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ABSTRACT 9	

While DNA methylation is usually thought to be symmetrical across both alleles, there are 10	

some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-11	

studied sources of allele-specific methylation (ASM), but recent research has indicated a 12	

more complex pattern in which genotypic variation can be associated with allelically-skewed 13	

DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues 14	

and cell types we explored inter- and intra-individual variation in ASM across several regions 15	

of the human brain and whole blood from multiple individuals. Consistent with previous 16	

studies, we find widespread ASM with >4% of the ~220,000 loci interrogated showing 17	

evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted 18	

regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often 19	

located in an extended genomic context of intermediate DNA methylation. We also detect 20	

examples of genotype-driven ASM, some of which are also tissue-specific. These findings 21	

contribute to our understanding about the nature of differential DNA methylation across 22	

tissues and have important implications for genetic studies of complex disease. As a 23	

resource to the community, ASM patterns across each of the tissues studied are available in 24	

a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood. 25	

 26	

 27	
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INTRODUCTION 30	

DNA methylation is the most widely studied and stable epigenetic mark across the 31	

mammalian genome, playing a key role in the developmental regulation of gene expression. 32	

DNA methylation is generally symmetrical across both alleles, although exceptions 33	

characterized by allelic asymmetry include differentially methylated regions (DMRs) 34	

regulating the monoallelic expression of genes associated with X chromosome inactivation in 35	

females and genomic imprinting.1-5 Recently it has been shown that the allelic-skewing of 36	

DNA methylation can also be driven by DNA sequence variation, with methylation 37	

quantitative trait loci (meQTLs) predominantly acting in cis.6-11 ASM can be regarded a 38	

special case of intermediate DNA methylation (IM), which has been found to occur in regions 39	

spanning a large portion of the human genome. It has been estimated that ASM contributes 40	

up to 18% of IM in the human genome.12 41	

DNA methylation patterns are highly dynamic during normal development and cellular 42	

differentiation13-16 and tissue-specific patterns of DNA methylation have been widely studied 43	

in humans.17-20 In complex tissues such as the brain, for example, DNA methylation 44	

differentiates between functionally distinct regions21, 22 and cell-types.16, 23-26 Patterns of IM 45	

can also be tissue-specific,12 with growing evidence for the widespread prevalence of tissue-46	

specific ASM.27, 28 In mouse, for example, it has been reported that 28% of imprinted genes 47	

are monoallelically expressed in a single tissue type, often the brain or extra-embryonic 48	

tissue.29 Examples of tissue-specifically imprinted genes include KCNQ1, which becomes 49	

biallelically expressed in embryonic heart development,30 GNAS, which is maternally 50	

expressed in a wide-range of tissues including the anterior pituitary, thyroid and ovaries but 51	

biallelically expressed in others, such as bone and visceral adipose tissue,31, 32 and GRB10, 52	

which is maternally expressed in most preripheral tissues but paternally expressed in the 53	

brain.29, 33 Genetic influences on DNA methylation can also be tissue-specific, with meQTLs 54	

determining allelic patterns of methylation in cis in certain tissues or cell-types.11, 34 55	
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Increasing evidence supports a role for inter-individual variation in DNA methylation in the 56	

etiology and pathogenesis associated with a diverse range of complex disease 57	

phenotypes.35 Allelic differences in DNA methylation may be particularly important in this 58	

regard, acting as endophenotypes of genetic variation or additional epi-allelic layers 59	

mediating the functional consequences of genotypic variation.36, 37 Teasing apart genetic and 60	

non-genetic effects in a tissue- and cell-type-specific manner will be a crucial step in 61	

understanding the association between non-coding genetic variation, DNA methylation and 62	

complex disease. 63	

To investigate the role of tissue-specific variation of ASM in the human brain and its relation 64	

to allelic biases in whole blood, we examined ASM across multiple brain regions and 65	

matched blood samples collected from multiple donors. Our data shows that although a 66	

large proportion of ASM is conserved across tissues, there are specific differences in the 67	

extent and distribution of ASM sites between regions of the brain and whole blood. Genome 68	

browser tracks displaying ASM signals as well as an online tool plotting ASM for sites of 69	

interest are available for download from a searchable database 70	

(http://epigenetics.essex.ac.uk/ASMBrainBlood). 71	

 72	

RESULTS 73	

DNA methylation is allelically-skewed at specific locations across the genome  74	

The majority of the genome is not characterized by notable allelic biases in DNA methylation 75	

in any of the tissues assessed in this study. The array-wide average of ASM score (in 76	

absolute values) is consistently low (mean = 0.025, range 0.023 to 0.030) (Supplementary 77	

Figure 1A, Supplementary Figure 1B and Supplementary Table 1). As expected, there is, 78	

however, evidence for allelically-biased DNA methylation at a notable number of specific 79	

genomic regions; in total 9,311 (4.22%) of the 220,449 informative SNPs in our assay show 80	

evidence for allelic-skewing of DNA methylation, defined by an absolute ASM score ≥ 0.10, 81	
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in at least one tissue and individual. The percentage of amplicons characterized by an ASM 82	

score ≥ 0.10 in each of the 21 profiled samples is given in Supplementary Table 2. The top-83	

ranked loci showing evidence for allelically-skewed DNA methylation in whole blood, cortex 84	

(BA9), and cerebellum are listed in Tables 1 – 3. Genome Browser tracks and an online 85	

ASM database are available from our laboratory website 86	

(http://epigenetics.essex.ac.uk/ASMBrainBlood). 87	

 88	

Patterns of ASM in whole blood overlap with those identified in a previous study 89	

In a previous study we characterized allelically-skewed DNA methylation in whole blood 90	

derived from five monozygotic twin pairs.7 There is a highly significant correlation between 91	

absolute ASM scores across all probes informative in both data sets (n=129,559, r = 0.21, P 92	

< 1.0 × 10-50, Supplementary Figure 2), even though the majority of the probes do not 93	

exhibit ASM. Of the 2,704 ASM loci identified in Schalkwyk et al, 1,717 (63.50%) are 94	

informative in the current study, with a highly significant cross-study correlation of ASM 95	

scores at these probes (r = 0.52, P < 1.0 × 10-50). Likewise, there is a highly significant 96	

correlation between ASM-scores at sites showing allelically-skewed DNA methylation in 97	

blood in the current study and ASM-score at sites informative in our previous study (r = 0.38, 98	

