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Abstract  

 

A thesis by Marc Ashley Bayliss entitled ‘Virus-like particles as a novel platform 

for delivery of protective Burkholderia antigens’ and submitted to the University 

of Exeter for the degree of Doctor of Philosophy.  

 

There is currently no licensed vaccine available for the global tropical pathogen 

Burkholderia pseudomallei which is the causative agent of melioidosis and a 

potential bio-threat agent. 

 

The capsule polysaccharide (CPS) expressed by B. pseudomallei has been 

shown to offer some protection against bacterial challenge. Polysaccharide 

immunogenicity can be enhanced by conjugation to a carrier protein and 

several licensed vaccines utilise this technology. 

 

Virus-like particles (VLPs) are non-infectious, non-replicating, viral proteins that 

self-assemble into viral structures and are in several licensed vaccines as 

primary antigens. VLPs are also effective delivery platforms for foreign antigens 

by genetic insertion or chemical conjugation. 

 

iQur, a collaborator on this project, has developed Tandem CoreTM that consists 

of two genetically linked hepatitis B core proteins that allow insertion of large 

proteins into each core whilst remaining assembly competent. 

 

The aim of this thesis was to assess the protective efficacy of Tandem CoreTM 

VLPs chemically conjugated to CPS and Tandem CoreTM Burkholderia protein 

fusion constructs. This involved three objectives; reduce the cost of CPS 

extraction; identify immunogenic Burkholderia proteins; and test candidate 

vaccine efficacy in an animal model of acute melioidosis against 

B. pseudomallei challenge. 

 

To reduce the cost of extraction, CPS was purified from B. thailandensis strain 

E555 and bacterial culture CPS concentration optimised which first required 

development of a quantitative ELISA. 
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Immunogenic Burkholderia proteins were identified from the literature but 

Tandem CoreTM fusion constructs containing these proteins were not assembly 

competent. The Burkholderia proteins were added as co-antigens to the VLP 

CPS conjugate vaccine but did not improve efficacy. 

 

Tandem CoreTM VLPs conjugated to CPS were protective against 

B. pseudomallei challenge and were compared to CPS conjugated to Crm197: 

a commercially available carrier protein used in several licensed vaccines. At 

lower challenge doses, survival was greater in mice vaccinated with the VLP-

CPS conjugate although at higher doses, Crm197-CPS efficacy was greater. 
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Chapter 1: General Introduction 

 

1.1 Burkholderia  

 

The genus Burkholderia was first defined in 1992 and originally consisted of 

only seven species which has expanded to consist of nearly 100 species of 

Gram-negative, motile, aerobic bacilli. These were previously considered part of 

the genus Pseudomonas (Daligault et al., 2014; Eberl and Vandamme, 2016). 

These bacteria are found in soils and groundwater worldwide and colonise a 

diverse range of hosts as a result of considerable genetic versatility (Coenye 

and Vandamme, 2003). The environmental lifestyle of Burkholderia species 

benefit scientific and industrial use and several species are used in nitrogen 

fixation, biological control of plant diseases, and water management (Coenye 

and Mahenthiralingam, 2014). However, several species are animal, human 

and plant pathogens capable of causing life-threatening infections (Coenye and 

Vandamme, 2003).  

 

Prominent pathogenic members of the Burkholderia genus include the human 

pathogens B. pseudomallei, the causative agent of melioidosis, B. mallei which 

causes glanders, and 20 related species of Burkholderia termed the B. cepacia 

complex, which are responsible for opportunistic infections (Whitmore 1913, 

Redfearn et al., 1966, Chou et al., 2013, Silva and Dow, 2013, Pradenas et al., 

2016). An interesting Burkholderia species is B. thailandensis strain E555, 

which, although essentially avirulent, produces the same polysaccharide 

capsule as B. pseudomallei and B. mallei, and is used in the study of 

B. pseudomallei infection (Sim et al., 2010). 

 

1.2 Burkholderia pseudomallei and melioidosis  

 

B. pseudomallei is the causative agent of melioidosis, a potentially lethal human 

and animal disease, found in soil and water and is a resilient organism capable 

of survival in hostile environments (Wuthiekanun et al., 1995, Pumpuang et al., 

2011, Baker et al., 2015). B. pseudomallei is classified as a Tier 1 bio-threat 
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agent by the US Centers for Disease Control and Prevention (CDC) which 

regulates the possession, use and transfer of biological agent (Rotz et al., 2002, 

Peacock et al., 2008). The criteria for Tier 1 agents include; the ability to cause 

mass casualties or economic devastation; communicability or dispersibility; low 

infectious dose; and intent of weaponisation (Wagar 2016). Concerns about 

B. pseudomallei use as a potential bioweapon stem primarily from a relatively 

high mortality rate, infectivity via the inhalational route, lack of a vaccine and 

intrinsic resistance to frontline antibiotics (Silva et al., 2013). For these reasons, 

development of a B. pseudomallei vaccine is a priority. 

 

Several B. pseudomallei genomes have been sequenced (Galyov et al., 2010) 

but the reference strain of B. pseudomallei is considered to be strain K96243, 

isolated in 1996 from a female diabetic patient in Thailand (Holden et al., 2004). 

The genome of B. pseudomallei K96243 consists of two chromosomes of 4.07 

Mb and 3.17 Mb in size and is large in comparison to typical prokaryotes 

(Holden et al., 2004). Chromosome 1 (4.07 Mb) contains coding sequences 

(CDSs) involved in core functions such as amino acid metabolism, nucleotide 

and protein synthesis, chemotaxis and motility (Holden et al., 2004). 

Chromosome 2 contains more CDSs for accessory functions such as osmotic 

protection and iron acquisition secondary metabolism (Holden et al., 2004). 

B. pseudomallei evolution seems largely driven by horizontal gene transfer 

(Holden et al., 2004). 

 

Melioidosis was first described as a glanders-like disease among morphine 

addicts in Burma by Whitmore in 1912 but is now recognised as a worldwide 

tropical pathogen and a major cause of pneumonia and sepsis across Asia and 

Northern Australia (Whitmore 1913, Currie and Kaestli, 2016). It is estimated 

that the annual number of deaths resulting from melioidosis (89,000) is 

comparable to that of measles (Limmathurotsakul et al., 2016). Clinical 

presentation of melioidosis is broad and ranges from asymptomatic 

seroconversion to acute septicaemia and pneumonia (Choh et al., 2013). 

Melioidosis is fatal in up to 50 % of cases depending on geographical region 

(Wiersinga et al., 2012), although acute septicaemia is associated with the 

worst prognosis with a mortality rate of approximately 95 % without antibiotic 

therapy (Cheng et al., 2007, Currie et al., 2000). Infected patients do not 
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develop protective immunity to re-infection as relapse does occur regardless of 

high antibody titres and some individuals will develop chronic, subclinical 

infections (Silva et al., 2013, Choh et al., 2013). Due to its ability to evade the 

immune system and manipulate host immune responses B. pseudomallei may 

also cause a latent infection with delayed symptoms up to 62 years after 

infection (Ngauy et al., 2005, Vellasamy et al., 2016). At one time this was 

considered a serious potential health risk for US personnel returning from the 

Vietnam War and was dubbed ‘the Vietnamese time bomb’ (Sanford 1978). 

 

The main routes of infection with B. pseudomallei are thought to be direct 

inoculation through cuts and abrasions in the skin or via the gastrointestinal and 

inhalational routes (Cheng and Currie, 2005, West et al., 2010). The route of 

infection correlates to disease severity with inhalational infection associated 

with severe infection (Silva et al., 2013). Risk factors associated with 

melioidosis infection include diabetes mellitus, pulmonary disease, chronic renal 

impairment, alcoholism, and a suppressed immune system (Foong et al., 2014). 

In locations with access to laboratory diagnostics and treatment for sepsis, 

patients that die from melioidosis are almost always those with identified risk 

factors (Currie 2015).  

 

Melioidosis is known to be endemic in 48 countries across Southeast Asia, the 

Middle East, Africa, Latin America, the Caribbean and the Pacific, although 

recent modelling suggests that melioidosis is probably endemic in another 34 

countries (Limmathurotsakul et al., 2016). The lack of accurate epidemiology 

data is thought to result from the lack of diagnosis capability in these countries 

and the non-specific symptoms associated with infection (Currie and Kaestli, 

2016).  

 

1.2.1 Diagnosis and treatment  

 

Culture identification from clinical samples is still the ‘gold standard’ of 

B. pseudomallei diagnosis but can take up to 7 days (Currie 2015, Lau et al., 

2015). B. pseudomallei is easily cultured on readily available, commercial media 

but misidentification is common due to the relatively nondescript colony 
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morphology (Wikraiphat et al., 2015). Identification is improved with selective 

media such as Ashdown’s agar, which contains gentamycin, but colony 

morphology from clinical samples demonstrates considerable variability 

(Chantratita et al., 2007, Currie 2015). 

Methods to reduce diagnostic time have been developed including indirect 

hemagglutination or ELISA, but are inadequate because of high background 

seroconversion of people living in endemic areas (Currie 2015). Other 

techniques include real-time PCR, and lateral flow immunoassays, which are 

rapid but less sensitive than blood culture; and rapid immunofluorescence 

microscopy, although the lack of facilities limits availability in some areas. In 

Thailand, identification is also performed by the latex agglutination test which is 

sensitive and specific but this is not widely available (Cheng and Currie, 2005, 

Currie 2015).  

Treatment of melioidosis is based on a series of clinical trials conducted in 

Thailand over the past 25 years and is separated into the acute and eradication 

phase (Dance 2014). Current guidelines suggest intravenous ceftazidime or a 

carbapenum for 10 to 14 days (acute phase) – to stop patients dying of sepsis - 

followed by oral trimethoprim-sulfamethoxazole, deoxycycline or amoxicillin-

clavulanate for 3 to 6 months in the eradication phase to prevent relapse 

(Pitman et al., 2015, Dance 2014). Despite this regime, relapse occurs in 

between 5.7 % to 9.3 % of surviving patients and is thought to result from the 

intracellular lifestyle of B. pseudomallei (Limmathurotsakul et al., 2006, Allwood 

et al., 2011, Sarovich et al., 2014).  

