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An exact solution is found for laminar fluid flow along the grooves of a family of

surfaces whose shape is given by the Lambert W-function. This simple solution

allows for the slip length in the direction parallel to the grooves to be calculated

exactly. With this analytical model we establish the regime of validity for a previously

untested perturbation theory intended for calculating the surface mobility tensor of

arbitrary periodic surfaces, finding that it compares well to the exact expression for

nearly all choices of parameters of the conformal map. To test this perturbation

theory further, the mobility tensor is evaluated for a simple sinusoidal surface for

flow both parallel and perpendicular to the grooves, finding that the perturbation

theory is less accurate in the latter of these two cases.
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I. INTRODUCTION

In fluid mechanics, the standard boundary condition on the fluid velocity is the so called

no-slip condition where, over a flat solid body there is zero relative velocity between the

fluid and the surface. Yet in some situations it is more appropriate to assume interfacial

slip, where the fluid has a non-zero relative velocity along the surface. Being able to control

interfacial slip is useful for example, in reducing the drag around objects1. Conventionally

the slip velocity (us), i.e. the velocity the fluid moves along the surface, is characterised by

a so called ‘slip length’ b, which is the required linear extrapolation into the solid, necessary

for the velocity to vanish. It is defined according to the equation

us = b
∂u

∂n
, (1)

where ∂u/∂n is the fluid’s velocity gradient in the direction normal to the surface, n̂. A

tensorial form of (1) is generally needed however to allow the slip properties of a surface

to become anisotropic, leading to the concept of the surface mobility tensor2. The surface

mobility tensor includes information regarding the slip length in each direction. The relation

between the surface mobility tensor (M) and the slip velocity is given by

us = −µ−1Mτ , (2)

where M is a 2× 2 symmetric tensor with the dimensions of length that acts in the plane of

the surface, τ is the in–plane shear stress within the fluid, and µ is the dynamic viscosity. Re-

cent work in this context has primarily dealt with superhydrophobic surfaces3–6, that utilise

an air layer trapped in nanoscale roughness to produce slip. A key issue with such super-

hydrophobic surfaces is their ability to retain a trapped gas layer and thus maintain the slip.

Another method of increasing the slip is by structuring the surface. In nature, shark skin

is known for its drag reducing properties and idealised models of shark scales7 or sinusoidal

riblets8, which mimic the top of the scales, have been developed to give drag reduction and

delay boundary layer separation. However, a theoretical understanding of the observed flow

is generally lacking due to the complexity of both the surface structures and solving the

Navier-Stokes in the turbulent regime. The regime of low Reynolds numbers (Stokes flow)

is analytically much more tractable and is the focus of this paper.
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Analytically, a problem limited to Stokes’ flow is the simplest case for exploring how

structured surfaces influence flow, however it is important to remember that in this regime

any such structuring will only increase the drag on the surface9. This problem has been

approached by many authors: Wang examined Stokes flow through channels bounded by

one- and two-dimensional sinusoidally structured surfaces10,11 and developed equations for

the flow in each direction using perturbation analysis. Using the techniques of complex

analysis, Scholle12 found an exact solution for the flow through a one-dimensionally struc-

tured sinusoidal channel of arbitrary channel height and “waviness”. Both were able to use

their analysis to find exact expressions for the slip length of the surface. Niavarani et al.13

modelled flow through a sinusoidal channel of varying amplitude and intrinsic slip to explore

the effect on vortex formation above the surface. For more general problems Kamrin et al.14

developed a perturbation theory to find a general equation for the mobility tensor (M̃) in

terms of the surface shape. This is not generally valid, providing an approximation only up

to an aspect ratio defined by the surface profile.

In the present work, we analyse the flow along the grooves of a family of one-dimensionally

structured surfaces, and find the exact slip length for these surfaces. We then compare this

result with the predictions from both a numerical finite element method model and the

perturbation theory developed by Kamrin et al. We find convincing agreement between the

analytic results, the perturbation theory and the numerical simulations at low aspect ratios.

We then explore flow perpendicular to a sinusoidally varying surface, demonstrating the

breakdown of the perturbation theory, and explore this failure as further terms are included

in the perturbation theory.

