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Abstract 

As genetic association studies increase in size to 100,000s of individuals, subtle biases may 

influence conclusions. One possible bias is “index event bias” (IEB) that appears due to the 

stratification by, or enrichment for, disease status when testing associations between genetic 

variants and a disease-associated trait. We aimed to test the extent to which IEB influences 

some known trait associations in a range of study designs and provide a statistical framework 

for assessing future associations. Analysing data from 113,203 non-diabetic UK Biobank 

participants, we observed three (near TCF7L2, CDKN2AB and CDKAL1) overestimated 

(BMI-decreasing) and one (near MTNR1B) underestimated (BMI-increasing) associations 

among 11 type 2 diabetes risk alleles (at P<0.05). IEB became even stronger when we tested 

a type 2 diabetes genetic risk score composed of these 11 variants (-0.010 SDs BMI per 

allele, P=5x10
-4

), which was confirmed in four additional independent studies. Similar results 

emerged when examining the effect of blood pressure increasing alleles on BMI in 

normotensive UK Biobank samples. Furthermore, we demonstrated that, under realistic 

scenarios, common disease alleles would become associated at p<5x10
-8

 with disease-related 

traits through IEB alone, if disease prevalence in the sample differs appreciably from the 

background population prevalence. For example, some hypertension and type 2 diabetes 

alleles will be associated with BMI in sample sizes of >500,000 if the prevalence of those 

diseases differs by >10% from the background population. In conclusion, IEB may result in 

false positive or negative genetic associations in very large studies stratified or strongly 

enriched for/against disease cases. 
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Introduction 

Genome wide association studies (GWAS) in increasingly large sample sizes have resulted in 

the identification of many 1000s of genetic variants associated with various common 

diseases(1-3). We assume that the results from GWAS are robust to potential confounding 

factors because genetic variants are inherited randomly and not influenced by disease 

processes throughout life. These assumptions tend to hold provided population substructure is 

accounted for using standard methods(4-6). Researchers may also run genetic association 

studies in stratified samples (1, 2) to reduce the non-genetic variation in the trait and improve 

statistical power to detect variants not acting through a disease mechanism. However, 

performing an association test between a genetic variant and a continuous trait in a sample 

that is stratified, depleted or enriched for a disease outcome (collider) that is associated with 

both the genetic variant and the trait can result in paradoxical observations (Figure 1). Such 

bias is termed index event bias (IEB) or collider-stratification bias(7).  

An example of an index event biased association is that between type 2 diabetes risk alleles 

and lower BMI observed within diabetes case or control strata(8-10). In these examples the 

strata are enriched (type 2 diabetes cases) or depleted (type 2 diabetes controls) by disease 

status. Bias occurs because non-diabetic individuals with a diabetes protective allele are able 

to remain normo-glycaemic at higher BMIs than individuals without the protective allele, 

whilst individuals with a risk allele will tend to develop diabetes at lower BMIs compared to 

those without the risk allele. Considering this type of bias is very important because many 

large meta-analytic studies often perform GWAS analyses of traits in samples stratified by, 

enriched or depleted for disease status. Such bias can have different impacts on genetic 

associations and their interpretation, for example (a) in the case of true (positive) pleiotropy, 

the effect of the gene variant on the trait may be masked/reduced by IEB (false negative 
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finding); (b) in the case of no pleiotropy, a false (and often counterintuitive) association 

between gene variant and trait can be observed (false positive finding); (c) using a genetic 

variant as an instrumental variable in a Mendelian randomization analysis could result in 

false inferences about causal relationships between the disease and a correlated trait if 

estimates of that variants’ effects on the trait are biased.  

A research area closely related to IEB is secondary trait analysis in case-control sample 

design. Several approaches have been proposed in these settings to estimate the true effect 

between a risk factor and a genetic variant in the general population sample(11-16). Most of 

these methods yield unbiased estimators that are robust to model misspecifications and work 

for a wide range of noise distributions. In this paper we applied a retrospective likelihood 

maximization method (16), implemented in the R package SPREG, to correct for IEB for real 

data. Note, however, these methods provide only effect size estimation, but no insight how 

the bias explicitly depends on parameters such as (a) the extent of case-enrichment/depletion; 

(b) the strength of associations between the SNP, the risk factor and the collider; and (c) 

SNPs’ allele frequency.  

In this study, we tested the extent to which large genetic association studies may be impacted 

by IEB due to inadvertent sample selection leading to enrichment or depletion of disease 

cases. We first provided the statistical framework for quantifying IEB in a study, then used a 

combination of real and simulated data to: (a) identify and quantify real examples of IEB, 

including a single large study (120,000 individuals from the UK Biobank) and a meta-

analysis of independent studies and (b) demonstrate that IEBs can occur in most types of 

genetic association study designs, e.g. 1:1 case-control designs to case only and control only 

studies, case or control enriched studies and when case status is used as a covariate. The 
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analytical formula is implemented in an R package and available for download from 

http://wp.unil.ch/sgg/files/2016/01/IndexEventBias.zip.  
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Material and Methods  

Model formulation 

We assumed a liability scale disease (probit) model, where a genetic variant (� ) and a 

continuous risk factor (�) linearly influences the development of a disease (Y) on the liability 

scale. For simplicity the genetic marker was modeled by a binomially distributed random 

variable �	~	�(2, 	), where 	 is the allele frequency of the genetic variant in the general 

population. The second trait, from now on referred to as the “continuous risk factor” (�) was 

allowed to be linearly associated with � and assumed to follow a normal distribution	(�	|� =

)~	�(�(
 − 2	), 1 − 2��	(1 − 	)) . In other words, � = 	�(
 − 2	) + 	� , where �  is 

normally distributed with variance 1 − 2��	(1 − 	). The disease status is then modeled as 

� = � 1	��	� > ��	0	��	�	 ≤ ��	 	where	�� = 	Φ$%	(1 − &�) 

with 

(�|� = ', � = 
)	~	�(( ∗ ' + 	* ∗ (
 − 2	), +�), 

where &� is the disease prevalence in the general population; ( is the true effect size on the 

liability scale of the continuous risk factor (�) on the disease outcome (�); * is the (risk-

factor independent) effect of the genetic variant (�) on the disease outcome (�); and +� =
1 −	(� −	2*�	(1 − 	).  