 

1.2.2 Burkholderia pseudomallei intracellular infection and mechanisms 

of virulence  

 

B. pseudomallei can invade and multiply in both phagocytic and non-phagocytic 

cells (Jones et al., 1996). B. pseudomallei is believed to invade cells by first 

adhering to the cell surface by expression of type IV pili and the adhesion 

proteins BoaA and BoaB, as mutation of the pilA, boaA and boaB genes 

reduces adherence to epithelial cells (Essex-Lopresti et al., 2005, Balder et al., 

2010). Invasion of non-phagocytic cells relies on the type III secretion system 
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(T3SS) components; BipD, BopE and BsaQ (Stevens et al., 2003, 

Muangsombut et al., 2008). The T3SS comprises approximately 20 proteins 

that form a syringe-like structure that span the inner and outer membrane and 

enable B. pseudomallei to secrete and inject effector molecules into host cells 

(Allwood et al., 2011). The T3SS is also important in escape of B. pseudomallei 

from the phagosome by the effector protein BopA (Gong et al., 2011). In 

addition, mutations of other T3SS proteins results in delayed phagosomal 

escape (Allwood et al., 2011). In the cytoplasm, B. pseudomallei polymerises 

actin which allows for cell-to-cell spread and evasion of host immunity and 

autophagy (Choh et al., 2013, Kespichayawattana et al., 2000). The BimA 

protein has been shown to interact directly with actin and a bimA 

B. pseudomallei mutant does not polymerise actin (Lazar Adler et al., 2009).  

 

B. pseudomallei has six type VI secretion systems (T6SS), of which T6SS-1 has 

also been shown to be critical for intracellular spread in both phagocytic and 

non-phagocytic cells by inducing plasma membrane fusion resulting in 

formation of multinucleated giant cells (Burtnick et al., 2011, Hopf et al., 2014). 

The intracellular lifecycle of B. pseudomallei, adapted from Willcocks et al. 

(2016) is shown in Figure 1.  

 

The basis of B. pseudomallei pathogenicity is not fully understood but 

cytotoxicity involves cellular caspase-1 activation, T3SS effector proteins, 

flagellar hook-associated protein and induction of apoptosis-related genes and 

proteins (Sun et al., 2005, Bachert et al., 2015, Gourlay et al., 2015, Hseu et al., 

2013). 
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Figure 1 Intracellular lifecycle of B. pseudomallei adapted from Willcocks et al., 2016. 

B. pseudomallei gains access to cells by macrophage/neutrophil uptake or invasion of non-

phagocytic cells by the use of flagella and adhesion factors (a, b). When inside the host cell, 

B. pseudomallei is enveloped in an endocytic vesicle or phagosome where T3SS is required for 

escape (c, d). B. pseudomallei replicates intracellularly (e) and upregulates biosynthetic 

pathways (f). Host actin is utilised for polymerisation of Ena/VASP-like tails which, alongside 

T6SS-1, results in successful dissemination to surrounding cells with formation of multi-

nucleated giant host cells (MNGC’s) (g) and continued replication (h). Black text describes 

intracellular processes. Blue text lists genes important for intracellular survival. Some of the host 

responses are shown in red and the dashed-arrow indicates the connection between T3SS and 

T6SS. Actin tails are not structurally accurate. 

1.3 Burkholderia mallei and glanders 

 

B. mallei is the causative agent of glanders, a disease of solipeds, and cannot 

survive outside of a host (Redfearn et al., 1966). Glanders was eradicated in 

many countries in the early 20th century but sporadic cases still occur in South 

America, Asia, Africa and the Middle East (Ulrich et al., 2005). Human infection 

typically occurs as a consequence of occupational exposure and is almost 

always fatal without antibiotic therapy (DeShazer et al., 2001). The transmission 

routes and symptoms are similar to B. pseudomallei with the septicaemic form 

associated with a mortality rate of greater than 95 % without treatment (Zandt et 

al., 2013). B. mallei is highly infectious by the aerosol route and was allegedly 

used as a biological weapon during World Wars I and II (Choh et al., 2013). 

Although glanders was recognised centuries before melioidosis, whole genome 



31 

sequencing and multilocus sequence typing (MLST) has actually shown 

B. mallei to be a clonal derivative of B. pseudomallei (Currie 2015).  

As for melioidosis, definitive diagnosis of glanders is by culture identification. 

Because of the rarity of human glanders cases, there is limited information on 

antibiotic therapy but recommendations mirror the treatment regime of 

melioidosis (Zandt et al., 2013).  

 

1.4 Burkholderia cepacia 

 

B. cepacia complex (Bcc) bacteria, traditionally plant pathogens, were first 

described in 1950 following observation of onion bulb disease (Burkholder 

1950). From recent reporting this complex consists of 20 species (Pradenas et 

al., 2016). Respiratory disease is a major cause of morbidity and mortality in 

patients with cystic fibrosis and Bcc bacteria are recognised as opportunistic 

pathogens in these patients which can cause a rapid deterioration in respiratory 

function, pneumonia and sepsis (Horsley et al., 2016). Treatment of Bcc 

infection in cystic fibrosis patients is difficult due to antibiotic resistance and the 

lack of an optimal antibiotic regime (Horsley et al., 2016). In contrast to 

B. pseudomallei, patient-to-patient transmission of Bcc bacteria has been 

shown (Manno et al., 2004). 

1.5 Burkholderia thailandensis  

 

B. thailandensis is an organism closely related to B. pseudomallei and B. mallei 

but with a > 105-fold reduction in virulence in an animal model of acute 

melioidosis (Brett et al., 1998). As B. thailandensis can be handled at lower 

levels of containment, has an intracellular lifecycle and is very similar 

genetically to B. pseudomallei, it is often used as a substitute in melioidosis 

research (Haraga et al., 2008, Brett et al., 2011, French et al., 2011, Choh et 

al., 2013). The lack of B. thailandensis virulence is often attributed to the 

presence of an arabinose biosynthesis operon, which is not present in 

B. pseudomallei, differences in fimbrial gene clusters and the lack of a type III 
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secretion system (Sirisinha et al., 1998, Rainbow et al., 2002, Moore et al., 

2004, Yu et al., 2006). 

 

1.6  Bacterial polysaccharides 

 

Bacteria express a diverse range of polysaccharides which are often an 

essential component of bacterial membranes and may function as structural 

components or virulence factors (Cooper et al., 2015). 

 

Capsular polysaccharides are a structurally diverse set of carbohydrates that 

form a major component of bacterial cell envelopes. They generally consist of 

long chains of repeating oligosaccharide sequences which tend to be anionic in 

nature and may contain as many as seven or eight sugar residues (Liebert et 

al., 2000). The repeat units can be either linear or branched and contain non-

carbohydrate substituents such as O-acetyl, glycerol phosphate, or pyruvate 

ketals. Capsular polysaccharides are fundamental to pathogenesis of many 

bacteria including Neisseria meningitidis (Fiebig et al., 2014), and both 

B. pseudomallei and B. mallei (Reckseidler et al., 2001, Deshazer et al., 2001). 

They can exhibit a variety of functions including resistance to environmental 

insult including salts, heavy metals and antimicrobial peptides and can also 

actively inhibit the human immune system (Whitfield 2006, Llobet et al., 2008). 

A variety of mechanisms for this action are known, including reduction of the 

amount of bound complement (Cuccui et al., 2012), inhibition of the 

complement cascade (Reckseidler-Zenteno, et al., 2005), or interference with 

recognition by phagocytic receptors on immune cells (Cartee et al., 2005).  

 

1.6.1 B. pseudomallei and B. mallei capsular polysaccharide 

 

In 1995, research into vaccine candidates for melioidosis identified an O-

antigenic polysaccharide produced by B. pseudomallei. This polysaccharide, 

originally termed OPS-I, was identified as an unbranched homopolymer of -3-)-

2-O-acetyl-6-deoxy-β-D-manno-heptopyranose-(-1 ( Perry et al., 1995). Further 

work determined this polysaccharide as a capsular polysaccharide (CPS) on the 

basis of high molecular mass; importance to virulence; and, most importantly, 
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genetic homology of OPS-I genes to other bacterial genes responsible for CPS 

biosynthesis (Reckseidler et al., 2001). In 2012 it was demonstrated that CPS is 

produced by both B. pseudomallei and B. mallei and suggested that this antigen 

could be used in a vaccine against both melioidosis and glanders (Heiss et al., 

2012). 

 

The molecular weight of CPS is estimated to be around 200 kDa and contains 

approximately 1000 monosaccharide units (Scott et al., 2013). A representation 

of the CPS monosaccharide and homopolymer is shown in Figure 2.  

 

 

Figure 2 CPS (2-O-acetyl-6-deoxy-D-manno-heptopyranose) monosaccharide (1) and the 

CPS homopolymer (2) 

 

The determination of CPS as a virulence determinant of both B. pseudomallei 

and B. mallei was demonstrated with CPS mutants. Loss of capsule expression 

resulted in attenuation in median lethal dose (MLD) from <10 colony forming 

units (CFU) to greater than 105 CFU in mouse models of disease (Reckseidler 

et al., 2001, Deshazer et al., 2001). CPS has been shown to be anti-phagocytic 

and inhibits complement deposition and clearance which may explain its role in 

virulence (Reckseidler et al., 2005). 

In addition to a virulence factor, CPS is also a protective immunogen. 

Vaccination with CPS in an experimental mouse model has been shown to give 

a degree of protection to B. pseudomallei challenge (Nelson et al., 2004), as 

does the passive transfer of antibodies raised against CPS (Jones et al., 2002). 

Antibodies to CPS have also been detected in convalescent patient sera 

(Parthasarathy et al., 2006), which together suggest that CPS could be a good 

vaccine candidate. This may be explained by its expression on the surface of 

the bacterium, thus maximising exposure to the immune system upon infection 

(Reckseidler et al., 2001). CPS could make a useful component of a subunit 
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vaccine as successful polysaccharide vaccines are already in use for a range of 

other pathogenic bacteria (Jones 2005). Despite recent advances in methods 

for CPS purification from pathogenic Burkholderia (Heiss et al., 2012), the yields 

are low, and require cultivation of unacceptably large quantities of select agent.  