P = 3.0 × 10-28). Of the 15 top-ranked blood ASM sites identified in our current study (Table 99	

1), 7 of the 9 sites (78%) also informative in our previous study of ASM in blood7 were 100	

characterized by an absolute ASM score ≥ 0.10 in both analyses. These data confirm the 101	

validity of the MSNP approach for identifying allelically-skewed DNA methylation, reinforcing 102	

our previous conclusions about the extent of ASM in whole blood.7  103	

 104	

The extent and distribution of ASM differs across tissues 105	
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The average proportion of informative sites characterized by allelically-skewed DNA 106	

methylation (absolute ASM score ≥ 0.10) in each of the eight tissues profiled was examined 107	

(Figure 1A).  Table 4 lists the top-ranked consistently allelically-skewed probes across 108	

cortex (BA9), cerebellum and whole blood, with specific examples shown in Figure 2A and 109	

Figure 2B. Allelically-skewed DNA methylation appears to be consistently less prevalent in 110	

cortical regions (informative probes with ASM score ≥ 0.10 = 0.54%) compared to the 111	

cerebellum (1.14%) and whole blood (0.84%). The elevated level of allelelically-skewed DNA 112	

methylation in the cerebellum and whole blood relative to cortex is more pronounced at more 113	

extreme ASM score thresholds (i.e. ASM score ≥ 0.20; cortex = 0.003%, cerebellum = 114	

0.019%, whole blood = 0.013%) (Supplementary Figure 1C, Supplementary Figure 1D 115	

and Supplementary Figure 3).  Of note, there is little variation in the prevalence and 116	

distribution of ASM scores between different regions of the cortex (average correlation 117	

between two cortical areas = 0.52, Figure 1B and Supplementary Figure 4). We therefore 118	

selected one representative cortical region (BA9) for inclusion in subsequent analyses. In 119	

contrast, we find more striking differences between cortex, cerebellum and whole blood 120	

samples with inter-tissue correlations ranging from r = 0.42 to 0.48 (Figure 1C-E). Table 5 121	

lists the probes showing the highest level of variation in ASM scores across tissues with 122	

specific examples shown in Figure 3A and Figure 3B. We used clonal bisulfite sequencing 123	

to validate tissue-specific ASM identified by the MSNP method in these two regions (Figure 124	

3C and Figure 3D), confirming the patterns observed in our array data for both loci.  125	

 126	

Informative MSNP probes within DNase I hypersensitive regions are characterized by 127	

elevated ASM scores 128	

Enrichment analyses were performed using a Kruskal-Wallis rank-sum test for ASM rank 129	

differences between the annotated genic regions (see Materials and Methods). We 130	

observed a differential distribution of ASM scores across annotated genic regions (i.e. 131	
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coding, 5’UTR, intergenic, intron, promoter, 3’UTR) in cortex (BA9) (P = 1.29 ×10-15), 132	

cerebellum (P = 3.98 ×10-14), whole blood (P = 2.06 ×10-12) and the cross-tissue analysis (P 133	

= 2.12 ×10-26). Post-hoc tests identified these differences to be primarily driven by an 134	

enrichment of high ASM scores in promoter regions (Supplementary Figure 5). We used 135	

data from ENCODE38 to assess whether ASM is enriched in regions associated with DNase I 136	

hypersensitive (DHS) sites identified in multiple tissues including frontal cortex and 137	

cerebellum, as well as CD14+ monocytes and naïve B cells (as a proxy for blood). We 138	

compared the ASM score ranks for informative probes between regions defined by the 139	

presence or absence of DHS sites using a Wilcoxon rank-sum test (see Materials and 140	

Methods). DHS peaks across all tissues are enriched for higher ASM scores identified in 141	

cortex (BA9), cerebellum and whole blood (Supplementary Table 3 and Supplementary 142	

Figure 6). Of note, the most striking enrichment is found for cerebellum ASM scores in 143	

regions characterized by cerebellum DHS peaks in ENCODE (P = 3.51 × 10-220). 144	

 145	

Inter-individual variation in ASM  146	

We next examined inter-individual differences in ASM score at specific loci, defining probes 147	

with a large range of ASM scores across the three individuals as being characterized by 148	

“variable ASM”. Differentially methylated regions (DMRs) associated with genomic 149	

imprinting, for example, are characterized by parental-origin-specific ASM and are expected 150	

to show consistently large ASM scores that exhibit allelic-flipping, resulting from genotype-151	

independent ASM. Genotype-driven ASM, in contrast, is likely to be exemplified by 152	

consistent allelic biases in DNA methylation across individuals, and is generally not variable 153	

between individuals of the same genotype. Supplementary Figure 7 shows the correlation 154	

in ASM scores across the three individuals profiled by MSNP, with tissue-specific 155	

correlations given in Supplementary Table 4. As expected, the individuals were more highly 156	

correlated for loci characterized by high ASM scores. For probes informative in at least two 157	
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individuals we examined the range of ASM scores across individuals and identified the top 158	

ranked variable ASM probes in each tissue (Supplementary Tables 5-7) as well as cross-159	

tissue variable sites, which show consistent inter-individual variation across all tissues 160	

(Table 6). Some sites show evidence of allelic-flipping in ASM score between individuals, 161	

indicative of genomic imprinting. These included several probes in the vicinity of the 162	

imprinted gene cluster on chromosome 15q11.2 (Figure 4A-C). High ASM scores were also 163	

observed in the vicinity of other known imprinted loci, for example, SNRPN (Supplementary 164	

Figure 8A), DLGAP2  (Supplementary Figure 8B), AIM1 (Supplementary Figure 8C), 165	

MEG3 (Supplementary Figure 8D), BLCAP (Supplementary Figure 8E) and GRB10 166	

(Supplementary Figure 8F), in addition to loci suspected to be imprinted, e.g. TRAPPC9 167	

(Supplementary Figure 8G), EVX1 (Supplementary Figure 8H), and TGFBI/VTRNA2 168	

(Supplementary Figure 8I), however we were unable to examine variable ASM in these 169	

regions because they were only informative (i.e. heterozygous) in a single individual. 170	