II. CALCULATING SLIP LENGTH FROM A CONFORMAL MAP

A. Flow

In the Stokes regime, where viscous forces dominate, the flow of fluid is described by the

Stokes equation,

∇2u =
1

µ
∇p, (3)
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where u = (u, v, w) and p are the fluid velocity and pressure respectively and µ is the fluid’s

dynamic viscosity. If a system is translationally invariant along the ẑ axis, and the flow is

driven by a moving surface at y = H then the pressure will be z independent and (3) can

be reduced to Laplace’s equation for flow along ẑ

∇2w = 0. (4)
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FIG. 1. Lines of constant Re[z̃] (dashed blue) and Im[z̃] (solid red) in the x-y plane for α = 0.6.

Flow in or out of the page over a surface following the contour of any of the solid lines can be

mapped to the solution of flow over a flat plate lying in the x-z plane.

By representing the x-y coordinate system as a single complex number z = x + iy,

Laplace’s equation can be written as ∂2w/∂z∂z? = 0, the solution of which is any function

of solely z or z?. It also means that we can perform a conformal coordinate map, z → z̃(z),

and leave the form of Laplace’s equation unchanged15. Thus the solution for the flow over

a flat plate can be mapped to the new coordinate system to give the flow along the grooves

of a structured surface. To develop an analytic formula for the slip length over a corrugated

surface we start with a simple periodic conformal map

z̃ = z + αeikz, (5)
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where α is a constant, k = 2π/L and L is the periodicity of the surface (note: this complex

number z that represents the x-y plane should not be confused with the direction of flow

which is in the ẑ direction). The lines of constant Re[z̃] and Im[z̃] in the x-y plane are then

given by the following equations:

Re[z̃] = x̃0 = x+ α cos(kx)e−ky, (6)

Im[z̃] = ỹ0 = y + α sin(kx)e−ky, (7)

which are shown in FIG. 1. The surfaces defined by (7) are approximately flat for large

positive values of ỹ0 and become more curved as ỹ0 decreases, eventually ceasing to be

continuous lines and no longer giving a useful representation of a surface.

For flow driven by a plate moving at velocity V, only in the ẑ direction located at a height

H above a stationary flat plate located at height y0 with respect to y = 0 (Couette flow),

the z component of the velocity at height y is

w =
V

H
(y − y0), (8)

Now consider flow over the structured surface ỹ0 = y + α sin(kx)e−ky. It is clear that at

a height far from the bottom surface the transformed coordinate lines become flat in the

conformal map (FIG. 1) and hence we can continue to assume a a flat driving plate and

Couette flow. Using the conformal map, the solution above a surface located at ỹ0, defined by

(7), is given by simply translating the equation for Couette flow, (8), into the new coordinate

system,

w =
V

H
(y + α sin(kx)e−ky − ỹ0). (9)

The flow goes to zero along the structured surface and is equal to V along y = ỹ0 + H. At

the top surface the exponential can be neglected and the flow takes the form as if the lower

surface is flat and located at ỹ0. This result can be readily extended to more complicated

maps written as an arbitrary sum of complex exponentials.

B. Slip Length

From the compact expression for the flow (9) it is possible to develop an analytic expres-

sion for the slip length bz as defined in (1). In this paper we adopt the convention that a
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FIG. 2. Flow in the ẑ direction over a one-dimensionally structured surface given by the lines of

constant ỹ0 = y + α sin(kx)e−ky, is driven by a flat plate moving at constant speed V located a

distance H above it. The surface shown is for ỹ0 = 0.5, α = 0.6 and L = 2π The slip length, bz, is

the difference between the true average surface height 〈y〉 and the apparent one ỹ0. The amplitude

A of the surface is given by the coefficient of the first order term in the Fourier series representation

of the surface.

subscript on b denotes a slip length in a particular direction. The equation for the bottom

surface over which the fluid flows (7) can be rewritten as,

[y(x)− ỹ0]eky(x) = −α sin(kx). (10)

which is the form of the well–studied functional relationship W exp(W) = x, which has a

solution in terms of the Lambert W-function16,

y(x) = ỹ0 +
1

k
W (−αk sin(kx)e−kỹ0). (11)

The function W takes complex values when its argument becomes less than 1/e (see16),

which is when the lower surface shown in FIG. 2 ceases to be continuous. The true average

surface height is then

〈y〉 = ỹ0 +
1

2π

∫ L

0

W (−αk sin(kx)e−kỹ0)dx. (12)

