

Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem

Journal:	Biology Letters			
Manuscript ID	RSBL-2016-0024.R3			
Article Type:	Research			
Date Submitted by the Author:	21-Jul-2016			
Complete List of Authors:	Grecian, James; University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences Witt, Matthew; University of Exeter College of Life and Environmental Sciences Attrill, Martin; University of Plymouth, Bearhop, Stuart; University of Exeter, Cornwall Campus, Centre for Ecology and Conservation Becker, Peter; Institute of Avian Research, Population Ecology Egevang, Carsten Furness, Robert; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow Godley, B; University of Exeter, Cornwall Campus, Centre for Ecology and Conservation Gonzalez-Solis, Jacob; University of Barcelona, Animal Biology Gremillet, David; CNRS, CEFE Kopp, Matthias Lescroel, Amelie; CEFE-CNRS, Ecologie Evolutive Matthiopoulos, Jason; University of Glasgow Patrick, Samantha; University of Liverpool, School of Environmental Sciences Peter, Hans-Ulrich Phillips, Richard; British Antarctic Survey, Biological Sciences Division Stenhouse, Iain Votier, Stephen; University of Exeter			
Subject:	Ecology < BIOLOGY, Behaviour < BIOLOGY			
Categories:	Conservation Biology			
Keywords:	bio-logging, human impacts, marine protected areas, migration, upwelling, marine conservation			

SCHOLARONE[™] Manuscripts

Seabird diversity hotspot linked to ocean productivity in the Canary 1 **Current Large Marine Ecosystem** 2 3 W. James Grecian^{1*}, Matthew J. Witt², Martin J. Attrill³, Stuart Bearhop⁴, Peter H. Becker⁵, 4 Carsten Egevang⁶, Robert W. Furness¹, Brendan J. Godlev⁴, Jacob González-Solís⁷, David 5 Grémillet^{8,9}, Matthias Kopp¹⁰, Amélie Lescroël⁸, Jason Matthiopoulos¹, Samantha C. 6 Patrick¹¹, Hans-Ulrich Peter¹⁰, Richard A. Phillips¹², Iain J. Stenhouse¹³ & Stephen C. 7 Votier^{2*} 8 9 ¹ Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, 10 Glasgow, G12 8QQ, UK 11 ² Environment and Sustainability Institute, ⁴ Centre for Ecology and Conservation, University 12 of Exeter, Penryn, Cornwall, TR10 9EZ, UK 13 ³ Marine Institute, Plymouth University, Plymouth, Devon, PL4 8AA, UK 14 ⁵ Institut für Vogelforschung 'Vogelwarte Helgoland', An der Vogelwarte 21, 15 16 Wilhelmshaven, D-26386, Germany ⁶ Greenland Institute of Natural Resources, Kviog 2, 3900 Nuuk, Greenland 17 ⁷ Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Animal, 18 Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain 19 ⁸ CEFE UMR 5175, CNRS – Université de Montpellier – Université Paul-Valéry 20 Montpellier – EPHE, 1919 route de Mende, 34293 Cedex 05, Montpellier, France 21 ⁹ DST/NRF Centre of Excellence, Percy FitzPatrick Institute, University of Cape Town, 22 Rondebosch 7701, South Africa 23 ¹⁰ Institute of Ecology, Friedrich-Schiller University, 07743 Jena, Germany 24 ¹¹ School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK 25

- ¹² British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, 26
- UK 27
- ¹³ Biodiversity Research Institute, 276 Canco Road, Portland, ME 04103, USA 28
- * james.grecian@glasgow.ac.uk; s.c.votier@exeter.ac.uk 29
- 30
- ORCID ID 31
- 32 W. James Grecian: 0000-0002-6428-719X
- Matthew J. Witt: 0000-0002-9498-5378 33
- Stuart Bearhop: 0000-0002-5864-0129 34
- Brendan J. Godley: 0000-0003-3845-0034 35
- Jacob González-Solís: 0000-0002-8691-9397 36
- 37 Iain J. Stenhouse: 0000-0003-3614-9862
- Stephen C. Votier: 0000-0002-0976-016 38
- 39

