
1 

 

Mapping mean total annual precipitation in Belgium, by 1 

investigating the scale of topographic control at the regional 2 

scale. 3 

 4 

 5 

Meersmans, J.1*, Van Weverberg, K.2, De Baets, S.1, De Ridder, F.3 , Palmer, S.J. 1, van Wesemael, B.4, 6 

Quine, T.A.1 7 

1University of Exeter, College of Life and Environmental Science, Department of Geography 8 

2Met Office, Exeter, United Kingdom  9 

3Flemish Institute for Technological Research (VITO), Energy & Technology 10 

4Université catholique de Louvain, Georges Lemaitre Center for Climate Research, Earth and Life 11 

Institute, Louvain-la-neuve, Belgium 12 

 13 

 14 

*corresponding author; e-mail: j.meersmans@exeter.ac.uk, Tel: +44(0)1392.72.44.88, Fax: 15 

+44(0)1392.72.33.42 16 

 17 

 18 

 19 

mailto:j.meersmans@exeter.ac.uk


2 

 

Abstract 20 

 21 

Accurate precipitation maps are essential for ecological, environmental, element cycle and 22 

hydrological models that have a spatial output component. It is well known that topography has a 23 

major influence on the spatial distribution of precipitation and that increasing topographical 24 

complexity is associated with increased spatial heterogeneity in precipitation. This means that when 25 

mapping precipitation using classical interpolation techniques (e.g. regression, kriging, spline, inverse 26 

distance weighting,…), a climate measuring network with higher spatial density is needed in 27 

mountainous areas in order to obtain the same level of accuracy as compared to flatter regions. In 28 

this study, we present a mean total annual precipitation mapping technique that combines 29 

topographical information (i.e. elevation and slope orientation) with average total annual rain gauge 30 

data in order to overcome this problem. A unique feature of this paper is the identification of the 31 

scale at which topography influences the precipitation pattern as well as the direction of the 32 

dominant weather circulation. This method was applied for Belgium and surroundings and shows 33 

that the identification of the appropriate scale at which topographical obstacles impact precipitation 34 

is crucial in order to obtain reliable mean total annual precipitation maps. The dominant weather 35 

circulation is determined at 260°. Hence, this approach allows accurate mapping of mean annual 36 

precipitation patterns in regions characterized by rather high topographical complexity using a 37 

climate data network with a relatively low density and/or when more advanced precipitation 38 

measurement techniques, such as radar, aren’t available, for example in the case of historical data. 39 

 40 
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 43 

1. Introduction 44 

 45 

Precipitation is widely recognised as an important factor controlling environmental processes and 46 

therefore forms an essential input variable in many applications aimed at predicting or investigating 47 

these processes. Some of these applications, such as models predicting avalanches or landslides 48 

(Nolin & Daly, 2006; Van Den Eeckhaut, M., 2006) require both the temporal and spatial scale of the 49 

input precipitation fields to be very detailed. Other applications, in contrast, such as regional land use 50 

models, biogeochemical cycle models (e.g. carbon storage) or models of the co-evolution of 51 

mountain ranges and climate systems only require very detailed spatial scales, while fairly coarse 52 

monthly or even annual temporal scales are sufficient (e.g. Daly et al. 1993; Kittel et al., 1997; Roe 53 

and Baker 2006, Milne et al. 2007; Meersmans et al. 2012).  54 

 55 

Recent studies (e.g. Parsons and Foster 2011) have suggested that the spatial variability of long-term 56 

average precipitation might be fairly large even at a within field/(sub)catchment level (resolution < 1 57 

km), consequently questioning the use of anthropogenic radionuclide Cesium (137Cs), i.e. globally 58 

deposited following atmospheric nuclear-bomb tests in the past (mainly 1950-1960’s),  as a proxy for 59 

erosion (Parsons and Foster 2011). Hence, identification of the resolution at which topography 60 

influences the spatial distribution of precipitation will be essential to evaluate the validity of 61 

commonly used precipitation fallout related radionuclide proxies (such as 137Cs) at the landscape 62 

scale. One of the main reasons for the very large spatial variability of precipitation is its strong 63 

dependence on the terrain altitude and steepness as well as the orientation of the slopes. The 64 

literature indicates that even low elevation macro-relief structures can exhibit a significant effect on 65 

surface precipitation rates (e.g. Minder et al. 2008). An extensive review of the physical mechanisms 66 
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leading to larger precipitation amounts over terrain has been given recently by for example Roe 67 