Link between liability scale and logistic models 

For simplicity, we derived the explicit analytical formula for IEB estimation for the liability 

scale model. This however does not prevent its applicability to parameters derived from the 

logistic regression model. By re-parameterizing the models one can reach indistinguishable 
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properties(17). Namely, we calculate the probability of (Y=0 | X, G) for data simulated from 

the logistic model and optimize the liability scale model parameters such that this probability 

is matched as close as possible for each simulated data point. We noticed that the models are 

indistinguishable when the parameter optimization is done for a simulated population with 

similar disease prevalence to the tested sample. The details of this procedure are given in the 

Appendix (section 2.3). 

Analytical formula for IEB 

The extent of IEB can be analytically derived in the case of the liability scale (probit) disease 

model. Assume that disease frequency in the general population is &�, the allele frequencies 

of the genotype in pure control and pure case populations are 	� and 	%, respectively. We 

denote the difference between these frequencies by ,-. Let us consider now a sample with & 

frequency of cases.  The allele frequency in this sample is  

	. = 		� + 	& ∗ (	% 	− 		�) = 	� 	+ 	& ∗ ,- 

IEB occurs when this disease prevalence differs from the general population prevalence (&�). 

When & > &�, we observe an enrichment of cases, while in case of & < &�, we observe an 

enrichment of controls. In the Supplementary Text we derived the per-allele linear regression 

effect size of G on X in the general case, but here for simplicity we present the formula 

assuming � = 0, i.e. that the true underlying effect of the genotype on the risk factor is zero. 

We observed that this simplification makes very little difference in practice (Supplementary 

Figure 1). By introducing the quantities 

+0|1� = 1	 − 	2*�	(1 − 	) 

23 = 	�� − *(4 − 2	)
+0|1 	 
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we can express the expectation of the linear regression effect size estimate of � on � as  

56�.78 ≈ (
2	:(1 − 	:) .

: − &�&�(1 − &�) <
2	(1 − 	)=(2%) + 2	�=(2�) − 2=(��)(:,- + 	�)+0|1 > 

where =()  denotes the probability density function (pdf) of the standard Gaussian 

distribution. Note that when the disease prevalence matches the general population 

prevalence (i.e. & = &�), the expected effect of � on � is unbiased. The formula also shows 

that the bias is a ratio of two expressions quadratic in the prevalence (&). For most settings 

the quadratic and linear terms of the denominator are small compared to that of the 

numerator, thus the bias as a function of the fraction of cases (&) closely resembles a simple 

parabolic function. It is worth noting that the coefficient of the quadratic term (in &) in the 

numerator ?− @(AB)CD
EF|G	.B(%$.B)(H has the opposite sign compared to (, meaning that when � is a 

risk factor for the disease the function is a downward looking parabola. This explains why 

disease risk alleles can show spurious (and counterintuitive) protective effect on traits 

positively correlated with the disease. We also derived a formula for the case when we do not 

assume that the true effect is zero; i.e. when there is a true pleiotropy. The full derivation of 

the formula can be found in the Appendix (Section 2). 

Note that this formula assumes that the true parameters, (, *, 	�, 	%, 	, &� are known. Hence, 

its primary purpose is not to estimate the bias from data, but to reveal the intricate 

relationship between the true underlying model parameters and the resulting IEB. 

We extended the formula to situations when not only the sample is enriched or depleted for a 

disease, but also when in addition the continuous risk factor is corrected for the disease 

status: 
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56�.7(I)8 = �.	.(1 − 	.) − ,-	(	=(��) &(1 − &)&�(1 − &�)	.(1 − 	.) − 	2	&(1 − &),-�  

The full derivation of this formula is given in the Appendix (Section 3). One can observe that 

correcting for disease status yields biased estimates even when the study disease prevalence 

agrees with the general population prevalence. In this situation we showed that this formula 

simplifies to that of Aschard(18). 

These analytical formulae for IEB allow us to quantify genetic effects (estimated from real 

data) for IEB. The key quantities necessary for the formulae are: (i) the allele frequency of 

the genetic variant in control (q0) and disease (q1) populations; (ii) the association effect of 

the SNP on the disease status (β); (iii) the effect of the continuous risk factor on the disease 

status (α); (iv) the disease prevalence in the study population (π) and (v) the general 

population disease prevalence (π0). Estimating these quantities is out of the scope of this 

paper. We use the formula to show the extent of the bias for various realistic parameter 

settings informed from large GWAS data. 

Data simulation to confirm the analytical formula 

To investigate how closely the analytical formula recapitulates true IEB, we simulated data to 

create different hypothetical scenarios similar to data used in genetic studies 

(Supplementary Figure 2). We simulated binomially distributed SNP data (G), a normally 

distributed continuous risk factor (X) and binary disease status using the liability threshold 

model described above.  The minor allele frequency (MAF) of the genetic marker was 

explored in the range of 0.02, 0.05, 0.1, 0.3 and 0.5; disease prevalence in the general 

population was set to 1%, 5% and 10%. The effect of the continuous risk factor (�) on the 

disease outcome (�) was varied in a range equivalent to ORs of 1.10 to 4 (1.10, 1.25, 1.50, 
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1.75, 2, 3 and 4) per 1 standard deviation (SD) increase in �. The effect (*) of the genetic 

variant (�) on the disease outcome (�) was explored for a range equivalent to odds ratios 

(OR) of 1.05, 1.2, 1.3, 1.5, 1.8 and 2. We simulated 101 settings with 100,000 total samples, 

for case-control ratios ranging from 0 to 100%. 