Most strains of B. thailandensis do not produce the 6-deoxy heptan capsular 

polysaccharide with the exception of strain E555 and CDC3015869 which were 

identified by Sim et al. in 2010. The capsular polysaccharide produced by strain 

E555 was shown to cross-react with an antibody raised against B. pseudomallei 

CPS, although the structure of this CPS was not solved (Sim et al., 2010). 

Genome sequencing by Sim did confirm the presence of a gene cluster within 

B. thailandensis with 94.4 % sequence homology to the CPS gene cluster within 

B. pseudomallei (Sim et al., 2010). 

 

1.6.1.1  The B. pseudomallei CPS operon  

 

The 34.5 kb gene cluster encoding CPS in B. pseudomallei is located on 

chromosome 1 and is shown in Figure 3 which illustrates the genetic 

organisation and direction of transcription (Reckseidler et al., 2001, Cuccui et 

al., 2012).  

 

A study in 2007 by Cuccui et al. (2007) investigated the effect on CPS 

expression by transposon mutagenesis of CPS genes. The results confirmed 

previous work that disruption of wcbB, which encodes a glycosyltransferase, 

resulted in loss of CPS expression (Cuccui et al., 2007, Reckseidler et al., 2001, 

Atkins et al., 2002). In addition, disruption of wcbN and wcbC attenuated 

B. pseudomallei in mice whilst retaining the immuno-reactive epitope of CPS 

(Cuccui et al., 2007).  
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Figure 3 Genetic organisation of the CPS gene cluster in B. pseudomallei K96243. Broken 

lines indicate a cassette of genes orthologous to Y. pseudotuberculosis H897/87 involved in 

biosynthesis of GDP-6-deoxy-D-manno-heptose Adapted from Cuccui et al. (2012). 

 

In 2012, a comprehensive study of individual open reading frames (ORFs) 

within the CPS coding region of B. pseudomallei generated a model of CPS 

biosynthesis and export from inactivation of 18 of the CPS genes. The effect on 

phenotype was assessed by Western blot, immunofluorescence microscopy 

and B. pseudomallei virulence in an animal model. The gene cluster was 

reported to contain a central sugar biosynthesis cassette, with six of the 

proteins orthologous to proteins involved in the biosynthesis of GDP-6-deoxy-D-

manno-heptose in Yersinia pseudotuberculosis. Glycosyltransferases encoded 

by WcbB, WcbE, and WcbH are proposed responsible for transfer of the sugar 

residues to the polysaccharide chain which is attached to a phospholipid by 

WcbA/WcbO. Movement of CPS across the inner membrane occurs by the 

action of Wzt2/Wzm2 and movement to the outer membrane by WcbC/WcbD 

(Cuccui et al., 2012). The model proposed by Cuccui et al. (2012) is shown in 

(Figure 4). 
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Figure 4 Model of B. pseudomallei CPS biosynthesis. WcbA and WcbO coordinate the 

glycosyltransferases to initiate and synthesise the CPS chain on a lipid anchor. GmhA, WcbL, 

WcbN, WcbM, WcbK, and WcbJ synthesise CPS, which is acetylated by an undetermined 

enzyme, assembled on a priming sugar encoded by ManC, and polymerised by the action of 

glycosyltransferases WcbB, WcbE, and WcbH. The polysaccharide is moved from the 

cytoplasm into the periplasm via a complex composed of Wzm2 and Wzt2. The polysaccharide 

is presented on the bacterial surface by WcbD and WcbC. C, cytoplasm; IM, inner membrane; 

P, periplasm; OM, outer membrane. Taken from Cuccui et al. (2012). 

 

1.6.1.2 Other B. pseudomallei and B. mallei polysaccharides 

 

Another well described polysaccharide is lipopolysaccharide (LPS), formerly 

known as type II O-PS, and is an unbranched heteropolymer of repeating D-

glucose and L-talose units with the structure -3-β-D-glucopyranose-(1-3)-6-

deoxy-α-L-talopyranose-(1- (Knirel et al., 1992, Perry et al., 1995). LPS has 

been shown to be a protective antigen against B. pseudomallei challenge and 

virulence determinant (Nelson et al., 2004, DeShazer et al., 1998). LPS has four 

distinct genotypes; A, B, B2, and rough. It has been reported that serotype A is 

found in the majority of strains and B2 is a variant of genotype B (Tuanyok et 

al., 2012). In addition, B. pseudomallei LPS is produced in two forms on the 

basis of L-talose 2-O-methyl, 4-O-acetyl and 2-O-acetyl substituents. This 
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raises the possibility that an LPS-based melioidosis vaccine may not be 

protective across all strains.  

 

In 2004, two additional gene clusters were identified which were predicted to be 

responsible for CPS biosynthesis and export (Holden et al., 2004). In 2010, 

these were designated, along with a further operon, as CPS II, CPS III and CPS 

IV (Reckseidler et al., 2010). It was demonstrated in this same study that CPS 

III does not contribute to B. pseudomallei virulence. The impact of CPS II and IV 

was not investigated but it was shown that all three capsules are present in 

B. pseudomallei and B  thailandensis, but not B. mallei so it was suggested that 

they may play a role in environmental survival (Reckseidler et al., 2010). The 

chemical structure of each of these CPSs is currently unknown but CPS III was 

reported by Reckseidler et al. (2010) to contain galactose, glucose, mannose, 

xylose and rhamnose.  

 

Other work has identified a branched 1,4-linked glucan polymer, and an 

unbranched polymer of tetrasaccharide units with the structure -3)-2-O-acetyl-β-

D-Galp-(1-4)-α-D-Galp-(1-3)-β-D-Galp(1-5)-β-D-KDOp-(2-. These were 

described as CP-1a and exopolysaccharide (EPS) respectively (Masoud et al., 

1997, Nimtz et al., 1997, Kawahara et al., 1998). It is possible that both of these 

structures are the CPS II and IV referred to by Reckseidler et al. (2010).  

 

The known B. pseudomallei polysaccharides are represented in Figure 5 from 

George 2013.  
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Figure 5 Polysaccharides expressed by B. pseudomallei. Amended from George 2013 

 

1.7 Vaccines 

 

In the history of human medicine, no discovery has reduced mortality as much 

as vaccines which are estimated to have saved hundreds of millions of lives 

(Plotkin et al., 2013).  

 

The first known vaccination was recorded in England 1774 when Benjamin 

Jesty, a cattle breeder, inoculated his wife and children with cowpox to protect 

them against a smallpox outbreak (Plotkin et al., 2013). It was not until 1796, 

when the first scientific studies into vaccination were performed by Edward 

Jenner, that cowpox inoculation was demonstrated to protect against smallpox 

infection (Kaper et al., 2013). The next major advance in vaccinology occurred 

in the late 1870s when Louis Pasteur developed a vaccine to chicken cholera, 

and later rabies and anthrax, with laboratory-attenuated cultures of the bacteria 

(Hussein et al., 2015). Following this work, the 1870s and 1880s saw the 

development of killed vaccines for typhoid, plague and cholera (Plotkin et al., 

2013) and the use of inactivated bacterial toxins in the late 1890s (Hussein et 

al., 2015). 



39 

Since this early work, immunisation programs have led to the elimination and/or 

control of several different infectious diseases, including smallpox, polio, 

measles, mumps, rubella, Haemophilus influenzae type B disease, pertussis, 

tetanus, and diphtheria (Rosenthal 2005). These vaccines were developed with 

either killed-organism, vaccination with a serologically related virus, or 

attenuation of the organism to produce live vaccines with substantially reduced 

virulence (Rosenthal 2005). Targets for current vaccine development include 

some of the more difficult infectious agents, such as human immunodeficiency 

virus (HIV), Mycobacterium tuberculosis; and parasitic diseases, such as 

malaria (Kaper et al., 2013).  

 

A vaccine is required for melioidosis as treatment of B. pseudomallei infection is 

difficult due to resistance to many front-line antibiotics including 

aminoglycosides, quinolones, polymyxins and B-lactams (Currie 2015). The 

environmental lifestyle of B. pseudomallei increases the chances of native 

populations or visitors in endemic areas coming into contact with 

B. pseudomallei as indicated by the high levels of seroconversion seen in 

Thailand (Wuthiekanun et al., 2006). As Burkholderia spp. are highly adaptable, 

deliberate release into non-endemic areas will be difficult to remove and may 

result in initial high mortality in populations with no prior exposure to the 

organism, therefore a melioidosis vaccine that provides sterilising immunity or 

extends the therapeutic window for antibiotic therapy can be of significant 

clinical benefit (Choh et al., 2013).  

 

Despite the advances shown by vaccines, vaccine development currently takes 

approximately 20 years and costs approximately $500 million. Unfortunately, it 

is not the only barrier for development (Barrett and Beasley, 2009).  

 

1.7.1 Barriers to vaccine development 

 

1.7.1.1 Legal obstacles  

 

Like all medicines, vaccines can elicit unpredictable immune responses in some 

population groups. However, as vaccines are prophylactic there is little 
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tolerance from regulatory bodies and the public for side effects (Rosenthal 

2005). The fear of litigation on the part of the public inhibits vaccine 

development and significantly increases costs (Kaper et al., 2013). Several 

controversies have resulted in significant litigation which includes the supposed 

link to autism by the use of Thiomersal and the MMR vaccine (Baker 2008).  

 

1.7.1.2 Technical barriers / Vaccine licensure 

 

There are many technical challenges that remain in vaccine development and 

an in-depth discussion is out of the scope of this thesis, however, main themes 

revolve around the lack of licensed adjuvants, correlates of protection, animal 

models and knowledge of mucosal immunity for development of oral and nasal 

vaccine delivery systems (Kaper et al., 2013). For viral haemorrhagic fevers and 

the alpha viruses; Venezuelan equine encephalitis (VEE); Western equine 

encephalitis (WEE); and Eastern equine encephalitis (EEE), vaccine candidates 

have been identified but progress is delayed by development and validation of 

appropriate animal models and correlates of protection (Wolfe et al., 2013).  

