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Studies on The Reprocessability of Poly(Ether Ether Ketone) (PEEK)

A.R. McLauchlin1, O.R. Ghita1, L. Savage1

1College of Engineering, Mathematics and Physical Sciences, University of Exeter, North 

Park Road, Exeter, EX4 4QF

Abstract

Whilst demonstrating desirable mechanical properties, corrosion resistance and the ability to 

retain structural integrity over extended temperatures, PEEK (Poly (Ether Ether Ketone)) 

remains expensive, restricting broader usage. The reuse and recyclability characteristics of 

PEEK are therefore commercially important, where the most prevalent manufacturing 

process for PEEK is injection moulding. This study comments on the reprocessability of 

PEEK specifically applied to the injection moulding process, comparing the effect of 

repeated reuse on mechanical properties. Recycled PEEK retains its tensile properties 

through at least three moulding and regrinding cycles.  XRD and DSC measurements 

confirmed that reused PEEK shows no degradation in crystallinity.  
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Introduction

Poly(ether ether ketone) (PEEK) is an engineering thermoplastic polymer known for its high 

melting temperature, chemical and abrasion resistance, and excellent mechanical 

properties, particularly toughness (Jones et al., 1985). Consequently, PEEK is used 
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extensively in high strength and stiffness applications, such as the advanced composite 

systems reviewed in detail by Nguyen and Ishida (1987).  PEEK is now finding ever greater 

usage in diverse engineering applications including bearings, piston parts, pumps, HPLC 

columns, compressor plate valves, and cable insulation and ultra-high vacuum systems.  It is 

also extensively used in the aerospace and & automotive sectors.   Its chemical and wear 

resistance to hostile environments, along with its ability to withstand thermal sterilisation 

processes, also makes PEEK a suitable material for medical applications such as 

orthopaedic and spinal implants (Kurtz and Devine, 2007).

PEEK is however an expensive polymer, currently more than four times the price of other 

engineering thermoplastics such as PBT, POM and PMMA, so there is a strong economic 

incentive to recycle PEEK and the industrial recycling possibilities are therefore 

commercially significant.

To date, recycling studies have focused on PEEK reinforced with carbon fibre (CF).  For 

example, Buggy et al. (1995) used concentrated sulphuric acid to recover PEEK from APC-2 

composites, although DSC analysis indicated the presence of impurities in the reclaimed 

material.   For industrial purposes, the favoured approach is mechanical reprocessing.  Day 

et al. (1994) extruded a blend of granulated APC-2 CF/PEEK prepreg offcuts with injection 

moulding grade PEEK. Test pieces were produced from the blend by injection moulding and 

were found to have greater tensile strength and Young’s modulus than a commercial 

material containing a similar loading of CF.  It was also observed that the viscosity-average

molecular weight of the recycled PEEK did not decrease greatly after an additional injection 

moulding cycle.  Sarasua and Pouyet (1997) evaluated the effect of several successive 

injection moulding cycles on 10% and 30% short carbon fibre (CF) reinforced PEEK.  

Damage to fibres as well as degradation of the matrix led to a fall in mechanical properties 

and the authors suggested that the degradation of PEEK was due to the presence of carbon 

fibres which may have led to a chemical reaction between PEEK structure and pyrolysis 
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products of CF.  The presence of fillers can therefore hinder understanding of the behaviour 

of the matrix polymer in recycling operations.  

In past studies, the mechanical behaviour of PEEK has been investigated in relation to 

crystallinity, molecular weight and thermal history.  Improvements in Young’s modulus and 

strength together with ductility reductions are generally obtained as crystallinity increases in 

both neat PEEK and its composites.  For example, Chivers and Moore (1994) showed that 

both modulus and strength of PEEK improve with increasing crystallinity, but the effect was 

accompanied by embrittlement, as indicated by decreasing toughness.  Molecular weight 

also had an indirect effect, where maximum crystallinity attainable was found to fall at high 

Mw. Studies on the effect of thermal history on PEEK crystallisation behaviour (and 

therefore resulting mechanical properties), have shown that the quality and quantity of the 

crystalline regions depend on the cooling kinetics and can be altered by the presence of 

inclusions such as fibres (Sarasua et al., 1996),  or by self-nucleation (Jonas and Legras, 

1991). Jonas & Legras (1991) also examined the degradation, in terms of branching,

induced when held in the molten state, and found that the structural defects created by 

branching reduced the crystallinity, whilst the restricted molecular mobility associated with 

increased molecular weight decreased the crystallisation rate.  Bakar et al. (1999) reported a 

2% drop in the crystallinity of pure PEEK for every 10°C rise in melt processing temperature, 

although this effect was absent in composites containing 5% or 10% hydroxyapatite.  

