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Abstract 40 

Upwelling regions are highly productive habitats targeted by wide-ranging marine predators 41 

and industrial fisheries. In this study, we track the migratory movements of 8 seabird species 42 

from across the Atlantic; quantify overlap with the Canary Current Large Marine Ecosystem 43 

(CCLME); and determine the habitat characteristics that drive this association. Our results 44 

indicate the CCLME is a biodiversity hotspot for migratory seabirds; all tracked species and 45 

>70% of individuals used this upwelling region. Relative species richness peaked in areas 46 

where sea surface temperature averaged between 15 and 20°C, and correlated positively with 47 

chlorophyll a, revealing the optimum conditions driving bottom-up trophic effects for 48 

seabirds. Marine vertebrates are not confined by international boundaries, making 49 

conservation challenging. However, by linking diversity to ocean productivity, our research 50 

reveals the significance of the CCLME for seabird populations from across the Atlantic, 51 

making it a priority for conservation action. 52 

  53 
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1. Introduction 54 

Upwelling regions are globally important marine biodiversity hotspots. The mixing of 55 

nutrient-rich cool water with warm surface layers fuels primary production, driving bottom-56 

up cascades that also support large communities of upper trophic-level consumers [1]. As a 57 

result, they are attractive foraging grounds targeted by a wide-range of marine animals 58 

throughout the annual cycle [2]. These characteristics make upwelling regions strong 59 

candidates for protection, but this is challenging as they often cross national boundaries, 60 

occur in international waters, and protection may conflict with fisheries interests [3]. 61 

 62 

Marine environments are facing unprecedented levels of anthropogenic-driven pressure; 63 

including climate change, pollution, and offshore development [4–6]. The foremost threat to 64 

upwelling regions is biodiversity loss through overfishing; upwellings cover < 1% of the 65 

world’s ocean by area but provide ~20% of global catch [7]. Commercial capture fisheries 66 

deplete stocks, remove top-predators through bycatch, and alter the trophic structure of 67 

ecosystems [8,9]. The Canary Current Large Marine Ecosystem (CCLME) now incorporates 68 

one of the most intensively fished areas on Earth [8,10], yet also supports large populations 69 

of migratory marine vertebrates from breeding populations across the Atlantic [11–13]. 70 

 71 

Considering the increasing industrialisation of fisheries [10], the pervasive threat from 72 

bycatch [14], and a paucity of quantitative information on habitat or space use, understanding 73 

marine vertebrate distributions in the CCLME and beyond is a key conservation goal [15]. In 74 

this study, we use miniaturised light loggers to reconstruct the non-breeding movements of 75 

eight migratory seabird species from disparate regions of the Atlantic that have been 76 

previously recorded in the CCLME [12]. Our aims are (i) to map the distribution of these 77 

birds and identify areas of high diversity, (ii) to quantify the extent to which each species 78 
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utilises the CCLME, and (iii) to determine the oceanographic characteristics that drive this 79 

association. We use our findings to assess the importance of the CCLME as a biodiversity 80 

hotspot and discuss the potential conflict between fisheries and seabirds in this region. 81 

 82 

2. Methods  83 

We collated data on the non-breeding movements of eight seabird species; Cory’s 84 

shearwaters (Calonectris borealis); Scopoli’s shearwaters (C. diomedea); lesser black-backed 85 

gulls (Larus fuscus); northern gannets (Morus bassanus); great skuas (Stercorarius skua); 86 

south polar skuas (S. maccormicki); common terns (Sterna hirundo); and Sabine’s gulls 87 

(Xema sabini). While these species have been recorded previously in the CCLME, the true 88 

importance of this region for specific populations is unknown. Between 2000 and 2011, 123 89 

birds were tracked using miniaturised light loggers from 12 breeding colonies from the north 90 

(75°N) to the south (62°S) of the Atlantic (see Supplementary Materials). To quantify the 91 

extent to which each species utilises the CCLME, we calculated the proportion of time each 92 

individual spent in this region [16]. To identify areas of high species richness we constructed 93 

spatial density maps by binning location data into 200 km diameter tessellated hexagons 94 

spanning the Atlantic. We calculated relative richness by summing the number of species 95 

occurring in each hexagon during the non-breeding period. 96 

 97 

To characterise the marine environment we extracted winter seasonal climatology composites 98 

(Dec-Mar, 2002-2010) of sea surface temperature (SST, °C) and chlorophyll a concentration 99 

