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The topic of the side-eff ects of statin treatment 
is important and controversial. In The Lancet, 
Daniel Swerdlow and colleagues1 used an updated 
meta-analysis of trials to investigate whether or 
not statins increased the risk of type 2 diabetes, and 
a genetic app roach to address how statins might 
increase the risk of the disorder. Using data from 
20 randomised controlled trials, they confi rm fi ndings 
from previous reports that statin treatment increased 
the risk of incident type 2 diabetes, with an odds 
ratio (OR) of 1·12 (95% CI 1·06–1·18) versus controls. 
In contrast to previous eff orts, they then studied 
common genetic variants near the gene encoding the 
HMG-coenzyme A (HMGCoA) reductase protein—the 
enzyme inhibited by statins to lower LDL cholesterol. 

Genome-wide association studies had previously 
identifi ed these variants as associated with altered 
circulating LDL cholesterol concentrations with robust 
levels of statistical confi dence.2 Using these genetic 
variants and a combination of their own and published 
data, the investigators provide evidence that reduced 
HMGCoA activity causes a slight increased risk of type 2 
diabetes (rs17238484-G allele OR per allele 1·02, 95% CI 
1·00–1·05; rs12916 allele 1·06, 1·03–1·09), and therefore 
surmise that an increased risk of type 2 diabetes is at 
least partly conferred by an on-target eff ect of statins.

These results are important because they suggest 
that any attempts to make statins more specifi c and 
reduce off -target eff ects will not reduce the risk of the 
diabetogenic side-eff ect. The investigators also provide 
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a new potential mechanism of statins’ diabetogenic 
action—the alleles associated with lower circulating LDL 
cholesterol and increased type 2 diabetes risk were also 
associated with increased body-mass index (0·11 kg/m² 
higher with the rs17238484-G allele than in controls, 
95% CI 0·07–0·14; p=1·77 × 10–⁷). Consistent with the 
genetic association, the investigators also described a 
subtle increase in weight caused by statins in the trial 
data (0·30 kg higher, 0·18–0·43; p=3·15 × 10–⁶).

Swerdlow and colleagues1 provide a new angle to the 
debate about the adverse side-eff ects of statins. They 
used a genetic approach—mendelian randomisation—
that has proven a valuable method to help understand 
disease mechanisms.3,4 Mendelian randomisation is 
based on a fundamental principle of biology—that 
inherited DNA sequence variation is randomised during 
meiosis independently of the environment and disease 
processes. Mendelian randomisation approaches have 
been useful in understanding causality of potentially 
modifi able risk factors for cardiovascular disease. For 
example, several studies have used common genetic 
variants near the gene encoding C-reactive protein 
(CRP) to show that raised high-sensitivity CRP is 
unlikely to aff ect the risk of heart disease causally.5 
More recently, studies of genetic variants altering 
circulating HDL cholesterol concentrations have 
provided evidence that higher total HDL cholesterol 
concentrations are unlikely to reduce the risk of 
coronary artery disease, independently of any eff ects 
on LDL cholesterol or triglycerides.6,7

Of more direct relevance to the debate on statins, 
common genetic variants that alter LDL cholesterol 
concentrations are also associated with coronary artery 
disease.7,8 The eff ect of common genetic variants is 
often subtle, but in some instances it provides great 
potential for improving mechanistic understanding. The 
genetic variants in the HMGCR gene have small eff ects 
on circulating LDL cholesterol (0·06 mmol/L) compared 
with other variants, which alter LDL concentrations by 
up to 0·36 mmol/L. Yet the variants in HMGCR provide 
proof of principle that genetics can be used to identify 
therapeutic targets.

Swerdlow and colleagues1 used their own set of 
26 236 cases and 164 021 controls as well as those 
from published studies. The results provide an 
important addition to a cascade of evidence that 
suggests a slight on-target type 2 diabetes side-eff ect 

