtained as the ensemble size increases to infinity. This
requirement,,, 1,1 = sm1. , _isthe scoring rule

7. Another feature of these fair scoring rules is the
relationship between the scores imposed by the . 2 . p
equality constraints (1). This is the discrete analogue i = (Z - j) - M7 (3)
of a relationship (Savage, 1971) satisfied by proper ’ m m?(m — 1)
scoring rules, s(p,y), for continuous probability

)

forecastsp, namely which does satisfy the conditions of Theorem 1 and,
1 1 therefore, is a fair scoring rule for ensemble forecastsrwhe
(1-p)Ss(p,0) = —p—s(p, 1). m > 1. It also sat|sf|e§ the properties I_|sted above of being

d dp complement symmetric, and of awarding score$ ahd1

to perfect and completely imperfect forecasts. The adjliste
scores (3) still lie in the intervalo, 1] but are less than
or equal to the original scores (2) with equality if and
only if 7 = 0 or m, showing that the original score unfairly
penalizes ensemble forecasts by failing to account for the
There are m +1 degrees of freedom in the fairfinite ensemble size. Figure 1 illustrates the differences
scoring rules characterized by Theorem 1, which providestween the adjusted Brier score and the original Brier
considerable scope for tailoring scores to the particulegore for different ensemble sizes. The expectation of the
goals of a forecast evaluation exercise. Here we discasiginal Brier score is minimized gp # ¢ unlessq = 0,
some sub-classes that place further, natural restrictions1/2 or 1, while the expectation of the adjusted Brier score
the scores that may be appropriate in some situations. is always minimized ap = ¢. The original Brier score
We may want the scoring rule to be invariant ttypically favours ensembles that are sampled from over-
relabelling the event§y = 1} and {x; = 1} as the non- confident distributions. For example, ¢f= 0.25 then the
events{y = 0} and{xz; = 0}, and vice-versa. This propertyexpectation of the original Brier score is optimized when

Approximating p with  i/m, ds(p,0)/dp
with m(Si+1,0 — Si,0)s and  ds(p,1)/dp
with  m(s;1 —s;—1,1) recovers the equality
constraints (1).
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Next, suppose that there is a continuum of scalar
outcomes so that the ensemble members and the verifying
observation take values on the real line. petlenote the
probability density function for the ensemble distributio
and letq denote the density function for the distribution of
y. The quantities, = I(y < t) andx; = (11, -, Tem),
where z,,; = I(z; <t), represent the binary verifying
observation and ensemble forecast for the occurrence of the
event{y < t} for a threshold¢. For eacht, let s;(x¢, y:)
be a fair, finite, ensemble-symmetric, negatively oriented
scoring rule, as defined by Theorem 1. If alse(x;, y:)|
© - - - is bounded for alle,, i, andt, and if » is any probability

0 0.25 0.5 0.75 1 density function on the real line, then it follows via an
application of Fubini’'s Theorem that the negatively orezht
scoring rule

0.7

0.5

Brier score

0.25

Figure 1. Expected values of the adjusted Brier scores (black) anteof t

o0
original Brier scores (grey) whem = 2 (thin), 4 (medium) and 8 (thick) o
plotted againsp for ¢ = 1/2 (solid) andg = 1/4 (dashed). The graphs of s(@,y) = st(@e, ye)r(t) dt ®)
the adjusted Brier scores are unaffected by the value.of

— 00

is a fair, finite, ensemble-symmetric scoring rule for the
p=0if m=2, whenp = 0.17 if m = 4, and whenp = ensemble forecast;. This defines a class of fair scoring
0.21 if m = 8. ' ’ rules for ensemble forecasts of continuous outcomes. For

An illustrative comparison of the original and adjuste@*@mPple, if, for each, we takes;(z:,y;) to equal the
Brier scores for two seasonal precipitation forecastsngfr@diusted Brier score (3) wheh ,”, ;; =i and y; = j
the European Centre for Medium-Range Weather Forecd3@ the scoring rule (5) becomes a weighted version (where
(ECMWF) and Meteo-France) may be found in Figure 2 defines the weight given to each threshold) c_Jf the adjusted
of Ferro (2007). The adjusted scores are typically abdaRPS Proposed by Ferret al. (2008) and Frickeet al.
5% smaller than the original scores, and the ordering §013)- This may be written in the form
the performances of the two forecasts is typically the same
under both the original and adjusted scores. When the k+1 2(i+1)
ordering does change, the difference in the performance of(x,y) = Z 31’—1,0/ r(t)dt
the two forecasts is small relative to its standard error. i=1 Z(i)
m+1 Z(it2
2.3. Multiple categories and continuous outcomes + Z 31-7171/( )7'(75) dt,
i= Z(i+1)
Now suppose that, instead of binary outcomes, thererare o
possible outcomes so that the members of the ensemplgere 2 Is the ith order statistic of the set
@ = (z1,...,2m), and the verifying observatiory, take (oo, 2y,...,2,,,y,00} and k is such thatz(, o) = .
the valuesl1,...,n. The ensemble distribution is thenrhe unweighted version proposed by Fegbal. (2008)
defined by (pi,...,p,), where p, =Pr(z; = k) for s recovered by setting(t) = 1 for all ¢. This fair scoring