(2005) and Houze (2012). Houze (2012) describes at least two distinct mechanisms that could lead a 68 

pre-existing frontal cloud to be enhanced and produce a precipitation maximum on the upwind side 69 

of a low barrier. Firstly, the terrain could facilitate the gradual rise of warm air ahead of frontal 70 

systems, while at the lee side of the hill the precipitating capacity is weakened by the down-slope air 71 

motion (Houze, 2012). Secondly, the feeder-seeder mechanism could enhance precipitation rates 72 

onto a ridge. In this case, an upper-level cloud (the feeder) is producing precipitation, while a low, 73 

shallow, orographically-induced cloud (the seeder) could act to enhance the precipitation by 74 

accretion of the cloud droplets onto the precipitating particles from the cloud above. During 75 

summer, convective events also contribute significantly to the total rainfall in the region of interest 76 

(Roe, 2005). Convective events might be affected by low terrain in various ways, e.g. by triggering by 77 

lee-waves in the wake of a hill (Houze, 2012). By the mechanism listed above, low elevation barriers 78 

do have the potential to influence the dominant weather circulation and, therefore, could exercise a 79 

primary control on the regional spatial precipitation pattern in these environments.  80 

 81 

Despite the widely recognised importance of the spatial distribution of precipitation over complex 82 

terrain, many regional climate inventories are based on long term observations from sparse 83 

meteorological stations. For example, relatively coarse precipitation maps are available at the 84 

national or continental scale, from the ATEAM project (Mitchell et al., 2004). Most often, point data 85 

are extrapolated to a continuous grid by using classical interpolation techniques, such as nearest 86 

neighbor methods, local linear regression, inverse distance weighting, spline or kriging methods 87 

(without or with external drift) (e.g. Goovaerts, 2000; Lloyd, 2005; Daly, 2006; Basistha et al. 2008; 88 

Tobin et al. 2011). In most cases these techniques are not satisfactory, since the spatial 89 

heterogeneity of precipitation and their resolutions are sub-optimal for ecological and environmental 90 

modelling. Mapping precipitation in regions characterized by complex topography, such as 91 
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mountainous regions, demands higher density measurements in order to obtain a climate map with a 92 

spatially uniform quality level when using classical interpolation techniques (Daly, 2006). 93 

Nevertheless, the cost of monitoring at sufficient density may be prohibitive and there is, therefore, 94 

a need to develop strategies for interpolation of data that capture the structure of precipitation 95 

patterns, which will help in setting-up more efficient monitoring networks.  96 

 97 

This has lead over the last decades to increased efforts in developing techniques to obtain a more 98 

accurate interpolation, based on elevation data (e.g. Sen and Habib 2000, Lloyd 2005, Di Luzio et al. 99 

2008, Gottardi et al. 2012) or using the slope orientation of mountain ranges (e.g. Turner et al. 2009, 100 

Hughes et al. 2008). One of the most promising approaches to the characterisation of topographic 101 

control on spatial patterns of precipitation is the Precipitation-elevation Regressions on Independent 102 

Slopes Model (PRISM) (e.g. Daly et al. 2002). In this model precipitation is interpolated for each grid 103 

cell of the digital elevation model (DEM) based on a simple weighted precipitation-elevation 104 

regression with distance to station, coastal proximity, general slope orientation and vertical layer 105 

(inversion layer or not) as weighting factors. In the application of PRISM, it is critical to understand at 106 

which scale precipitation is influenced by the topography. Daly et al. (2002) explored this question 107 

using 6 DEMs with a differing smoothing level, based on station data density and local terrain 108 

complexity.  109 

 110 

Even more advanced techniques combine information obtained from weather radar with that from 111 

rain gauges. Goudenhoofdt and Delobbe (2009) showed that a recent technique based on the 112 

geostatistical merging of weather radar and rain gauges provides spatially and temporally accurate 113 

daily rainfall accumulation predictions. While this approach certainly has the potential to improve 114 

our understanding of the relation between topography and precipitation, the fairly recent advent of 115 
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weather radars prohibits the application of this approach to historical data, long time periods or 116 

regions not covered by weather radar.   117 

 118 

Hence, there is still a need for interpolation techniques of intermediate complexity to obtain 119 

reasonable estimates of surface precipitation with high spatial resolution, only based on information 120 

from rain gauges and terrain characteristics. One of the main caveats with techniques like PRISM, is 121 

that it is not known a priori what the optimal scale is of the input fields. In addition, information on 122 

the prevailing rain-bearing wind direction could be a significant improvement to PRISM.  To 123 

overcome this shortcoming, recently Gottardi et al. (2012) conducted a novel methodology to map 124 

daily precipitation amounts in main mountain ranges in France (i.e. Pyrenees, Central Massif and 125 

