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Within the framework of the solid state theory, an expression for the spectrum of spin waves

propagating in a thin magnetic nanowire curled into a helix (spiral) is obtained. Its modification

under the effect of a periodic modulation of the helical pitch is analyzed. In particular, it is shown

that the periodic modulation of the helix pitch leads to the appearance of band gaps in the spectrum

of spin waves. The influence of the modulation depth of the helical pitch on a size of the first gap is

considered. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792133]

Introduction

An ability to create magnetic devices with an opera-

tional frequency close to the terahertz range has stimulated

the development of the magnonics—an area of magnetism,

which studies spin waves in general and in magnetic nano-

structures in particular.1 The magnetic structures with a peri-

odic modulation of spin-wave characteristics, the so-called

“magnon crystals” have attracted particular attention of

researchers,1–6 partly fueled by a wealth of knowledge

gained in the field of research of various waves of a different

nature in periodic structures.

In thin-film magnon crystals, i.e., magnetic multi-layers

and superlattices, the processes of propagation of spin waves

are well known for both ideal structures2–4 and structures

containing various types of inhomogeneities and defects.7–11

Recently there is a large number of works devoted to the

study of one- and two-dimensional planar magnon crystals

formed by periodic structuring of monolayer magnetic films,

most often yttrium iron garnet12,13 or transition metals.14–16

However, since in the magnon devices the topology is

essential, it is necessary to study properties of connections

between different parts of structural elements of magnonic

devices and metamaterials. This gives rise to the renewed in-

terest in the theoretical study of curved low-dimensional sys-

tems.17,18 Especially important is to consider losses caused

by scattering on curved parts of magnon waveguides.

A similar situation occurs in curved low-dimensional

quantum systems. In particular, in Refs. 19–21, a quantum-

mechanical problem of motion of an electron along the curved

surface was considered, and it was found that any deformation

of the surface leads to an additional “geometric” potential.

In this paper, within the framework of a continuum me-

dium approximation the propagation of spin waves is studied

in curved nanowires which can act as magnon waveguides

connecting structural elements of three-dimensional

magneto-electronic devices for signal processing.22,23

A model of the material

Let us consider a curved magnetic nanowire bent in the

form of a helix (spiral), as shown in Fig. 1.

A material of the wire can be described by the following

parameters: the saturation magnetization M0, the exchange

constant a, the uniaxial anisotropy b, and the gyromagnetic

ratio g. We assume that an external field is absent, H0¼ 0,

and the anisotropy axis is directed along the axis of the wire.

A winding is characterized by the angle u, helical pitch h;

the radius of the cylinder, on the surface of which the spiral

is located, is assumed to be constant and equal to q; the wire

thickness is neglected.

The spectrum of spin waves in a spiral magnetic nanowire

Let us consider one of turns of the spiral. The dynamics

of the magnetization is described by the Landau-Lifshitz

equation,

@M

@t
¼ �g½M� ðhm þ bðMlÞlþ aDMÞ�; (1)

where l is a unit vector along the wire, the magnetostatic

(demagnetizing) field hm ¼ �N̂M, where N̂ is the local ten-

sor of demagnetizing coefficients, which can be introduced

because of the small thickness of the wire.

Consider small deviations of magnetization from the

ground state—the magnetization along the wire. For this, we

represent the distribution of magnetization in the form,

FIG. 1. A magnetic nanowire, curled into the shape of a helical (spiral) (a),

and the coordinate system used in the calculations (b).
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Mðr; tÞ ¼ lM0 þmðr; tÞ; jmj � M0: (2)

We linearize the Landau-Lifshitz equation (1), taking

into account the relation [M(r,t)]2¼M0, and by representing

the variable part of the magnetization in the form of a Fou-

rier component m(r,t)¼m(r)exp{ixt}, we obtain

ixm ¼�g½lM0 � ðaDm� N
_

mÞ�

�g½m� ðaM0Dl� N
_

l M0 þ b M0l�: (3)

Let us choose a coordinate system associated with the

wire. For this we introduce the moving frame of the curve

consisting of the tangent to the wire u, the normal to the

wire q and the binormal z¼ [q�u]. In this coordinate sys-

tem, the vector l is co-directional with u, so the term

N̂lM0 ¼ �NzM0lzz� NqM0lqq ¼ 0.

The Eq. (3) can be written as

ixm ¼ �g½uM0 � ðaDmþ Nzmzzþ NqmqqÞ�
�g½m� ðaM0Duþ bM0u�: (4)

We set X¼x/(gM0). We represent the variable part of

the magnetization in the form of an expansion in unit vectors

m¼mqq þ muu þ mzz of the coordinate system. Using the

representation of the Laplace operator in curvilinear coordi-

nates,24 we obtain

aDm ¼ q Dmq þ dbmq þ 2db
@mu

@u

� �

þu Dmu þ dbmu � 2db
@mq

@u

� �
þ zDmz;

where db ¼ � a
q2þðh=2pÞ2 ; and it is denoted that

Dmq;u;z ¼ �db @2mq;u;z

@u2 .