i=1,...,m, and the distribution ofy is defined by rule may be compared with the original ensemble CRPS
(q1,---,qn), where g, =Pr(y=£k) for k=1,....,n. obtained by substituting the original Brier score (2) for
The quantitiesy, = I(y = k) andxy, = (T, Te,m),  s.(xy, ;). Figure 2 illustrates the differences between the

where z,; = I(z; = k), represent the binary verifyingadjusted (unweighted) CRPS and the original (unweighted)
observation and ensemble forecast for the occurrence of §RPS for different ensemble sizes whgrhas a normal
event{y = k}. For eachk, let s;(x,yx) be a fair, finite, gjstribution with expectationd and standard deviation
ensemble-symmetric, negatively oriented scoring rule, 8s and the z; are independent draws from a normal
defined by Theorem 1. It follows that the negatively orientegistribution with expectationd and standard deviation

scoring rule . «. The expectation of the original CRPS, which can be
B calculated using an expression from Gneiting and Raftery
s(@,y) = ;Sk(m’“’yk’) ) (2007), is minimized at < 3, while the expectation of

the adjusted CRPS is always minimized a@at= 5. The

is a fair, finite, ensemble-symmetric scoring rule for theriginal CRPS thus favours ensembles that are sampled
ensemble forecasty. This defines a class of fair scorindrom over-confident (i.e. under-dispersed) distributicsr
rules for ensemble forecasts of multi-category outcomesample, if3 = 1 then the expectation of the original CRPS
If sg(@k,yx) = si; when 32)" xy =i andyy, = j for is optimized whemy = 0.38 if m = 2, whena = 0.63 if
i=0,1,...,m andj = 0,1 then we just need theﬁj to m =4, and whemy = 0.79 whenm = 8.

satisfy the conditions of Theorem 1 for eakh=1,...,n. The values of the original and adjusted (unweighted)
For example, if we take? . to equal the adjusted BrierCRPS for the seasonal precipitation forecasts described in
score (3) for eactt then the scoring rule (4) becomes thEerro (2007) are presented in Table II. As with the Brier
adjusted multi-category Brier score proposed by Ferro.etstores, the adjusted scores are about 5% smaller than the
(2008). This same scoring rule remains fair and becomes thigginal scores, the ordering of the two forecasts is theesam
adjusted ranked probability score proposed by Fetral. under both scores, and differences are small relative io the
(2008) if we redefing, = I(y < k) andxy; = I(x; < k). standard errors.
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to both the joint distribution of the ensemble membgys,
and any distributiong, for the verifying observationy, is
optimized whemp = ¢, wherep is the marginal distribution

of p,.

\_// Whenm = 1, we are in the same setting as section 2
and the only fair scoring rules are trivial. To discover iirfa

- - scoring rules exist whem > 1, we must consider the form
Tso o - o - - of the dependence between the ensemble members. If the
““““ ensemble members are perfectly dependent, for example,
then there is effectively only one ensemble member and
o : : : so there are still no non-trivial scoring rules that are.fair

0 05 1 15 2  Evenwhen ensemble members are not perfectly dependent,
' ' the only fair scoring rules may be trivial, as the following
a example shows.

1.2

0.8

CRPS
0.4
\

Figure 2. Expected values of the adjusted CRPS (black) and of thenaigi Example 1. Consider  binary =~ outcomes and
CRPS (grey) whem: = 2 (thin), 4 (medium) and 8 (thick) plotted againstensembles of sizem =2. Let ¢ = Pr(y = 1), let
a for g =1 (solid) and3 = 1/2 (dashed). The graphs of the adjusteg) _ Pr(xl _ 1) _ Pr(zg _ 1) be the marginal ensemble
CRPS are unaffected by the valueraf LN - - Y. .
distribution, and letPr(z; = 1,20 = 1) = p¢ define the
Table 1I. Original and adjusted CRPS (mm monthwith estimated joint ensemble distribution, whereis a constant _Sat'Sfymg
standard errors in brackets) for two seasonal precipitdticecasts. 1 <c<oo. The ensemble member_s are mde_pendent
whenc = 2. As for random samples, it is appropriate to
restrict attention to ensemble-symmetric scoring rulesmvh
ensembles are exchangeable, sosgf denote the score
- ECMWF 51 (8.8) 49 (8.8) awarded when; + x> = i andy = j. For this to define a
Méteo-France 42 (6.5) 39 (6.5) fair scoring rule, we require the expected score,

