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The notion of fair scores for ensemble forecasts was introduced recently to
reward ensembles whose members behave as though they and theverifying
observation are sampled from the same distribution. In the case of forecasting
binary outcomes, a characterization is given of a general class of fair scores
for ensembles that are interpreted as random samples. This is also used to
construct classes of fair scores for ensembles that forecast multi-category and
continuous outcomes. The usual Brier, ranked probability, and continuous
ranked probability scores for ensemble forecasts are shownto be unfair,
while adjusted versions of these scores are shown to be fair.A definition of
fairness is also proposed for ensembles whose members are interpreted as
being dependent, and it is shown that fair scores exist only for some forms of
dependence. Copyrightc© 0000 Royal Meteorological Society
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1. Introduction

There are many ways to evaluate the performance of
ensemble forecasts (e.g. Weigel, 2012). One approach
converts ensembles to probability distributions and then
applies techniques for evaluating probability forecasts.
This approach evaluates not only the original ensemble,
however, but also the post-processing scheme used to
create the probability forecast. We focus on techniques
for evaluating the ensemble alone. Existing techniques of
this type include rank histograms (Anderson, 1996; Hamill
and Colucci, 1997), conditional exceedance probabilities
(Mason et al., 2007), generalized discrimination (Mason
and Weigel, 2009) and assessments of spread-skill
relationships (e.g. Stephenson and Doblas-Reyes, 2000;
Mason and Stephenson, 2008). As Weigel (2012) notes,
however, none of these techniques awards to each individual
ensemble its own score; they measure attributes such as
reliability that can be calculated only for a set of (usually
many) ensembles.

Scoring rules are an important class of forecast
performance measures that are distinguished by the fact that
they quantify the performance of each forecast individually.
Originally developed for probability forecasts (e.g. Winkler,
1967), we follow Murphy (1997) and define a scoring
rule to be any function of a single forecast and verifying

observation, whatever the type of forecast. Ifx is a scalar
point forecast andy is a verifying observation, for example,
then a common scoring rule is the squared error,(x − y)2.
If y is binary so thaty = 1 when some event is observed to
occur andy = 0 when the event is not observed to occur,
and if p ∈ [0, 1] is a probability forecast for the occurrence
of the event, then the scoring rule(p − y)2 defines the
quadratic or Brier score (Brier, 1950). Both of these scoring
rules are said to benegatively orientedbecause lower values
correspond to better forecasts. The performance of a set of
forecasts is often summarized by the mean value of their
individual scores.

Scoring rules thus provide a way of measuring the
performance of individual ensembles. A common idea is
to use scoring rules for probability forecasts and apply
them to the empirical distribution function of the ensemble
members. In the binary case described above, for example,
the Brier score is calculated whenp is set equal to the
proportion of ensemble members that predict the occurrence
of the event (e.g. Ferro, 2007). Regrettably, this use of
scoring rules typically favours ensembles whose members
behave as though they and the verifying observation
are sampled from different distributions. Consider the
following example with the Brier score. Suppose that the
binary verifying observation,y, is a random draw from a
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distribution withPr(y = 1) = 1/4. For simplicity, suppose
that the ensemble has just one binary member,x, and
consider two different forecasts: an independent random
draw from either the same distribution asy, or a distribution
with Pr(x = 1) = 0. The former forecast exhibits the
behaviour that we would want from an ensemble forecast,
while the latter forecast exhibits no variability (it is always
zero) and would be considered over-confident. The Brier
score, however, favours the latter forecast: it receives an
average score ofE{(0 − y)2} = 1/4, while the former
forecast receives an average score ofE{(x − y)2} = 3/8.

Fricker et al. (2013) introduced the concept of fair
scoring rules to overcome this problem and favour
ensembles whose members behave as though they and
the verifying observation are sampled from the same
distribution. In section 2, we formalize the definition of
fair scoring rules for ensemble forecasts when the ensemble
is interpreted as a random sample. We also define a
wide class of fair scoring rules in the case of forecasting
binary outcomes, and use this to generate classes of fair
scoring rules for forecasts of both multiple categories and
continuous outcomes. In section 3, we discuss the meaning
of fair scoring rules for ensembles with dependent members,
show that fair scoring rules do not always exist in this case,
and discuss the implications for verification. We close with
a summary and further discussion in section 4.