of statins (fi gure). This cascade includes individual 
randomised controlled trials that provided some 
evidence of causality, although the diff erent statins 
and defi nitions of diabetes used made results hard 
to interpret.9,10 Observational associations between 
increased statin use and higher incidence of type 2 
diabetes were consistent with the early trial data, 
but were probably heavily confounded by obesity 
and other factors.10 Meta-analyses of randomised 
controlled trials followed12 with, for example, an 
analysis of ten trials11 showing an increased risk of 
type 2 diabetes. An analysis of intensive-dose versus 
moderate-dose statin treat ment showed a dose–
response eff ect, with individuals randomly assigned 
to intensive-dose treatment having a relative risk 
of 1·12 (95% CI 1·04–1·22) for diabetes compared 
with individuals assigned to moderate-dose 
treatment.13 However, none of these studies could 
establish whether or not the diabetogenic eff ect 
of statins operated through the same pathway as 
the lipid-lowering HMGCoA-reductase eff ect or an 
off -target eff ect. Swerdlow and colleagues1 answer 
this question—because the genetic variant lies near 
HMGCR, the diabetogenic eff ect of statins probably 
operates through the same mechanism as the lipid-
lowering eff ect. The fi ndings imply that new types of 
statin that more specifi cally target HMGCoA-reductase 
would not reduce the adverse side-eff ect of increased 
risk of type 2 diabetes.

Figure: Sequential evidence supporting a subtle diabetogenic eff ect of statin treatment

1. Individual randomised controlled trials (eg, JUPITER9).
 Evidence of a causal effect of statins on type 2 diabetes risk. Caveat: results differed—some were positive, some 
 negative, and some null.10

2. Observational epidemiology. 
 Incidence of type 2 diabetes increased as statin use increased. Caveat: there were several sources of confounding 

and bias.

3. Meta-analyses of randomised controlled trials (eg, Sattar and colleagues11 and Rajpathak and colleagues12). 
 Evidence of a causal effect of statins on risk of type 2 diabetes. Caveat: diabetes was not the primary endpoint 
 and different statins and definitions of diabetes were used.11

4. Meta-analysis of randomised controlled trials—intensive versus normal statin treatment. 
 Dose–response effect. Intensive statin treatment caused greater risk of diabetes than normal-dose treatment. 
 Caveat: is the diabetogenic effect on-target or off-target?13

5. Mendelian randomisation. 
 Common variants in the HMGCR gene were associated with an LDL-lowering effect, increased body-mass index, 
 insulin resistance, and type 2 diabetes. Suggests an on-target effect.1
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The UK has the second highest rate of tuberculosis 
among western European countries.1 Tuberculosis 
clinics in London manage more cases a year than 
those in all other western European capital cities 
put together. Rates of tuberculosis are now nearly 
fi ve times higher in the UK than in the USA.2 Lack of 
progress with tuberculosis control in the UK does not 
just represent a risk to domestic public health,3 but 
also an international embarrassment with examples 
of cases acquired in the UK leading to infections 
in other low-incidence countries. In recognition of 
this unacceptable trend, Public Health England has 

led a coalition of stakeholders to develop a forum, 
the national Tuberculosis Oversight Group, where 
innovation and good practice are shared between 
local, regional, and national health leaders. These 
discussions have led to local changes, with several areas 
establishing tuberculosis control boards and systematic 
cohort review, and the identifi cation of tuberculosis as 
a major priority for Public Health England. However, 
the implementation of improved tuberculosis control 
measures has not been universal, and there is still 
unacceptable variation in the quality of clinical and 
public health measures across England.

A collaborative strategy to tackle tuberculosis in England  

There are some limitations to the study.1 First, the 
subtle eff ects of the HMGCR variants meant that the 
investigators had to use large numbers of cases and 
controls, and the associations between the variants 
and type 2 diabetes are not statistically beyond 
reproach—more cases and controls would help confi rm 
the fi ndings. Second, we cannot be certain that the 
variants operate directly and solely through the 
HMGCR gene, although there is some evidence that 
these variants alter splicing of HMGCR transcripts.14 
Finally, genetic studies are not completely exempt 
from the confounders and biases of epidemiological 
studies—survival and index event biases can aff ect 
genetic studies, and further work with larger numbers 
of incident cases would provide more reassurance 
that the genetic associations with type 2 diabetes 
are real. However, the associations with body-mass 
index seem to be statistically robust and provide a 
mechanism downstream of the HMGCoA-reductase 
eff ect (increased body-mass index leading to increased 
insulin resistance, and to increased diabetes).

In summary, Swerdlow and colleagues1 have used 
naturally occurring human genetic variation to provide 
another piece of evidence about the side-eff ects of 
statins, but have not cast any doubt on the evidence 
that the benefi ts of statins vastly outweigh their risks.
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