40 Abstract

Upwelling regions are highly productive habitats targeted by wide-ranging marine predators 41 and industrial fisheries. In this study, we track the migratory movements of 8 seabird species 42 43 from across the Atlantic; quantify overlap with the Canary Current Large Marine Ecosystem (CCLME); and determine the habitat characteristics that drive this association. Our results 44 45 indicate the CCLME is a biodiversity hotspot for migratory seabirds; all tracked species and >70% of individuals used this upwelling region. Relative species richness peaked in areas 46 where sea surface temperature averaged between 15 and 20°C, and correlated positively with 47 chlorophyll *a*, revealing the optimum conditions driving bottom-up trophic effects for 48 49 seabirds. Marine vertebrates are not confined by international boundaries, making conservation challenging. However, by linking diversity to ocean productivity, our research 50 51 reveals the significance of the CCLME for seabird populations from across the Atlantic, 52 making it a priority for conservation action. 53

54 **1. Introduction**

55	Upwelling regions are globally important marine biodiversity hotspots. The mixing of
56	nutrient-rich cool water with warm surface layers fuels primary production, driving bottom-
57	up cascades that also support large communities of upper trophic-level consumers [1]. As a
58	result, they are attractive foraging grounds targeted by a wide-range of marine animals
59	throughout the annual cycle [2]. These characteristics make upwelling regions strong
60	candidates for protection, but this is challenging as they often cross national boundaries,
61 62	occur in international waters, and protection may conflict with fisheries interests [3].
63	Marine environments are facing unprecedented levels of anthropogenic-driven pressure;
64	including climate change, pollution, and offshore development [4–6]. The foremost threat to
65	upwelling regions is biodiversity loss through overfishing; upwellings cover < 1% of the
66	world's ocean by area but provide ~20% of global catch [7]. Commercial capture fisheries
67	deplete stocks, remove top-predators through bycatch, and alter the trophic structure of
68	ecosystems [8,9]. The Canary Current Large Marine Ecosystem (CCLME) now incorporates
69	one of the most intensively fished areas on Earth [8,10], yet also supports large populations
70	of migratory marine vertebrates from breeding populations across the Atlantic [11–13].
71	
72	Considering the increasing industrialisation of fisheries [10], the pervasive threat from
73	bycatch [14], and a paucity of quantitative information on habitat or space use, understanding
74	marine vertebrate distributions in the CCLME and beyond is a key conservation goal [15]. In
75	this study, we use miniaturised light loggers to reconstruct the non-breeding movements of
76	eight migratory seabird species from disparate regions of the Atlantic that have been
77	previously recorded in the CCLME [12]. Our aims are (i) to map the distribution of these
78	birds and identify areas of high diversity, (ii) to quantify the extent to which each species

79	utilises the CCLME, and (iii) to determine the oceanographic characteristics that drive this
80	association. We use our findings to assess the importance of the CCLME as a biodiversity
81	hotspot and discuss the potential conflict between fisheries and seabirds in this region.
82	

83 **2. Methods**

84 We collated data on the non-breeding movements of eight seabird species; Cory's shearwaters (*Calonectris borealis*); Scopoli's shearwaters (*C. diomedea*); lesser black-backed 85 gulls (*Larus fuscus*); northern gannets (*Morus bassanus*); great skuas (*Stercorarius skua*); 86 south polar skuas (S. maccormicki); common terns (Sterna hirundo); and Sabine's gulls 87 88 (*Xema sabini*). While these species have been recorded previously in the CCLME, the true importance of this region for specific populations is unknown. Between 2000 and 2011, 123 89 90 birds were tracked using miniaturised light loggers from 12 breeding colonies from the north (75°N) to the south (62°S) of the Atlantic (see Supplementary Materials). To quantify the 91 extent to which each species utilises the CCLME, we calculated the proportion of time each 92 individual spent in this region [16]. To identify areas of high species richness we constructed 93 spatial density maps by binning location data into 200 km diameter tessellated hexagons 94 95 spanning the Atlantic. We calculated relative richness by summing the number of species 96 occurring in each hexagon during the non-breeding period.

97

98 To characterise the marine environment we extracted winter seasonal climatology composites

99 (Dec-Mar, 2002-2010) of sea surface temperature (SST, °C) and chlorophyll *a* concentration

100 (CHL, mg m⁻³) from the MODIS instrument onboard the Aqua (EOS PM) satellite

- 101 (<u>http://oceancolor.gsfc.nasa.gov/</u>) and calculated mean SST and CHL values for each
- 102 hexagon. We also included a measure of null usage that incorporated both habitat availability

Submitted to Biology Letters

- and sampling effort, as this was not uniform across species or colonies [17] (see
- 104 Supplementary Materials). These data are available via Dryad [18].
- 105