2. Independent ensemble members

2.1. Fair scoring rules

A desirable property of scoring rules for probability
forecasts,p, is propriety (Winkler and Murphy, 1968).
A scoring rule, s(p, y), is proper if the expectation of
s(p, y) with respect to any probability distribution,q, for
the verifying observation,y, is optimized whenp = q.
The Brier score is an example of a proper scoring rule
(e.g. Winkler, 1967). Proper scoring rules can be used to
elicit a forecaster’s honest beliefs because ifq represents
a forecaster’s belief abouty then she will optimize her
expected score by issuingq as her forecast (Good, 1952;
McCarthy, 1956). Looking at this in another way, if a
forecaster is being honest when she states that her issued
forecast represents her belief then she will not want to
have issued a different forecast when she learns that the
evaluation will use a proper scoring rule. In this sense,
proper scoring rules are fair for probability forecasts that are
interpreted as the forecaster’s belief (Frickeret al., 2013). A
third view supposes that the verifying observation really is
drawn randomly from some distribution,q. If the scoring
rule is proper then forecastingp 6= q will not score better,
on average, than forecasting the true distribution,q (Bröcker
and Smith, 2007).

A desirable property of scoring rules for point forecasts,
x, is consistencyfor a functional (such as the mean,
median or other quantile) of the probability distribution
representing the forecaster’s belief (Murphy and Daan,
1985; Gneiting, 2011). A scoring rule,s(x, y), is consistent
for a functional, f , if the expectation ofs(x, y) with
respect to any probability distribution,q, for the verifying
observation,y, is optimized whenx = f(q). The squared
error,(x − y)2, for example, is consistent for the mean (e.g.
Winkler, 1967). Consistent scoring rules can be used to
elicit specific functionals of a forecaster’s belief distribution
because if we use a scoring rule that is consistent for a

functional,f , and ifq represents a forecaster’s belief about
y then she will optimize her expected score by issuingf(q)
as her forecast. Alternatively, if a forecaster is being honest
when she states that her issued point forecast represents
a particular functional of her belief distribution then she
will not want to have issued a different forecast when
she learns that the evaluation will use a scoring rule that
is consistent for that functional. In this sense, consistent
scoring rules are fair for point forecasts that are interpreted
as a particular functional of the forecaster’s belief. Fromour
third viewpoint, if the verifying observation really is drawn
from a distribution,q, and the scoring rule is consistent forf
then forecastingx 6= f(q) will not score better, on average,
than forecastingf(q).

By analogy to proper scoring rules for probability
forecasts and consistent scoring rules for point forecasts,
Fricker et al. (2013) introduced the idea of fair scoring
rules for ensemble forecasts. These scoring rules ensure
that, if a forecaster is being honest when she states that
her issued ensemble is a random sample from her belief
distribution then she will not want to have issued a random
sample from a different distribution when she learns that
the evaluation will use a fair scoring rule. Alternatively,if
the verifying observation really is drawn from a distribution,
q, and the scoring rule is fair in this sense then generating
the ensemble fromp 6= q will not score better, on average,
than generating the ensemble fromq. In other words, fair
scoring rules favour ensembles whose members behave as
though they and the verifying observation are sampled from
the same distribution (e.g. Wilks, 2006, p. 315).

As for probability and point forecasts, fair scoring rules
for ensemble forecasts depend on the interpretation of the
forecast and, in particular, on how the forecast relates to
the forecaster’s belief. In the case of probability forecasts
that we are told, or choose, to interpret as the forecaster’s
belief distribution, we have described the sense in which
proper scoring rules can be considered fair. In the case of
point forecasts that we are told, or choose, to interpret as a
particular functional of the forecaster’s belief distribution,
we have described the sense in which consistent scoring
rules can be considered fair. The situation is more
complicated for ensemble forecasts, partly because there
are many possible interpretations of ensemble forecasts and
forecasters tend not to specify which interpretation they
intend. If an ensemble forecast is interpreted as representing
the forecaster’s belief distribution, for example by assuming
equal probability mass on each of the ensemble members,
then a proper scoring rule would be fair. Alternatively,
if an ensemble is interpreted as a set of point forecasts
corresponding to specific functionals of the forecaster’s
belief distribution, for example by assuming that the
ensemble members correspond to particular quantiles, then
a consistent scoring rule would be fair. For example,
Bröcker (2012) shows that calculating the continuous
ranked probability score (CRPS; Brown, 1974; Matheson
and Winkler, 1976) for the empirical distribution functionof
an ensemble withm members is consistent for the quantiles
(i − 1/2)/m for i = 1, . . . ,m. These interpretations of
ensemble forecasts, however, are rarely intended by the
forecaster. More often, an ensemble is interpreted as a
sample from a distribution of possible outcomes. Which
scoring rules are fair in this case?