Alps) by combining a local elevation–precipitation model (comparable to PRISM) with a weather 126 

pattern classification. They defined 8 different weather patterns (e.g. Southwest circulation or 127 

anticyclonic) and an associated linear orographic precipitation gradient. The gridded precipitation 128 

was a function not only of elevation, but also of the weather-pattern specific gradient, giving weights 129 

to neighbouring stations using a “crossing distance” and taking into account crests and valleys 130 

between the stations and the grid cell of interest.  While this method provides very detailed daily 131 

estimates of surface precipitation, it is also computationally expensive, given the identification of the 132 

weather pattern for each day.  133 

 134 

 This study discusses a novel, computationally affordable interpolation technique, using the 135 

dominant rain-bearing wind direction and the optimal scales of topographical variables, aimed 136 

specifically at regions with sparse data over terrain with intermediate complexity or to reconstruct 137 

very detailed historical precipitation maps. The scale at which relief influences precipitation will be 138 

investigated, and the direction of the dominant weather circulation identified. These two 139 



7 

 

components form essential elements in the present novel spatial precipitation model approach, 140 

which will help us to support the hypothesis of the existence of a rain shadow effect in these 141 

environments. More specifically, this methodological framework will be applied to a specific case 142 

study, i.e. predicting average yearly precipitation (1960-1990) in Belgium and surroundings, including 143 

the  Ardennes – Eifel massif situated at the Belgian- German border (Fig. 1).  144 

 145 

 146 

2. Material and methods 147 

 148 

2.1. Study area 149 

 150 

The northern and western parts of Belgium are situated in the North-west European lowlands and 151 

are characterized mainly by altitudes less than 100 meters above sea level. The Ardennes-Eiffel 152 

massif covers the eastern and southern part of the study area and reaches altitudes up to 700 meters 153 

(Fig. 1-A). The study area is characterized by a temperate maritime climate, with a mean annual 154 

temperature and total annual precipitation amounts ranging from about 10°C and 700 mm in the 155 

west to about 6°C and 1400 mm in the southeast. 156 

 157 

Figure 1-B shows that the 30-year average annual precipitation amounts of the stations in Kall (860 158 

mm yr-1) and Nuerburg (872 mm yr-1), situated in the eastern part of the Ardennes - Eiffel massif at 159 

altitudes of respectively 550 and 629 m asl, are remarkably low compared to the stations near the 160 

summit and/or situated on the western part at similar or even lower altitudes (e.g. La Gleize:1212 161 
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mm yr-1 at 412 m asl, Eupen Ternell: 1326 mm yr-1 at 565 m asl, Mont Rigi: 1450 mm yr-1 at 680 m 162 

asl). Furthermore, the 30-year average annual precipitation amount in Mayen (230 m asl.) at 596 mm 163 

yr-1 is remarkably low. This station is situated in the most eastern part of the Ardennes – Eiffel massif 164 

and so probably very well shielded from east – west precipitation supply by the configuration of the 165 

mountain range. This clearly shows the existence of a rain shadow effect. 166 

 167 

2.2. Climate and Topographical data 168 

 169 

Mean long-term climate data for the period 1961-1990 were obtained for Belgian stations from the 170 

‘Koninklijk Meteorologisch Instituut (KMI)’, for the Southern part of The Netherlands from the 171 

‘Koninklijk Nederlands Meteorologisch Instuut (KNMI)’, for West Germany from the ‘Deutscher 172 

Wetterdienst (DWD)’ and for North France from ‘Meteo France’. In total 201 meteorological stations, 173 

with a good geographical spread, were selected for the analysis (fig. 1-A). 174 

 175 

The “SRTM Digital Elevation Data” distributed by “The CGIAR Consortium for Spatial Information 176 

(CGIAR-CSI)” with a resolution of 90 meters and produced by the NASA originally, were used as 177 

topographical source data (The CGIAR Consortium for Spatial Information, 2008).  178 

 179 

2.3. Precipitation model 180 

  181 

‘Altitude’ and ‘deviation of the orientation of the slope to the orientation of the dominant weather 182 

circulation’ were selected as input variables for the model. The orientation of the dominant rain-183 
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bearing weather circulation in the study area is from the west, as shown by e.g. Brisson et al. (2011). 184 