 

IEB in real data  

To identify and quantify real examples of IEB, we tested how IEB occurs in genetic studies 

in 2 different scenarios using different disease outcomes and genetic variants. 

(1) We tested whether or not type 2 diabetes risk alleles, acting predominantly through 

insulin secretion, have a paradoxical (opposite association) effect on BMI, a strong 

continuous risk factor for type 2 diabetes. We selected 11 SNPs associated with type 2 

diabetes that have known robust associations with insulin secretion (19), the intermediate trait 

most relevant to diabetes risk (19) (Supplementary Table 1). On purpose we avoided the use 

of insulin resistance variants, which could operate through adiposity. We analysed the 11 

SNPs separately and as a genetic risk score (GRS) in two study types: (i) a single very large 

population based study: 120,286 individuals from the first release of genetic data from the 

UK Biobank study(20) and (ii) a meta-analysis of 4 independent studies: EXTEND(21) (N = 

5,097), GoDARTS(22) (N = 7,128), Generation Scotland Scottish Family Health Study 

(GS:SFHS)(23)  (N = 8,195) and ARIC(24) (N = 9,324) with a range of study designs and 

diabetes status available (Supplementary Table 2). We tested the association between 

individual SNPs and the 11-SNP insulin secretion GRS and BMI in all samples, in all 

samples adjusted for type 2 diabetes status, in diabetic cases only and in controls only. We 

defined type 2 diabetes cases as individuals who had: (1) HbA1c >6.4% and/or fasting 

glucose >7 mmol/L, (2) age at diagnosis >35 and <70 years; (3) no need for insulin treatment 
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within 1 year of diagnosis (except in ARIC). We defined controls as individuals who did not 

meet any of these criteria and were not diagnosed with any other types of diabetes. We 

additionally tested the association between the CCND2 type 2 diabetes protective allele and 

BMI as the allele was recently shown to be associated with higher BMI. 

(2) We tested whether or not 29 SNPs robustly associated with systolic blood pressure have a 

paradoxical (opposite) effect on BMI, a continuous risk factor for high blood pressure(25). 26 

of the 29 variants were reliably imputed in the UK Biobank and we excluded the variant near 

SLC39A8 from the GRS as this variant is directly associated with several traits including 

BMI(26) and HDL-cholesterol(27) levels (Supplementary Table 3). We analysed the 

remaining 25 SNPs individually and as a GRS in two study types: (i) a single very large 

study: 120,286 individuals from the first release of genetic data from the UK Biobank 

study(20) and (ii) a meta-analysis of 4 independent studies with blood pressure available: 

GoDARTS(22) (N = 6643), Generation Scotland Scottish Family Health Study 

(GS:SFHS)(23)  (N = 8195), ARIC(24) (N= 9,290) and BRIGHT(28) (N = 1808) 

(Supplementary Table 2).  We tested the association between the individual SNPs and the 

25-SNP blood pressure GRS and BMI in all samples, in all samples adjusted for hypertension 

status, in hypertensive cases only and in normotensive controls only. We defined 

hypertensive cases as individuals with systolic blood pressure ≥ 140 mmHg or diastolic blood 

pressure ≥ 90 mmHg or report use of anti-hypertensive medications. We defined 

normotensive controls as individuals with systolic and diastolic blood pressure below these 

thresholds, and not on medications. 

Statistical analysis in real data 

In the relevant studies, we corrected BMI for age and sex and other covariates (for the UK 

Biobank study this included five within UK genetic principal components, genotyping 
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platform, study center in the UK Biobank study). Residuals were inverse-normal transformed. 

In each study, we generated genetic risk scores (GRS) by calculating the number of disease 

risk alleles carried by each individual. We then combined the association results using fixed-

effects inverse variance-weighted meta-analysis. To account for IEB we applied the state-of-

the-art method of Lin and Zeng(16) (implemented in the software SPREG).  This program 

needs an estimate of the general population prevalence of the examined diseases. Hence, we 

derived an estimate for type 2 diabetes and hypertension prevalence for a general UK sub-

population that has the same joint age- and sex-distribution as the UK Biobank sample. For 

this we used sex- and age-group-specific prevalence values from the IDF Atlas (29) (10 year 

bins) for type 2 diabetes and from the NIH Health Survey for England 2011 

[http://digital.nhs.uk/catalogue/PUB09300/HSE2011-Ch3-Hypertension.pdf] (10 year bins) 

for hypertension. We then weighted these prevalence values with the proportion of UK 

Biobank participants that fell into each stratum. This yielded prevalence estimates of 10.15% 

for type 2 diabetes and 38.43% for hypertension. 
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Results  

IEB occurs in a range of different genetic association study designs – theory and simulated 

data. 

Our results from simulated data and theory provided examples of IEBs where the direction of 

the association between the genetic risk allele and the risk factor depends on the proportion of 

cases and controls in the study. In all scenarios involving a disease risk allele with no real 

association to the intermediate risk factor, we observed U-shaped artefactual effect estimates 

between the disease risk allele and the risk factor as the proportion of cases moved from 0% 

to 100%: first, in a control only situation, IEB occurred where the disease risk alleles were 

associated with lower values of the risk factor, there was then no association when the 

proportion of cases represented exactly the background population, then an association 

between disease risk alleles and higher values of the risk factor, and then back to no 

association and finally an association between disease risk alleles and lower values of the risk 

factor in case only scenarios (Figure 2 [our theoretical formula]; Supplementary Figure 3 

[simulated data]). The extent of the bias is stronger in case only compared to control only 

scenarios when the disease frequency is less than 50% (as with most diseases). In the 

examples in Figure 2 (and Supplementary Figure 3), we modeled a disease risk allele and a 

protective allele with properties similar to those of the type 2 diabetes alleles at TCF7L2 and 

CCND2 respectively. We observed spurious associations between the disease alleles and 

lower and higher values of the continuous risk factor, depending on the proportion of cases 

and despite the lack of a genuine association between the genetic risk allele and the risk 

factor. When the examined study population matches the underlying general population in 

terms of disease prevalence (5% in case of our example), no bias is observed (Figure 2). It 

has been shown that for many scenarios a simple regression including the disease status as 
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covariate alleviates the bias(15), but such correction is clearly of no use in case-only, and 

control-only designs and it introduces bias even for samples representative of the general 

population. Note that in our settings the bias was not resolved, but often exacerbated by 

correcting for disease status (Figure 2). 