The answer to this question depends on our assumptions
about how the sample is generated. We shall discuss this
in more detail in section 3 but, for now, suppose that
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we interpret the ensemble,x, as a random sample in
which the ensemble members are independent realizations
from some underlying ensemble distribution. Earlier in this
section, proper scoring rules elicited probability forecasts,
and consistent scoring rules elicited point forecasts.
Unfortunately, there are no scoring rules that elicit random
samples for the forecasts (Frickeret al., 2013). This is
because the expectation of a scoring rule,s(x, y), with
respect to any distribution,q, for the verifying observation,
y, is a deterministic function ofx. Therefore, the optimizing
values for the ensemble members can always be determined
and issued as the forecast in preference to issuing a random
sample. Frickeret al. (2013) proposed the following,
alternative criterion for a fair scoring rule of ensembles
interpreted as random samples:given that an ensemble,x,
is a random sample from a probability distribution,p, the
expectation of the scoring rule,s(x, y), with respect to both
p and any probability distribution,q, for y is optimized
whenp = q.

Definition 1. A scoring rule,s(x, y), is fair for random
sample ensembles,x, if its expectation with respect to both
the ensemble distribution,p, and any distribution,q, for
the verifying observation,y, is optimized whenp = q. The
scoring rule isstrictly fair if its expectation isuniquely
optimized whenp = q.

Another way to state this definition is to say that the
expectation of the scoring rule,s(x, y), with respect to
the ensemble distribution,p, is a (strictly) proper scoring
rule for the probability forecastp. Thus, fair scoring rules
effectively evaluate the underlying ensemble distribution.
This seems appropriate given that the forecaster is
constrained to issue a random sample and, therefore, does
not have full control over the values of the ensemble
members. Unfair scoring rules will favour ensembles
generated from imperfect distributions,p 6= q.

Sadly, the only fair scoring rules for ensembles with just
one member,x, are trivial in the sense that the expectation
of the scoring rule will be optimized for any reasonable
ensemble distribution,p. The reason is that, given a scoring
rule, s(x, y), we can calculate its expectation with respect
to any distribution,q, for y and then determine the set,X,
of values forx that optimize this expectation. Choosing
p such that its support (the set ofx values for which the
probability density or mass function ofp is strictly positive)
is a subset ofX will then optimize the expectation of the
score taken with respect top andq. If the support ofq is not
a subset ofX then the expected score will not be optimized
whenp = q. If the support ofq is a subset ofX then any
distribution, p, with support equal to that ofq (a trivial
requirement that merely avoids ruling out any outcomes that
are possible) will optimize the expected score.

Before we characterize further a class of fair scoring
rules, we place two restrictions on the scoring rules that we
consider. Given that we are interpreting the ensemble to be
a random sample, it is inappropriate for the scoring rule to
award different scores to two ensembles that differ only in
the ordering of their ensemble members. For this reason,
we focus on ensemble-symmetric scoring rules, defined as
follows.

Definition 2. A scoring rule, s(x, y), is ensemble-
symmetric ifs(x, y) = s(π(x), y) for all ensembles,x,
verifying observations,y, and permutations,π(x), of x.

Another way to state this definition is to say that the
scoring rule for an ensemble,x = (x1, . . . , xm), of m
members depends onx only through the order statistics
of the ensemble. This is also equivalent to the scoring
rule depending on the ensemble only through the empirical
distribution function of the ensemble,

1

m

m
∑

i=1

I(xi ≤ x),

whereI is the indicator function for whichI(A) = 1 if A is
true, andI(A) = 0 if A is false.

We also restrict our attention to finite scoring rules.

Definition 3. A scoring rule, s(x, y), is finite if
|s(x, y)| < ∞ for all ensembles,x, and verifying observa-
tions,y.

This restriction ensures that the expectation of the scoring
rule with respect to the ensemble distribution, which we
require to be a proper scoring rule forp, is regular (Gneiting
and Raftery, 2007) and merely rules out some trivial scoring
rules in our setting.

2.2. Binary outcomes

We characterize a class of fair scoring rules for random
sample ensembles in the special case of binary outcomes so
that the ensemble members,x1, . . . , xm, and the verifying
observation,y, take only the values0 and1. The ensemble
distribution is then defined byp = Pr(xi = 1) for 0 ≤ p ≤
1 andi = 1, . . . ,m, and the distribution ofy is defined by
q = Pr(y = 1) for 0 ≤ q ≤ 1. In the binary case, ensemble-
symmetric scoring rules coincide with those scoring rules
that depend on the ensemble only through the number of
ensemble members that equal1. Therefore, writesi,j for
the value of the scoring rule when

∑m

l=1 xl = i andy = j
for i = 0, 1, . . . ,m and j = 0, 1. This notation suppresses
the possible dependence ofsi,j onm.

Theorem 1. The negatively oriented, finite, ensemble-
symmetric scoring rule defined by {si,j : i =
0, 1, . . . ,m; j = 0, 1} is fair for random sample ensembles
of sizem if

(m − i)(si+1,0 − si,0) = i(si−1,1 − si,1) (1)

for i = 0, 1, . . . ,m and si+1,0 ≥ si,0 for i = 0, 1, . . . ,
m − 1.