 

For melioidosis, as for other diseases endemic in economically developing 

countries, the lack of clinical trials facilities can hinder vaccine development 

(Kaper et al., 2013). The recruitment of volunteers for efficacy testing, can be 

difficult if the disease is rare or if the vaccine is designed to protect against 

inhalational exposure, cases of which can be very rare. Therefore, clinical trials, 

if possible, may not achieve statistical power to demonstrate efficacy (Barrett 

2009). For bio-threat agents, human efficacy trials cannot be conducted for 

these same reasons and that disease severity is too great (Wolfe et al., 2013). 

 

For this reason, the US Food and Drug Administration (FDA) introduced the 

animal rule, which allows for substitution of animal studies for human studies to 

demonstrate vaccine efficacy, where efficacy studies in human populations is 

difficult or unethical (Barrett 2009). Protective efficacy must be demonstrated in 

an animal model in which both the mechanism of disease pathogenesis is 

established and the protective immune response is relevant to human disease, 

but defining correlates of protection in animals is difficult (Barrett 2009, Kaper et 
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al., 2013). In addition, some pathogens do not infect non-human species and in 

those that do, disease pathogenesis may not be identical (Kaper et al., 2013). 

 

1.7.1.3 Economic barriers  

 

It can be difficult to justify development of a vaccine that has uncertain 

monetary value because due to the prophylactic nature of the technology, 

health authorities and the public are reluctant to pay high prices when the 

benefit is not immediately realised. This leads to low profit margins and 

jeopardises innovation. With the exception of HIV and biowarfare agents, little 

public funding is available in the US for vaccine development (Kaper et al., 

2013). 

 

1.7.2 Economics of vaccine development  

 

Economic evaluation is an important aspect of any vaccine development, which 

in turn is based on demand, shelf-life and price (Barrett 2009). These factors 

can be insufficient to support commercial vaccine development, as for bio-threat 

agents, but global travel; high mortality from bio-threat agents; and the lack of 

alternative therapies means that these criteria alone should not dictate vaccine 

development.  

 

There are few incentives for pharmaceutical companies to develop vaccines for 

biodefence given that the return on investment is uncertain (Kaper et al., 2013). 

Vaccines for defence purposes are, however, developed for stockpiling that can 

act as an incentive for vaccine funding. Government funding decisions may also 

include the cost-saving of disease prevention and environmental 

decontamination therefore the return on investment will be higher than for a 

pharmaceutical company (Barrett 2009). 
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1.7.2.1 Funding bodies  

 

The US National Institutes of Health is the primary funding source for both 

academic and industrial vaccine development programmes (Rosenthal 2005). 

Other major funding bodies include the Bill and Melinda Gates foundation, the 

Wellcome Trust, the UK Vaccine Network, and the Medical Research Council 

(MRC). 

 

Other US agencies include the FDA; Biomedical Advanced Research and 

Development Authority (BARDA); Defense Advanced Research Projects 

Agency (DARPA); and the Defense Threat Reduction Agency (DTRA).  

 

DTRA, who has funded this thesis, ensures the US military can operate in the 

face of a chemical or biological threat (Wolfe et al., 2013).  

 

1.7.3 Biodefense vaccines  

 

Vaccine development is considered a deterrent to the use of specific bio-threat 

agents because it reduces the potential for effectiveness and decreases utility 

as a battlefield weapon (Rosenthal 2005).  

 

Currently, there are only two vaccines available against bio-threat agents; 

anthrax and smallpox, but these are associated with safety concerns based on 

reactogenicity and do not meet current safety standards (Poland et al., 2009, 

Chitlaru et al., 2016).  

 

The development of biodefence vaccines depends on the threat which has 

changed from state-run weapons programmes to terrorism. Vaccine candidates 

for filoviruses, alphaviruses, ricin and anthrax are undergoing preclinical testing 

but investment in new antigen expression systems and flexible manufacturing 

facilities is considered crucial (Wolfe et al., 2013). 
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1.7.4 Animal models 

 

Selection of an appropriate animal model is critical for biodefence vaccines 

given that licensure will ultimately require approval via the animal rule (Wolfe et 

al., 2013). 

 

The animal models used extensively for B. pseudomallei investigation include 

rodent models of the inbred mice strains BALB/c and C57BL/6 (Scott et al., 

2013, Scott et al., 2014, Breitbach et al., 2006). The Syrian golden hamster is 

highly susceptible to B. pseudomallei infection and has been used in virulence 

studies, but use of this model is limited because of the sensitivity to infection 

which does not mimic human disease (Brett et al., 1997, Bondi and Goldberg, 

2008).  

 

A hallmark of human acute melioidosis is release of proinflammatory cytokines 

which correlates with disease severity (Lauw et al., 1999, Wiersinga and Van 

der Poll, 2009). The releases of proinflammatory cytokines has been observed 

in BALB/c mice, peaking between 24-48 hours after infection with inefficient 

clearance of B. pseudomallei as a result of poor recruitment of lymphocytes and 

macrophages to the infection site (Lazar Adler et al., 2009). It is on this basis 

that the BALB/c mouse resembles acute human melioidosis and is used as the 

standard animal model to study acute B. pseudomallei infection (Norris et al., 

2011, Judy et al., 2012, Barnes et al., 2013). 

 

In contrast, C57BL/6 mice release lower levels of proinflammatory cytokines 

which peak between 48-72 hours after infection with efficient B. pseudomallei 

clearance mediated by increased neutrophil and macrophage infiltration to the 

infection site (Lazar Adler et al., 2009). This indicates that C57BL/6 mice are 

inherently more resistant to B. pseudomallei infection than BALB/c mice, and on 

this basis is an appropriate model for the study of chronic melioidosis (Tan et 

al., 2008, Conejero et al., 2011).  

 

A shortcoming of both the BALB/c and C57BL/6 mice is that neither model 

displays long-term latency which is an important feature of human melioidosis. 

Therefore, an animal model to study this stage of B. pseudomallei infection is 
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still required (Choh et al., 2013). It has been suggested that an outbred strain of 

mice which are highly resistant to B. pseudomallei infection could be used as a 

model of latent B. pseudomallei infection (Titball et al., 2008).   

 

When using mouse models of B. pseudomallei infection it is important to not 

over extrapolate findings. B. pseudomallei infection exhibits organotropism for 

the spleen (Hoppe et al., 1999). However, the mouse spleen exhibits a different 

structure of the white pulp to human spleen. In addition, B1 cells, which are not 

common in humans, can contribute significantly to the polysaccharide immune 

response in mice (Salehen and Stover, 2008). 

 

1.7.5 Live attenuated vaccines 

 

Live attenuated vaccines were among the first vaccines developed which 

included smallpox, rabies and tuberculosis (Plotkin et al., 2013). Live attenuated 

vaccines stimulate strong humoral and cell-mediated immune responses and 

can provide protection after a single dose. However, they have the potential for 

reversion to virulence and replication can be problematic for some populations 

and are therefore unlikely to reach licensure today (Strugnell et al., 2011, Silva 

and Dow, 2013). 

 

1.7.5.1 Live attenuated vaccines against B. pseudomallei  

 

The most effective melioidosis vaccines to date have utilised attenuated 

B. pseudomallei strains (Silva and Dow, 2013).  

 

Disruption of the ilvI gene of B. pseudomallei 576 by transposon mutagenesis 

generated a mutant (2D2) auxotrophic for branched chain amino acids (leucine, 

isoleucine and valine) and highly attenuated in mice by both the intraperitoneal 

and intranasal route. Clearance of B. pseudomallei 2D2 infection from the lung 

and spleen was reported one week after administration (Atkins et al., 2002, 

Easton et al., 2011). Furthermore, immunisation with 2D2 was efficacious 

against challenge with virulent B. pseudomallei (Atkins et al., 2002a, Haque et 

al., 2006, Easton et al., 2011) which was reported to be mediated by IFN- 
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release from CD4+ T-cells (Haque et al., 2006). Other B. pseudomallei 

transposon mutants in purine biosynthesis pathways have been evaluated 

including purN, purM, hisF, and pabB which were efficacious against acute 

melioidosis but not against chronic infection (Pilatz et al., 2006, Breitbach et al., 

2008). 

 

Other approaches include the use of a T3SS bipD mutant, which was partly 

efficacious against virulent B. pseudomallei challenge (Stevens et al., 2004) and 

an acapsular B. pseudomallei mutant (1E10) which was not protective (Atkins et 

al., 2002b). In a novel approach, BALB/c mice vaccinated with B. thailandensis 

E555 by Scott et al. were significantly protected against B. pseudomallei 

challenge compared to controls. In addition, sterilising immunity was achieved 

in the lung; liver; and spleen by day 3 post-challenge (Scott et al., 2013). 

 

1.7.6 Inactivated vaccines 

 

Organisms inactivated by heat or chemical means have been shown to be 

effective vaccines for a range of diseases including polio, hepatitis A and 

cholera (Plotkin et al., 2013). They are less complicated to produce and safer 

than attenuated vaccines, although local reactions at injection sites are a 

potential problem and they usually require adjuvants due to reduced 

immunogenicity (Strugnell et al., 2011, Silva and Dow, 2013).   

 

1.7.6.1 Inactivated vaccines against B. pseudomallei  

 

Immunisation of mice by the intraperitoneal (IP) route with heat-killed 

B. pseudomallei, B. thailandensis or B. mallei has been reported to give 

significant protection against IP B. pseudomallei challenge. This was 

hypothesised to be a result of CD4+ dependent antibody responses to CPS and 

LPS (Sarkar-Tyson et al., 2009). In the same study, the same vaccines were 

administered by the IP route but animals were challenged with an inhalation 

exposure of B. pseudomallei. Protective efficacy of each vaccine was much 

lower but still protective (Sarkar-Tyson et al., 2009). 

 



46 

1.7.7 Subunit vaccines and toxoids 

 

Subunit vaccines are less reactogenic than whole cell vaccines (Zepp 2010). 