Original  Adjusted

(1 —g){p“s2,0 +2(p —p)s1,0 + (1 = 2p +p)s0,0}

3. Dependent ensemble members c c c
P + q{p°s2,1 +2(p — p)s11 4+ (1 —2p +p)s0,1},

In the previous section, we defined what it means for, a
scoring rule to be fair for ensembles that are interpretg?:l
as random samples. This interpretation is often a 9088 g .
approximation, even when initial conditions are generatigPtimized ap = g for 0 < g < L only if o, = 51,0 =
systematically rather than by random sampling, owing 8:° and so,, = 51,1 = s2,1° in other words, only if the
the chaotic nature of numerical models for weather aRge-J rule is trivial because it does not depend on the

climate. Moreover, even if the approximation is poor ptsemble.

the ensemble will be used as if it were a random samplerhere are some forms of dependence, however, for which

(for example by treating it as such in a post-processif@n-trivial fair scoring rules do exist.
scheme) then it will be worthwhile to evaluate the ensemble

under this interpretation. In this section, we consider tliexample 2. Consider again the case of binary outcomes
situation in which we are told, or choose, to interpret thwith ¢ = Pr(y = 1) andp = Pr(z; = 1) fori =1,...,m,
ensemble members as dependent, rather than independt. let the correlation between ensemble members be
How should we define fair scoring rules in this case, and dorr(z;, z;) = ¢ < 1forall i # j, wherecis a constant that
such fair scoring rules exist? is independent op. Then, the negatively oriented scoring

If the m ensemble members are not independeite defined by
and identically distributed then we must consider their )
m-~dimensional, joint probability distribution, which we (1 _ {4 cm i(m —1) 5
denote byp,,. As the distribution,q, of the verifying i e L m2(m—1) ®)
observation remains one-dimensional, we cannot base our
fairness criterion on the requirement thaf, = ¢. One is fair, where, as befores; ; denotes the value of the
possibility is to assume that each of the ensemble memb&gering rule wheny_)" | z; =i and y = j. The proof is
has the same one-dimensional marginal distributipn, straightforward: the expected value of the scoring rule can
so that they are identically distributed but may bee shown to be? — 2pq + ¢, which is minimized ap =
dependent. We shall discuss only the special caseginWhenc = 0, this scoring rule reduces to the adjusted
which the ensemble members are exchangeable, whatfer score (3), which is therefore fair for ensembles
means that the joint distribution is symmetric in the with pairwise uncorrelated members, not only independent
dimensions (e.g. Bicker and Kantz, 2011) and includes thenembers.
possibility of independence. Many ensembles generated b;i_ - .
operational weather prediction systems are considered to b '€S€ €xamples show that no one (non-trivial) scoring

exchangeable (e.g. Fraley al, 2010). We define fairnessrule is fair for all exchangeable ensembles. If we interpret
forexchangeablé ensembles as follows. an ensemble as exchangeable then we must specify its

dependence structure and determine whether or not a fair
Definition 4. A scoring rule, s(z,y), is fair for scoring rule exists. If a fair scoring rule does exist then
exchangeable ensembles, if its expectation with respectwe should use it. If no fair scoring rule exists then an

be optimized whemp =¢. If ¢#2 (so that the
semble members are dependent) then the expected score
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alternative could be to use a scoring rule that is ‘nearly faindependence. There is scope to compile a catalogue of fair
in some sense, for example a scoring rule whose expectagoaring rules for different dependence structures.

is optimized for a value op that is always within a certain,

small distance of;. The development of this idea is left forAcknowledgements

future research.