A proof of the theorem is given in the appendix. Some
notes follow.

1. For notational compactness, the equality con-
straints (1) refer to the undefined scoress−1,1 (on
the right-hand side wheni = 0) andsm+1,0 (on the
left-hand side wheni = m). These can be ignored,
however, as the right-hand side should be read as zero
wheni = 0, and the left-hand side should be read as
zero wheni = m.

2. Theorem 1 remains true if ‘negatively oriented’ is
replaced by ‘positively oriented’ andsi+1,0 ≥ si,0 is
replaced bysi+1,0 ≤ si,0.
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3. The proof in the appendix shows that the equality
constraints (1) are necessary for a scoring rule to
be fair, while the inequalitiessi+1,0 ≥ si,0 (which,
through the equality constraints (1), also imply
si+1,1 ≤ si,1) are merely sufficient. Given that the
scoring rule is to be interpreted as negatively
oriented, however, these inequalities are desirable: it
is appropriate that the score for an ensemble should
not increase as the number of members making a
correct forecast increases.

4. If at least one of the inequalitiessi+1,0 ≥ si,0 is
replaced by a strict inequality then the proof shows
that the expectation ofs(x, y) with respect to the
ensemble distribution is a strictly proper scoring rule
for p, which implies thats(x, y) is a strictly fair
scoring rule forx. Of the scoring rules described by
Theorem 1, therefore, the only ones that are fair, but
not strictly fair, are the trivial scoring rules that satisfy
si,0 = s0,0 andsi,1 = sm,1 for all i = 0, 1, . . . ,m.

5. As noted earlier, fair scoring rules are trivial when
m = 1. In this case, Theorem 1 requiress1,0 = s0,0

ands0,1 = s1,1 so that the scores may depend on the
verifying observation but not on the ensemble.

6. One feature of these fair scoring rules is the
requirement thats1,0 = s0,0 and sm−1,1 = sm,1,
so that ensembles for which all but one member
makes a correct forecast score the same as perfect
forecasts. This is necessary owing to the discreteness
of the set of possible values for

∑m

l=1 xl. For
example, if the forecaster’s belief,q, in the event
{y = 1} is small, so thatp will need to be small
too, then the ensemble is most likely to score
either s0,0, which will happen with probability
(1 − p)m(1 − q) ≈ 1 − mp − q, s1,0, which will
happen with probabilitymp(1 − p)m−1(1 − q) ≈
mp, or s0,1, which will happen with probability
(1 − p)mq ≈ q. The forecaster can maximize her
chance of making a perfect forecast and scoring
s0,0 by hedging and settingp = 0. Hedging is
precluded, and the scoring rule is made fair, only by
settings1,0 = s0,0. A similar argument explains the
requirementsm−1,1 = sm,1.

7. Another feature of these fair scoring rules is the
relationship between the scores imposed by the
equality constraints (1). This is the discrete analogue
of a relationship (Savage, 1971) satisfied by proper
scoring rules,s(p, y), for continuous probability
forecasts,p, namely

(1 − p)
d

dp
s(p, 0) = −p

d

dp
s(p, 1).

Approximating p with i/m, ds(p, 0)/dp
with m(si+1,0 − si,0), and ds(p, 1)/dp
with m(si,1 − si−1,1) recovers the equality
constraints (1).

There are m + 1 degrees of freedom in the fair
scoring rules characterized by Theorem 1, which provides
considerable scope for tailoring scores to the particular
goals of a forecast evaluation exercise. Here we discuss
some sub-classes that place further, natural restrictionson
the scores that may be appropriate in some situations.

We may want the scoring rule to be invariant to
relabelling the events{y = 1} and {xi = 1} as the non-
events{y = 0} and{xi = 0}, and vice-versa. This property

Table I. Scoressi,j for negatively oriented fair scoring rules when
m = 2, 3 and4. The constant,a, may be any number in[0, 1/4].

m = 2 m = 3 m = 4
i j = 0 j = 1 j = 0 j = 1 j = 0 j = 1

0 0 1 0 1 0 1
1 0 0 0 1/3 0 1 − 3a
2 1 0 1/3 0 a a
3 1 0 1 − 3a 0
4 1 0

of scores is known as complement symmetry (Stephenson,
2000; Ferro and Stephenson, 2011) and means thatsi,j

becomes a function of|i/m − j| only; that issi,0 = sm−i,1

for i = 0, 1, . . . ,m. The score awarded to an ensemble with
a certain number of its members being correct is then the
same whethery = 0 or y = 1. We can also standardize
scoring rules by awarding perfect forecasts a score of0,
that iss0,0 = sm,1 = 0, and by awarding forecasts that are
completely wrong a score of1, that is sm,0 = s0,1 = 1.
Imposing all of these restrictions leaves⌊m/2⌋ − 1 degrees
of freedom whenm > 1, where⌊m/2⌋ is the integer part of
m/2. Scoring rules satisfying these restrictions form = 2,
3 and4 are listed in Table I.