Although Sarasua et al. (1996) observed that pure PEEK maintained its degree of 

crystallinity during ten successive injection moulding cycles, the mechanical properties of 

moulded PEEK samples resulting from the successive moulding cycles were not presented 

in the work, as the main focus of the study was on the short fibre PEEK composites.  

In comparison with the lab scale research studies described above which focused on 

increasing time and temperatures in order to elucidate the degradation mechanisms at work, 

this study aimed to determine at what point PEEK reuse becomes unfeasible in an injection 

moulding process, due to degradation and subsequent deterioration in mechanical 
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performance.   To achieve this aim, the effect of reprocessing unfilled PEEK was 

investigated.  Thus, injection moulded PEEK test pieces were reground and processed a 

further five times by injection moulding to study the effect of successive moulding cycles on 

the mechanical properties.  In addition, first regrind and virgin PEEK were co-processed in 

varying proportions in order to assess the effect of reprocessed material on the properties of 

virgin material.

Materials

The material used for injection moulding was Victrex High Performance PEEKTM 450G. All 

regrind PEEK grades were prepared in-house.  Each regrind batch (1st, 2nd, 3rd, 4th, 5th and 

6th) was produced by processing the material once in a Battenfeld HM 40/130 injection 

moulding machine followed by mechanical grinding in order to produce pellets for further 

reprocessing through injection moulding. The process was repeated six times in order to 

achieve all six regrind batches.  Different percentages of virgin PEEK were then mixed with 

1st regrind PEEK (virgin/1st Regrind) in the following percentages:  100/0; 75/25; 60/40; 

50/50; 40/60; 25/75; 0/100 and then injection moulded into test bars.  

Experimental Procedures

Injection Moulding

The injection moulding parameters used for manufacturing the different percentages of 

virgin/1st regrind PEEK samples and the 1st, 2nd, 3rd, 4th and 5th regrind batches are 

presented in Table 1 and Table 2, respectively. 



Page 5 of 19

Acc
ep

te
d 

M
an

us
cr

ip
t

5

Table 1. Injection moulding parameters used for manufacturing different percentages of 

Virgin/1st regrind parts

Temperatures
Virgin/1st

regrind Die Zone3 Zone2
Zone 

1

Screw 

Speed 

(mm/s)

Injection 

Speed 

(cm/s)

Injection 

pressure 

(bar)

Cooling 

time (s)

100/0 380 365 365 360 60 100 1210 25

75/25 380 365 365 360 60 100 1210 25

60/40 380 365 365 360 60 100 1210 25

50/50 380 365 365 360 60 100 1210 25

40/60 380 365 365 360 60 100 1210 25

25/75 380 365 365 360 60 100 1210 25

0/100 380 365 365 360 60 100 1210 25

Table 2. Injection moulding parameters applied for manufacturing of 1st to 5th regrind parts.

TemperaturesMaterial 

Regrind 

cycle
Die Zone3

Zone

2

Zone 

1

Screw 

Speed 

(mm/s)

Injection 

Speed 

(cm/s)

Injection 

pressure 

(bar)

Coolin

g time 

(s)

Virgin 380 365 365 360 60 100 1210 25

1st 380 365 365 360 60 100 1210 25

2nd 380 365 365 360 60 100 1210 25

3rd 380 365 365 360 60 100 1210 25

4th 380 365 365 360 60 100 1210 25

5th 380 365 365 360 60 100 1210 25
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As can be seen in Table 1 and Table 2, no change in the processing parameters was 

required throughout the moulding work, where all batches could be used to mould good 

quality parts using the recommended parameters for virgin PEEK moulding.

Tensile Testing

The parts moulded were dog bone shape tensile testing specimens (40 x 5.5 x 2.0mm).

Tensile testing was carried out using a LLOYD instruments EZ20 mechanical testing 

machine. Testing speed for all samples was 10mm/min and gauge length 35mm.  8-10 

samples were tested for each batch and the testing was performed at ambient temperature 

(20°C). 

X-Ray Diffraction (XRD)

X-ray diffraction analysis (XRD) was performed on the injection moulded parts directly using 

a Bruker D8 Advance X-Ray Diffractometer with a LynxEye detector, operating at 40kV 

voltage and 40mA current using CuKα radiation (λ=0.1542nm) in the 2θ= 5°-35° range in 

0.03° increments. The specimens had no additional treatment prior to analysis. 