Differences in prevalence for Type 2 diabetes and hypertension in the UK Biobank and 

general UK population 

Index event bias arises due to differences in the (collider) disease prevalence in the study 

population and the matched general population. Hence, it is crucial to derived accurate 

estimates for type 2 diabetes and hypertension prevalence for a general UK sub-population 

that has the same joint age- and sex-distribution as the UK Biobank. Using data from the IDF 

Atlas (29) and the NIH Health Survey for England, we estimated that  10.15% and 38.43% of 

a sex- and age-matched sub-population of the UK would be diabetic and hypertensive, 

respectively (see Methods). These values clearly differ from the prevalence of type 2 diabetes 

(3.4%) and hypertension (55.2%) observed in the UK Biobank. 

Individual alleles and genetic risk scores associated with higher risk of type 2 diabetes were 

associated with lower BMI in real data 

A relatively high ability to secrete insulin may lead to a relative protection from type 2 

diabetes but may also lead to higher BMI because insulin has anabolic properties. Studies 

may therefore wish to use common variants associated with insulin secretion to test the role 

of insulin secretion on BMI. However, there may be a complex relationship because higher 

BMI increases diabetes risk. IEB will add to the complexity of interpreting potential overlap 

of genetic associations for these phenotypes.  We tested 11 variants associated with type 2 

diabetes through an insulin secretion mechanism, for potentially spurious associations with 

lower levels of the continuous risk factor for type 2 diabetes, BMI. Details of how these 
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variants were associated with type 2 diabetes in UK Biobank and 4 additional studies are 

given in Supplementary Table 4. Using a total of 4,003 type 2 diabetes cases and 113,203 

controls from the UK Biobank, two of the 11 variants were associated with lower BMI in all 

individuals (unstratified and unadjusted), three in controls only, three in cases only and five 

in all individuals when adjusted for type 2 diabetes status at p<0.05 (Table 1). When meta-

analysing the UK Biobank and four additional studies in the same analysis design as a 

GWAS meta-analysis (all individuals together for population based studies, stratified by case 

control status for case control studies) two type 2 diabetes risk alleles were associated at 

p<0.05 with lower BMI (Supplementary Table 5). In the UK Biobank study, the effect sizes 

of type 2 diabetes risk alleles with lower BMI were consistent with IEB (Supplementary 

Figure 4). In accordance with our formula, BMI “effect” size estimates were correlated with 

the effect estimates for type 2 diabetes; r = -0.85 (p=8E-4), -0.87 (p=4E-4) and -0.87 (p=5E-

4) in controls, cases and all individuals (adjusted for type 2 diabetes status), respectively 

(Supplementary Figure 4).  

We next reran the SNP-BMI associations, using a retrospective likelihood based method 

implemented in the statistical software SPREG, which accounts for IEB(16). Prior to this 

correction, the risk allele at TCF7L2 was associated with lower BMI in all scenarios (the 

overall population as well as stratified and corrected data - Table 1). After correcting for IEB 

there was no evidence (at p<0.005; p-value corrected for multiple testing) for an association 

between TCF7L2 and lower BMI (Table 1). In contrast, the type 2 diabetes risk allele at 

MTNR1B was the only allele associated with higher BMI in the overall population (p = 0.02); 

when accounting for IEB it was even more strongly associated (0.016 SD [0.007, 0.026], 

P=0.001) (Table 1, Figure 3). The type 2 diabetes protective allele in CCND2 (conferring the 

strongest effect on type 2 diabetes; 0.59 OR [0.48,0.73]; p = 1E-6) had the strongest effect 
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estimate on BMI (0.06 SD [0.03,0.09]; p = 0.0004), which became much weaker after 

correcting for IEB (0.003 SD [-0.029,0.035]; p = 0.9).  

We next examined a genetic risk score (GRS) for type 2 diabetes. Details of how this GRS 

was associated with type 2 diabetes are given in Supplementary Table 4. In the UK Biobank 

study, the 11-SNP GRS was not associated with BMI when analysed in all samples combined 

(-0.004 SD per allele [-0.010,0.001]; p=0.1; N=119,688; Table 2). In contrast, the 11-SNP 

GRS associated with higher risk of type 2 diabetes was associated with lower BMI in all 3 of 

the following designs: (i) controls only (-0.010 SD per allele [-0.016,-0.005]; p=5E-4; 

N=113,203), (ii) in cases only (-0.036 SD per allele [-0.065,-0.007]; p=0.01; N=4,003) and 

(iii) in all individuals when adjusted for type 2 diabetes status (-0.011 SD per allele [-0.017,-

0.006]; p=1E-4; N=117,206; Table 2). In the context of a Mendelian randomization analysis, 

these results could be misinterpreted as evidence for the biologically plausible hypothesis that 

lower insulin secretion leads to lower BMI. However the associations are consistent with 

IEB. Results from a meta-analysis of 4 additional studies (representing a scenario similar to 

that of many GWAS meta-analyses) were similar (Table 2 and Figure 4a).  