As mentioned in section 1, a popular scoring rule for
ensemble forecasts of binary outcomes is the Brier score
with the probability forecast set equal to the proportion of
ensemble members that forecast the event{y = 1}. This is
the scoring rule defined by

si,j =

(

i

m
− j

)2

. (2)

This scoring rule does not satisfy the necessary equality
constraints (1) and so is not fair for evaluating ensemble
forecasts that are interpreted as random samples.

Ferro (2007) and Ferroet al.(2008) proposed an adjusted
Brier score as an unbiased estimator for the score that would
be obtained as the ensemble size increases to infinity. This
is the scoring rule

si,j =

(

i

m
− j

)2

−
i(m − i)

m2(m − 1)
, (3)

which does satisfy the conditions of Theorem 1 and,
therefore, is a fair scoring rule for ensemble forecasts when
m > 1. It also satisfies the properties listed above of being
complement symmetric, and of awarding scores of0 and1
to perfect and completely imperfect forecasts. The adjusted
scores (3) still lie in the interval[0, 1] but are less than
or equal to the original scores (2) with equality if and
only if i = 0 or m, showing that the original score unfairly
penalizes ensemble forecasts by failing to account for the
finite ensemble size. Figure 1 illustrates the differences
between the adjusted Brier score and the original Brier
score for different ensemble sizes. The expectation of the
original Brier score is minimized atp 6= q unlessq = 0,
1/2 or 1, while the expectation of the adjusted Brier score
is always minimized atp = q. The original Brier score
typically favours ensembles that are sampled from over-
confident distributions. For example, ifq = 0.25 then the
expectation of the original Brier score is optimized when
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Figure 1. Expected values of the adjusted Brier scores (black) and of the
original Brier scores (grey) whenm = 2 (thin), 4 (medium) and 8 (thick)
plotted againstp for q = 1/2 (solid) andq = 1/4 (dashed). The graphs of
the adjusted Brier scores are unaffected by the value ofm.

p = 0 if m = 2, whenp = 0.17 if m = 4, and whenp =
0.21 if m = 8.

An illustrative comparison of the original and adjusted
Brier scores for two seasonal precipitation forecasts (from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) and Ḿet́eo-France) may be found in Figure 2
of Ferro (2007). The adjusted scores are typically about
5% smaller than the original scores, and the ordering of
the performances of the two forecasts is typically the same
under both the original and adjusted scores. When the
ordering does change, the difference in the performance of
the two forecasts is small relative to its standard error.

2.3. Multiple categories and continuous outcomes

Now suppose that, instead of binary outcomes, there aren
possible outcomes so that the members of the ensemble,
x = (x1, . . . , xm), and the verifying observation,y, take
the values1, . . . , n. The ensemble distribution is then
defined by (p1, . . . , pn), where pk = Pr(xi = k) for
i = 1, . . . ,m, and the distribution ofy is defined by
(q1, . . . , qn), where qk = Pr(y = k) for k = 1, . . . , n.
The quantitiesyk = I(y = k) andxk = (xk,1, . . . , xk,m),
where xk,i = I(xi = k), represent the binary verifying
observation and ensemble forecast for the occurrence of the
event{y = k}. For eachk, let sk(xk, yk) be a fair, finite,
ensemble-symmetric, negatively oriented scoring rule, as
defined by Theorem 1. It follows that the negatively oriented
scoring rule

s(x, y) =

n
∑

k=1

sk(xk, yk) (4)

is a fair, finite, ensemble-symmetric scoring rule for the
ensemble forecast,x. This defines a class of fair scoring
rules for ensemble forecasts of multi-category outcomes.
If sk(xk, yk) = sk

i,j when
∑m

l=1 xk,l = i and yk = j for
i = 0, 1, . . . ,m and j = 0, 1 then we just need thesk

i,j to
satisfy the conditions of Theorem 1 for eachk = 1, . . . , n.
For example, if we takesk

i,j to equal the adjusted Brier
score (3) for eachk then the scoring rule (4) becomes the
adjusted multi-category Brier score proposed by Ferro et al.
(2008). This same scoring rule remains fair and becomes the
adjusted ranked probability score proposed by Ferroet al.
(2008) if we redefineyk = I(y ≤ k) andxk,i = I(xi ≤ k).