(CHL, mg m
-3

) from the MODIS instrument onboard the Aqua (EOS PM) satellite 100 

(http://oceancolor.gsfc.nasa.gov/) and calculated mean SST and CHL values for each 101 

hexagon. We also included a measure of null usage that incorporated both habitat availability 102 
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and sampling effort, as this was not uniform across species or colonies [17] (see 103 

Supplementary Materials). These data are available via Dryad [18]. 104 

 105 

We examined correlations between the observed patterns in relative richness and these 106 

covariates using generalised additive models fitted with the packages mgcv [19] and MuMIn 107 

[20] in R version 3.1.0 [21]. We log10 transformed CHL prior to use. We included SST, CHL, 108 

and null usage as covariates in the global model with thin plate regression splines fitted with 109 

a maximum of 10 knots; superfluous knots were penalised during model fitting. Variance 110 

Inflation Factors revealed no collinearity between covariates (VIF < 3). We also included the 111 

central X and Y coordinates of each hexagon as a spatial smooth term implemented with a 112 

soap film boundary [22]. The soap film specifies the extent of the predicted surface, 113 

preventing smoothing across boundary features such as the Iberian Peninsula. Variograms of 114 

model residuals revealed no spatial autocorrelation in final models. Model selection was 115 

based on Akaike’s Information Criterion (AIC), with parameters excluded if their inclusion 116 

did not improve the model by more than 2 ∆AIC relative to the lowest AIC. 117 

 118 

3. Results 119 

The eight species tracked from 12 colonies over 10 years were widely distributed across the 120 

Atlantic during the non-breeding period (figure 1). Highest relative richness was observed in 121 

the CCLME, with other hotspots in the Bay of Biscay, Mid-Atlantic Ridge, Brazilian coast 122 

and Benguela Current (figure 1). On average, 76.6% ± 28.1% of individuals from each 123 

species visited the CCLME, including all Scopoli’s shearwaters, Sabine’s gulls, south polar 124 

skuas, and common terns, the majority of lesser black-backed gulls and northern gannets, but 125 

only 25% of great skuas (table 1). The proportion of time each species spent in the CCLME 126 

was highest for Scopoli’s shearwaters (0.35 ± 0.28), northern gannets (0.26 ± 0.29), and 127 
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common terns (0.24 ± 0.22). There was a high degree of variation both within and among 128 

species; individuals may use the CCLME for the entire non-breeding period, only as a staging 129 

area, or not at all (table 1). 130 

  131 

Relative richness correlated with SST and CHL; both terms were retained in the top ranked 132 

model along with the soap film smooth term and measure of null usage (table 2). Model-133 

estimates indicated relative richness was highest in areas with sea surface temperatures 134 

between 15 and 20°C, and there was a general positive correlation between relative richness 135 

and CHL (figure 1). 136 

 137 

4. Discussion 138 

Here, we demonstrate that the CCLME is an area of high relative species richness for non-139 

breeding seabirds, and detail the environmental conditions that drive this association. More 140 

than 70% of individuals from eight species, representing a range of functional groups, and 141 

originating from breeding colonies across the Atlantic, visited this upwelling region. Relative 142 

richness correlated with both sea surface temperature (SST) and chlorophyll a (CHL). By 143 

tracking birds of known origin, our results illustrate the high connectivity between seabird 144 

breeding populations across the Atlantic and the CCLME, emphasising the importance of this 145 

upwelling region as a non-breeding destination and migratory stopover site. 146 

 147 

This study represents the most comprehensive collation of tracking data for the CCLME to 148 

date, but our measure of relative species richness is limited to those populations included in 149 

the study. While many other species also visit this region [12], modern developments in 150 

biologging are revealing a diversity of migration strategies [23], and highlighting other 151 

important areas across the Atlantic. Our measure of relative species richness represents the 152 
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maximum across the study period, and is likely to vary over the annual cycle in response to 153 

seasonal differences in environmental conditions. For example, southern hemisphere 154 

migrants following the austral summer overlap only briefly with northern hemisphere 155 

migrants in the CCLME (Supplementary table 1). While our study highlights the CCLME as 156 

a hotspot for migratory seabirds, further work is required to understand the significance of 157 

other areas across the Atlantic and beyond.  158 

 159 

These findings provide evidence of the links between biodiversity and ocean productivity in 160 

an eastern boundary upwelling region. Relative richness was highest between 15 and 20°C, 161 

and correlated positively with CHL; corroborating previous work on the oceanographic 162 

drivers of marine predator diversity in the California Current [2]. This suggests that primary 163 

productivity in the CCLME has bottom-up effects that are highly relevant to apex predators. 164 