Individual alleles and genetic risk scores associated with higher risk of hypertension were 

associated with lower BMI  

We next tested whether alleles associated with higher risk of hypertension were paradoxically 

associated with lower BMI, a continuous risk factor for hypertension, but with a weaker 

effect than that with type 2 diabetes. Such associations could be due to genuine pleiotropic 

effects of alleles on hypertension and lower BMI, or due to IEB, or a combination of the two. 

We tested 25 variants associated with blood pressure. Details of how these variants were 

associated with hypertension in UK Biobank and four additional studies are given in 

Supplementary Table 6. Using a total of 65,584 hypertension cases and 53,377 controls 
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from the UK Biobank, six of the 25 variants were associated with lower BMI in all 

individuals (unstratified and unadjusted), 10 in controls only, 10 in cases only and 12 in all 

individuals when adjusted for hypertension status (at p<0.05; Table 3). When meta-analysing 

the UK Biobank and four additional studies, in the same analysis design as a GWAS meta-

analysis (all individuals together for population based studies, stratified by case control status 

for case control studies), eight hypertension risk alleles were associated at p<0.05 with lower 

BMI (Supplementary Table 7). The effect sizes of hypertension risk alleles with lower BMI 

were consistent with IEB. As with type 2 diabetes alleles, BMI “effect” sizes were correlated 

with the effect size on hypertension: r = -0.38 (p=0.06), -0.58 (p=0.002) and -0.55 (p=0.005) 

in controls, cases and all individuals (adjusted for hypertension status), respectively 

(Supplementary Figure 5).  

Using SPREG, out of the 25 hypertension SNPs only CYP17A1 was associated with lower 

BMI in the IEB corrected analysis (-0.028 [-0.044,-0.012]; P=3E-4) and Bonferroni 

correction for the number of SNPs tested (Table 3). Five other variants (those in or near 

BAT2, CACNB2 (2 variants), CYP1A1, and SH2B3) were associated with lower BMI at 

p<0.05 but did not persist after Bonferroni correction. Nevertheless, six variants reaching 

IEB-corrected nominally significant P-values is more than the ~1 expected by chance 

(enrichment P = 1.69E-4) and suggests variants in some of these genes have pleiotropic 

effects with alleles associated with lower BMI and higher risk of hypertension. Consistent 

with this evidence of pleiotropy, the variant in SH2B3 is associated with multiple traits 

including those related to autoimmunity as well as metabolic traits(30-32).  

We next considered a genetic risk score of hypertension SNPs. Details of how this GRS was 

associated with hypertension are given in Supplementary Table 6). In the UK Biobank 

study, the 25-SNP hypertension GRS was associated with lower BMI in all samples 
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combined (-0.014 SD per allele [-0.020,-0.008]; p=1E-6; N=119,688) and in all 3 of the 

following designs: (i) in controls only (-0.034 SD per allele [-0.043,-0.026]; p=2E-16; 

N=53,377), in cases only (-0.031 SD per allele [-0.039,-0.024]; p=4E-16; N=65,584) and in 

all samples when adjusted for hypertension status (-0.033 SD per allele [-0.038,-0.027]; 

p=7E-31; N=118,961; Table 2). Results from a meta-analysis of 4 studies (representing a 

GWAS meta-analysis) were similar (Table 2 and Figure 4b). 

Large sample sizes are necessary to observe false positive associations due to IEB 

Our analytical formula enabled us to quantify the necessary sample size in order to observe a 

false positive association with a continuous risk factor due to IEB at any significance level 

alpha with for example, 80% power. The necessary sample size depends on five parameters: 

significance level, disease prevalence, strength of association between the genetic risk factor 

and the disease, strength of association between the continuous risk factor and the disease and 

frequency of the genetic risk allele. We fixed the continuous risk factor-disease association 

(OR=2.5 per SD) and tested two MAF scenarios (low, 2% and medium 30%) and two 

significance levels (0.05 and 5E-8). The remaining two parameters (SNP-disease association 

strength and disease prevalence) we varied freely and computed the minimal sample size 

necessary to detect a false association (Figure 5). For example, in analyses stratified by 

disease we would need 23,542 cases or 208,267 controls to detect a biased association at p-

value 5x10
-8

 with a probability of 80% when the disease risk allele had a frequency of 30%, 

the disease prevalence was 10% and a 1 SD higher value of the continuous risk factor was 

associated with an odds ratio of 2.5 for the disease. This scenario is similar to that for the risk 

allele at TCF7L2 and BMI(10). Notably, scenarios with SNP-disease OR=1.2 in 500,000 

disease-free samples will yield (with 80% probability) false positive genome-wide significant 

SNP-risk factor association entirely due to IEB.  
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Discussion  

Our analyses of real and simulated data showed that index event bias will often occur in 

genetic association studies but the extent depends on several factors. These factors include 

the association strength between the trait being analysed (that we termed the “continuous risk 

factor”) and the disease, where the disease is over- or under-represented in the study 

population compared to the background population. The other factors are disease prevalence, 

sample size, and the effect size and minor allele frequency of the disease associated variant. 

Our results go beyond those of previous studies examining index event biases in several 

ways. First we provide real examples of likely biased genetic associations in the context of 

studies of 100,000s of individuals, including those involving individual variants and 

combinations of variants. Second, we provide a formula for quantifying the bias as a function 

of key parameters even when only summary level data is provided. We also extended the 

work of Aschard et al(18), to test how the combination of correcting for disease status in 

disease-enriched or depleted samples can introduce biases. 