Differential Scanning Calorimetry (DSC)

Thermal analysis measurements were carried out using a Mettler-Toledo DSC 821e under a 

60ml min-1 nitrogen flow. Both sets of samples (regrind cycles and mixtures of virgin/1st

regrind) were heated and cooled between 30°C and 400°C at 10°C min-1. Three repeat 

measurements were carried out on samples cut from the tensile testing specimens. The 

sample was always taken from the middle and core of the dog bone specimens, in order to 

avoid producing any additional variation in data due to differences in skin and core 
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crystalline structure. It is well known that the skin of a moulded sample experiences a more 

rapid cooling rate after injection moulding which reduces the degree of crystallinity, 

compared to the slower cooling core, which often demonstrates a higher degree of 

crystallinity: Shen et al. (2004) reported crystallinity varying by up to 20% between core and 

surface in the case of PA66/clay injection moulded dog-bone samples due to this effect.

The degree of crystallinity was calculated using the sample melting enthalpies and the 

melting enthalpy of 100% crystalline PEEK sample, taken as 130J/g as published in the 

literature (Blundell and Osborn, 1983).

Results and Discussion

Mechanical Properties

Figure 1 shows the tensile strength and elongation at break of mixtures of virgin and 1st

regrind of PEEK.  Tensile strength, as shown in Figure 1a, was independent of the blend 

composition and therefore was not significantly affected by the combination of virgin and 

regrind material.  More variation was seen in the elongation at break (Figure 1b); although 

the higher variation within samples, as shown by the error bars, indicated that there was no 

significant difference between treatments.  It is therefore evident that no significant changes 

in the tensile properties were encountered across the range of samples; from 100% virgin 

PEEK to 100% regrind PEEK.

a b



Page 8 of 19

Acc
ep

te
d 

M
an

us
cr

ip
t

8

Figure 1. (a)Tensile Strength and (b) Elongation at Break of Virgin/1st Regrind % PEEK 

(100/0; 75/25; 60/40; 50/50; 40/60; 25/75; 0/100).

The variation in tensile strength and elongation at break of PEEK over multiple processing 

(moulding/regrinding/re-moulding) operations is presented in Figure 2.  The tensile strengths 

of first and second regrind PEEK specimens (Figure 2a) were not significantly different from 

that of virgin PEEK, whereas the tensile strengths of third, fourth and fifth regrind PEEK 

samples were about 10% lower than virgin PEEK.  PEEK reprocessed over multiple cycles 

showed significant differences in values for elongation at break. The elongation at break 

decreased by 25% after the 3rd cycle and 40% by the 4th cycle, compared to virgin PEEK

(Figure 2b).   This experiment demonstrated that in a standard injection moulding 

manufacturing process, where the material passes through the injection moulding barrel in 

approximately 20 minutes at a temperature below 400°C, first regrind PEEK does not suffer 

any major degradation changes and therefore 100% reuse is possible.  Thus neither of the 

two degradation parameters, cross-linking or chain scission, are significant enough to 

influence the mechanical performance. 

a b

Figure 2. (a) Tensile Strength and (b) Elongation at Break of Regrind PEEK after 1st; 2nd, 

3rd, 4th, 5th processing cycles.

Oxidative degradation of PEEK includes two reactions, chain scission and cross-linking, 

where chain scission leads to shorter molecular chains with higher mobility, which allows 
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rearrangement of the crystalline structure, whereas cross-linking leads to molecular 

branching and netting. Investigation of the crystallisation on a hot stage microscope (Jones 

et al., 1985) by prolonged heating of PEEK above 673K showed that both nucleation and 

growth of spherulites is reduced, which implies reduced crystallinity, in favour of the 

formation of a cross-linked structure.  Similarly Day et al. (1990) showed that PEEK 

processing at longer times and higher temperatures in air, leads to a lower level of re-

crystallisation material and concluded that the oxidative reactions appear to be the precursor 

to cross-linking reactions.  The spectroscopic evidence suggested that the chain cleavage 

occurs adjacent to the carbonyl functional groups and the cross-linking takes place between 

adjacent aryl rings.  Patel et al. (2010) carried out a detailed review of PEEKs decomposition 

mechanisms and products, by inference through analysis of volatile organic products at 

differing temperatures.  It was stated that PEEK has superior thermal degradation 

resistance, with a continuous use temperature of 260°C and a melting point of 343°C, where 

the onset of thermal degradation resulting in mass loss only starts between 575-580°C.