106	We examined correlations between the observed patterns in relative richness and these
107	covariates using generalised additive models fitted with the packages mgcv [19] and MuMIn
108	[20] in R version 3.1.0 [21]. We log ₁₀ transformed CHL prior to use. We included SST, CHL,
109	and null usage as covariates in the global model with thin plate regression splines fitted with
110	a maximum of 10 knots; superfluous knots were penalised during model fitting. Variance
111	Inflation Factors revealed no collinearity between covariates (VIF $<$ 3). We also included the
112	central X and Y coordinates of each hexagon as a spatial smooth term implemented with a
113	soap film boundary [22]. The soap film specifies the extent of the predicted surface,
114	preventing smoothing across boundary features such as the Iberian Peninsula. Variograms of
115	model residuals revealed no spatial autocorrelation in final models. Model selection was
116	based on Akaike's Information Criterion (AIC), with parameters excluded if their inclusion
117	did not improve the model by more than 2 Δ AIC relative to the lowest AIC.
118	

119 **3. Results**

120 The eight species tracked from 12 colonies over 10 years were widely distributed across the Atlantic during the non-breeding period (figure 1). Highest relative richness was observed in 121 the CCLME, with other hotspots in the Bay of Biscay, Mid-Atlantic Ridge, Brazilian coast 122 and Benguela Current (figure 1). On average, $76.6\% \pm 28.1\%$ of individuals from each 123 124 species visited the CCLME, including all Scopoli's shearwaters, Sabine's gulls, south polar 125 skuas, and common terns, the majority of lesser black-backed gulls and northern gannets, but 126 only 25% of great skuas (table 1). The proportion of time each species spent in the CCLME was highest for Scopoli's shearwaters (0.35 ± 0.28) , northern gannets (0.26 ± 0.29) , and 127

128	common terns (0.24 \pm 0.22). There was a high degree of variation both within and among
129	species; individuals may use the CCLME for the entire non-breeding period, only as a staging
130	area, or not at all (table 1).
131	
132	Relative richness correlated with SST and CHL; both terms were retained in the top ranked
133	model along with the soap film smooth term and measure of null usage (table 2). Model-
134	estimates indicated relative richness was highest in areas with sea surface temperatures
135	between 15 and 20°C, and there was a general positive correlation between relative richness
136	and CHL (figure 1).
137	
138	4. Discussion
139	Here, we demonstrate that the CCLME is an area of high relative species richness for non-
140	breeding seabirds, and detail the environmental conditions that drive this association. More
141	than 70% of individuals from eight species, representing a range of functional groups, and

originating from breeding colonies across the Atlantic, visited this upwelling region. Relative

richness correlated with both sea surface temperature (SST) and chlorophyll *a* (CHL). By

144 tracking birds of known origin, our results illustrate the high connectivity between seabird

breeding populations across the Atlantic and the CCLME, emphasising the importance of this

146 upwelling region as a non-breeding destination and migratory stopover site.

147

This study represents the most comprehensive collation of tracking data for the CCLME to date, but our measure of relative species richness is limited to those populations included in the study. While many other species also visit this region [12], modern developments in biologging are revealing a diversity of migration strategies [23], and highlighting other important areas across the Atlantic. Our measure of relative species richness represents the

Submitted to Biology Letters

153	maximum across the study period, and is likely to vary over the annual cycle in response to
154	seasonal differences in environmental conditions. For example, southern hemisphere
155	migrants following the austral summer overlap only briefly with northern hemisphere
156	migrants in the CCLME (Supplementary table 1). While our study highlights the CCLME as
157	a hotspot for migratory seabirds, further work is required to understand the significance of
158	other areas across the Atlantic and beyond.
159	
160	These findings provide evidence of the links between biodiversity and ocean productivity in
161	an eastern boundary upwelling region. Relative richness was highest between 15 and 20°C,
162	and correlated positively with CHL; corroborating previous work on the oceanographic
163	drivers of marine predator diversity in the California Current [2]. This suggests that primary
164	productivity in the CCLME has bottom-up effects that are highly relevant to apex predators.
165	The mechanisms by which animals may target these regions are currently unknown, but
166	frontal density in the CCLME is high and these visible indicators of productivity are known
167	to aggregate marine predators such as seabirds [11,24].
168	
169	The CCLME attracts some of the highest global fishing effort [8,10], yet there is a paucity of
170	information on the interactions between seabirds and fisheries in this region [15]. Fisheries
171	impact seabirds in three ways; either competing directly for fish, providing food in the form
172	of discarded fish, or posing the threat of bycatch mortality [14,25,26]. More research into
173	fine-scale, species-specific fisheries interactions in the CCLME is required, especially given
174	recent evidence of direct take of seabirds in the region (Kees Camphuysen, pers. com.); the
175	substantial under-reporting of catch in this area by China's distant-water fleet [27]; and the
176	prevalence of Illegal, Unreported and Unregulated fisheries [28].