This is because all vast water bodies (i.e. North Sea and Atlantic Ocean) are situated in the west, and 185 

hence the dominant westerly winds at this latitude advect relative humid maritime air. This implies 186 

that under this assumption the ‘deviation of the orientation of the slope to the ODWC’ will express 187 

the angle between the west and the orientation of the slope. So under the assumption that west is 188 

the direction of the dominant weather circulation, the more the slope orientation deviates from the 189 

west, the higher this value will be. For example, north and south oriented slopes are characterized by 190 

a value of 90°, while east oriented slopes have a value of 180°. 191 

 192 

Moreover, we note that the influence of slope orientation on precipitation strongly depends on its 193 

altitude above sea level. For example, seawards oriented slopes can influence the weather 194 

circulation more efficiently when they are situated at higher altitude. Consequently, the ‘deviation of 195 

the orientation of the slope to the ODWC’ variable is expressed in the final model as an interaction 196 

term with altitude (eq. 1).  197 

 198 

cSHbHaprec  ... 21
 (1) 199 

where: 200 

prec = long term (30 yrs) average annual precipitation amount (mm yr-1) 201 

H1 = height above sea level (m) 202 

H2 = height above sea level (m) in the interaction term 203 

S = deviation of the orientation of the slope to the direction of the dominant weather circulation 204 

(ODWC) 205 
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a, b, c = model parameters 206 

 207 

Note that the present model has been calibrated based on the 30-year average annual precipitation 208 

amounts from the 201 meteorological stations, but subsequently, this calibrated model has been 209 

applied in a spatial explicit way in order to obtain a precipitation map covering the entire study area. 210 

Moreover, although the H1 and H2 variables in this model both represents the height above sea level 211 

(either as a separate term or embedded in an interaction term), the associated values will most 212 

probably be different as they can be abstract from different levels of topographical detail as obtained 213 

after applying the present topographical smoothing procedure (see section 2.4 and fig. 2 for more 214 

details). 215 

 216 

2.4. Detection of the scale of topographical control and orientation of the dominant weather 217 

circulation 218 

 219 

As this study aims to detect the scale at which low elevation topographical barriers within the study 220 

area impact the spatial distribution of mean total annual precipitation, the present model’s (eq. 1) 221 

performance was investigated using a wide range of input variable maps (H1, H2, S), reflecting 222 

different degrees of spatial heterogeneity. This allowed us to identify the optimal level of 223 

topographical detail of these variables in order to map mean total annual precipitation over the 224 

entire study area. In addition, the detection of the ODWC is another important element in the 225 

present methodology. Hence, the above made assumption of west as ODWC will be tested and 226 

refined if needed. A detailed description of the associated methodological approach can be found 227 

below, and a schematic overview is provided in figure 2. 228 
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 229 

After converting the original DEM into maps presenting the deviation of the slope towards 19 230 

different potential ODWCs, i.e. every 10° between South (180°) and North (360°), the model’s 231 

topographical input maps (H1, H2, S) were aggregated to different spatial resolutions. In total, 80 232 

different levels of aggregation were considered, resulting in a set of maps ranging in resolution from 233 

90 meters to 103.5 kilometers for each of the input variables. The resulting aggregated input maps 234 

were smoothed to remove unrealistically sharp gradients before running the model and producing 235 

spatial predictions. While all model input maps were resampled to a resolution of 90 meters during 236 

the smoothing procedure, it is important to note that the same level of detail is maintained (i.e. 237 

determined by the aggregated map prior to smoothing). This allowed us to use continuous input 238 

maps and therefore make more realistic spatial model predictions. After comparing the performance 239 

of two commonly used interpolation techniques (i.e. “Spline” and “Natural Neighbor”, e.g. Lam 240 

(1983)) for both “Altitude” and “Deviation of the orientation of the slope towards the West”, our 241 

analysis led us to use “Spline” to smooth H1 and H2 and “Natural Neighbor” to smooth S model input 242 

maps (Fig. 3). For each of the 9,728,000 combinations of smoothed H1, H2 and S input maps, 243 

corresponding topographical values for all the meteo-stations were derived from the maps and the 244 

model (eq. 1) was applied to estimate 30-year average annual precipitation amounts (mm yr-1). 245 

 246 

For each potential ODWC, a combination of the H1, H2 and S maps with the highest determination 247 

coefficient (R²), was selected and compared to detect a more accurate ODWC. The finally selected 248 

model output (i.e. with the overall highest R²) was combined with associated H1, H2 and S maps at 249 

corresponding resolutions in order to produce a 30-year average annual precipitation (mm yr-1) map 250 

for Belgium.  251 

 252 
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2.5. Cross Validation 253 

 254 

In addition, for every potential ODWC, a repeated 10-fold cross validation procedure was carried out 255 

(1000 replicates) on each best model fit (i.e. map resolutions with highest R²). Thereby, 90% of the 256 

data was randomly chosen for calibration and 10% for validation as it is commonly recommended 257 

(Hastie et al. 2001). By comparing the predicted and observed values of the validation samples Root 258 