Notably, we also identified allelic-flipping in the vicinity of loci not previously characterized as 171	

being imprinted, for example WRB (Figure 4D) and ITPKI (Supplementary Figure 9). Other 172	

variable ASM sites are marked by both high and low ASM scores in different individuals, 173	

rather than allelic-flipping between them, for example MGST3/ LOC400794 (Supplementary 174	

Table 5). Interestingly, we identified a number of sites characterized by tissue-specific 175	

variable ASM. A notable example is the imprinted gene GRB10, which has been previously 176	

shown to be differentially maternally- and paternally-expressed in a tissue-specific manner29, 177	

33  (Supplementary Figure 8F). 178	

 179	

Variable ASM sites are flanked by extended regions of intermediate DNA methylation 180	

We next quantified genome-wide patterns of DNA methylation in a larger sample (n=39) of 181	

matched whole blood, cortex (BA9) and cerebellum samples using the Illumina Infinium 182	

HumanMethylation450 BeadChip (450K array). For the 100 top-ranked ASM sites in each of 183	
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the three tissues, plus the 100 top-ranked cross-tissue, tissue-specific, and variable ASM 184	

sites we identified probes on the array located within 1kb of the ASM marker SNPs 185	

(Supplementary Table 8; detailed in Supplementary Tables 9-17) to investigate patterns 186	

of DNA methylation across an extended region. As expected, regions around known 187	

imprinted loci identified by our ASM analysis are flanked by extended regions of intermediate 188	

DNA methylation (i.e. average levels of DNA methylation between 0.4 and 0.6) (Figure 5A 189	

and Figure 5B). We observe a highly significant enrichment (P range = 6.82 × 10-11 – 0.005) 190	

of intermediate DNA methylation relative to overall levels identified on the 450K array in 191	

regions flanking variable ASM sites in all three tissues (Table 7 and Figure 6). For example, 192	

intermediate DNA methylation was observed around the variable ASM site overlapping WRB 193	

(Figure 5C), that showed evidence of allelic-flipping (Figure 4D). Another probe exhibiting 194	

variable ASM annotated to TGFBI/VTRNA2-1 on chromosome 5 also shows a similar pattern 195	

of intermediate DNA methylation (Figure 5D). Interestingly, four individuals are distinguished 196	

by consistent hypomethylation in whole blood and cortex across 16 of the 19 sites, 197	

consistent with previous reports describing polymorphic imprinting of this locus.39, 40 198	

 199	

Identification of tissue-specific genotype-driven ASM 200	

In contrast to the intermediate DNA methylation patterns enriched in the vicinity of variable 201	

ASM sites, non-variable ASM (i.e. characterized by consistent ASM scores across 202	

individuals) is not significantly enriched for intermediate DNA methylation and in some cases 203	

is exemplified by trimodal patterns of DNA methylation, which are highly suggestive of 204	

genotype-driven ASM acting in cis. Of note, we also observe examples of tissue-specific 205	

genotype-driven ASM. For example, a tissue-specific ASM site identified as showing 206	

allelically-skewed DNA methylation in cerebellum (ASM score = 0.16) but not whole blood 207	

(ASM score = 0.03) or cortex (ASM score = 0.04) (Figure 7A) located in an intron of the 208	
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gene SYNJ2 is flanked by trimodal levels of DNA methylation in cerebellum but not blood or 209	

cortex (Figure 7B).  210	

 211	

DISCUSSION 212	

This study confirms the relatively widespread distribution of allelically-skewed DNA 213	

methylation in the human genome, corroborating our previous data generated in whole 214	

blood.7 We also present evidence for tissue-specific differences in the quantity and 215	

distribution of ASM between different regions of the human brain, and between brain and 216	

whole blood. Our findings are in line with previous reports, confirming the importance of 217	

tissue-specific DNA methylation profiles across the brain.22, 41  218	

Although our data confirm previous studies, identifying more between-tissue variation than 219	

inter-individual variation,28 we find clear examples where ASM is variable between 220	

individuals. While the number of samples profiled in this study is too small to accurately 221	

determine how much of the observed inter-individual variation in ASM results from genetic 222	

and non-genetic effects, previous studies suggest that the majority of such variation is likely 223	

to be genetically driven.7, 8, 11 Interestingly, we identify instances of tissue-specific allelically-224	

skewed DNA methylation resulting from both genomic imprinting and genotypic effects. For 225	

example, we observe tissue-specific variable ASM around the imprinted growth factor 226	

receptor-bound protein 10 gene  (GRB10), which encodes a protein that interacts with 227	

insulin-like growth factors42, 43 and we observe genotype-driven ASM exclusively in 228	

cerebellum for several probes within the synaptojanin 2 gene (SYNJ2), which encodes a 229	

protein involved in the uncoating of vesicles.44, 45 Such tissue-specific ASM has important 230	

implications for epigenetic epidemiology, and provides a mechanism by which genotype may 231	

exert an effect on gene function and regulation in a tissue-specific manner.  232	

This study has a number of important limitations. First, although we used a unique set of 233	

samples comprising of matched tissues obtained from the same donors, the number of 234	
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individuals profiled in our analysis was small, meaning we cannot definitively distinguish 235	

between genetic and non-genetic effects, or make broad statements about general patterns 236	

of inter-individual variation of ASM. Our Illumina 450K array validation studies were 237	

undertaken in a larger set of individuals, but could only confirm intermediate levels of DNA 238	

methylation and not detect allele-specific patterns. Second, given the limited availability of 239	

RNA from the same samples, we were unable to relate our ASM findings to allelic patterns of 240	

gene expression in the same individuals. Previous studies, however, have shown that ASM 241	

is linked to allele-specific expression of nearby genes.28 Third, our analyses were 242	

undertaken on whole tissue, and represent aggregate values across a number of individual 243	

cell-types. Fourth, the MSNP approach utilizes SNP microarrays – these do not interrogate 244	

the whole genome, and can only assess pools of DNA molecules. Allelic patterns of DNA 245	

methylation across individual DNA molecules cannot be directly assessed using this 246	

approach, as would be possible using bisulfite-sequencing methods. Furthermore, our 247	

threshold for calling allelic imbalances in DNA methylation is somewhat arbitrary; it is likely 248	

that our data is confounded by both false positives and negatives. We did, however, find 249	

very consistent overlap in whole blood ASM data with that reported in our previous study 250	

using the same laboratory and analysis methods,7 confirming the validity of the MSNP 251	

approach. Furthermore, we validated our findings using two independent platforms: clonal 252	

bisulfite sequencing and the Illumina 450K Human methylation array. Using the latter, we 253	

were able to show that variable ASM sites are located in an extended context of intermediate 254	