However, it is known that vaccines consisting of pure or recombinant antigens 

can be less immunogenic than whole-cell alternatives and usually require an 

adjuvant to increase immunogenicity (Mohan et al., 2013).  

 

1.7.7.1 Polysaccharide subunit vaccines  

 

The first attempts to utilise capsular polysaccharides as vaccine candidates 

were in the late 1940s but the introduction of antibiotics delayed development of 

this field until the 1960s (Jones 2005).  

 

Polysaccharide-based vaccines have an advantage over protein based 

vaccines in that the expression of carbohydrates is not under direct genetic 

control, therefore genetic variation in a pathogen does not result in a change of 

the cell surface oligosaccharides (Hecht et al., 2009). The main disadvantage of 

polysaccharide vaccines is lack of a protective immune response in young 

children (Ada and Isaacs, 2003).  

 

The CPS and LPS of many bacteria have been shown to be protective against 

challenge and several polysaccharide vaccines have been licensed including 

Neisseria meningitidis, Salmonella enterica and S. pneumoniae (Jones 2005).  

 

In contrast to B. pseudomallei, where the deoxy-manno-heptose CPS is the 

most clinically relevant, pneumococcal disease is caused by ninety different 

serotypes and meningococcal disease is principally by Groups B and C, 

although Groups W135 and Y are important in human disease. Therefore, most 

polysaccharide-based vaccines must contain multiple CPSs to provide 

adequate disease coverage (Jones 2005). 
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1.7.7.2 Polysaccharide subunit vaccines for B. pseudomallei  

 

Both the CPS and LPS of B. pseudomallei have been investigated as 

polysaccharide vaccines. Nelson et al. (2004) showed that vaccination of 

BALB/c mice with either CPS or LPS increased mean time to death (MTTD) 

following challenge compared to controls.  

 

Another study has demonstrated that the LPS O-antigen of B. thailandensis 

provides similar levels of efficacy in comparison to vaccination with 

B. pseudomallei LPS O-antigen to B. pseudomallei challenge (Ngugi et al., 

2010).  

 

1.7.7.3 Protein subunit vaccines 

 

The use of protein vaccine candidates is advantageous as they are 

immunogenic in infants and the elderly because of their T-cell dependent nature 

(Plotkin et al., 2013). If the proteins are well conserved, they have the potential 

to protect against all pathogenic serotypes of an organism (Ginsburg et al., 

2012).  

 

1.7.7.4 Protein subunit vaccines for B. pseudomallei and B. mallei  

 

Several recombinant protein candidates have been shown to protect against 

B. pseudomallei infection. The most investigated is LolC, an outer membrane 

protein of B. pseudomallei associated with an ATP-binding cassette system 

(Harland et al., 2007a). This was efficacious against a ~50 x MLD 

B. pseudomallei challenge by the IP route. Other subunits investigated by 

Harland et al. include the periplasmic binding protein PotF; and oligopeptide 

binding protein OppA, with survival of 50 and 22 % respectively 42 days after 

challenge (Harland et al., 2007a).  

 

Burtnick at al. (2011) identified six Hcp proteins (Hcp 1-6) which are 

components of the T6SS as potential vaccine candidates. Protective efficacy 
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was similar to that reported for LolC by Harland et al. (2007a). Mice vaccinated 

with Hcp2 had the greatest survival rate of 80 %, 42 days after challenge. 

However, sterilising immunity was only seen in the mice vaccinated with Hcp1 

and Hcp6 (Burtnick et al., 2011). 

 

Other subunit vaccine candidates included the outer membrane proteins; 

Omp3; Omp7; and Omp85, and plasmid DNA encoding flagellin, which were 

protective against B. pseudomallei challenge in vaccinated mice (Hara et al., 

2009, Su et al., 2010, Chen et al., 2006). A further outer membrane protein; 

OmpW was also shown to significantly improve survival in both BALB/c and 

C57BL/6 mice to B. pseudomallei challenge which was attributed to IgG1 and 

IgG2a antibody generation (Casey et al., 2016). 

 

In an approach shown effective for M. tuberculosis infection, four proteins 

expressed by B. pseudomallei in the chronic stage of infection were shown to 

be protective in BALB/c mice. Interestingly, these proteins were significantly 

more efficacious than CPS or LolC (Champion et al., 2016). One of the proteins 

tested (BPSL2765) has been shown to give 10-fold higher antibody levels in 

patients who had suffered only one episode of melioidosis rather than patients 

with recurrent melioidosis (Suwannasaen et al., 2011).  

 

Other subunit antigens investigated which did not give statistically greater 

protection to B. pseudomallei challenge than controls were peptide mimitopes of 

exopolysaccharide (Legutki et al., 2007) and the T3SS proteins BipB, BipC and 

BipD (Druar et al., 2008). 

 

1.7.7.5 Polysaccharide conjugate vaccines  

 

There is no other example where introduction of a new approach to vaccine 

development has had such a rapid and positive effect in preventing infections 

by human pathogens as the development of conjugate vaccines (Plotkin et al., 

2013). The first conjugate vaccine was introduced in the 1990s for H. influenza 

type b (Hib) and consisted of polysaccharide conjugated to a non-toxic mutant 

of diphtheria toxin, Crm197 (Lai and Schreiber 2009). The Hib vaccine arose 
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from work in the 1980s and involved reductive amination of periodate activated 

oligosaccharides to a carrier protein with the resultant conjugate approximately 

90 kDa and contained an average of six glycan chains per carrier protein 

(Anderson et al., 1985).  

 

Since then, conjugate vaccines have been developed for S. pneumoniae, and 

N. meningitidis serogroup C which has significantly reduced the burden of 

childhood disease and mortality from these pathogens (Pobre et al., 2014). 

 

1.7.7.6 Polysaccharide conjugate vaccines for B. pseudomallei  

 

The first polysaccharide conjugate vaccine developed against B. pseudomallei 

was LPS O-antigen conjugated to flagellin protein which elicited IgG responses 

to both flagellin and LPS and protected diabetic rats against B. pseudomallei 

challenge (Brett et al., 1996).  

 

Other work has focussed on LPS O-antigen and CPS chemically conjugated to 

either bovine serum albumin (BSA) or tetanus toxin Hc (TetHc). Mice vaccinated 

with these conjugates are significantly protected against B. pseudomallei 

challenge compared to controls, but sterilising immunity is not always achieved 

(Burtnick et al., 2012, Scott et al., 2014a, Scott et al., 2014b).    

 

A novel conjugate vaccine containing B. pseudomallei O polysaccharide (type 

III OPS) conjugated to glycoprotein AcrA in E. coli has been produced and 

shown to be partially protective against B. pseudomallei intranasal challenge 

(Quintanilla et al., 2014).  

 

An additional novel concept was the use of a synthetic hexasaccharide CPS 

conjugated to TetHc. Mice immunised with this conjugate developed antibodies 

that recognised native CPS and were protected against B. pseudomallei 

infection (Scott et al., 2016).  
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1.7.7.7 Carrier proteins  

 

The three most commonly used carrier proteins for use in conjugate vaccines 

are Tetanus Toxoid (TT), diphtheria toxoid (DT) and Crm197, although others 

include N. meningitidis outer membrane protein and non-typeable H. influenzae 

derived protein D (Pobre et al., 2014). A summary of each carrier protein is 

given in Figure 6. However, clear differences have yet to be established 

between them with regards to vaccine potency because of the large group sizes 

needed in clinical trials and inconsistent immunogenicity data which can make 

the choice of carrier protein for conjugate vaccine development difficult (Knuf et 

al., 2011).  

 

The earliest and most widely used carrier proteins were the tetanus and 

diphtheria toxoids and these were used in licensed vaccines for Hib and 

N. meningitidis (Broker et al., 2011). Tetanus toxoid is derived from Clostridium 

tetani. Diphtheria toxoid is formaldehyde inactivated toxin from 

Corynebacterium diphtheria which itself is a product of the diphtheria toxin gene 

carried by corynebacteriophages. Integration of the bacteriophage into 

C. diphtheria converts it into a virulent strain (Broker et al., 2011).  

 

Crm197 is a mutated form of DT with an amino acid substitution from a glycine 

to a glutamic acid residue in the ‘fragment A’ region at amino acid position 52 

which removes enzymatic activity and hence toxicity (Giannini et al., 1984). The 

first Crm197 conjugate vaccine developed was against Hib related disease 

(Shinefield 2010). Like DT, Crm197 is a single polypeptide chain of 535 amino 

acids (Malito et al., 2012) but does not require chemical inactivation which 

makes conjugate vaccines less difficult to characterise and control (Knuf et al., 

2011). In addition, Crm197 T-cell epitopes are reported to be better preserved 

than the epitopes of DT, as are potential binding sites which consist of 39 lysine 

residues available for chemical conjugation (Jones 2005). This may result from 

the absence of formaldehyde inactivation. This in turn may explain the 

superiority of Crm197 as a carrier protein (Dagan et al., 2010, Knuf et al., 2011). 

It is thought that the conformation of Crm197 differs from DT, leading to lower 

B-cell responses (Dagan et al., 2010).  
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Carrier proteins are considered safe as inferred from their use in several 

licensed vaccines. A study of Hib conjugates showed that after three doses, 

redness, pain and swelling were less frequent in children receiving DT and 

Crm197 than OMP and TT. In a comparative study of meningococcal Crm197 

and DT vaccines, mild pain was the most common adverse effect. It is difficult 

to differentiate between carrier proteins with regards to safety as adverse 

effects are mild but hypersensitivity may be more common with Hib-OMP and 

Hib-TT conjugate vaccines (Knuf et al., 2011). 

 

 

Figure 6 Common carrier proteins used in conjugate vaccines. Image taken from Knuf 

(2011)  

 

1.7.7.8 Conjugation chemistry  

 

Polysaccharides require activation before attachment to the carrier protein and 

sometimes it is necessary to activate the carrier protein as well (Jones 2005). 