The slip length is then the difference between the true average surface height 〈y〉 and the

apparent one ỹ0 where an observer at the top surface would expect the flow to go to zero
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FIG. 3. Slip length bz as a function of k and α, numerically computed from (13)17. The hatched

region indicates the range of parameters where the conformal map ceases to represent a continuous

surface (the boundary of this region is where α = ekỹ0−1/k, which is when the Lambert function

ceases to return real values). Circles show the position of the conformal surfaces analysed in the

FEM modelling later in the paper. This line was chosen as it allows us to explore the full range of

aspect ratios avaliable to the conformal map. All variables are normalized in terms of the apparent

surface position ỹ0.

for a flat bottom plate,

bz = 〈y〉 − ỹ0 =
1

2π

∫ L

0

W (−αk sin(kx)e−kỹ0)dx. (13)

Using the series expansion of W (x)16,

W (x) =
∞∑
n=1

(−1)n−1
nn−2

(n− 1)!
xn, (14)

an exact equation for the slip length is obtained

bz = −
∞∑
n=1

(2n)2n−2

(2n− 1)!

(αkexp(−kỹ0))2n

k

(2n− 1)!!

(2n)!!
(15)
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where the odd n terms in the series (14) integrate to zero and the two exclamation marks

represent the double factorial. This form of the slip length exponentially decays with increas-

ing ỹ0 because, as can be seen from (7) this limit corresponds to an exponential flattening of

the surface. From this analysis it is clear that the slip length bz is always negative (all the

terms in the series (15) are positive, and this series is multiplied by minus one). This means

that far above the surface the flow is unaffected by the structuring except that the velocity

w is consistent with the bottom surface being at a distance H, which is always closer than

the true value of H + ỹ0 − 〈y〉, thus increasing the drag above that of a flat surface. FIG. 3

shows how the slip length (13) varies as a function of α and k, illustrating that the largest

magnitude of slip length (relative to the apparent position ỹ0) is achieved when kỹ0 � 1

and α/ỹ0 � 1.

As this exact expression is an infinite series it is worth looking at where it converges.

Taking the ratio of the nth and (n+ 1)th term we get,

bn+1

bn
=

(
1 +

1

n

)2n−1[
αke−kỹ0

]2
. (16)

As n→∞ this reduces to [
αke−kỹ0

]2
(17)

which is less than 1 (i.e. converges) as long as exp(−kỹ0) < 1
αk

. We find that for all surfaces

considered in this paper, excellent convergence can be achieved with the inclusion of just 10

terms in the series. However all results presented in this paper using the exact solution use

72 terms as an arbitrary limit.

It is straightforward to see that any surface derived from a conformal map will have a

negative slip length: the conformal transformation must tend to the identity as y → ∞

and be analytic above the curve which defines the shape of the surface. Therefore if the

surface has periodicity L, then above the surface we are restricted to maps of the form

z̃(z) = z+
∑

n zn exp(iknz), where zn are arbitrary complex constants. The lines of constant

ỹ: ỹ0 = y +
∑

n Im[zn exp(iknx)] exp(−kny) define the surface shapes, the flow over which

appears, to an observer fixed at the upper surface, to be as over a flat surface positioned

at ỹ0. The values of y generally tend to lie more frequently below ỹ0 rather than above,
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implying a negative slip length. To see this consider the inverse transformation,

z(z̃) = z̃ +
∞∑
n=1

z̃neiknz̃

using this expression the average surface height 〈y〉 for a fixed ỹ = ỹ0 can be computed

exactly

〈y〉 = ỹ0 +
1

L

∫ L

0

∞∑
n=1

Im
[
z̃neiknx̃

]
e−knỹ

dx

dx̃
dx̃

= ỹ0 −
1

L

∞∑
n=1

kne−2knỹ0
∫ L

0

Im
[
z̃neiknx̃

]2
dx̃ (18)

and is clearly always less than the apparent surface height ỹ0.

(In passing we note an interesting equivalence between this slip length calculation and

the electrostatics of parallel corrugated plates, where the expression for the flow velocity w

would translate into an electrostatic potential. If we have a parallel plate capacitor, where

the two plates are seperated by a distance H, and then corrugate the lower plate we would

need to increase the average seperation so as to maintain the same electric field at the top

plate.)