Let us write down separately the value,

aDu ¼ dbu:

We write the vector product,

a½m� Du� ¼ ½ðqmq þ /mu þ zmzÞ � ðdb:uÞ�;

which can be reduced to the form

a½m� Du� ¼ �dbðqmz � zmqÞ:

Thus, from the Eq. (4) one can obtain the following

relation:

iXm ¼ Nzmzq� Nqmqzþ Dmqzþ 2db
@mu

@u

� �
z� Dmzq

þ dbmzqþ bmzq� bmqz: (5)

The separate equations for each component m can be written

as:

iXmq ¼ Nzmz � Dmz þ dbmz þ bmz;

iXmu ¼ 0;

iXmz ¼ �Nqmq þ Dmq � bmq:

(6)

Let us write the equations using the arc length ‘ as a

coordinate. Because when the bend radius q and the pitch h
of the considered nanowire are constant and independent of

coordinates the values Dmq,z can be defined as

Dmq;z ¼ �db
@2mq;z

@u2
¼ a

@2mq;z

@‘2
;

then the expressions for the components m take the form,

iXmq ¼ Nzmz � a
@2mq

@‘2
þ dbmz þ bmz;

iXmz ¼ �Nqmq þ a
@2mq

@‘2
� bmq: (7)

Let us define the spectrum of spin waves in the curved

nanowire; for this we represent the magnetization in the

form mq;z ¼ m0q;zexpðik‘Þ. Substituting this dependence into

the preceding relation, assuming Nz¼Nq¼ 2p, we obtain the

dispersion relation,

X2 ¼ ð2pþ ak2 þ bþ dbÞ � ð2pþ ak2 þ bÞ: (8)

The quantity db can be considered as an additional

“geometric” anisotropy induced by bending, which is similar

to the results obtained in Ref. 21. In our problem the infin-

itely thin nanowire was considered, allowing to neglect inho-

mogeneities in the distribution of the magnetization in a

section of the wire, and thus the quantity db obtained in the

work depends only on the curvature of the bend and the wire

pitch.

Fig. 2 shows the spectrum of spin waves (SWs), obtained

by Eq. (8) for the curved nanowire for values typical for

permalloy: the exchange parameter a¼ 4.06� 10�12 cm2, the

saturation magnetization M0¼ 800 Oe, the exchange length

Lex¼ 5.68� 10�7 cm. The spectrum is plotted for b¼ 6 and

q¼ 5Lex.

In Fig. 2 it is shown that with the increase of the helical

pitch (as in the case of increasing the radius), the frequency

FIG. 2. A spectrum of spin waves in a homogeneous nanowire, curled into a

spiral, for different values of the helical pitch h.
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of activation of SWs increases, asymptotically approaching

the value characteristic of a direct nanowire.11

A spiral magnetic nanowire with a periodic modulation of the
pitch

Since it is possible to create low-dimensional systems

with a complex geometric shape, interesting is the problem

of propagation of SWs in a magnetic nanowire, curled into

the shape of a spiral with the modulated pitch.

Consider a wire, which can be represented in the form of

two alternating parts. These parts can be characterized by

the curvature radius q1,2, the helical pitch h1,2, the saturation

magnetization M0, the exchange constant a, the anisotropy b
and the gyromagnetic ratio g; there is no external field

(H0¼ 0), the wire thickness is neglected. The length of

each segment is assumed to be equal to L1;2

¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pq1;2Þ2 þ h2

1;2

q
, n is the number of turns of the wire.

In each segment of the curved nanowire the magnetiza-

tion dynamics can be described using linearized Landau-

Lifshitz equation,

d2miðzÞ
dz2

þ k2
i ðzÞmiðzÞ ¼ 0; i ¼ 1; 2: (9)

The wave vector ki can be found from the relation,

X2 ¼ ð2pþ ak2
i þ bþ dbiÞ � ð2pþ ak2

i þ bÞ;

dbi ¼ �
a

q2
i þ ðhi=2pÞ2

; (10)

where X¼x/gM0, h¼H/M0, i¼ 1,2.

Using the method described in Ref. 25, one can obtain

the expression for the spectrum of SWs,

cosðk1L1Þcosðk2L2Þþ
k1

2k2

þ k2

2k1

� �
sinðk1L1Þsinðk2L2Þ

¼ cosðkðL1þL2ÞÞ; (11)

where k is the effective wave number, which is the reciprocal

of the total phase shift in two different parts of the wire.

In this relation there are L1 ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pq1Þ2 þ h2

1

q
and

L2 ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pq2Þ2 þ h2

2

q
; the number of turns n of the wire is

the same on each of the segments.

This spectrum has a band structure. The magnitude of

the band gaps can be determined from the condition

jcos(k(L1þL2))j> 1. Fig. 3 shows the size of the first gap

DX1 in the spectrum as a function of the ratio of change of

the helical pitch to the exchange length d¼ jh2�h1j/Lex. The

dependence is plotted for Lex¼ 5.68� 10�7 cm, h1¼ 30 nm,

a¼ 4.06� 10�12 cm2, M0¼ 800 Oe and n¼ 30.

In Fig. 3, it can be seen that the pitch of the spiral affects

the size of the band gaps. It is shown that the band gap

increases with the pitch of the helix.

Conclusions

In this work, we derive an analytic expression for the

spectrum of spin waves propagating in a thin magnetic nano-

wire, curled in the shape of a helix (spiral), and analyze its

change under an effect of a periodic modulation of the heli-

cal pitch. In particular, we have shown that the periodic

modulation of the pitch of the helix leads to the appearance

of band gaps in the spectrum of spin waves. The influence of

the modulation depth of the helical pitch on the size of the

first gap is considered.

This work was supported in part by the project NoWa-

Phen (FP7 GA 247556).
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