Mean Square Error (RMSE, eq. 2) and Ratio of Performance to Deviation (RPD, eq. 3) of the model 259 

were calculated. The latter expresses how many times the predictive ability of the model is stronger 260 

than just using the average precipitation value. In other words, RPD values of 2, 3 and 4 mean that 261 

respectively 50%, 66.67% and 75% of the total variation in the validation dataset is captured by the 262 

model. 263 

 264 

²)(.
1

1

)()(



n

i

iprediobs PP
n

RMSE  (2) 265 

 266 

Where RMSE is Root Mean Square Error (mm yr-1), n is overall number of samples used in the 267 

validation procedure, Pobs(i) is the observed value of ith 30-year average annual precipitation 268 

measurement (mm yr-1) and Ppred(i) is the predicted value of ith 30-year average annual precipitation 269 

measurement (mm yr-1). 270 

 271 

RMSE

STD
RPD   (3) 272 

 273 
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With RPD being the ratio of performance to deviation and STD is standard deviation of all total yearly 274 

precipitation measurements (mm yr-1). 275 

 276 

 277 

3. Results & Discussion 278 

 279 

3.1. Topographical smoothing 280 

 281 

In figure 3 the performances of the interpolation techniques “Spline” and “Natural Neighbor” in 282 

order to smooth “altitude” and “deviation of the orientation of the slope to the West” maps were 283 

analysed. This was based on RMSE-output obtained by comparing the basic topographical data (i.e. 284 

SRTM – DEM derived) at a resolution of 90 meters with a range of smoothed maps, i.e. at 285 

corresponding aggregation resolution levels of 0.45km, 0.9km, 4.5km, 9km, 45km, 90km, considering 286 

3 different height classes (i.e. < 200m; 200-400m and > 400m). These results show that Spline is the 287 

best interpolation method when smoothing the altitude (H1, H2, eq. 1) maps (i.e. lowest RMSE), at 288 

least when considering height classes < 200m and > 400m. No clear differences have been found for 289 

the 200-400 m height class. On the contrary, when considering the “deviation of the orientation of 290 

the slope to the West” Natural Neighbor seems to be the best interpolation method, with lower 291 

RMSE values than Spline for all altitude classes. Moreover, it’s important to note that Spline returns 292 

values out of the theoretical possible range of 0°-180°, which is an additional reason why Natural 293 

Neighbor is the most appropriate interpolation technique to be used when smoothing the “deviation 294 

of the orientation of the slope to the ODWC” (S, eq. 1) maps. 295 

 296 
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3.2. Model parameter identification and performance 297 

 298 

Table 2 shows that the best model fit, i.e. with highest R², was obtained using the smoothed altitude 299 

maps derived from aggregated DEMs with a resolution of 8.1 and 90 kilometers, for respectively H1 300 

and H2 (eq. 1), and a “deviation of the orientation of the slope to 260° (i.e. the orientation of the 301 

dominant weather circulation, ODWC) map” with a resolution of 30.6 kilometers. This model fit has 302 

an R² value of 0.82 and all estimated parameters are significant (p<0.05) (table 1). Table 2 shows an 303 

overview of the top 10 of best model fits, ranked based on R2, with annotation of ODWC and 304 

aggregation resolution of smoothed model input maps (H1, H2 and S (eq. 1)). It is remarkable that 305 

within this top 10 of best model runs (with R2 values ranging between 0.8149 and 0.8192), there is 306 

only limited variation in ODWC and aggregation resolution of smoothed model input maps. For 307 

example besides 6 model fits with an ODWC of 260°, 4 model fits have an ODWC of 270°, which may 308 

suggest that more precisely the ODWC is situated somewhere in between 260° and 270°.   Figure 4 309 

shows the determination coefficients of the different model runs as function of the aggregation 310 

resolution of the smoothed DEM (H1 and H2) and S maps including the selected best model run at R2 311 

= 0.82. The trendlines in these figures are a combination of a power and exponential law. It is 312 

interesting to note that for variable H1, an additional linear term was required to fit the distribution, 313 

especially the very low R2 values at lower resolutions, indicating the importance of the term of 314 

variable H1 in the model as well as the selection of the appropriate level of spatial detail of these 315 

variables. Despite the fact that 8.1 km has been identified as the most appropriate aggregation 316 

resolution of H1 input maps, the trendline (reaching its max. value at a resolution of 4.5 km) indicates 317 

that using an H1 map with a finer resolution (i.e. within the 4-8 km resolution range) seems to be a 318 

valuable option as well (Fig 4a). The range of potentially useful aggregation resolutions of maps 319 

representing the variables in the interaction factor is wider with roughly 50-100 km for H2 (i.e. 320 

trendline’s max. value at 70.8 km, Fig. 4b) and 20-40 km for S (i.e. trendline’s max. value at 30.2 km, 321 
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Fig. 4c). In addition the range of R2 values covered by these variables (i.e. 0.64-0.82) shows that 322 

including the interaction factor in the model instead of simplified version whereby precipitation is 323 

only predicted as a linear function of altitude, results in a significant improvement of the R² with 0.18 324 