177

178	Integrating data across multiple species and years highlights the importance of the CCLME
179	as a seabird biodiversity hotspot. Furthermore, environmental conditions such as sea surface
180	temperature and productivity may offer insights into how their distributions could shift in
181	response to global climate change. As marine vertebrates forage across dynamic pelagic
182	systems and are not confined by international boundaries, effective conservation will require
183	multilateral cooperation. Nevertheless, while site fidelity to persistent upwelling regions such
184	as the CCLME could aid conservation, it is unlikely that both a large diversity of marine
185	vertebrates and intense fisheries exploitation can be sustained in this region in the long-term.
186	
187	Ethics statement All animal research was conducted in accordance with relevant in country
188	protocols.
189	Data accessibility The species richness and environmental covariate data underlying this
190	study are archived in the Dryad Digital Repository at <u>http://dx.doi.org/10.5061/dryad.01sd0</u> .
191	Individual species data are archived by BirdLife International (<u>www.seabirdtracking.org</u>).
192	Author contributions WJG conceived the study, conducted the data analysis and drafted the
193	manuscript; SCV supervised the project; all authors provided data, contributed to article
194	drafts, approved the final version of this manuscript and agree to be held accountable for the
195	content.
196	Competing interests The authors declare no competing interests.
197	Funding statement Funding for this work was provided by the Peninsula Research Institute
198	for Marine Renewable Energy, EU INTERREG project CHARM III, NERC
199	(NE/G001014/1), MINECO CGL2013-42585-P, Defra's Darwin Initiative and Centre
200	National de la Recherche Scientifique.

201	Acknowledgements We thank all those who supported fieldwork logistics and granted			
202	permission for work. Four anonymous reviewers provided comments that greatly improved			
203	this m	anuscript.		
204				
205	Refe	rences		
206	1.	Mann, K. H. & Lazier, J. R. N. 2005 Dynamics of Marine Ecosystems. Third Edit.		
207		Malden, MA USA: Blackwell Publishing Ltd. (doi:10.1002/9781118687901)		
208	2.	Block, B. A. et al. 2011 Tracking apex marine predator movements in a dynamic		
209		ocean. Nature 475, 86–90. (doi:10.1038/nature10082)		
210	3.	Hyrenbach, K. D., Forney, K. A. & Dayton, P. K. 2000 Marine protected areas and		
211		ocean basin management. Aquat. Conserv. Freshw. Ecosyst. 10, 437-458.		
212	4.	Islam, M. S. & Tanaka, M. 2004 Impacts of pollution on coastal and marine		
213		ecosystems including coastal and marine fisheries and approach for management: a		
214		review and synthesis. Mar. Pollut. Bull. 48, 624-649.		
215		(doi:10.1016/j.marpolbul.2003.12.004)		
216	5.	Inger, R. et al. 2009 Marine renewable energy: potential benefits to biodiversity? An		
217		urgent call for research. J. Appl. Ecol. 46, 1145-1153. (doi:10.1111/j.1365-		
218		2664.2009.01697.x)		
219	6.	Sydeman, W. J., Poloczanska, E., Reed, T. E. & Thompson, S. A. 2015 Climate		
220		Change and marine vertebrates. <i>Science</i> 350 , 772–777. (doi:10.1126/science.aac9874)		
221	7.	Pauly, D. & Christensen, V. 1995 Primary production required to sustain global		
222		fisheries. <i>Nature</i> 374 , 255–257.		