Our results have important implications for all types of large genetic association studies, and 

are especially relevant given that analyses are now possible in 100,000s of individuals, and 

rarely will these samples be perfectly representative of the background populations – for 

example, even population based studies such as those of Decode, 23andMe and the UK 

Biobank are likely not truly representative of the background population in the prevalence of 

all disease outcomes. Our analyses of real and simulated data showed that the best study 

design to avoid index event biased associations is using all individuals from a population-

based study with no adjustment for disease status. Bias is strongest in case only designs 

(assuming the disease frequency is <50%) but it is also observed in control only designs, or in 

analysis combining cases and controls and adjusting for disease status (the latter situation is 
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discussed in Aschard et al(18)). To better understand these observations, we derived an 

analytical formula that estimates IEB and confirmed its validity through simulation studies. 

Our formula indicates that this bias can be negative or positive depending on the proportion 

of cases and controls. The results indicate that this bias cannot be resolved by correcting for 

disease status as a covariate. If anything, such correction exacerbates biased effect estimates. 

Our results also indicate that the impact of IEB is substantially larger than the bias caused by 

improper covariate correction in a disease-representative population (described by Aschard et 

al(18)). 

In a meta-analysis it may be difficult to assess the extent to which IEB is contributing to an 

association - most existing large scale genetic association studies are mixtures of all types of 

study designs, and, for studies of continuous traits (such as BMI, lipid levels or blood 

pressure) disease cases and controls are often analysed as separate strata before meta-analysis 

with population-based studies, which themselves could be over or under represented with 

disease cases.  

Our settings for the analytical formula were limited to a liability scale disease model and 

normal linear regression applied for the risk trait. By model re-parameterization we extended 

it to the logistic disease model and through simulations we saw that it works equally well 

(data not shown). These are the most often used models in meta-analytic GWAS studies; 

hence we believe that our findings are extremely relevant for almost all GWAS analysis. 

Whilst index event biases are likely to exist in many studies, for associations modelling 

individual variants the bias is unlikely to cause false positive or false negative associations 

unless sample sizes are very large or stratified, strongly depleted of, or enriched for, disease 

cases. For example, we tested known common type 2 diabetes variants for association with a 

strong risk factor for type 2 diabetes, BMI, in 119,688 UK Biobank individuals (including 
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4003 type 2 diabetes cases), but only the most strongly associated diabetes variant, that in 

TCF7L2 (odds ratio ~1.4), was associated with lower BMI at p<0.01 in all individuals. The 

association between the variant in TCF7L2 and BMI has been the subject of several previous 

papers(1, 8, 33) and was most recently noted as showing stronger effect estimates in case 

control studies(1). Here we found only a trend, but no clear statistical evidence that the 

TCF7L2 variant is associated with BMI - the associations we did see could be explained by 

IEB due to a likely depletion of cases in the UK Biobank study compared to the background 

population.  

The derived analytical formula can serve as guidance for the expected bias in genome-wide 

association studies, where only summary level data is known where – to our knowledge – no 

other method is applicable. The state-of-the-art tool, SPREG, computed the corrected effect 

in ~2 min per SNP, which renders such methods infeasible for large population cohorts with 

genome-wide genotype data, as it would take >10 CPU years to apply for millions of 

markers.   

Accounting for IEB strengthened associations for several individual variants with good prior 

evidence for pleiotropic effects on the disease and continuous risk factor. For example, the 

type 2 diabetes risk allele at MTN1RB was associated in the UK Biobank with higher BMI 

and this result strengthened on correction for IEB – results from previous studies, particularly 

those that were not population-based, may have been biased towards the null. This variant has 

one of the strongest effects on fasting glucose levels in individuals without diabetes and may 

predispose to higher BMI through higher insulin secretion. The hypertension risk allele at 

CYP17A1 was previously associated with lower BMI(1), and we show here that this is a 

likely pleiotropic effect.  
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Studies examining the joint effect of multiple variants will be more prone to index event 

biases than those of single variants. Studies prone to miss-interpretation could include gene-

based tests, and tests of the cumulative effect of variants when using a genetic risk score. For 

example, Mendelian randomization studies often use genetic risk scores as instruments to test 

causality of an associated trait with a disease(34-37). Stratified Mendelian randomization is 

recommended when the exposure is binary (e.g. smoking) and hence a causal effect should be 

seen only in the exposed stratum(38). Such stratification in some cases could introduce IEB 

in the causal estimation(38). Failing to account for IEB could lead to false conclusions about 

causality. We explored this potential source of bias using the UK Biobank to assess whether 

or not a genetic risk score of insulin secretion (represented by 11 variants associated with 

type 2 diabetes through insulin secretion mechanisms) was associated with BMI. An 

association between a genetic risk score for poorer insulin secretion and lower BMI could 

indicate that insulin secretion causally alters BMI, a plausible hypothesis given that insulin 

treatment increases BMI in diabetes(39). However, IEB would also result in an association 

between a genetic risk score for poorer insulin secretion (type 2 diabetes risk alleles) and 

lower BMI. Whilst we cannot disentangle IEB from a genuine pleiotropic effect IEB is the 

more likely explanation given the gradient of stronger effects in cases compared to controls 

compared to all individuals (Supplementary Figure 6a). Similar analysis for hypertension 

provided evidence that SNPs associated with higher blood pressure are also associated with 

lower BMI (Supplementary Figure 6b).  

In summary, as genetic association studies reach sizes of 100,000s of individuals, analyses 

will be prone to misinterpreting results if they do not account for index event biases. 

However, we have provided the statistical framework and its software implementation for 

quantifying and correcting for these biases under reasonable assumptions. Because IEB is 

dependent on many different factors it may occur in a variety of situations and can cause false 

 at U
niversity of E

xeter on January 11, 2017
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/


 

 

positive and false negative results. Researchers should be particularly vigilant when either or 

all of the following occur: i) a known disease variant is associated with a known risk factor 

for that disease, ii) the association is in the opposite direction to that seen observationally 

between disease and risk factor, iii) the sample size or effect size of the allele on the disease 

are particularly large. As a rule of thumb, we suggest that, for single variants, people should 

take extra care when disease odds ratios are >1.4 and sample sizes are >100,000.  
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Tables  

Table 1. Association between 11 insulin secretion SNPs and BMI (SD) in the UK Biobank study under 5 scenarios. Corrected statistics are 

those after correcting for index event bias using all 119,688 individuals. Note that the numbers of individuals in the “all” analyses differ slightly 

because people of uncertain diabetes diagnosis were excluded from the “All adjusted for type 2 diabetes” analysis. 