Next, suppose that there is a continuum of scalar
outcomes so that the ensemble members and the verifying
observation take values on the real line. Letp denote the
probability density function for the ensemble distribution,
and letq denote the density function for the distribution of
y. The quantitiesyt = I(y ≤ t) andxt = (xt,1, . . . , xt,m),
where xt,i = I(xi ≤ t), represent the binary verifying
observation and ensemble forecast for the occurrence of the
event{y ≤ t} for a threshold,t. For eacht, let st(xt, yt)
be a fair, finite, ensemble-symmetric, negatively oriented
scoring rule, as defined by Theorem 1. If also|st(xt, yt)|
is bounded for allxt, yt andt, and if r is any probability
density function on the real line, then it follows via an
application of Fubini’s Theorem that the negatively oriented
scoring rule

s(x, y) =

∫

∞

−∞

st(xt, yt)r(t) dt (5)

is a fair, finite, ensemble-symmetric scoring rule for the
ensemble forecast,x. This defines a class of fair scoring
rules for ensemble forecasts of continuous outcomes. For
example, if, for eacht, we takest(xt, yt) to equal the
adjusted Brier score (3) when

∑m

l=1 xt,l = i and yt = j
then the scoring rule (5) becomes a weighted version (where
r defines the weight given to each threshold) of the adjusted
CRPS proposed by Ferroet al. (2008) and Frickeret al.
(2013). This may be written in the form

s(x, y) =

k+1
∑

i=1

si−1,0

∫ z(i+1)

z(i)

r(t) dt

+

m+1
∑

i=k+1

si−1,1

∫ z(i+2)

z(i+1)

r(t) dt,

where z(i) is the ith order statistic of the set
{−∞, x1, . . . , xm, y,∞} and k is such thatz(k+2) = y.
The unweighted version proposed by Ferroet al. (2008)
is recovered by settingr(t) = 1 for all t. This fair scoring
rule may be compared with the original ensemble CRPS
obtained by substituting the original Brier score (2) for
st(xt, yt). Figure 2 illustrates the differences between the
adjusted (unweighted) CRPS and the original (unweighted)
CRPS for different ensemble sizes wheny has a normal
distribution with expectation0 and standard deviation
β, and the xi are independent draws from a normal
distribution with expectation0 and standard deviation
α. The expectation of the original CRPS, which can be
calculated using an expression from Gneiting and Raftery
(2007), is minimized atα < β, while the expectation of
the adjusted CRPS is always minimized atα = β. The
original CRPS thus favours ensembles that are sampled
from over-confident (i.e. under-dispersed) distributions. For
example, ifβ = 1 then the expectation of the original CRPS
is optimized whenα = 0.38 if m = 2, whenα = 0.63 if
m = 4, and whenα = 0.79 whenm = 8.

The values of the original and adjusted (unweighted)
CRPS for the seasonal precipitation forecasts described in
Ferro (2007) are presented in Table II. As with the Brier
scores, the adjusted scores are about 5% smaller than the
original scores, the ordering of the two forecasts is the same
under both scores, and differences are small relative to their
standard errors.
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Figure 2. Expected values of the adjusted CRPS (black) and of the original
CRPS (grey) whenm = 2 (thin), 4 (medium) and 8 (thick) plotted against
α for β = 1 (solid) andβ = 1/2 (dashed). The graphs of the adjusted
CRPS are unaffected by the value ofm.

Table II. Original and adjusted CRPS (mm month−1 with estimated
standard errors in brackets) for two seasonal precipitationforecasts.

Original Adjusted

ECMWF 51 (8.8) 49 (8.8)
Mét́eo-France 42 (6.5) 39 (6.5)

3. Dependent ensemble members

In the previous section, we defined what it means for a
scoring rule to be fair for ensembles that are interpreted
as random samples. This interpretation is often a good
approximation, even when initial conditions are generated
systematically rather than by random sampling, owing to
the chaotic nature of numerical models for weather and
climate. Moreover, even if the approximation is poor but
the ensemble will be used as if it were a random sample
(for example by treating it as such in a post-processing
scheme) then it will be worthwhile to evaluate the ensemble
under this interpretation. In this section, we consider the
situation in which we are told, or choose, to interpret the
ensemble members as dependent, rather than independent.
How should we define fair scoring rules in this case, and do
such fair scoring rules exist?

If the m ensemble members are not independent
and identically distributed then we must consider their
m-dimensional, joint probability distribution, which we
denote bypm. As the distribution,q, of the verifying
observation remains one-dimensional, we cannot base our
fairness criterion on the requirement thatpm = q. One
possibility is to assume that each of the ensemble members
has the same one-dimensional marginal distribution,p,
so that they are identically distributed but may be
dependent. We shall discuss only the special case in
which the ensemble members are exchangeable, which
means that the joint distribution is symmetric in them
dimensions (e.g. Bröcker and Kantz, 2011) and includes the
possibility of independence. Many ensembles generated by
operational weather prediction systems are considered to be
exchangeable (e.g. Fraleyet al., 2010). We define fairness
for exchangeable ensembles as follows.