(Fig. 4b,c). Moreover, the model cross-validation shows a root mean square error (RMSE) of 66.0 mm 325 

yr-1 and ratio of performance to deviation (RPD) of 2.33. Figure 5 illustrates RMSE and RPD values of 326 

the H1, H2 and S maps combination with the maximal R² as a function of orientation of the dominant 327 

weather circulation. The results show that the selected best model fit has the best validation 328 

statistics, i.e. lowest RMSE and highest RPD, and underlines that the dominant weather circulation in 329 

Belgium is most probably at or very close to 260°.  330 

 331 

The precipitation map we derived (figure 6) shows that precipitation increases with increasing 332 

altitude (Fig. 6). Furthermore, as this study detects a ODWC at an aspect of 260° for the study area, 333 

the Ardennes – Eiffel massif is influenced by a mainly west-east oriented weather circulation, 334 

resulting in higher precipitation amounts at the western side of the Ardennes massif (Belgium) 335 

compared to the eastern side (Eiffel - Germany) (Fig. 6). To detect this effect one should consider the 336 

macro relief structure of the topographical barrier. These findings underline the importance of the 337 

influence of lower elevation relief units on the spatial distribution of precipitation patterns and 338 

clearly show orographic precipitation and the existence of a rain shadow effect, i.e. in this particular 339 

study, in the western and the eastern parts of the Ardennes-Eiffel massif, respectively. Furthermore, 340 

the model predicts that smaller topographical barriers (i.e. mostly north-south oriented relief units 341 

with dimensions between 10 and 50 kilometers) have an influence on spatial distribution of 342 

precipitation as well, such as the north-south oriented cuestas in the North-east of France (A) and 343 

the plateau in the eastern part of Limburg (north-east Belgium, B) or as indicated by the higher 344 

precipitation values in the Condroz region (C) as compared to Fagne-Famenne depression (D) (Fig. 1 345 

and 6). 346 
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 347 

In general, relative errors are restricted and in most areas to below 10% (Fig. 6). No clear dominant 348 

regional pattern error can be detected. Nevertheless most important relative errors are found in the 349 

western part of the Ardennes-Eifel massif, characterized by high precipitation amounts, with more 350 

precisely a clear local underprediction in the South - Southwest and Northwest (I) and an 351 

overprediction in central (II) parts of this particular region. Furthermore, one can observe a general 352 

tendency of overprediction east of the Eifel (i.e. Mosel and Rhine Valley (III), as well as in the most 353 

western part of Belgium and Northwest of France (IV) and an underprediction in the North of 354 

Belgium (V) as well is in the Northeastern corner of the study area (VI) (Fig. 5). 355 

 356 

 357 

The present precipitation mapping method answers two important questions:  358 

1) at which scale does topography influence the spatial pattern of precipitation? and  359 

2) what is the orientation of the dominant weather circulation (ODWC)?  360 

In comparison to classical interpolation techniques, it allows accurate mapping in regions 361 

characterized by high topographical complexity without the need of a dense measuring network. 362 

Moreover, as the input data is restricted, i.e. a rather coarse DEM (e.g. SRTM 90m covering entire 363 

world and free available) and climate data at common measurement density, we believe that the 364 

method has great potential to be applied in other regions characterized by a comparable 365 

topographical complexity in order to improve particular spatial prediction of the precipitation 366 

pattern. In addition, as the present method is based on a simple formula, it has the advantage of 367 

being a computationally ‘low-cost’ approach, increasing its applicability, especially as compared to 368 

other recently developed advanced precipitation interpolation methods (e.g. Gottardi et al. 2012) 369 
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where for each spatial-temporal unit (pixel / day), a calibration procedure needs to be carried out.  A 370 

simplified version of the present model (i.e. without ODWC detection component) has been recently 371 

applied successfully in a study conducting a spatial and temporal analysis of soil organic carbon in 372 