DNA methylation, supporting a regional regulatory role of DNA methylation in these 255	

domains, which is potentially driving intermediate expression levels in a quantitative manner 256	

across gene regulation clusters.12 In addition, we observed a significant enrichment of ASM 257	

in regions characterized by DHS peaks across several tissues. This enrichment of ASM in 258	

the vicinity of markers of open chromatin supports the involvement of ASM in transcriptional 259	

activity. 260	
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To conclude, we explored inter- and intra-individual variation in ASM across several regions 261	

of the human brain and whole blood from multiple individuals. Consistent with previous 262	

studies, we find relatively widespread ASM, observing allelically-skewed DNA methylation 263	

flanking known imprinted regions, and show that ASM sites are often located in an extended 264	

genomic context of intermediate DNA methylation. Interestingly, we detect cases of 265	

genotype-driven ASM, which are also tissue-specific. These findings contribute to our 266	

understanding about the nature of differential DNA methylation across tissues and have 267	

important implications for genetic studies of complex disease. As a resource to the 268	

community, ASM patterns across each of the tissues studied are available in a searchable 269	

online database: http://epigenetics.essex.ac.uk/ASMBrainBlood. 270	

 271	

MATERIALS AND METHODS 272	

Genome-wide analysis of allelically-skewed DNA methylation  273	

Post-mortem brain and pre-mortem whole blood samples from two female and one male 274	

donors were provided by the MRC London Neurodegenerative Disease Brain Bank 275	

(http://www.kcl.ac.uk/ioppn/depts/cn/research/MRC-London-Neurodegenerative-Diseases-276	

Brain-Bank/MRC-London-Neurodegenerative-Diseases-Brain-Bank.aspx). Subjects were 277	

approached in life for written consent for brain banking, and all tissue donations were 278	

collected and stored following legal and ethical guidelines (NHS reference number 279	

08/MRE09/38; the HTA license number for the LBBND brain bank is 12293). All samples 280	

were free from neuropathological and neuropsychiatric disease. A detailed list of brain 281	

regions obtained for each individual is provided in Supplementary Table 18. Genomic DNA 282	

was isolated from all tissue samples using a standard phenol-chloroform protocol and 283	

assessed for purity and degradation prior to analysis (see Davies et al.22 for additional 284	

information about the samples used in this study).  The MSNP method, described 285	

previously,6, 7 was used to quantitatively assess allelic-skewing of DNA methylation across 286	
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the genome. Briefly, Affymetrix Genome-wide Human SNP 6.0 Arrays were used to 287	

genotype a) DNA from each tissue sample digested with a cocktail of MSREs (HpaII;5'-C^C 288	

G G-3', HhaI; 5'-G C G^C-3', and AciI; 5'-C^C G C-3') (D arrays), b) unmethylated whole-289	

genome-amplified DNA for each individual digested with the same cocktail of MSREs to 290	

control for possible confounding effects of DNA sequence polymorphisms located at MSRE 291	

cut-sites (U arrays), and c) genomic DNA from each of the three individuals to identify 292	

heterozygous (informative) SNPs (G arrays). Unmethylated DNA was produced by whole-293	

genome amplifying 100ng cerebellum DNA using the Qiagen RepliG kit (Qiagen, Crawley, 294	

UK) using the manufacturer's protocol. In total 28 genotyping arrays were processed: 22 D 295	

arrays (DNA from between six and seven brain regions plus whole blood, for each 296	

individual), three U arrays (one for each individual), and three G arrays (one for each 297	

individual). Additional methodological details are available in Schalkwyk et al.7 298	

 299	

Selection of informative SNPs and quantification of ASM 300	

To be informative in the ASM assay, SNPs must be heterozygous, and the amplicon must 301	

contain an MSRE cut site.6, 7 To guard against poorly performing SNP probes we also 302	

removed consistently low signal intensity SNPs across the 22 G arrays, and those yielding a 303	

highly variable U/G signal ratio (SD > 0.077) across all samples. Finally, we removed SNPs 304	

that did not give high confidence heterozygous calls in at least one of the three individuals. A 305	

total of 220,449 SNPs passed our stringent filtering criteria and were classified as 306	

informative and heterozygous in at least one individual. The number of informative SNPs in 307	

each of the individual samples profiled by the MSNP method is shown in Supplementary 308	

Table 19. Quantitative measures of ASM were derived by comparing signal intensities 309	

between the D (MSRE digested) and G (genomic DNA) arrays using the SNPMaP package 310	

(v1.02) in R that was developed for the estimation of allele frequencies in DNA pools 311	

genotyped on SNP arrays.46  Briefly, relative allele score (RAS) values were generated for all 312	



	 14	

SNPs on the array, which are defined as A/(A + B), where A and B are the intensities of the 313	

probes for the two alleles of a given SNP.  For a given SNP in a heterozygous individual, 314	

ASM (or allelic-skewing of DNA methylation) is detected as a difference in RAS between the 315	

G and D arrays. We call this difference in RAS “ASM score” and define probes showing an 316	

absolute ASM score ≥ 0.10 as “allelically-skewed”. A UCSC custom annotation track 317	

showing the location of all 220,449 loci and the degree of allelic-skewing in DNA methylation 318	

across each tissue and individual is available for download from our website 319	

(http://epigenetics.essex.ac.uk/ASMBrainBlood). Enrichment analyses were performed using 320	

a Kruskal-Wallis rank-sum test for ASM rank differences between the annotated genic 321	

regions. This non-parametric method tests whether multiple samples were drawn from the 322	

same distribution and is the multivariate extension of the better-known Wilcoxon rank-sum 323	

test. This test allowed us to avoid selecting a specific threshold for ASM scores and does not 324	

assume a normal distribution of residuals. Of the 220,449 informative probes, 219,921 could 325	

be annotated to specific defined genic regions. Annotations were based on the Homo 326	

sapiens hg19 build from UCSC using the AnnotationHub Bioconductor package47 classifying 327	