 
All  

(N=119,688) 

Controls  

(N=113,203) 

Cases  

(N=4,003) 

All adjusted for type 

2 diabetes 

(N=117,206) 

All - Corrected 

statistics 

(N=119,688) 

Variant in or 

near gene: 
BETA P BETA P BETA P BETA P BETA P 

TCF7L2 -0.024 1E-7 -0.033 8E-13 -0.118 1E-7 -0.036 1E-15 -0.0101 0.04 

THADA -0.011 0.1 -0.012 0.08 -0.060 0.1 -0.013 0.05 -0.0020 0.8 

CDKN2AB -0.008 0.2 -0.014 0.01 -0.018 0.5 -0.014 0.009 -0.0013 0.8 

SLC30A8 -0.005 0.3 -0.009 0.05 -0.034 0.2 -0.009 0.03 -0.0008 0.9 

CDKAL1 -0.012 0.01 -0.016 5E-4 -0.048 0.03 -0.018 1E-4 -0.0062 0.2 

MTNR1B 0.011 0.02 0.008 0.08 0.004 0.9 0.008 0.08 0.0162 0.001 

HHEX -0.005 0.2 -0.007 0.09 -0.054 0.01 -0.009 0.04 0.0005 0.9 

GCK -0.005 0.3 -0.009 0.1 -0.009 0.7 -0.009 0.1 -0.0005 0.9 

PROX1 -0.001 0.8 -0.002 0.6 -0.002 0.9 -0.002 0.6 0.0023 0.6 

ADCY5 -0.002 0.7 -0.006 0.2 0.012 0.6 -0.005 0.3 -0.0014 0.8 

DGKB -0.003 0.5 -0.005 0.2 -0.008 0.7 -0.005 0.2 0.0021 0.6 
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Table 2. Examples of index event bias observed in real data when using multiple variants in genetic risk scores. BMI was inverse-normal 

transformed.  

  UK Biobank study Meta-analysis of independent studies 

Model Samples BETA LCI UCI P N BETA LCI UCI P N 

BMI ~ insulin 

secretion GRS 

All individuals -0.004 -0.010 0.001 0.14 119,688 0.001 -0.010 0.013 0.8 30,440 

Type 2 diabetes controls -0.010 -0.016 -0.005 5E-4 113,203 -0.008 -0.019 0.004 0.2 25,039 

Type 2 diabetes cases -0.036 -0.065 -0.007 0.015 4,003 -0.037 -0.062 -0.012 0.004 5,396 

All individuals adjusted for 

type 2 diabetes status 
-0.011 -0.017 -0.006 1E-4 117,206 -0.013 -0.021 -0.005 0.002 30,435 

BMI ~ blood pressure 

GRS 

All individuals -0.014 -0.020 -0.008 1E-6 119,688 -0.008 -0.020 0.004 0.2 25,059 

Normotensive controls -0.034 -0.043 -0.026 2E-16 53,377 -0.014 -0.028 0.000 0.06 18,590 

Hypertensive cases -0.031 -0.039 -0.024 4E-16 65,584 -0.042 -0.063 -0.021 9E-5 8,267 

All individuals adjusted for 

hypertension status 
-0.033 -0.038 -0.027 7E-31 118,961 -0.022 -0.034 -0.010 4E-4 25,049 
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Table 3. Association between 25 blood pressure SNPs and BMI (SD) in the UK Biobank study 

under 5 scenarios. Corrected statistics are those after correcting for index event bias using all 

119,688 individuals. Note that the numbers of individuals in the “all” analyses differ slightly 

because people of uncertain hypertension diagnosis were excluded from the “All adjusted for 

hypertension” analysis. 

 
All 

(N=119,688) 

Controls  

(N= 53,377) 

Cases 

(N=65,584) 

All adjusted for 

hypertension 

(N=118,961) 

All - Corrected 

statistics 

(N=119,688) 