Belgium (Meersmans et al. 2011), underlining the need of detailed precipitation maps (and mapping 373 

methods) as essential input information for accurate spatial prediction of (soil) key environmental 374 

parameters. Furthermore, it is important to notice that the present methodology complements more 375 

advanced techniques, making use of radar and providing spatial information of precipitation at very 376 

fine spatial and temporal scales (Goudenhoofdt and Delobbe, 2009). This is especially relevant for 377 

regions with a high topographical complexity, but characterized by sparse climatological data 378 

network and/or when the aim is to map historical precipitation data (i.e. when radar was not yet 379 

available or for averages over longer periods in time). Finally, the fact that 8, 36 and 90 kilometer are 380 

identified as the optimum scales at which topography influences precipitation (respectively for H1, S 381 

and H2 (see eq. 1)), seems to reject Parsons and Foster`s (2011) concern regarding the use of 137Cs as 382 

a proxy for erosion due to a potential significant variation in fallout by precipitation at the within 383 

field scale (i.e. at resolutions below 1 kilometer). Nevertheless, it should be stressed that we 384 

identified the optimal scales for the topography for this region specifically, and therefore, it is 385 

probable that these optimal scales might be different for other regions in the world characterized by 386 

different a degrees of terrain complexity or macro meteorological settings, such as more alpine 387 

environments. 388 

 389 

3.3. Comparison against Kriging 390 

 391 

As previous studies have illustrated the high potential of using advanced geostatistical methods such 392 

as kriging to interpolate mean annual and seasonal precipitation amounts at the regional scale, 393 
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underlining the importance of the existence of a significant spatial autocorrelation in the data (e.g. 394 

Dingman et al., 1988; Goovaerts, 2000; Masson and Frei, 2014), we have (i) evaluated if the predicted 395 

precipitation amounts obtained by the presented model preserved the spatial variability of the 396 

underlying observations; and (ii) made a comparison between the precipitation maps obtained with 397 

the model presented in this study and by applying Ordinary Kriging. 398 

 399 

Figure 7 compares the semivariograms, as produced by ARC-GIS’ Geostatistical Wizard tool, from the 400 

observed data and the model predicted values. Although this figure shows that the average 401 

semivariance (see e.g. Goovaerts (2000) for equation) at any given distance between points is slightly 402 

lower in the case of the estimated values as compared to the original data, the nugget, range and sill 403 

are rather comparable considering both the Spherical and Gaussian model fits. When comparing 404 

predicted against observed values, the range is 20% and 15% higher, while the sill is 12% and 8% 405 

lower, for the Spherical and Gaussian model fits respectively (Fig. 7). These results indicate that the 406 

model output preserves to a large extent the spatial variability of the precipitation data. 407 

 408 

The comparison of the spatial patterns in precipitation obtained by the approach presented in this 409 

study (Fig. 8a) with Ordinary Kriging (Fig 8b), shows that Ordinary Kriging produces a much less 410 

detailed image in the more topographical complex zone in the Eastern part of the study area (i.e. 411 

along the Ardennes-Eifel massive) in comparison to the approach presented in this study (Fig. 8a-b). 412 

In contrast, in the Northern and Western parts of the study area, where no significant topographical 413 

features are present, Ordinary Kriging predicts a larger spatial variability in precipitation as compared 414 

to our approach (Fig. 8a-b). In addition, although the relative differences between both precipitation 415 

maps are generally larger than the relative model errors (bias) of the present approach (i.e. typically 416 

below 30% and 10%, respectively (Fig. 8c)), a spatial correlation exists between both. More precisely, 417 
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precipitation values are generally higher for this study’s modelled precipitation map compared to the 418 

map generated with Ordinary Kriging in areas in which the model is characterized by a regional 419 

overall trend of over-predictions (II, III & IV, Fig. 6 & 8c).  In areas in which the model is characterized 420 

by a regional overall trend of under-prediction (I, V & VI  Fig. 6& 8c), precipitation values are 421 

considerably lower on this study’s map compared to the map created by Ordinary Kriging. This 422 

indicates the largely complementary character of both methodologies, as it seems that Ordinary 423 

Kriging may have the potential to compensate for regional under/over predictions made by the 424 

presented model. Hence, one can conclude that there exists a scope for future research in which 425 

both interpolation methods could be combined in order to improve the overall performance of 426 

rainfall predictions in this  or  similar  study areas. Another potential future avenue of research can 427 

be the application of the presented model at smaller temporal scales such as seasonal or monthly 428 

averaged total rainfall amounts. 429 

 430 

4. Conclusion 431 

 432 

This study shows that long term mean annual precipitation amounts are strongly influenced by 433 

topography in lower elevation relief structures and offers a simple methodology to map 434 

climatologically averaged precipitations patterns in these regions when lacking a dense 435 

meteorological measuring network. Mean annual precipitation can be modelled as a function of 436 

smoothed altitude and slope orientation maps. Best results were obtained using smoothed altitude 437 

maps at aggregation resolutions of 8.1km and 90 km (i.e. outside (H1) and within interaction term 438 