Between 343 -575°C, low mass loss, cross linking and chain scission dominate. This latter 

temperature range encompasses the processing temperature range used in our study, 

therefore we conclude that the embrittlement of the PEEK after the third processing cycle 

can reasonably be explained by the effect of cross-linking reached through reheating of the 

material becoming less dominant and the effects of chain scission becoming more 

significant. Furthermore, the processing temperature was not high enough to bring about 

mass loss resulting from thermal degradation.

Thermal Behaviour and Crystallinity

The effect of incorporation of different percentages of 1st regrind PEEK in virgin PEEK was 

investigated by following the crystallisation exotherm values (see Figure 3a). Similarly, the 

effect of number of reprocessing cycles on the crystallisation exotherm values was also 
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calculated, as is presented in Figure 3b. The enthalpies of crystallisation in both graphs 

show no significant change indicating that the amount of crystalline material remains the 

same independent of the percentages of virgin/1st regrind mixes and number of processing 

cycles. Jonas and Legras (1991) showed that PEEK maintained at 385°C still retained 

numerous crystallisation nuclei; therefore the samples in our experiment may have 

maintained a high population of nucleants. If the degree of crystallisation remains fairly 

constant, it would be expected that tensile properties should also remain stable, as indicated 

in past studies.  Chivers & Moore (1994) showed a linear correlation between tensile yield 

stress and degree of crystallinity in PEEK films, while Sarasua and Pouyet (1997), looking at 

PEEK composites, found similar trends in both neat PEEK and its composites, where 

Young’s modulus and strength improve as degree of crystallinity increases.   This behaviour 

is borne out in the mechanical data. 

a b

Figure 3. Enthalpy of crystallisation (J/g) of PEEK of (a) Virgin/1st Regrind mixes and (b) 

virgin, 1st; 2nd, 3rd, 4th, 5th processing cycles.

Similarly, the crystallisation temperatures measured for both sets of data (in Figure 4a and b) 

show no significant changes.  This is consistent with the observations of Jonas and Legras 

(1991), who concluded that the crystallisation onset temperature was independent of an 

isothermal treatment time in the temperature range 400°C to 420°C.  It is therefore 

reasonable to conclude that a hold time of 20 minutes at 385°C, as used in this experiment,
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would similarly show no effect on crystallisation onset. It has also been shown by Jonas and 

Legras (1991) and Day et al. (1990) that an increase in branching and cross-linking 

mechanisms during degradation led to a reduced molecular mobility and lower crystallisation 

temperatures.  These studies also reported significant decrease in enthalpies and 

temperature of crystallisation when PEEK samples were held at temperatures above the 

melting temperature.  However, Day et al. (1990) observed that there is also an induction 

time before which no decrease in crystallisation enthalpy takes place and it was concluded 

that this does not necessarily mean that no degradation takes place, but that there were 

insufficient defects along the polymer chain to cause a decrease in crystallinity.  Similarly, 

Hay and Kemmish (1987) reported a reduction in crystallinity brought about by cross-linking 

of PEEK only when heated above 400°C. 

a b

Figure 4. Crystallisation temperature (Tc) of PEEK samples (a) Virgin/1st Regrind mixes and 

(b) virgin, 1st; 2nd, 3rd, 4th, 5th processing cycles.

From these observations it can be concluded that simply cycling the PEEK material through 

its melting temperature during the manufacturing process, even repeatedly, is not sufficient 

to produce significant thermal degradation and affect mechanical performance. Rather, it is 

isothermal conditioning of PEEK over prolonged periods which seems to lead to strong 

degradation behaviour. However, this effect is not significant in the injection moulding 

processes reported herein.  
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Evaluation of Crystallinity (DSC, XRD)

Table 3 and Table 4 present the degree of crystallinity (Xc) of virgin/1st regrind PEEK 

mixtures and the crystallinity of 1st to 5th regrind PEEK processing cycles, respectively, as 

calculated by DSC and XRD.  All specimens were analysed by DSC, but XRD analysis was 

confined to three specimens selected from each treatment regime and was performed in 

order to confirm that the trends observed within the DSC data represented a real effect. 

Table 3. Percentage crystallinity (% Xc) as calculated by DSC and XRD for virgin/1st regrind 

samples.