The mechanisms by which animals may target these regions are currently unknown, but 165 

frontal density in the CCLME is high and these visible indicators of productivity are known 166 

to aggregate marine predators such as seabirds [11,24]. 167 

 168 

The CCLME attracts some of the highest global fishing effort [8,10], yet there is a paucity of 169 

information on the interactions between seabirds and fisheries in this region [15]. Fisheries 170 

impact seabirds in three ways; either competing directly for fish, providing food in the form 171 

of discarded fish, or posing the threat of bycatch mortality [14,25,26]. More research into 172 

fine-scale, species-specific fisheries interactions in the CCLME is required, especially given 173 

recent evidence of direct take of seabirds in the region (Kees Camphuysen, pers. com.); the 174 

substantial under-reporting of catch in this area by China’s distant-water fleet [27]; and the 175 

prevalence of Illegal, Unreported and Unregulated fisheries [28]. 176 

 177 
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Integrating data across multiple species and years highlights the importance of the CCLME 178 

as a seabird biodiversity hotspot. Furthermore, environmental conditions such as sea surface 179 

temperature and productivity may offer insights into how their distributions could shift in 180 

response to global climate change. As marine vertebrates forage across dynamic pelagic 181 

systems and are not confined by international boundaries, effective conservation will require 182 

multilateral cooperation. Nevertheless, while site fidelity to persistent upwelling regions such 183 

as the CCLME could aid conservation, it is unlikely that both a large diversity of marine 184 

vertebrates and intense fisheries exploitation can be sustained in this region in the long-term. 185 

 186 
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Table 1 Summary statistics for tracking by seabird species. Values represent mean ± SD. 276 

 277 

Species N 
% visiting 

CCLME 

Winter period 

(days) 

Number of 

locations 

Locations 

in CCLME 

Proportion 

in CCLME 

Lesser black-

backed gull 
7 71.4 208.4 ± 27.4 151.1 ± 20.8 21.0 ± 24.0 0.09 ± 0.10 

Northern 

gannet 
34 58.8 93.6 ± 13.4 89.6 ± 15.4 25.7 ± 29.8 0.26 ± 0.29 

Great skua 16 25 92 91.9 ± 0.4 11.1 ± 21.8 0.12 ± 0.24 

Cory’s 

shearwater 
19 57.9 133.9 ± 29.9 131.5 ± 27.4 13.8 ± 23.2 0.10 ± 0.18 

Scopoli’s 

shearwater 
9 100 104.5 ± 40.8 102.3 ± 39.6 35.4 ± 36.9 0.35 ± 0.28 

Sabine’s gull 7 100 287.9 ± 12.7 228.6 ± 18.6 22.3 ± 3.1 0.08 ± 0.01 

South polar 

skua 
19 100 237.2 ± 35.1 176.3 ± 21.6 8.7 ± 14.3 0.04 ± 0.07 

Common tern 12 100 254.3 ± 67.0 181.3 ± 64.0 62.8 ± 51.8 0.24 ± 0.22 

For full methods and description of winter period see supplementary material 278 

 279 

 280 

Table 2 Model selection testing correlations between relative richness and sea surface 281 

temperature (SST) and chlorophyll a (CHL). The full model included a soap film smooth 282 

term (XY) and measure of habitat availability (null). Models shown are those within 6 ∆AIC 283 

of the best-supported model. 284 

 285 

Rank Parameters df AIC ∆AIC 

1 SST + CHL + XY + null 173 5573 0.00 

2 SST + XY   + null 175 5576 2.84 

3 SST + CHL + XY 171 5578 4.47 

4 SST + XY 173 5579 6.28 

Adj R2 of best-supported model = 0.60 286 

 287 

288 
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Figure 1 Links between (a) Relative richness of eight seabird species tracked from pan-289 

Atlantic colonies between 2000 and 2011; and (b) Sea surface temperature and (c) 290 

Chlorophyll a. Dark line in (a) represents the boundary of the Canary Current Large Marine 291 

Ecosystem; blue dots represent colonies of origin for tracked birds, indicated by arrows. Dark 292 

lines in (b) and (c) represent model-estimated response; dashed lines 95% CI; light grey dots 293 

indicate the distribution of data. 294 

 295 
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between 2000 and 2011; and (b) Sea surface temperature and (c) Chlorophyll a. Dark line in (a) represents 

the boundary of the Canary Current Large Marine Ecosystem; blue dots represent colonies of origin for 

tracked birds, indicated by arrows. Dark lines in (b) and (c) represent model-estimated response; dashed 
lines 95% CI; light grey dots indicate the distribution of data.  
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