(H2) of the model (eq. 1), respectively) and a smoothed slope orientation map showing a deviation of 439 

the slope orientation to the north aspect of 260°, indicating the orientation of the dominant weather 440 

circulation (ODWR), at aggregation resolution of 30.6 km. The resulting precipitation map shows 441 
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clearly that the Ardennes – Eiffel massif range determines, to a large extent, the spatial distribution 442 

of total yearly precipitation amount in the region. As this lower elevation relief units block 443 

precipitation supply from dominant west – east weather circulations, the western part of this 444 

topographical barrier receives remarkably higher precipitation amounts than the eastern side 445 

situated in the rain shadow of this mountain range. Furthermore, given the limited need for input 446 

data, this method is easily applicable to other regions. Hence, the method has a large potential to 447 

improve the interpolation of spatial patterns of precipitation in mountainous regions, characterized 448 

by a sparse data network and/or when more modern and advanced techniques, such as weather 449 

radars, are not available. 450 

 451 

 452 
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7. Figures 573 

 574 

Figure 1: A) Localization of the 197 selected meteostations on the SRTM-DEM with a resolution of 575 

90m in and around Belgium. B) Annotation of the measured 30-year average annual precipitation 576 

amounts (mm yr-1) of the local meteostations along the Ardennes - Eiffel massif. 577 

 578 

 579 
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 580 

Figure 2: Methodological Flowchart 581 

 582 

  583 
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 584 

 585 

Figure 3: Comparison of interpolation techniques “Spline” and “Natural Neighbor” used to smooth 586 

aggregated model input maps of Altitude and “Deviation to the orientation of the slope to the West” 587 

at 3 different altitude intervals (< 200 meters, 200-400 meters, > 400 meters) 588 

.   589 
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 590 

 591 

Figure 4: Determination coefficients (R²) of the different precipitation model runs as a function of the 592 

resolution of the aggregation level of the altitude input maps (km), i.e. a) H1 and b) H2 (eq. 1), and 593 

deviation of the orientation of the slope to the dominant weather circulation (260°) maps, i.e. c) S 594 

(eq.1), including the selected best model run as indicated by * (R2
max = 0.8192) as well as presentation 595 

of associated input maps (i.e. H1 at 8.1 km; H2 at 90 km and S at 30.6 km) 596 

 597 

 598 
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 599 

Figure 5: Root Mean Square Error (RMSE, mm) and Ratio of Performance to Deviation (RPD) of the 600 

best model fit (R²max) in function of orientation of dominant weather circulation (°). 601 

  602 
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 603 

 604 

Figure 6: Estimated long term (1960-1990) total 30-year average annual precipitation map (mm yr-1) 605 

for Belgium and surroundings with indication of relative error (%) at meteo-stations 606 

  607 
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 608 

Figure 7: Semivariograms of the observed data (grey) versus predicted precipitation values (black). 609 

The Spherical and Gaussian models as fitted through the averaged semivariance values and 610 

associated nugget, range and sill values are obtained by using ARC-GIS’ Geostatistical Wizard tool. 611 

  612 
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 613 

Figure 8: Subpanel A & B are showing precipitation maps as obtained by the presented approach and 614 

the Ordinary Kriging, respectively. Subpanel C shows the relative difference between A and B, 615 

including the relative error of the model as presented in fig. 6 616 

617 
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Tables: 618 

 619 

Parameter Value 95% confidence interval 

a 1.3309 1.4269 1.2348 

b -0.0115 -0.0100 -0.0130 

c 777.16 790.73 763.59 

 620 

Table 1: Estimated parameter values of the selected model (i.e. resolution of H1 = 8.1 km, H2 = 90 621 

km, S = 30.6 km, and orientation of dominant weather circulation (ODWC) of 260°)  622 

 623 

  624 
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 625 

  

    Resolution   

Rank R2  ODWC (°) H1 (km) H2 (km) S (km) 

1 0.8192 260 8.1 90.0 30.6 

2 0.8187 260 8.1 90.0 27.0 

3 0.8186 270 8.1 94.5 27.0 

4 0.8181 260 8.1 94.5 30.6 

5 0.8179 270 8.1 94.5 30.6 

6 0.8178 260 8.1 94.5 27.0 

7 0.8155 270 8.1 99.0 27.0 

8 0.8155 260 8.1 68.4 30.6 

9 0.8154 260 7.2 90.0 30.6 

10 0.8149 270 7.2 94.5 30.6 

 626 

Table 2: Top 10 best model runs ranked following R2 with annotation of the “Orientation of the 627 

dominant weather circulation” (ODWC) and aggregation resolution of smoothed model input maps 628 

(H1, H2 and S (eq. 1)). 629 

 630 

 631 