probes as residing in introns (n=100,254), 5’UTRs (n=347), 3’UTRs (n=2,341), coding 328	

regions (n=2,569), intergenic regions (n=110,186) and promoters (n=4,224). A Nemenyi test 329	

for pairwise multiple comparisons of mean rank sums as implemented in the PMCMR R 330	

package48 was used for post-hoc comparisons. ENCODE tracks for DHS peaks in frontal 331	

cortex, frontal cerebrum, cerebellum, CD14+ monocytes, naïve B cells, H1 human 332	

embryonic stem cells (H1-hesc), heart and fibroblasts were obtained from the UCSC 333	

genome browser 334	

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeOpenChromDnas335	

e/). For the DHS enrichment analyses we tested whether the rank-sums for ASM scores 336	

differed significantly in informative probes defined by presence or absence of DHS peaks 337	

using a Wilcoxon rank-sum test. Informative probes were ranked according to ASM scores 338	

with higher absolute ASM scores corresponding to lower ranks. 339	
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 340	

Clonal bisulfite sequencing 341	

Two regions were subsequently selected for clonal bisulfite sequencing analysis to further 342	

verify our findings and determine the precise allele-specific patterns of DNA methylation. 343	

Following sodium bisulfite treatment and bisulfite-PCR amplification, amplicons were cloned 344	

using the TOPO TA cloning method (Invitrogen; Paisley, UK) and sequenced with BigDye 345	

v1.1 sequencing chemistry (Applied Biosystems) (Supplementary Table 20). Sequencing 346	

traces were visualized, quality controlled, and aligned using BiQ Analyzer.49 All data were 347	

tested for complete sodium bisulfite conversion, with an overall conversion rate > 99.9% 348	

estimated by BiQ Analyzer. 349	

 350	

Validation of ASM on the llumina 450K HumanMethylation microarray 351	

Further analysis of ASM sites was undertaken on a larger collection of post-mortem brain 352	

samples (n = 34), comprising BA9, BA21, BA28/34, and cerebellum, which were also free of 353	

any neuropathology and neuropsychiatric disease. Additionally we analysed matched pre-354	

mortem whole blood samples, which were available for a subset (n = 8), as well as 5 355	

unmatched blood samples (see Supplementary Table 18). The three individuals profiled by 356	

MSNP were included in this analysis. 500ng of DNA from each sample was treated with 357	

sodium bisulfite in duplicate, using the EZ-96 DNA methylation kit (Zymo Research, CA, 358	

USA).  DNA methylation was quantified using the Illumina Infinium HumanMethylation450 359	

BeadChip (Illumina Inc, CA, USA) run on an Illumina HiScan System (Illumina, CA, USA) 360	

using the manufacturers’ standard protocol, with pre-processing and stringent quality control 361	

performed as previously described.50 We used the GenomicRanges package51 to extract 362	

data for all CpG sites within 1kb of candidate ASM SNPs and examined patterns of DNA 363	

methylation across the examined tissues. Intermediate DNA methylation was defined as an 364	

average methylation value between 0.4 and 0.6 across all individuals. To test for statistical 365	
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significance of enrichment in intermediately methylated probes we used a hypergeometric 366	

distribution based on the number of probes tested and the background of intermediately 367	

methylated probes across the whole array. Annotation of genes in the methylation plots 368	

(Figure 5 and Figure 7B) was obtained from the UCSC Genome Browser hg19 assembly. 369	

Imprinting control region (ICR) annotation was obtained from the web resource on human 370	

DMRs provided by the Department of Medical and Molecular Genetics, Kings College 371	

London (https://atlas.genetics.kcl.ac.uk) and lifted over from hg18 to hg19.   372	
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FIGURE LEGENDS 517	

 Figure 1. Allelic-skewing is less prevalent and less variable across cortical regions 518	

compared to cerebellum and whole blood. (A) The average proportion of informative 519	

amplicons showing an ASM score ≥ 0.10 for the six cortical regions profiled as well as 520	

averaged across the cortical areas (Ctx) is consistently lower (ASM score range = 0.34-521	

0.61%) than in cerebellum (Cer) (ASM prevalence = 1.14%) or blood (ASM prevalence = 522	

0.84%). Standard errors are shown for tissues for which samples were available from all 523	

three individuals. (B) – (E) Correlations of ASM scores are shown with each point 524	

representing one probe in one individual. Probes classified as allelically-skewed at an ASM 525	

score ≥ 0.10 in only one of the two compared tissues are highlighted in red. A higher degree 526	

of between-tissue variability is observed between cerebellum, cortex and whole blood than 527	

between different cortical regions (shown as an example is BA8 vs. BA10). This difference 528	

becomes even more pronounced when restricting the set of probes to those that show 529	

allelic-skewing at an ASM score ≥ 0.10 in at least one of the two compared tissues (see 530	

subset correlation r’). 531	

 532	

Figure 2. Multiple loci are characterized by consistent allelic-skewing of DNA 533	

methylation across all tissues. Heatmaps display allele signal intensities for genomic DNA 534	

(G), MSRE-digested DNA (D) and fully unmethylated, MSRE-digested DNA (U) in all tissues. 535	

A and B denote the two alleles of the SNP and brightness represents the quantile 536	

normalized signal intensity, with the scale displayed below the heatmap. Shown are the two 537	

top-ranked probes characterized by consistent ASM across tissues. These two probes were 538	

informative in (A) individual 2 for rs10234308 and (B) individual 3 for rs12493005. 539	

 540	

Figure 3. A number of loci are characterized by allelic-skewing of DNA methylation in 541	

only one tissue with minimal ASM present in any of the other tissues examined. 542	
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Heatmaps display allele signal intensities for genomic DNA (G), MSRE-digested DNA (D) 543	

and fully unmethylated, MSRE-digested DNA (U) in all tissues. A and B denote the two 544	

alleles of the SNP and brightness represents the quantile normalized signal intensity, with 545	

the scale displayed below the heatmap. Two of the top-ranked cerebellum-specific ASM 546	

signals are (A) rs959246 (informative for individual 3) and (B) rs2252267 (informative for 547	

individual 2). The tissue-specific patterns of DNA methylation in these two loci were 548	

validated by clonal bisulfite sequencing, confirming the findings from the MSNP assay (C,D). 549	