% Virgin/1st regrind Xc % (DSC) Xc % (XRD)

100/0 31.3 ± 1.7 24.6 ± 1.4

75/25 30.7 ± 1.7

60/40 32.7 ± 0.6

50/50 36.3 ± 4.1 23.9 ± 1.04

40/60 29.5 ± 0.5

25/75 31.2 ± 0.8

0/100 30.0 ± 2.8 24.2 ± 1.4

Table 4. Percentage crystallinity (% Xc) as calculated by DSC and XRD of 1st to 5th 

processing cycles.

No of processing cycles Xc % (DSC) Xc % (XRD)

Virgin PEEK 31.3 ± 1.7 24.6 ± 1.4

1st 33.1 ± 1.7 24.7 ± 1.6
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2nd 27.5 ± 1.7

3rd 30.6 ± 0.3 25.7 ± 1.8

4th 31.1 ± 2.0

5th 28.9 ± 1.9 24.6 ± 1.0

As can be seen in Table 3 and Table 4, the DSC and XRD crystallinity data of both batches 

of PEEK show very little change when compared with virgin PEEK. If crystallinity does 

indeed make a major contribution to mechanical properties, then this is consistent with the 

maintenance of tensile strength across the processing cycles. However, the crystallinities

obtained by X-ray diffraction are somewhat lower than those obtained by DSC 

measurements. This is not surprising as the XRD measurements are measuring the 

crystalline fraction based on the separation of oriented crystalline and un-oriented non-

crystalline (i.e. amorphous) scatter, through a curve fitting procedure which gives significant 

room for error.  In addition, XRD can be considered to be a ‘static’ measurement in that the 

crystalline structure of the specimen does not change during the course of the 

measurement, whereas during DSC analysis, the specimen is heated through its glass 

transition temperature and additional transitions such as cold crystallisation during heating 

cannot be ruled out entirely (Buggy and Carew, 1994).  Other authors such as Hsiao at al. 

(1993) and Shen et al. (2004) have also reported differences in crystallinity values calculated 

using the two methods and attributed the discrepancy to changes in crystallinity occurring 

during the DSC scan.  Despite this potential source of error, Zimmermann and Könnecke 

(1991) concluded that DSC was the best method by which to determine crystallinity in PEEK 

and the related materials, poly(ether ketone) (PEK) and poly(ether ether ketone ketone) 

(PEEKK).  Indeed it could be argued that observation of the dynamic changes during DSC 

yields further information about the nature of the material which would not be obtained by 

XRD analysis alone.
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The results obtained in Table 3 and Table 4 were combined in Figure 5 in order to 

investigate further whether there is any correlation between the crystallinity values obtained 

from XRD and DSC and the gradual change in the PEEK material (either through 

incorporation of different percentage of 1st regrind or repeat reprocessing).  The results in 

Figure 5 appear clustered together with no apparent linear correlation, as other research 

studies have reported (Karacan, 2005). This clustering effect confirms once again, that 

there are no significant changes at molecular level due to incorporation of percentages of 1st

regrind or repeat reprocessing. 

Figure 5. Correlation between crystallinity values obtained using DSC and XRD.

Conclusions

It has been demonstrated that it is possible to reprocess PEEK within an injection moulding 

process, whereby it has been shown that first regrind injection-moulded PEEK demonstrated 

similar mechanical properties to virgin PEEK. It has also been shown that at least three 

moulding/regrinding/re-moulding cycles can be performed without an appreciable drop in 

tensile strength, although after the third cycle there was some reduction in elongation at 

break. This reduction was due to the deleterious effects of chain scission becoming 

dominant over the  strengthening effect of cross-linking occurring at the processing 
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temperatures used in this experiment.  DSC was used to investigate changes in 

crystallisation temperature or degree of crystallinity, with no appreciable differences found in 

any of the batches examined. The maintenance of crystallinity explained the retention of 

tensile strength through at least five regrind cycles.  These findings were confirmed by 

selected XRD measurements, although a direct correlation between the two techniques is 

difficult to establish because of the changes that can occur during DSC analysis.  However 

we concur with Zimmermann and Könnecke (1991) that DSC is the most useful method for 

studying the crystallinity of PEEK and related materials.
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Highlights

 PEEK was reprocessed five times by regrinding and injection moulding

 First regrind and virgin PEEK were blended in varying proportions

 The tensile properties of PEEK were maintained through three regrind cycles

 Regrind PEEK had no significant effect on the tensile properties of virgin PEEK

 Regrinding and blending had no significant effect on PEEK crystallinity 