Definition 4. A scoring rule, s(x, y), is fair for
exchangeable ensembles,x, if its expectation with respect

to both the joint distribution of the ensemble members,pm,
and any distribution,q, for the verifying observation,y, is
optimized whenp = q, wherep is the marginal distribution
of pm.

When m = 1, we are in the same setting as section 2
and the only fair scoring rules are trivial. To discover if fair
scoring rules exist whenm > 1, we must consider the form
of the dependence between the ensemble members. If the
ensemble members are perfectly dependent, for example,
then there is effectively only one ensemble member and
so there are still no non-trivial scoring rules that are fair.
Even when ensemble members are not perfectly dependent,
the only fair scoring rules may be trivial, as the following
example shows.

Example 1. Consider binary outcomes and
ensembles of sizem = 2. Let q = Pr(y = 1), let
p = Pr(x1 = 1) = Pr(x2 = 1) be the marginal ensemble
distribution, and letPr(x1 = 1, x2 = 1) = pc define the
joint ensemble distribution, wherec is a constant satisfying
1 < c < ∞. The ensemble members are independent
whenc = 2. As for random samples, it is appropriate to
restrict attention to ensemble-symmetric scoring rules when
ensembles are exchangeable, so letsi,j denote the score
awarded whenx1 + x2 = i andy = j. For this to define a
fair scoring rule, we require the expected score,

(1 − q){pcs2,0 + 2(p − pc)s1,0 + (1 − 2p + pc)s0,0}

+ q{pcs2,1 + 2(p − pc)s1,1 + (1 − 2p + pc)s0,1},

to be optimized whenp = q. If c 6= 2 (so that the
ensemble members are dependent) then the expected score
is optimized atp = q for 0 < q < 1 only if s0,0 = s1,0 =
s2,0 and s0,1 = s1,1 = s2,1: in other words, only if the
scoring rule is trivial because it does not depend on the
ensemble.

There are some forms of dependence, however, for which
non-trivial fair scoring rules do exist.

Example 2. Consider again the case of binary outcomes
with q = Pr(y = 1) andp = Pr(xi = 1) for i = 1, . . . ,m,
and let the correlation between ensemble members be
corr(xi, xj) = c < 1 for all i 6= j, wherec is a constant that
is independent ofp. Then, the negatively oriented scoring
rule defined by

si,j =

(

i

m
− j

)2

−

(

1 +
cm

1 − c

)

i(m − i)

m2(m − 1)
(6)

is fair, where, as before,si,j denotes the value of the
scoring rule when

∑m

l=1 xl = i and y = j. The proof is
straightforward: the expected value of the scoring rule can
be shown to bep2 − 2pq + q, which is minimized atp =
q. Whenc = 0, this scoring rule reduces to the adjusted
Brier score (3), which is therefore fair for ensembles
with pairwise uncorrelated members, not only independent
members.

These examples show that no one (non-trivial) scoring
rule is fair for all exchangeable ensembles. If we interpret
an ensemble as exchangeable then we must specify its
dependence structure and determine whether or not a fair
scoring rule exists. If a fair scoring rule does exist then
we should use it. If no fair scoring rule exists then an
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alternative could be to use a scoring rule that is ‘nearly fair’
in some sense, for example a scoring rule whose expectation
is optimized for a value ofp that is always within a certain,
small distance ofq. The development of this idea is left for
future research.

In practice, the dependence structure of an ensemble
is rarely stated by forecasters. This is problematic for
verification given that we must specify a dependence
structure in order to choose a fair scoring rule. Moreover,
we cannot choose a fair scoring rule based on a dependence
structure that has been estimated from the ensemble that is
to be verified. For example, if we replacec with an estimate
in the scoring rule (6) of example 2 above then the scoring
rule will no longer be fair. As a result, we shall rarely be
able to specify the ‘correct’ dependence structure in our
interpretation of an ensemble. This suggests disregarding
the notion of a correct interpretation and instead verifying
ensembles for one or more interpretations of interest. If
it is likely that an ensemble will be used as if it were a
random sample then it will be worthwhile verifying the
ensemble using the fair scoring rules described in section 2.
If it is likely that the empirical distribution function of
an ensemble will be used as if it were a probability
forecast then it will be worthwhile verifying the empirical
distribution with proper scoring rules. We mentioned in
section 2, however, that this latter interpretation is typically
inappropriate.

4. Summary and discussion

A scoring rule for an ensemble forecast is fair if the
expectation of the score with respect to the distributions of
both the ensemble members and the verifying observation is
optimized when these distributions coincide. Such scoring
rules effectively evaluate the underlying distribution from
which the ensemble members are sampled, and reward
ensembles whose members behave as though they and
the verifying observation are sampled from the same
distribution.