Classically, activation has been performed by two primary methods; periodate 

oxidation and cyanylation. Sodium periodate reacts with vicinal hydroxyl groups 

to form reactive aldehydes. These reactive aldehyde groups are then 

conjugated to lysine residues on the carrier protein by reductive amination, 
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usually in the presence of sodium cyanoborohydride, that forms a stable 

secondary amine. Any remaining aldehyde groups are quenched with sodium 

borohydride which reduces them back into hydroxyls (Frasch 2009). 

 

Cyanylation initially used cyanogen bromide (CNBr) to create random reactive 

cyanoester groups on the polysaccharide and was used in the first Hib 

conjugate but has now been replaced with the superior cyanylating agent CDAP 

(1-cyano-4-dimethylaminopyridinium tetrafluoroborate). CDAP does not require 

the use of reactive linkers such as adipic acid dihydrazide (ADH) which were 

used to compensate for the low efficiency of CNBr. The cyanoesters formed 

react with the epsilon amines of lysine to form a stable O-alkyl-isourea linkage. 

The reaction is then quenched with glycine (Frasch 2009).  

 

In all the current conjugate vaccines, polysaccharide is conjugated to either 

lysine residues or the amino group at the N-terminus of the carrier protein. 

Different conjugation chemistries are likely to have different specificities for 

available amines, depending on differences in pKa and steric accessibility 

(Jones 2005). 

 

1.7.7.9 Novel conjugation methodologies  

 

A novel method was developed for N. meningitidis group Y CPS conjugation to 

TT. Polyethylene glycol (PEG) was reacted with cyanylated CPS to introduce a 

maleimide group which lead to higher conjugation efficiency. This PEG spacer 

had the additional benefits of potentially decreasing the shielding effect of the 

polysaccharide on the carrier protein and vice-versa which may enhance 

vaccine bioavailability (Huang et al., 2013). 

 

1.7.7.10 Analysis of polysaccharide conjugate vaccines 

 

NMR spectroscopy is the dominant method to identify CPS and determine purity 

(Jones 2005). An estimation of the average size of activated polysaccharide can 

also be achieved by NMR or size exclusion chromatography with light scattering 

or anion exchange chromatography. It has been reported for other conjugate 
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vaccines that NMR spectroscopy can be performed on the final product to 

ensure the degree of O-acetylation and absence of degradation of the 

polysaccharide (Jones 2005).  

 

1.7.7.11 Considerations for the use of conjugate vaccines 

 

A major consideration with the use of conjugate vaccines is carrier priming, 

which is enhancement of the immune response to the polysaccharide of a 

conjugate in individuals previously vaccinated with the same carrier protein 

(Pobre et al., 2014). The main carrier proteins used in conjugate vaccines are 

TT, DT or Crm197. Therefore, carrier priming may occur following previous 

administration with a number of vaccines given in childhood including 

meningococcal and Hib (Tontini et al., 2013, Pichichero 2013). It is thought to 

occur as a result of an increase in the number of carrier protein-specific T-cells 

which stimulate expansion of B-cells specific to the polysaccharide (Pobre et al., 

2014). 

 

In some cases, carrier priming can suppress the immune response to the 

polysaccharide of a conjugate vaccine by a mechanism known as carrier 

induced epitopic suppression (CIES), which particularly occurs when the 

conjugate vaccine has a low polysaccharide to protein ratio (Pobre et al., 2014). 

This is thought to occur primarily from either a reduced carrier protein immune 

response – possibly by carrier-specific regulatory T-cells or competition for 

limited numbers of carrier-specific T-cells which generate an antibody response 

primarily to the carrier protein (Dagan et al., 2010, Knuf et al., 2011, Pobre et 

al., 2014). Alternative suggestions include pre-existing carrier-specific 

antibodies shielding the polysaccharide from polysaccharide-specific B-cells, or 

dominant carrier-specific B-cells outcompeting polysaccharide-specific B-cells 

for T-cell help (Dagan et al., 2010). Because of this, it has been suggested that 

an ideal carrier protein is one unable to induce a significant antibody response 

to itself (Pobre et al., 2014). It has been reported that the interference 

mechanisms between carrier proteins can consist of B-cell or T-cell dominant 

mechanisms (Dagan et al., 2010). This suggests that CIES is not simply a 
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matter of carrier protein immunogenicity but also the dominance of B- and T-cell 

relevant epitopes. 

 

Other major considerations revolve around the development and manufacture 

of conjugate vaccines of which perhaps the most important is the amount of free 

polysaccharide, which has been shown to suppress pneumococcal conjugate 

vaccine immunogenicity when higher than 10 % (Rodriguez et al., 1998). It has 

been reported that publications frequently overlook the possible presence of 

free polysaccharide by mistakenly assuming that all polysaccharide used in the 

conjugation reaction is bound (Suarez et al., 2008). The Hib conjugate vaccine 

was the first for which a maximum limit of free polysaccharide was described 

(deSouza et al., 2013). The World Health Organization (WHO) has published 

recommended limits of free protein and polysaccharide for meningococcal and 

pneumococcal conjugate vaccines (Frasch 2009). The Technical Series of 

Reports (TRS) from the WHO also detail other quality control measures which 

include control of polysaccharide size, both before and after activation, 

monitoring of polysaccharide structure, purity and O-acetyl content (WHO TRS 

924, TRS 927, TRS 962). 

 

A problem reported for Crm197 is that there is a lack of clinical data of 

conjugate efficacy in immunocompromised patients. It has been reported that in 

HIV-positive African children, the failure rate of Haemophilus b oligosaccharide 

conjugate vaccine is approximately 35-fold higher than negative-HIV children. A 

partial loss of memory response was observed in those administered with the 

pneumococcal vaccine PCV7 (Shinefield 2010). 

 

1.7.7.12 DNA vaccines 

 

DNA vaccines work on the principle that a small amount of host cells will 

express the gene products of injected genetic material. These can generate 

effective humoral and cellular immune responses to protein antigens, although 

they are reported to induce weaker immune responses in humans than mice 

(Liu 2011, Choh et al., 2013). 
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1.7.7.13 DNA vaccines for B. pseudomallei and B. mallei  

 

The only research carried out to date on DNA vaccines for B. pseudomallei was 

in 2006 when Chen et al. immunised mice with plasmid DNA encoding the fliC 

flagellar subunit. In comparison to vaccination with recombinant FliC protein, 

survival was greater in mice that received the DNA vaccine and addition of a 

CpG adjuvant further improved survival (Chen et al., 2006).  

 

1.8 Vaccine immunology 

 

Vaccine efficacy against disease is primarily mediated by antigen-specific 

antibodies and long-term protection requires maintenance of these antibodies 

and/or generation of memory cells capable of reacting to subsequent bacterial 

exposure (Plotkin et al., 2013). 

 

Antibodies are produced by B lymphocytes and antibody mediated protection is 

termed humoral immunity. Antibodies are produced by binding of antigen to B-

cell receptors which initially results in the production of IgM antibodies. The 

transition from naïve B-cells to plasma cells secreting high affinity IgG antibody 

requires T-cell help (Nishat and Andreana, 2016). 

 

T-cell mediated protection is another important mechanism of protection and is 

termed cellular immunity. There are two main subsets of T lymphocytes 

differentiated by surface molecules known as CD8 and CD4 which are 

expressed by cytotoxic T-cells and T-helper cells respectively (Roche and 

Cresswell, 2016). 

 

CD4+ T-cells produce cytokines and support the generation of B-cells and 

CD8+ T-cells. They can be divided into T helper 1 (Th1), Th2, Th17, Th9, Th22, T 

follicular-helper (Tfh) and T-regulatory (Treg) subtypes on the basis of secreted 

cytokines (Hirahara and Nakayama, 2016). 
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1.8.1 Th1/Th2 response 

 

Both antibody and cellular responses are produced as part of a Th1-type 

response characterised by interleukin 12 (IL-12), gamma interferon (IFN-) and 

tumor necrosis factor (TNF) (Plotkin et al., 2013). Th1-type responses are 

necessary to control intracellular infections (Hirahara and Nakayama 2016). 

Th2-type immune responses are directed by IL-4, IL-5, IL-9 and IL-13 cytokine 

expression resulting in predominantly IgG1 and IgE antibody isotype class 

switching and recruitment of inflammatory cells (Sahoo et al., 2016). Th2 

responses are necessary to control extracellular infections (Oliphant et al., 

2011). While both Th1 and Th2-type immune responses can be raised at the 

same time, Th1 and Th2 responses are generally antagonistic and the cytokines 

necessary for either response will inhibit the other (Kaiko et al., 2008). 

 

1.8.2 Immune response to polysaccharides  

 

Polysaccharides are poorly immunogenic. They raise antibody responses 

through crosslinking of approximately 15-20 receptors on a B-cell of appropriate 

specificity, and through pathogen associated molecular pattern receptors 

(PAMP) (Jones 2005, Nishat and Andreana, 2016). Polysaccharides are 

considered T-cell independent antigens (TI), but this is not strictly true as 

generation of anti-polysaccharide antibodies requires B7 ligand dependent co-

stimulation of B-cells by T-cells. This interaction is short and T-cell receptor 

unspecific (Salehen and Stover, 2008). There are polysaccharides that are 

zwitterionic - both positive and negative electrical charges are present on the 

molecule - which are uniquely processed and presented by antigen presenting 

cells (Lai and Schreiber 2009). 

 

Generated anti-polysaccharide antibodies are generally IgM and IgG2. These 

are not good activators of complement and fail to induce immune responses in 

infants below the age of 2 years (Jones 2005). This has been attributed to the 

immaturity of the infant immune system in the expression of B cell receptors, 

including complement receptor type 2 (CR2) (Perciani et al., 2013). Antibodies 

generated to TI antigens exhibit less avidity, opsonophagocytic and bacteriolytic 
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activity than T-cell dependent (TD) antigens which is explained by the absence 

of somatic hypermutation (Salehen and Stover 2008). Repeat vaccination with 

polysaccharides does not boost antibody titres (Jones 2005). Previously, dogma 

dictated that polysaccharides were not able to stimulate a memory B-cell 

response; however, work has shown that IgM memory B-cells are generated 

independent of T-cell help in addition to persistent stimulation of B-cell 

receptors which can provide long lasting antibody levels (Salehen and Stover 

2008). 