223	8.	Laurans, M., Gascuel, D., Chassot, E. & Thiam, D. 2004 Changes in the trophic
224		structure of fish demersal communities in West Africa in the three last decades. Aquat.
225		Living Resour. 17, 163–173.
226	9.	Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres Jr., F. 1998 Fishing
227		Down Marine Food Webs. Science 279, 860–863. (doi:10.1126/science.279.5352.860)
228	10.	Worm, B. et al. 2009 Rebuilding Global Fisheries. Science 325, 578–585.
229		(doi:10.1126/science.1173146)
230	11.	Wynn, R. B. & Knefelkamp, B. 2004 Seabird distribution and oceanic upwelling off
231		northwest Africa. Br. Birds 97, 323–335.
232	12.	Camphuysen, K. C. J. & van der Meer, J. 2005 Wintering seabirds in West Africa:
233		foraging hotspots off Western Sahara and Mauritania driven by upwelling and
234		fisheries. African J. Mar. Sci. 27, 427–437.
235	13.	Eckert, S. A. 2006 High-use oceanic areas for Atlantic leatherback sea turtles
236		(Dermochelys coriacea) as identified using satellite telemetered location and dive
237		information. Mar. Biol. 149, 1257–1267.
238		
	14.	Lewison, R. L., Crowder, L. B., Read, A. J. & Freeman, S. A. 2004 Understanding
239	14.	Lewison, R. L., Crowder, L. B., Read, A. J. & Freeman, S. A. 2004 Understanding impacts of fisheries bycatch on marine megafauna. <i>Trends Ecol. Evol.</i> 19 , 598–604.
239 240	14.	Lewison, R. L., Crowder, L. B., Read, A. J. & Freeman, S. A. 2004 Understanding impacts of fisheries bycatch on marine megafauna. <i>Trends Ecol. Evol.</i> 19 , 598–604. (doi:10.1016/j.tree.2004.09.004)
239240241	14. 15.	Lewison, R. L., Crowder, L. B., Read, A. J. & Freeman, S. A. 2004 Understanding impacts of fisheries bycatch on marine megafauna. <i>Trends Ecol. Evol.</i> 19 , 598–604. (doi:10.1016/j.tree.2004.09.004) Grémillet, D., Peron, C., Provost, P. & Lescroël, A. 2015 Adult and juvenile European
239240241242	14. 15.	Lewison, R. L., Crowder, L. B., Read, A. J. & Freeman, S. A. 2004 Understanding impacts of fisheries bycatch on marine megafauna. <i>Trends Ecol. Evol.</i> 19 , 598–604. (doi:10.1016/j.tree.2004.09.004) Grémillet, D., Peron, C., Provost, P. & Lescroël, A. 2015 Adult and juvenile European seabirds at risk from marine plundering off West Africa. <i>Biol. Conserv.</i> 182 , 143–147.
239240241242243	14. 15.	 Lewison, R. L., Crowder, L. B., Read, A. J. & Freeman, S. A. 2004 Understanding impacts of fisheries bycatch on marine megafauna. <i>Trends Ecol. Evol.</i> 19, 598–604. (doi:10.1016/j.tree.2004.09.004) Grémillet, D., Peron, C., Provost, P. & Lescroël, A. 2015 Adult and juvenile European seabirds at risk from marine plundering off West Africa. <i>Biol. Conserv.</i> 182, 143–147. (doi:10.1016/j.biocon.2014.12.001)

Submitted to Biology Letters

245		(Flanders Marine Institute) 2015 MarineRegions.org. Accessed at
246		http://www.marineregions.org on 2015-06-23.
247	17.	Matthiopoulos, J. 2003 The use of space by animal as a function of accessibility and
248		preference. Ecol. Modell. 159, 239–268. (doi:10.1016/S0304-3800(02)00293-4)
249	18.	Grecian, W. J. et al. In press. Data from: Seabird diversity hotspot linked to ocean
250		productivity in the Canary Current Large Marine Ecosystem.
251	19.	Wood, S. N. 2006 Generalized Additive Models: An Introduction with R. Chapman and
252		Hall/CRC.
253	20.	Bartoń, K. 2015 MuMIn: Multi-Model Inference. R package version 1.15.1.
254	21.	R Core Team 2015 R: A language and environment for statistical computing. R Found.
255		Stat. Comput.
256	22.	Wood, S. N., Bravington, M. V. & Hedley, S. L. 2008 Soap film smoothing. J. R. Stat.
257		Soc. Ser. B Stat. Methodol. 70, 931–955. (doi:10.1111/j.1467-9868.2008.00665.x)
258	23.	Costa, D. P., Breed, G. a. & Robinson, P. W. 2012 New Insights into Pelagic
259		Migrations: Implications for Ecology and Conservation. Annu. Rev. Ecol. Evol. Syst.
260		43 , 73–96. (doi:10.1146/annurev-ecolsys-102710-145045)
261	24.	Scales, K. L., Miller, P. I., Hawkes, L. A., Ingram, S. N., Sims, D. W. & Votier, S. C.
262		2014 On the Front Line: frontal zones as priority at-sea conservation areas for mobile
263		marine vertebrates. J. Appl. Ecol., 1575–1583. (doi:10.1111/1365-2664.12330)
264	25.	Okes, N. C., Hockey, P. a. R., Pichegru, L., Lingen, C. D. Van Der, Crawford, R. J. M.
265		& Grémillet, D. 2009 Competition for shifting resources in the southern Benguela
266		upwelling: Seabirds versus purse-seine fisheries. Biol. Conserv. 142, 2361-2368.