III. NUMERICAL ANALYSIS AND COMPARISON WITH

PERTURBATION THEORY

In this section we compare our simple analytic treatment of the slip length with the

results of numerical modelling and a recently developed perturbation theory, with the aim

of gaining some insight into the regime of validity of the perturbation theory. Using an FEM

numerical model18, the value of the predicted slip length for the surfaces discussed in the

previous section were compared against expression (15). Couette flow parallel to the average

plane of the structured surface was induced at a fixed height of 40 − ỹ0 mm at a speed of

5× 10−5 ms−1. The values for α and L were taken as 0.5 mm and 2π mm respectively and

then the values of velocity (w) and shear stress (τz) in the ẑ direction were extracted. To

calculate the slip length bz of the surface in the FEM model, the following equation was
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used:

bz =
µw

τz
− (H0 − 〈y〉), (19)

where H0 is the position of the top surface. Remembering that the shear stress is the

velocity gradient times the dynamic viscosity, it is clear that the above definition of the slip

length (19) is equivalent to the earlier expression (13). This equation allows one to extract

the slip length by using the linear velocity gradient at the top surface of the model.

We also compare the analytic results of the previous section with the perturbation theory

developed by Kamrin et al.14 who consider flow over an arbitrary periodic surface and find

the following approximation to the mobility tensor,

M̃ =

M̃11 M̃12

M̃21 M̃22

 , (20)

where,

M̃11 =
∑

(m,n) 6=0

2k2m + k2n√
k2m + k2n

|ĥ(m,n)|2,

M̃12 = M̃21 =
∑

(m,n)6=0

kmkn√
k2m + k2n

|ĥ(m,n)|2,

M̃22 =
∑

(m,n)6=0

k2m + 2k2n√
k2m + k2n

|ĥ(m,n)|2, (22)

and where it has been assumed that the aspect ratio of the surface is always small. Here

km = 2πm/Lx and kn = 2πn/Lz, with Lx and Lz being the periodicity of the surface in x

and z respectively, and ĥ(m,n) are the Fourier components of the surface height h(x, z). In

this work we only consider surfaces that are periodic in one direction (i.e. Lz =∞, kn = 0)so

this reduces down to

M̃ =

M̃11 0

0 M̃22

 , (23)

where,

M̃11 = 2M̃22 =
∑
m 6=0

km|ĥ(m)|2. (24)

From this point on we shall just refer to terms in the mobility tensor but note that M11 and

M22 are equivalent to bx and bz respectively.
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Using the definition of the surface shape (11) the Fourier representation of the Lambert

W function is found to be

y(x) =
∞∑

m=−∞

ĥ(m)eikmx = ỹ0 +
1

k
W (−αk sin(kx)e−kỹ0)

→ ĥ(m) = ỹ0δm0 −
1

k

∞∑
p=0

(−1)p
(m+ 2p)m+2p−2

(m+ 2p− 1)!

(
αke−kỹ0

2i

)m+2p
m+ 2p

p


to which we can apply equation (24) to calculate the mobility tensor and thus the slip

length. FIG. 4 demonstrates that there is good agreement between the three solutions for

the slip length, but that for larger aspect ratios the predictions of expression (24) diverge

slightly from the FEM model and exact solution: a maximum difference of 11% is found

for the largest aspect ratio tested of 0.056. In this figure the amplitude of the surface (A)

was taken as the coefficient of the first order term in the Fourier series representation of

the surface. Note that FIG. 4 covers the full range of surfaces that can be reached with the

conformal map (5), and the perturbative method of calculating the slip is very accurate for

this entire range, beginning to fail only for the largest aspect ratios when sharp features

also begin to develop in the surface profile.

As the available aspect ratios for this family of Lambert W surfaces is limited, it is of

interest to explore the application of the perturbation theory to more general surface profiles

where there is no analytic solution. We examine the case of the slip length for a sinusoidal

surface

y(x) = A sin(kx) (25)

where in this case the large aspect ratios are not associated with sharp features in the surface,

as they were for the surfaces we generated from the conformal map. With this simple surface

we are able to use the FEM model to explore the limit at which the perturbation analysis

(22) fails to accurately predict the slip length. Equation (19) is again used to calculate the

slip length from the FEM model in the x̂ and ẑ directions. Based on expression (24) the

mobility tensor for the sinusoidal surface reduces to

M̃ =
A2π

L2

2 0

0 1

 . (26)
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FIG. 4. Comparison between the modulus of the exact values for the slip length and values from

the FEM model for surfaces defined by ỹ0 = y + α sin(kx)e−ky. Values derived using expression

(24) from the perturbation theory are also shown. At low aspect ratios (A/L) these agree very well

with the exact solution and the FEM model, however as the aspect ratio increases the values start

to diverge, overestimating the slip length. A maximum difference of 11% is found for the largest

aspect ratio tested of 0.056

For the sinusoidal surface we shall look at the flow both across and along the grooves of

the surface so as to explore each term in the mobility tensor separately to give an overall

picture of its validity.