In practice, the dependence structure of an ensemblas material is based upon work supported by the National
is rarely stated by forecasters. This is problematic f@ceanic and Atmospheric Administration under Award
verification given that we must specify a dependend®. NA120AR4310085. The paper has benefitted from
structure in order to choose a fair scoring rule. Moreoverpmments from lan Jolliffe, Simon Mason, and three
we cannot choose a fair scoring rule based on a dependeaamuenymous referees, one of whom helped to shorten the
structure that has been estimated from the ensemble thatreof in the original manuscript.
to be verified. For example, if we replacevith an estimate
in the scoring rule (6) of example 2 above then the scoripgpendix
rule will no longer be fair. As a result, we shall rarely be
able to specify the ‘correct’ dependence structure in olio prove Theorem 1, we need to find conditions on the
interpretation of an ensemble. This suggests disregardgugress; ; that make the scoring ruley(x,y), fair. This
the notion of a correct interpretation and instead verifyiris equivalent to making the expectation of the scoring rule
ensembles for one or more interpretations of interest.with respect to the ensemble a proper scoring rulefaks
it is likely that an ensemble will be used as if it were the ensemble members are independent Rittx; = 1) =
random sample then it will be worthwhile verifying thel — Pr(2; = 0) = p, this expectation is
ensemble using the fair scoring rules described in section 2

If it is likely that the empirical distribution function of L (m\ .
an ensemble will be used as if it were a probability sm(D,Y) ZZ( )p (L=p)" sy, 7
forecast then it will be worthwhile verifying the empirical i=0

distribution with proper scoring rules. We mentioned in

section 2, however, that this latter interpretation is ¢ty 2nd this is a regular scoring rule for becausels; ,| <
inappropriate. oo. Following Savage (1971), Gneiting and Raftery (2007)

showed that any regular, negatively oriented scoring rule,
4. Summary and discussion s(p,y), is proper if and only if it can be written as

A scoring rule for an ensemble forecast is fair if the s(p,y) = G(p) + (y — )G’ (p) (8)

expectation of the score with respect to the distributions o

both the ensemble members and the verifying observatioifdga concave functioiis and whereG’ is the derivative of

optimized when these distributions coincide. Such scorifgif G is differentiable. (We have rewritten this result for

rules effectively evaluate the underlying distributionrfr negatively oriented, rather than positively oriented rs@

which the ensemble members are sampled, and rewangs.) Fors to be strictly properz must be strictly concave.

ensembles whose members behave as though they \Afedseek conditions om; ; such thats,,(p,y) has this

the verifying observation are sampled from the sanfiegrm (8).

distribution. Recall thatPr(y = 1) = 1 — Pr(y = 0) = ¢ and write
When there is only one ensemble member, the only fair

scoring rules are trivial. In this case, we should be awaak th -

verification measures may favour ensembles that exhibft (P; q) = Z

undesirable properties, such as being under-dispersed =0

relative to the verifying observations (as in the examp

near the end of section 1). Fair scoring rules do exist when /

there is more than one)ensemble n?ember and they are sp.q) = Gp) + (g = P)E(P)

independent and identically distributed. In this case, wier the expectations of,,,(p,y) ands(p, y) with respect to

have argued for the use of scoring rules that are symmetji&valuating these two expectations;at p shows that we

in the ensemble members. In the case of binary outcomegyuire

we have characterized a general class of fair scoring rules,

(T)m —p)"HA - @sio +asia)

which includes an adjusted version of the ensemble Brier m , ,
. . m 7 m—1
score. We have also constructed classes of fair scoring ruleG(p) = ( . )P (L=p)" {1 =p)sio +psir}.
for multi-category and continuous outcomes, which include i=0
adjusted versions of the ensemble ranked probability and )

continuous ranked probability scores. There is scope IS &/S0 implies thatr must be differentiable, so that' is

extend these latter two classes to obtain more gendpgeed the derivative af:. _

characterizations of fair scoring rules for those foreicast 0" $m(p,y) 10 be proper, we require,,(p, q) to be

situations. minimized wherp = ¢ for all 0 < ¢ < 1. The derivative of
Fair scoring rules can also exist when ensemble membérd?» ¢) With respect tg, when evaluated at = ¢, can be

are dependent, but the scoring rules are specific to ¥gtenas

dependence structure and do not exist for some formsm

of dependence. Given that we are typically unable to T i gym—i

specify the correct dependence structure of an ensembley < )q (1—q)

we recommend that ensembles are verified using scores™ ) )

that are fair for dependence structures of interest, irintyd X {(m =) (sit1,0 = s1,0) = isi-1,1 — si1)}-

1
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are necessary conditions ep;. 10.1198/016214506000001437.

Differentiating our expression (9) fGﬂ?(p) yields Gooq 1J. 1952. Ratlgnal deC|S|on15.R: StaF. Soc. B4: 107-114.
Hamill TM, Colucci SJ. 1997. Verification of the Eta-RSM short
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