Each row represents a single DNA molecule, with black dots depicting methylated cytosines 550	

and white dots depicting unmethylated cytosines. The percentage of methylated cytosines 551	

for each sample is displayed below the plots. The amplicon spanning the DMR associated 552	

with rs959246 in (C) did not encompass a SNP enabling us to distinguish between the two 553	

alleles, however the methylation pattern shows evidence for tissue-specific intermediate 554	

methylation (IM) in the cerebellum. G and A in (D) denote the two alleles determined by SNP 555	

variation within the amplicon in heterozygous individual 2. Cerebellum-specific 556	

hypomethylation of the A allele is observed surrounding rs2252267, with individual 3 557	

(homozygous for the G allele) being highly methylated in all three tissues. 558	

 559	

 560	

Figure 4. Cases of allelic-flipping of DNA methylation between individuals are found 561	

both in known imprinted gene clusters as well as regions not previously confirmed as 562	

being imprinted. The heatmaps show allele signal intensities for genomic DNA (G), MSRE-563	

digested DNA (D) and fully unmethylated, MSRE-digested DNA (U) in all tissues. A and B 564	

denote the two alleles of the SNP and brightness represents the quantile normalized signal 565	

intensity, with the scale displayed below the heatmap. (A)-(C) Three probes in the vicinity of 566	

the known imprinted cluster on chromosome 15q11.2 show variable ASM and allelic-flipping 567	

in cerebellum ((A) rs940596, (B) rs11633486, (C) rs11854691). (D) Allelic-flipping of DNA 568	
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methylation across all tissues is observed in the vicinity of WRB (rs2244352), which has not 569	

been reported as imprinted previously. 570	

 571	

Figure 5. Regions around variable ASM sites are enriched for genomic domains 572	

characterized by intermediate DNA methylation. 1kb flanking regions of variable ASM 573	

sites show a significant enrichment in intermediately methylated probes on the Illumina 450K 574	

Human Methylation Array (P range = 6.82 × 10-11 – 0.005). The scatter plots (A)-(D) show 575	

the location of genes and imprinting control regions (ICR) if overlapping the plotting window, 576	

as well as the location of the SNP from the MSNP assay (grey vertical line). These 577	

intermediate DNA methylation patterns span several known imprinted regions, for example 578	

(A) a flanking region of rs220030 in the SNRPN imprinted DMR, and (B) a region around 579	

rs2735971 in the imprinted gene H19. (C) Other sites showing allelic-flipping and 580	

intermediately methylated flanking regions lie in areas not previously known to be imprinted, 581	

for example rs2244352, which lies in an intron of WRB. (D) A polymorphic ASM pattern is 582	

observed in a flanking region around rs2346019, a downstream gene variant of VTRNA2-1, 583	

in which the majority of samples display intermediate DNA methylation in cortex (BA9) and 584	

whole blood. Of note, four samples show consistent hypomethylation across this region. 585	

 586	

Figure 6. Regions around variable ASM are enriched in intermediate DNA methylation. 587	

The distributions of DNA methylation at the 65 Illumina 450K Human Methylation Array 588	

probes within 1kb of the top 100 variable ASM sites (Supplementary Table 15) show an 589	

enrichment in intermediately methylated probes compared to DNA methylation levels across 590	

the whole array (shown in grey) in (a) whole blood, (b) cerebellum and (c) cortex (BA9). 591	

 592	
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Figure 7. Genotype-driven ASM can be tissue-specific. (A) The tissue-specific ASM site 593	

rs1009014, located in an intron of SYNJ2, shows allelic-skewing of DNA methylation in 594	

cerebellum (ASM score = 0.16) but not in cortex (ASM score =0.04) or whole blood (ASM 595	

score = 0.03). (B) DNA methylation levels for Illumina 450K Human Methylation Array 596	

probes in cerebellum across a flanking region of this locus exhibit a genotype-driven tissue-597	

specific DNA methylation pattern. The scatter plot shows the location of SYNJ2 (transcript 598	

variant 1), as well as the location of the informative SNP from the MSNP assay (grey vertical 599	

line).   600	
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TABLES  601	

Table 1. Top 15 ASM sites in whole blood, ASM score averaged across individuals 

Rank SNP ID Location Associated gene(s)  
Schalkwyk 

et al. 
(2010) 

Blood 
ASM score 

Cerebellum 
ASM score 

BA9 
ASM 
score 

1 SNP_A-2180729  
(rs10276966) 7p15.2 HIBADH, EVX1b 0.29 0.25 0.01 0.03 

2 SNP_A-8438077  
(rs585451) 15q21.2 ATP8B4, DTWD1 NA 0.25 0.01 0.03 

3 SNP_A-1841543  
(rs10234308) 7p15.3 MGC87042 0.34 0.23 0.25 0.23 

4 SNP_A-1946136  
(rs927000) 20q13.12 STK4 NA 0.23 0.04 0.01 

5 SNP_A-8450837  
(rs4404067) 16q12.2 SLC6A2, LPCAT2 0.28 0.22 0.05 0.04 

6 SNP_A-4279002  
(rs335554) 1q41 CENPF, KCNK2 NA 0.22 0.08 0.09 

7 SNP_A-8450539  
(rs10916799) 1p36.12 CAMK2N1, 

LOC339505 0.18 0.22 0.11 0.15 

8 SNP_A-8633222  
(rs13165930) 5q33.3 CCNJL NA 0.22 0.02 0.12 

9 SNP_A-8472169  
(rs11193683) 10q23.1 NRG3 0.01 0.22 0.09 0.07 

10 SNP_A-2071005  
(rs4687210) 3q28 UTS2D NA 0.22 0.16 0.17 

11 SNP_A-2185394  
(rs852454) 7p22.1 RNF216 0.06 0.22 0.11 0.11 

12 SNP_A-8702215  
(rs12978286) 19p13.11 FCHO1, MAP1S 0.19 0.22 0.00 0.07 

13 SNP_A-1807006  
(rs10481354) 8p23.3 CLN8, DLGAP2a 0.22 0.22 0.00 0.05 

14 SNP_A-8326632  
(rs1542180) 2q31.1 HOXD3, HOXD4 NA 0.21 0.24 0.19 

15 SNP_A-2008150  
(rs869108) 11p15.1 OTOG, MYOD1, 

USH1C 0.22 0.21 0.16 0.07 
a Known imprinted gene  
b Suspected imprinted gene 
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Table 2. Top 15 ASM sites in cerebellum, ASM score averaged across individuals 