First focusing on M22, corresponding to flow along the grooves of the structure, observe

that at low aspect ratios there is again excellent agreement between the FEM predictions

and the predictions of expression (24) (FIG. 5a). However we now see that as the aspect

ratio increases, the perturbation theory significantly diverges from the numerical results:

using the arbitrary difference of 10% to characterise a significant divergence between the

solutions, the perturbation expansion analysis is accurate up to aspect ratios (A/L) of 0.1.

It is also worth exploring M11 for the sinusoidal surface where the fluid flow is across

the corrugations. In this case the perturbation theory is much less effective: diverging
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FIG. 5. Comparison between the values for the slip length in the (a) ẑ and (b) x̂ directions from

FEM modeling and the predictions of expression (24). Note the good agreement between the

solutions for low aspect ratios. A significant divergence, characterised by a difference between the

solutions of more than 10%, occurs for aspect ratios above 0.1 in the ẑ direction and 0.56 in the x̂

direction. Inclusion of the next order term for flow in the ẑ direction in the perturbation expansion

delays the divergence to aspect ratios of 0.15.

significantly for aspect ratios less than 0.056. This case of fluid flow across the grooves of a

sinusoidal surface was also considered by Scholle12 who obtained a semi–analytic expression

for the slip length using complex analysis. The M11 values from the FEM model for the

sinusoidal surface were compared to the results found by Scholle12 (valid for arbitrary aspect

ratios), with no difference found for all aspect ratios.

The perturbation theory, expression (22), is only the leading order term of an infinite

series. To explore the relative importance of the higher order terms, we follow the procedure

of ref. 14 for the sinusoidal surface given by equation (25) to find the next order term for

M̃22. Including this extra term, the equation for M̃22 becomes

M̃22 =
A2π

L
− A4π3

L3
. (27)

Note that, over some limited range of aspect ratios, this does indeed improve the agreement

between the perturbation theory and the numerical results (FIG. 5a), but that it also leads
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to a slip length that can become negative, which is unphysical. Only the inclusion of further

terms in the series can remedy this. As the development of the perturbation series beyond

expression (22) becomes rapidly more cumbersome as further terms are included this means

that it is difficult to improve the accuracy of this perturbation method, leaving us without

an obvious way to proceed when looking for an analytic calculation of the slip length for

surfaces with large aspect ratios.

IV. CONCLUSIONS

In this work we have found a very simple exact solution for Stokes flow parallel to the

grooves of a family of one-dimensionally structured surfaces generated from a conformal

map. From these solutions we derived an exact expression for the slip length of the surface

and compared these exact values to those computed from a perturbation theory, finding

that, despite its approximate nature, the perturbation theory gives results in agreement

with the exact expression for the full range of the conformal map. This family of surfaces

could be used as the basis to create further surfaces using a linear superposition. Whilst

finding the flow above these surfaces should be trivial finding a value for the slip length will

be more involved. Likewise the method of using a conformal map can be extended to other

conformal maps as long as they are periodic and tend to flat lines as y tends to ∞.

We also found good agreement between numerical modelling and the perturbation ap-

proximation at low aspect ratios for sinusoidally varying surfaces. In addition we find that

the perturbation theory fares less well when the flow is across the structuring, rather than

parallel to it, with significant divergence occurring at roughly half the aspect ratio for a

similar divergence to the flow along the grooves case.

The form of the mobility tensor initially used (expression (22)) is the first term in an

expansion around the case of flow over a flat surface. We constructed the next order term

for the simple case of a sinusoidal surface shape, but found that although this improved

the results within some small range of aspect ratios, it led at higher aspect ratios to some

unphysical values for the slip length that could only be remedied through including higher
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order terms which are in general difficult to compute. Overall this suggests that another

method is needed for analytically computing the slip over very wavy surfaces, even in the

Stokes regime. For flow across the grooves of one dimensionally structured surfaces this

is provided by Scholle12 although another technique is required for more general surface

structures that vary in both directions.
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