 

The immediate polysaccharide immunoglobulin response is mainly generated 

by marginal zone B-cells concentrated in the spleen and lymph nodes (Salehen 

and Stover 2008). An immune response is initiated through binding of 

polysaccharide to B-cell receptors or by C3d deposition on the polysaccharide 

(Breukels et al., 2005). Marginal zone B-cells are a non-activated B-cell subset, 

distinct from follicular B-cells of splenic germinal centers, but on activation 

migrate to the follicular zone where CD21 (CR2) is proteolytically cleaved and 

antigen transferred to follicular dendritic cells (Salehen and Stover 2008, 

Zandvoort and Timens 2002). There is no T-cell help, however, due to 

inefficient processing and presentation of polysaccharides, and the lack of co-

stimulatory molecule upregulation via solely CR2 mediated B-cell triggering 

(Salehen and Stover 2008). As the immune response develops, germinal 

centers in the spleen develop, as for T-cell dependent antigens, but without T-

cell help these are transient (Lentz and Manser 2001). 

 

In 1931, Avery and Goebel discovered that the immunogenicity of 

polysaccharides could be increased by covalent attachment of the 

polysaccharide to a protein carrier to form a conjugate (Avery and Goebel 

1931). The mechanism by which a polysaccharide is capable of inducing an 

immune response resembling that of a TD antigen following conjugation to a 

carrier protein is not completely understood. It is thought to involve delivery to 

APCs and B7-CD28 and CD40-CD40L interactions between B-cells specific for 

polysaccharide and T cells which is characterised by antibody isotype switching 

from IgM to IgG (Salehen and Stover 2008, Lai and Schreiber 2009). 
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There are two main theories of how this occurs. The first is that immunisation 

with a conjugate induces carrier-protein specific T-cells that provide cytokine 

help for expansion of B-cells specific to the polysaccharide, leading to IgG 

antibody formation and B-cell memory (Lai and Schreiber 2009, Huang et al., 

2013). However, the mere presence of carrier protein is not sufficient; 

conjugation to the polysaccharide is required which suggests close interaction 

upon antigen processing and recruitment of T-cells (Schneerson et al., 1980). In 

addition, immunisation with a meningococcal polysaccharide conjugated to TT 

has been reported to induce polysaccharide-specific T-cells in mice 

(Muthukkumar and Stein, 2004). 

 

An alternative proposed hypothesis is that polysaccharide is processed along 

with the carrier protein in the endosome and the resultant MHC-II bound carrier-

peptide presents the polysaccharide to T-cells leading to clonal expansion of 

polysaccharide-specific B-cells. This has been shown to be the case for 

pneumococcal polysaccharide serotypes 14 and 19F, labelled with Alexa 

Fluor® 594 hydrazine, conjugated to Crm197 (Lai and Schreiber 2009). In 

addition, studies have shown T-cell responses specific to the carbohydrate 

portion of glycopeptides (Deck et al., 1999, Purcell et al., 2008). However, this 

theory is still incomplete as significantly different antibody responses and 

antigen processing efficiency was seen with seven different pneumococcal CPS 

serotypes conjugated to Crm197 (Leonard et al., 2003). This suggests that an 

unknown characteristic of the polysaccharides affected endosomal processing 

of the carrier protein and resultant immunogenicity (Lai and Schreiber 2009). 

 

1.8.3 Immune response to proteins (MHC-I and MHC-II) 

 

Major histocompatibility complex class I and II molecules (MHC-I and MHC-II) 

are transmembrane glycoproteins that present short peptides generated by the 

cells that express MHC molecules (Roche and Cresswell 2016). MHC-II 

molecules are expressed on antigen presenting cells (APCs), which include 

dendritic cells (DCs) and B-cells, but expression can be induced on most cell 

types by IFN-, whereas MHC-I molecules are expressed by all nucleated cells 

(Roche and Cresswell 2016). 
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The processing of peptides and presentation to CD4+ and CD8+ T-cells is a 

critical step in the development of adaptive immune responses (Baumgartner 

and Malherbe 2011). MHC-II molecules present peptide antigens between 12 

and 26 amino acids in length to CD4+ T-cells. This process starts with antigen 

uptake by APCs by the process of endocytosis; macropinocytosis; 

phagocytosis; or autophagy, followed by proteolysis in the endosome or 

lysosome. Following a series of degradation and binding steps, 

immunodominant MHC-II-peptide complexes, formed within the endosome, are 

moved to the plasma membrane (Baumgartner and Malherbe 2011, Roche and 

Cresswell 2016). 

 

In contrast, MHC-I present peptides between 8 and 10 amino acids long to 

CD8+ T-cells from newly synthesised proteins in the cytosol which are 

degraded by the proteasome. The degraded peptides are transported by the 

transporter associated with antigen processing (TAP) into the endoplasmic 

reticulum (ER). Following a series of peptide editing steps, high-affinity peptides 

associate with MHC-I molecules and the complex is transported to the cell 

surface (Baumgartner and Malherbe 2011, Roche and Cresswell 2016).  

 

1.8.4 Immune response to B. pseudomallei infection 

 

Both clinical and experimental studies have shown that a fully functional innate 

immune system is critical to the control of initial B. pseudomallei infection, 

primarily by gamma interferon (IFN-), macrophages and neutrophils (Silva and 

Dow 2013). Deficiencies in innate immunity present in risk factors for 

melioidosis, such as diabetes, also suggest the importance of these 

mechanisms (Hodgson et al., 2011). 

 

The role of IFN- has been investigated in several studies; both IFN-  depleted 

and knockout mice are highly susceptible to B. pseudomallei infection 

(Santanirand et al., 1999, Haque et al., 2006). The IFN- response has been 

shown to be rapidly generated by natural killer cells (NK), NK T-cells and 

conventional T-cells in an IL-12 and IL-18 dependent manner (Haque et al., 
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2006, Koo and Gan, 2006). Neutrophils and macrophages have been shown to 

be crucial in controlling early stage infection following depletion in animal 

models of melioidosis, which in turn is facilitated by complement, opsonising 

antibodies and serum opsonins (Breitbach et al., 2006, Easton et al., 2007, 

Mulye et al., 2014). 

 

Other components necessary for protection against B. pseudomallei infection 

include, TNF-α and if chronic infection is established; CD4+ T-cells. TNF-α 

knockout mice exhibit increased susceptibility to B. pseudomallei infection with 

increased bacterial loads recovered from spleen and liver tissue (Barnes et al., 

2008). Although it has been demonstrated that T-cells were dispensable for 

initial control of B. pseudomallei, mice depleted of CD4+ T-cells were 

significantly more susceptible to infection (Haque et al., 2006).  

 

1.9  Correlates of protection  

 

Most vaccines on the market today use antibody generation, or generation of 

innate immunity as correlates of protection against disease. For some of the 

major disease-causing encapsulated bacteria (Hib, pneumococci and 

meningococci), the correlates of protection are opsonophagocytic or bactericidal 

antibodies (Plotkin 1999 Barrett 2009 Plotkin 2010). With the partial exception 

of the Bacillus Calmette-Guérin (BCG) vaccine for tuberculosis, control of 

intracellular pathogens by vaccination has not been achieved (Plotkin 2010). 

 

Humoral and cellular immunity have been reported critical for protection of 

either BALB/c or C57BL/6 mice against B. pseudomallei challenge in several 

studies, which includes monoclonal antibody induced protection by passive 

transfer (Jones et al., 2002, Liu et al., 2002, Healey et al., 2005). In recent work, 

partial protection against intranasal B. pseudomallei challenge in mice was 

achieved following passive transfer of sera from mice immunised with a highly 

attenuated, select agent excluded, purM deletion mutant of B. pseudomallei 

(Bp82). Protection was associated with humoral immunity as B-cell deficient 

mice were not protected by immunisation, but were partially protected by 
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passive transfer of sera from Bp82 vaccinated wild-type mice (Silva and Dow, 

2013). 

 

1.10  Vaccine adjuvants and delivery systems 

 

1.10.1  Adjuvants 

 

The term adjuvant is derived from the Latin word adjuvare, meaning ‘to assist or 

help’ (Sivakumar et al., 2011). Adjuvants are key components added to 

vaccines, especially subunit vaccines, to increase immunogenicity (Apostolico 

and Lunardelli, 2016). Adjuvants can also assist by reducing the amount of 

doses required for generation of immunity. Since most of the adjuvants currently 

licensed induce antibody responses, there exists a need for adjuvants that 

stimulate cell-mediated immunity (Knudsen et al., 2016). 

 

Adjuvants are broadly classified into three types; delivery systems; immune 

potentiators; and mucosal adjuvants. Delivery systems are further subdivided 

into; mineral salts - such as aluminum salts; microparticles – such as non-

enveloped virus like particles; and lipid particles - such as MF59. An example of 

immune potentiator adjuvants are polyinosinic-polycytidylic acid (Poly (I:C) and 

monophosphoryl lipid A (MPL) (Apostolico and Lunardelli 2016). These are both 

pathogen-associated molecular patterns (PAMPs), which are generic triggers 

for the innate immune system. An example of a mucosal adjuvant is cholera 

toxin (CT) (Lawson et al., 2011). 

 

This classification system of adjuvants is based on mechanism of action 

(Apostolico and Lunardelli 2016). Delivery systems act as antigen carriers and 

create local inflammatory responses for activation of innate immunity (Goto and 

Akama, 1982). Immune potentiators also stimulate innate immune responses 

but through activation of pattern-recognition receptors (PRRs) that result in the 

production of cytokines and chemokines (Olive 2012). PRRs are evolutionarily 

conserved, germ-line encoded molecules including; toll-like receptors (TLRs); 

retinoic acid-inducible gene (RIG)-I-like receptors; C-type lectin-like receptors 

(CLRs); and nucleotide oligomerization domain (NOD)-like receptors (NLRs) 
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and DNA sensors. A classic PAMP is lipopolysaccharide but others include 

flagellin, double-stranded RNA and unmethylated CpG motifs (Mahla et al., 

2013). 