Rank SNP ID Location Associated 
gene(s) 

Cerebellum 
ASM score 

Blood 
ASM score 

BA9 ASM 
score 

1 SNP_A-4255628  
(rs959246) 18q12.3 SLC14A2 , 

SETBP1 0.30 0.03 0.05 

2 SNP_A-8696273  
(rs1003533) 5q31.1 C5orf56 0.29 0.16 0.07 

3 SNP_A-1820553  
(rs7959070) 12q22 CLLU1OS, 

BTG1 0.26 0.03 0.05 

4 SNP_A-1841543  
(rs10234308) 7p15.3 MGC87042 0.25 0.23 0.23 

5 SNP_A-2002282  
(rs12246813) 10q22.1 COL13A1, 

C10orf35 0.24 0.10 0.10 

6 SNP_A-8625237  
(rs12493005) 3q26.32 TBL1XR1 0.24 0.20 0.24 

7 SNP_A-8326632  
(rs1542180) 2q31.1 HOXD3, 

HOXD4 0.24 0.21 0.19 

8 SNP_A-2160121  
(rs7205794) 16q23.3 CDH13, 

MPHOSPH6 0.24 0.01 0.01 

9 SNP_A-2052542  
(rs3098382) 5q13.2 MAP1B 0.24 0.04 0.19 

10 SNP_A-2040586  
(rs17097827) 14q32.2 BCL11B, 

C14orf177 0.23 0.10 0.18 

11 SNP_A-8420373  
(rs10186346) 2p22.1 TMEM178 0.23 0.01 0.07 

12 SNP_A-1788157  
(rs7158663) 14q32.2 MEG3a 

0.23 0.01 0.03 

13 SNP_A-4235630  
(rs9641549) 7q31.2 TFEC, 

MDFIC 0.23 0.05 0.13 

14 SNP_A-4264458  
(rs1358229) 4q27 TRPC3, 

KIAA1109 0.23 0.01 0.00 

15 SNP_A-1931666  
(rs6707698) 2q34 IKZF2, 

ERBB4 0.22 0.03 0.02 
a Known imprinted gene 
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Table 3. Top 15 ASM sites in cortex (BA9), ASM score averaged across individuals 

Rank SNP ID Location Associated 
gene(s) 

BA9 ASM 
score 

Cerebellum 
ASM score 

Blood 
ASM score 

1 SNP_A-8625237  
(rs12493005) 3q26.32 TBL1XR1 0.24 0.24 0.20 

2 SNP_A-8463467 
(rs17164474) 7q35 OR2F2, 

OR2F1 0.23 0.17 0.17 

3 SNP_A-1841543  
(rs10234308) 7p15.3 MGC87042 0.23 0.25 0.23 

4 SNP_A-8652129 
(rs2479084) 1p36.21 FHAD1 0.22 0.13 0.18 

5 SNP_A-8301602  
(rs398225) 3p25.3 SRGAP3, 

RAD18 0.21 0.18 0.21 

6 SNP_A-2107106  
(rs987377) 6q21 AIM1a, ATG5 0.20 0.16 0.15 

7 SNP_A-2052542  
(rs3098382) 5q13.2 MAP1B 0.19 0.24 0.04 

8 SNP_A-2307481  
(rs716591) 15q26.2 LOC400456, 

MCTP2 0.19 0.21 0.17 

9 SNP_A-8643280 
(rs3121125) 1q21.1 HFE2, 

NBPF10 0.19 0.17 0.15 

10 SNP_A-8326632 
(rs1542180) 2q31.1 HOXD3, 

HOXD4 0.19 0.24 0.21 

11 SNP_A-1998023  
(rs9722212) 9q34.11 TOR1B, 

PTGES 0.19 0.15 0.19 

12 SNP_A-8640607 
(rs12632177) 3q27.1 MCF2L2 0.18 0.11 0.07 

13 SNP_A-4291638 
(rs12670584) 7p13 YKT6 0.18 0.19 0.01 

14 SNP_A-1892234 
(rs17303015) 5p12 MGC42105 0.18 0.11 0.03 

15 SNP_A-8653671 
(rs4871852) 8p21.3 TNFRSF10D 0.18 0.09 0.11 

a Known imprinted gene 
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Table 4. Top 15 loci characterized by consistent ASM across cerebellum, whole blood and cortex (BA9) 

Rank SNP ID Location Associated 
gene (s) 

Cerebellum 
ASM score 

Blood ASM 
score 

BA9 ASM 
score 

Tissue 
average 

1 
SNP_A-1841543  
(rs10234308) 7p15.3 MGC87042 0.25 0.23 0.23 0.24 

2 
SNP_A-8625237  
(rs12493005) 3q26.32 TBL1XR1 0.24 0.20 0.24 0.22 

3 
SNP_A-8326632  
(rs1542180) 2q31.1 

HOXD3, 
HOXD4 0.24 0.21 0.19 0.21 

4 
SNP_A-8301602  
(rs398225) 3p25.3 

SRGAP3, 
RAD18 0.18 0.21 0.21 0.20 

5 
SNP_A-8463467 
(rs17164474) 7q35 

OR2F2, 
OR2F1 0.17 0.17 0.23 0.19 

6 
SNP_A-2307481  
(rs716591) 15q26.2 

MCTP2, 
LOC400456 0.21 0.17 0.19 0.19 

7 
SNP_A-1894705  
(rs986324) Xp22.11 

DDX53, 
ZNF645 0.18 0.20 0.17 0.18 

8 
SNP_A-2071005  
(rs4687210) 3q28 UTS2D 0.16 0.22 0.17 0.18 

9 
SNP_A-1998023  
(rs9722212) 9q34.11 

PTGES, 
TOR1B 0.15 0.19 0.19 0.18 

10 
SNP_A-8652129 
(rs2479084) 1p36.21 FHAD1 0.13 0.18 0.22 0.18 

11 
SNP_A-8696273  
(rs1003533) 5q31.1 C5orf56 0.29 0.16 0.07 0.17 

12 
SNP_A-1862496  
(rs17578280) 1p31.1 

LRRIQ3, 
NEGR1 0.18 0.17 0.17 0.17 

13 
SNP_A-2040586  
(rs17097827) 14q32.2 

C14orf177, 
BCL11B 0.23 0.10 0.18 0.17 

14 
SNP_A-1932077  
(rs220030) 15q11.2 SNRPNa 0.18 0.18 0.15 0.17 

15 
SNP_A-2107106  
(rs987377) 6q21 

AIM1a, 
ATG5 0.16 0.15 0.20 0.17 

a Known imprinted gene 
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Table 5. Top 15 tissue-specific ASM sites, defined by highly variable ASM scores across cerebellum, 
cortex (BA9) and whole blood 