- 267 (doi:10.1016/j.biocon.2009.05.031)
- 268 26. Votier, S. C. et al. 2004 Changes in fisheries discard rates and seabird communities. Nature 427, 727–730. 269
- 27. Pauly, D. et al. 2014 China's distant-water fisheries in the 21st century. Fish Fish. 15, 270 271 474–488. (doi:10.1111/faf.12032)
- 272 28. Agnew, D. J., Pearce, J., Pramod, G., Peatman, T., Watson, R., Beddington, J. R. &
- It ating the Pitcher, T. J. 2009 Estimating the Worldwide Extent of Illegal Fishing. PLoS One 4, 273
- e4570. 274

275

276 Table 1 Summary statistics for tracking by seabird species. Values represent mean \pm SD.

277

Species	N	% visiting CCLME	Winter period (days)	Number of locations	Locations in CCLME	Proportion in CCLME
Lesser black- backed gull	7	71.4	208.4 ± 27.4	151.1 ± 20.8	21.0 ± 24.0	0.09 ± 0.10
Northern gannet	34	58.8	93.6 ± 13.4	89.6 ± 15.4	25.7 ± 29.8	0.26 ± 0.29
Great skua	16	25	92	91.9 ± 0.4	11.1 ± 21.8	0.12 ± 0.24
Cory's shearwater	19	57.9	133.9 ± 29.9	131.5 ± 27.4	13.8 ± 23.2	0.10 ± 0.18
Scopoli's shearwater	9	100	104.5 ± 40.8	102.3 ± 39.6	35.4 ± 36.9	0.35 ± 0.28
Sabine's gull	7	100	287.9 ± 12.7	228.6 ± 18.6	22.3 ± 3.1	0.08 ± 0.01
South polar skua	19	100	237.2 ± 35.1	176.3 ± 21.6	8.7 ± 14.3	0.04 ± 0.07
Common tern	12	100	254.3 ± 67.0	181.3 ± 64.0	62.8 ± 51.8	0.24 ± 0.22

For full methods and description of winter period see supplementary material

278 279

280

 Table 2 Model selection testing correlations between relative richness and sea surface
 281

temperature (SST) and chlorophyll a (CHL). The full model included a soap film smooth 282

term (XY) and measure of habitat availability (null). Models shown are those within $6 \Delta AIC$ 283

284 of the best-supported model.

285

of the best-supported model.					
Rank	Parameters	df	AIC	ΔAIC	
1	SST + CHL + XY + null	173	5573	0.00	
2	SST + XY + null	175	5576	2.84	
3	SST + CHL + XY	171	5578	4.47	
4	SST + XY	173	5579	6.28	

286 Adj R^2 of best-supported model = 0.60

287

288

- Figure 1 Links between (a) Relative richness of eight seabird species tracked from pan-289
- 290 Atlantic colonies between 2000 and 2011; and (b) Sea surface temperature and (c)
- Chlorophyll a. Dark line in (a) represents the boundary of the Canary Current Large Marine 291
- 292 Ecosystem; blue dots represent colonies of origin for tracked birds, indicated by arrows. Dark
- lines in (b) and (c) represent model-estimated response; dashed lines 95% CI; light grey dots 293
- 294 indicate the distribution of data.
- 295

Figure 1 Links between (a) Relative richness of eight seabird species tracked from pan-Atlantic colonies between 2000 and 2011; and (b) Sea surface temperature and (c) Chlorophyll a. Dark line in (a) represents the boundary of the Canary Current Large Marine Ecosystem; blue dots represent colonies of origin for tracked birds, indicated by arrows. Dark lines in (b) and (c) represent model-estimated response; dashed lines 95% CI; light grey dots indicate the distribution of data.

figure 1 508x508mm (72 x 72 DPI)