When there is only one ensemble member, the only fair
scoring rules are trivial. In this case, we should be aware that
verification measures may favour ensembles that exhibit
undesirable properties, such as being under-dispersed
relative to the verifying observations (as in the example
near the end of section 1). Fair scoring rules do exist when
there is more than one ensemble member and they are
independent and identically distributed. In this case, we
have argued for the use of scoring rules that are symmetric
in the ensemble members. In the case of binary outcomes,
we have characterized a general class of fair scoring rules,
which includes an adjusted version of the ensemble Brier
score. We have also constructed classes of fair scoring rules
for multi-category and continuous outcomes, which include
adjusted versions of the ensemble ranked probability and
continuous ranked probability scores. There is scope to
extend these latter two classes to obtain more general
characterizations of fair scoring rules for those forecasting
situations.

Fair scoring rules can also exist when ensemble members
are dependent, but the scoring rules are specific to the
dependence structure and do not exist for some forms
of dependence. Given that we are typically unable to
specify the correct dependence structure of an ensemble,
we recommend that ensembles are verified using scores
that are fair for dependence structures of interest, including

independence. There is scope to compile a catalogue of fair
scoring rules for different dependence structures.
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Appendix

To prove Theorem 1, we need to find conditions on the
scoressi,j that make the scoring rule,s(x, y), fair. This
is equivalent to making the expectation of the scoring rule
with respect to the ensemble a proper scoring rule forp. As
the ensemble members are independent withPr(xi = 1) =
1 − Pr(xi = 0) = p, this expectation is

sm(p, y) =
m

∑

i=0

(

m

i

)

pi(1 − p)m−isi,y, (7)

and this is a regular scoring rule forp because|si,y| <
∞. Following Savage (1971), Gneiting and Raftery (2007)
showed that any regular, negatively oriented scoring rule,
s(p, y), is proper if and only if it can be written as

s(p, y) = G(p) + (y − p)G′(p) (8)

for a concave functionG and whereG′ is the derivative of
G if G is differentiable. (We have rewritten this result for
negatively oriented, rather than positively oriented, scoring
rules.) Fors to be strictly proper,G must be strictly concave.
We seek conditions onsi,j such thatsm(p, y) has this
form (8).

Recall thatPr(y = 1) = 1 − Pr(y = 0) = q and write

sm(p, q) =
m

∑

i=0

(

m

i

)

pi(1 − p)m−i{(1 − q)si,0 + qsi,1}

and
s(p, q) = G(p) + (q − p)G′(p)

for the expectations ofsm(p, y) ands(p, y) with respect to
y. Evaluating these two expectations atq = p shows that we
require

G(p) =
m

∑

i=0

(

m

i

)

pi(1 − p)m−i{(1 − p)si,0 + psi,1}.

(9)
This also implies thatG must be differentiable, so thatG′ is
indeed the derivative ofG.

For sm(p, y) to be proper, we requiresm(p, q) to be
minimized whenp = q for all 0 ≤ q ≤ 1. The derivative of
sm(p, q) with respect top, when evaluated atp = q, can be
written as

m
∑

i=0

(

m

i

)

qi(1 − q)m−i

× {(m − i)(si+1,0 − si,0) − i(si−1,1 − si,1)}.
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This equals zero for all0 < q < 1 if and only if our
equality constraints (1) hold. These constraints, therefore,
are necessary conditions onsi,j .

Differentiating our expression (9) forG(p) yields

G′(p) =

m
∑

i=0

(

m

i

)

{(1 − p)si,0 + psi,1}
d

dp
pi(1 − p)m−i

+

m
∑

i=0

(

m

i

)

pi(1 − p)m−i(si,1 − si,0).

The first sum is the derivative ofsm(p, q) with respect to
p evaluated atq = p, and so is zero under our equality
constraints, leaving

G′(p) =

m
∑

i=0

(

m

i

)

pi(1 − p)m−i(si,1 − si,0). (10)

It follows that G(p) + (y − p)G′(p) = sm(p, y) so that
sm(p, y) has the correct form (8) and it remains to find con-
ditions onsi,j for which G is concave. Our expression (10)
for G′ is the difference in the expected scores wheny = 1
andy = 0: G′(p) = sm(p, 1) − sm(p, 0). If we letsi+1,0 ≥
si,0 for i = 0, 1, . . . ,m − 1 then our equality constraints (1)
imply that si+1,1 ≤ si,1 for i = 0, 1, . . . ,m − 1 as well.
Under these inequality constraints, therefore, asp increases,
sm(p, 1) decreases andsm(p, 0) increases, so thatG′(p)
decreases. In other words,G is concave, as required. If
si+1,0 > si,0 for at least onei thenG is strictly concave.
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