Variant in or 

near gene: 
BETA P BETA P BETA P BETA P BETA P 

ADM 0.001 0.9 0.005 0.6 -0.012 0.1 -0.005 0.4 0.0009 0.9 

ATP2B1 -0.002 0.7 -0.012 0.1 -0.011 0.1 -0.012 0.03 -0.0038 0.5 

BAT2 -0.013 2E-3 -0.014 0.02 -0.016 3E-3 -0.015 2E-4 -0.0135 0.002 

C10orf107 -0.008 0.1 -0.012 0.1 -0.019 9E-3 -0.016 3E-3 -0.0095 0.08 

CACNB2(3’) -0.01 0.03 -0.02 1E-3 -0.013 0.02 -0.016 1E-4 -0.0100 0.02 

CACNB2(5’) -0.012 4E-3 -0.023 1E-4 -0.01 0.06 -0.016 8E-5 -0.0122 0.003 

CYP17A1 -0.028 3E-4 -0.044 4E-5 -0.032 2E-3 -0.038 5E-7 -0.0282 0.0003 

CYP1A1 -0.011 0.01 -0.017 9E-3 -0.016 7E-3 -0.016 2E-4 -0.0110 0.01 

EBF1 -0.001 0.89 -0.012 0.04 -0.002 0.7 -0.007 0.1 -0.0008 0.9 

FGF5 -0.007 0.1 -0.023 4E-4 -0.014 0.01 -0.018 3E-5 -0.0078 0.08 

FLJ32810 -0.008 0.07 -0.014 0.03 -0.016 8E-3 -0.015 6E-4 -0.0084 0.07 

FURIN 0 0.98 -0.008 0.2 -0.008 0.2 -0.008 0.07 -0.0005 0.9 

GNAS -0.004 0.5 -0.007 0.5 -0.019 0.02 -0.014 0.02 -0.0042 0.5 

GOSR2 -0.001 0.8 -0.011 0.2 -0.003 0.7 -0.007 0.2 -0.0012 0.8 

HFE 0.002 0.8 -0.008 0.3 -0.001 0.9 -0.004 0.5 0.0026 0.6 

JAG1 0 0.95 -0.005 0.4 -0.002 0.8 -0.003 0.4 -0.0005 0.9 

MECOM 0.002 0.7 -0.006 0.3 0.001 0.9 -0.002 0.6 0.0016 0.7 

MOV10 0.007 0.1 0 0.97 0.007 0.3 0.004 0.4 0.0079 0.1 

MTHFR -0.011 0.05 -0.018 0.02 -0.024 1E-3 -0.021 7E-5 -0.0110 0.05 

NPR3 0.004 0.3 -0.001 0.9 -0.006 0.3 -0.004 0.4 0.0042 0.3 

PLCE1 -0.001 0.8 0 0.98 -0.009 0.1 -0.005 0.2 -0.0017 0.7 

PLEKHA7 -0.005 0.3 -0.016 0.01 0.002 0.8 -0.006 0.2 -0.0049 0.3 

SH2B3 -0.009 0.03 -0.008 0.2 -0.023 2E-5 -0.016 4E-5 -0.0093 0.02 

TBX5 -0.003 0.6 -0.004 0.6 -0.008 0.2 -0.006 0.2 -0.0031 0.5 

ZNF652 0.006 0.1 0 0.98 0.005 0.4 0.003 0.5 0.0063 0.1 
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Figures 

Figure 1. Apparently paradoxical gene-phenotype associations in the context of disease 

stratified genetic studies. We simulated genotype, continuous risk factor values and disease 

status in a general population sample according to our liability scale model and set the 

genetic effect on the risk factor (�) to zero. We observed that the estimated effect of the “B” 

allele of a genetic marker on a continuous trait is negative both in cases and controls. Disease 

carriers also have higher trait value than controls. However, when combining the two strata 

the marker is – as expected – not associated with the trait. The reason for this apparent 

paradox is that the proportion of disease risk allele (“B”) carriers is higher in the case group. 

Thus when merging cases into the control group the mean trait value of the BB group 

increases much more than it does in the other genotype groups. This concept is recognized as 

Simpson's paradox(41).  
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Figure 2. Enrichment for cases or controls produces spurious associations. We applied 

our analytical formula to compute the effect size estimate of a SNP (G) on a continuous risk 

factor (X) in the abovementioned liability scale model setting with the true genetic effect on 

the risk factor (�) being zero. Enrichment for cases or controls produces spurious evidence of 

association between disease risk alleles and a risk factor correlated with the disease 

(equivalent to 2.5 OR per SD) in (a) a scenario where a risk allele (MAF 30%) increases risk 

with an effect equivalent to an odds ratio of 1.4 (similar to the TCF7L2 type 2 diabetes 

scenario(10)) in two models: unadjusted for disease status [blue curve] and adjusted for 

disease status [green curve]. Dashed lines represent 95% confidence interval (CI) around the 

effect estimate assuming a population of 100,000 individuals. Panel (b) displays the same 

curves, but for a SNP with a rare protective allele (MAF 2%) that reduces risk of disease with 

an effect equivalent to an odds ratio of 0.5 (similar to the CCND2 type 2 diabetes 

scenario(9)). Vertical dashed red line at 0.05 indicates the true general population disease 

prevalence.  

 at U
niversity of E

xeter on January 11, 2017
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/


 

 

 

Figure 2a 
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Figure 2b 

 at U
niversity of E

xeter on January 11, 2017
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/


 

 

Figure 3. Scatter plot of the observed effect of type 2 diabetes-associated SNPs on BMI 

in the total UK Biobank sample vs. the index event bias corrected effect. The effect 

corrected for index event bias (shown on the y-axis) was calculated assuming the previously 

established 10% population prevalence of type 2 diabetes (&� = 0.10) . Dashed line 

represents the identity line, where the two effects are equal. While for most SNPs the 

absolute value effect size estimate after IEB correction is reduced, MTNR1B shows increased 

effect size upon correction. Only this latter SNP produced a P-value surviving multiple 

testing correction (P<0.05/11).  
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Figure 4. Index event bias in real data. (a) The genetic risk score (GRS) associated with 

higher risk of type 2 diabetes is associated with lower BMI in cases and controls separately 

and when combined but adjusted for type 2 diabetes status. (b) The GRS associated with 

higher risk of hypertension is associated with lower BMI in hypertensive cases and controls 

separately and when combined but adjusted for hypertension status. The x-axis is the effect 

size per disease risk allele. The vertical solid line is the null effect. 
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The    effect    of    1    SD    increase    in    hypertension    gene c    risk    score    on    BMI    (SD)    
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Figure 5. Power calculation to detect IEB. Using the analytical formula for IEB we derived 

the minimal necessary sample size to observe IEB in a study at nominal (alpha=0.05, top 

panels) and genome-wide significant level (alpha = 5E-8, bottom panels) with 80% power. 

We fixed the disease prevalence in the general population to 10%. The SNP-disease odds 

ratio was varied between 1 and 2.3 and the observed population prevalence of the disease was 

explored for the full range of 0-100%. The SNP MAF was set to 30% in the left panels and to 

2% in right panel. 

 

 

Figure 5 

Figure S10b 

 at U
niversity of E

xeter on January 11, 2017
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/