Rank SNP ID Location Associated 
gene (s) 

Cerebellum 
ASM score 

Blood ASM 
score 

BA9 ASM 
score 

SD 

1 SNP_A-4255628  
(rs959246) 

18q12.3 SLC14A2, 
SETBP1 

-0.30 -0.03 -0.05 0.15 

2 SNP_A-1946136  
(rs927000) 

20q13.12 STK4 -0.04 0.23 0.01 0.15 

3 SNP_A-8438077  
(rs585451) 

15q21.2 ATP8B4, 
DTWD1  

0.01 -0.25 0.00 0.15 

4 SNP_A-8397727  
(rs1123514) 

5q13.3 ENC1, 
RGNEF 

-0.16 0.11 -0.01 0.13 

5 SNP_A-2273834  
(rs2252267) 

14q23.1 PRKCH  0.19 -0.03 -0.05 0.13 

6 SNP_A-4264458  
(rs1358229) 

4q27 TRPC3, 
KIAA1109 

-0.23 0.01 0.00 0.13 

7 SNP_A-8643616  
(rs11700515) 

21q22.3 COL6A1, 
PCBP3 

0.20 -0.01 -0.03 0.13 

8 SNP_A-2180729  
(rs10276966) 

7p15.2 HIBADH, 
EVX1b 

-0.01 -0.25 -0.03 0.13 

9 SNP_A-4210659  
(rs10517764) 

4q32.2 NAF1, 
FSTL5 

0.07 -0.14 -0.15 0.13 

10 SNP_A-1997061  
(rs10512149) 

9q21.33 SLC28A3, 
NTRK2  

-0.19 0.02 0.05 0.13 

11 SNP_A-2160121  
(rs7205794) 

16q23.3 CDH13, 
MPHOSPH6 

-0.24 -0.01 -0.01 0.13 

12 SNP_A-8667432 
(rs519782) 

1p36.11 C1orf201 0.19 -0.04 -0.01 0.13 

13 SNP_A-1787058  
(rs10951911) 

7p12.3 TNS3, 
C7orf65 

-0.20 -0.01 0.04 0.13 

14 SNP_A-1931666  
(rs6707698) 

2q34 IKZF2, 
ERBB4 

-0.22 -0.03 0.02 0.13 

15 SNP_A-8502638  
(rs10989120) 

9q31.1 TMEFF1, 
C9orf30 

0.04 -0.20 -0.15 0.13 

b Suspected imprinted gene   
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Table 6. Top 15 variable ASM sites, defined by average range of ASM scores between individuals 
across cerebellum, whole blood and cortex (BA9) 

Rank SNP ID Location Associated 
gene(s) 

Cerebellum 
range 

Blood 
range 

BA9 
range 

Average 
range 

1 SNP_A-8579417  
(rs1538116) 1q24.1 MGST3, 

LOC400794 0.24 0.35 0.32 0.30 

2 SNP_A-2019421  
(rs2244352) 21q22.2 WRB 0.36 0.24 0.29 0.30 

3 SNP_A-4219174  
(rs2346019) 5q31.1 TGFBI, VTRNA2b 0.23 0.23 0.30 0.25 

4 SNP_A-4208914  
(rs927651) 20q13.2 CYP24A1 0.25 0.23 0.17 0.22 

5 SNP_A-8717059  
(rs12713666) 2p13.3 ARHGAP25 0.26 0.15 0.21 0.21 

6 SNP_A-8692937  
(rs4605656) 4q24 CXXC4, TACR3 0.16 0.18 0.25 0.20 

7 SNP_A-8634251  
(rs1209228) 14q24.2 RGS6, SIPA1L1 0.19 0.15 0.24 0.19 

8 SNP_A-8329713  
(rs16825906) 3q13.31 LSAMP, IGSF11, 

LOC285194 0.21 0.13 0.22 0.19 

9 SNP_A-8713358  
(rs16890883) 4p15.33 CPEB2, 

LOC152742 0.24 0.14 0.17 0.19 

10 SNP_A-8638348  
(rs4525744) 2p21 SRBD1 0.20 0.18 0.17 0.18 

11 SNP_A-1855770  
(rs3764124) 13q34 CUL4A 0.16 0.23 0.15 0.18 

12 SNP_A-4259064 
(rs7766133) 6p22.3 MBOAT1 0.17 0.17 0.20 0.18 

13 SNP_A-2118217  
(rs1695824) 1p36.33 VWA1, TMEM88B 0.25 0.16 0.13 0.18 

14 SNP_A-1880775 
(rs6116750) 20p12.3 PROKR2 0.23 0.13 0.18 0.18 

15 SNP_A-8424056 
(rs3922835) 18q12.1 CDH2b, CHST9 0.18 0.04 0.32 0.18 

b Suspected imprinted gene 
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Table 7. Enrichment in intermediate methylationc 
(IM) near ASM regions 

 
IM rate  O/E P 

Bloodd 5.88% 0.98 0.576 
Cerebellumd 11.49% 1.75 0.059 
BA9d 13.29% 1.45 0.065 
Cross-tissue 8.11% 0.87 0.741 
Tissue-specific 8.00% 0.85 0.701 
Variable 38.46% 4.10 9.56 × 10 -11 
Variable (BA9)d 37.50% 4.09 8.86 × 10 -9 
Variable (cerebellum)d 16.95% 2.58 0.005 
Variable (blood)d 34.48% 5.77 6.82 × 10 -11 
c IM is defined as an average methylation between 0.4 
and 0.6, enrichment P values are based on a 
hypergeometric test based on the background 
distribution of IM.  
d We used tissue-specific background distributions for 
ASM types based on single tissues. 
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