 

With exception of CT, the adjuvants named have been included in this thesis 

and further information can be found in Chapter 5; Immunogenicity and efficacy 

of candidate vaccines. 

 

1.10.2  Virus-like particles 

 

Virus-like particles (VLPs) are formed from viral structural proteins, typically 

capsid or envelopes, which have the property of self-assembly for formation of 

structures that mimic intact virus particles (Grgacic and Anderson, 2006). The 

size and morphology of VLPs depend on the viral proteins utilised. They are all 

non-infectious and non-replicating as they do not contain viral genetic material 

(Kushnir et al., 2012). The size and particulate nature of VLPs leads to efficient 

uptake by DC’s and are capable of presentation on both MHC-I and MHC-II 

molecules. Antigenic epitopes in a VLP construct are also displayed in a highly 

repetitive manner which leads to B-cell receptor crosslinking and with CD4+ and 

CD8+ T-cell stimulation induces both humoral and cellular immune responses 

(Grgacic and Anderson 2006, Ludwig and Wagner, 2007, Zabel et al., 2013). 

 

Prior to 1969, all anti-viral vaccines used either inactivated or attenuated 

strains. Following demonstration that cells infected with hepatitis B virus (HBV) 

produced empty 22 nm particles, the first VLP vaccines were developed in the 

1980s from HBV core antigen (HBcAg) and surface antigen (HBsAg) proteins 

(Ludwig and Wagner 2007, Pushko et al., 2013). Licensed VLP vaccines now 

include GlaxoSmithKline’s Engerix-B® and Merck’s Gardasil®, vaccines for 

HBV and human papilloma virus (HPV) respectively, which contain the 

appropriate viral core protein (Kushnir et al., 2012, Ludwig and Wagner, 2007). 

VLPs can be formed from non-enveloped viruses, such as HBcAg, or 

enveloped, such as influenzae and Ebola virus, which contain a lipoprotein 

membrane derived from host cell membranes that surrounds a nucleocapsid 

(Pushko et al., 2013). 



63 

In addition to candidate vaccines, VLPs are also considered to be effective 

antigen delivery platforms, which make them ideal for use in conjugate vaccine 

development (Grgacic and Anderson 2006, Noad and Roy, 2003, Scheerlinck 

and Greenwood, 2008, Vietheer et al., 2007). VLPs can act as antigen delivery 

platforms by two approaches; genetic insertion of protein epitopes; or chemical 

conjugation to protein or polysaccharide antigens (Pushko et al., 2013). 

 

The crystal structure of HBcAg was solved in 1999 which showed a long          

α-helical hairpin and hydrophobic core. A dimer is formed by spontaneous 

association of two α-helical hairpins and capsid is formed by assembly of up to 

120 dimers. The resulting four-helix bundle of each dimer protrudes as a spike 

from the capsid surface and is called the major immunodominant region (MIR) 

(Crowther et al., 1994, Conway et al., 1998, Wynne et al., 1999, Whitacre et al., 

2009). The MIR of HBcAg contains dominant B-cell epitopes and is the 

favoured site for genetic insertion of foreign antigenic sequences resulting in 

strong immune responses to the insert (Schodel et al., 1992, Whitacre et al., 

2009). Genetic insertion of antigens into HBcAg has been demonstrated for; 

malarial circumsporozoite protein; tuberculosis culture filtrate protein 10; 

anthrax protective antigen; and influenzae M2e peptide (Gregson et al., 2008, 

Dhanasooraj et al., 2013, Yin et al., 2014, Tsybalova et al., 2015). Genetic 

insertion in HBcAg is however limited to small, hydrophobic antigens due to 

steric hindrance at the MIR site which has limited HBcAg development as a 

vaccine platform (Peyret et al., 2015). 

 

iQur, a collaborator on this project, has developed Tandem CoreTM which 

consists of two HBcAg genetically linked via a flexible GGS7 linker from amino 

acid 149 of the upstream core to the N-terminus of the downstream core. This 

dimer forms VLPs morphologically indistinguishable from native HBcAg dimers 

and allows for insertion of single large proteins in each MIR, as assembly of the 

4 helix bundle is facilitated by covalent linkage (Peyret et al., 2015). In addition 

to foreign protein insertion, a further advantage of Tandem CoreTM is the insert 

of lysine residues into the MIRs which can then be used for chemical 

conjugation to polysaccharide antigens, such as Burkholderia CPS, and thus 

facilitates presentation of both Burkholderia protein and CPS in a highly 

immunogenic context. Tandem CoreTM also differs from native HBcAg through 
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the use of truncated cores in order to remove or reduce the amount of host 

expression-system nucleic acid content, which may make licensure of an 

HBcAg based vaccine easier. In heterotandem core constructs, the upstream 

core protein is truncated at amino acid 149, which removes the nucleic acid 

binding domain, and the downstream copy is full length. In homotandem 

constructs both core proteins are truncated, although the utility of this approach 

is uncertain as it is known that the positively charged nucleic acid binding 

domain influences particle stability and VLP assembly (Peyret et al., 2015). The 

formation of native HBcAg VLPs, the Tandem CoreTM construct, 

insertion/conjugation of foreign antigens and formation of Tandem CoreTM VLPs 

is illustrated in Figure 7. 
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Figure 7 Hepatitis B core protein and Tandem Core
TM

 VLPs. (A) VLP formation from native HBV core 

protein first occurs by spontaneous formation of an HBcAg dimer. 90-120 dimeric subunits then assemble 

a VLP. (B) Two Hepatitis B core protein sequences fused together via a repeating GGS linker to form the 

Tandem Core
TM

 construct from either hetero-tandem (one full length, one truncated, core protein) or homo-

tandem (both cores truncated) for removal of the nucleic acid binding domain(s). Illustrated are the major 

immunodominant regions (MIRs I and II) which can accommodate insertion of foreign proteins or lysine 

residues for polysaccharide conjugation. Adapted from Peyret et al., 2015 (C) Tandem Core
TM 

molecule 

expressing foreign protein (pink) in MIR I (red) and lysine residues in MIR II (blue) chemically conjugated 

to Burkholderia CPS. Assembly of this construct forms the Tandem Core
TM

 VLP, expressing both foreign 

protein (pink) and CPS (blue) on the outside of the molecule. Images provided by Mologic. 
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1.11 Project aims 

 

There is not a licensed vaccine available for the disease melioidosis. Despite 

reports on the ability of several Burkholderia vaccines to confer some 

protection, none of the vaccines have reached the clinical trial state and the 

ability to achieve sterilising immunity is inconsistent. 

 

The aim of the project work reported in this thesis was to develop an efficacious 

vaccine against B. pseudomallei based on Tandem Core™ technology 

combined with capsular polysaccharide and protein antigens from 

B. pseudomallei. 

 

The development of the conjugate vaccine first required optimisation of CPS 

production in order to reduce the cost of extraction. The B. thailandensis strain 

E555 was investigated following reports of an expressed polysaccharide that 

cross-reacts with an antibody generated against B. pseudomallei. The use of 

B. pseudomallei protein antigens required identification of candidates and 

identification of immunogenic regions for potential insertion into the Tandem 

CoreTM. 

 

The second part of this study was to assess the protective efficacy of developed 

conjugate vaccine in an animal model of acute melioidosis and investigate the 

effect on efficacy of different adjuvants. 
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Chapter 2: Materials and methods 

 

All chemicals and reagents were supplied by Sigma-Aldrich Company Ltd. 

(Poole, Dorset), unless otherwise stated. 

 

Phosphate buffered saline (1x Dulbecco’s PBS) and distilled water was supplied 

by Life Technologies unless otherwise stated. 

 

2.1 Preparation of antibiotics 

 

For addition of kanamycin to microbiological media for growth of B. 

thailandensis E555 :: wbiI (Kmr), 200 µL of a stock concentration of kanamycin 

at 50 mg/mL was added to 199.8 mL of media to give a final concentration of 50 

µg/mL. 

 

2.2 Preparation of reagents and buffers 

 

2.2.1 ABTS buffer pH 4.37 (Citric acid/phosphate buffer) 

 

ABTS buffer was produced by a Dstl colleague (Scott Underwood). 

 

Citric acid (11.76 g/L), and Na2HPO4 (12.49 g/L) were added to Milli-Q® water, 

pH adjusted to 4.37 (with either citric acid or disodium phosphate) and sterilised 

at 121°C for 15 minutes. 

 

2.3 Preparation of growth media 

 

All media was produced by a Dstl colleague (Scott Underwood). The media 

used in this this is detailed in Handbook of microbiological media, 2nd edition, 

Ronald M. Atlas, edited by Lawrence C. Parks, CRC. ISBN: 0-8493-2638-9. 
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2.3.1 Luria Bertani (LB) broth 

 

Difco tryptone peptone (10 g), Difco Bacto yeast extract (5 g) and sodium 

chloride (5 g) were added to 1000 mL of Milli-Q® water, pH adjusted to 7.2 if 

necessary and sterilised at 121°C for 15 minutes. 

 

2.3.2 LB agar 

 

Difco tryptone peptone (10 g), Difco Bacto yeast extract (5 g), sodium chloride  

(5 g) and Difco Bacto agar (20 g) were added to 1000 mL of Milli-Q® water, pH 

adjusted to 7.2 if necessary and sterilised at 121°C for 15 minutes.  

 

2.3.3 Enhanced phytone peptone broth 

 

Two buffers were first prepared; phosphate buffer by addition of 12.5 g of 

K2HPO4 and 2.31 g of KH2PO4 in 100 mL of Milli-Q® water followed by 

sterilisation at 121°C for 15 minutes; and 1 M MgSO4.7H2O; by addition of 

24.65 g of MgSO4.7H2O in 100 mL of H2O followed by 0.35 µm filter 

sterilisation.  

 

Phytone peptone (24 g), yeast extract (72 g) and glycerol (25 g) were added to 

900 mL of Milli-Q® water followed by sterilisation at 121°C for 15 minutes after 

which the phosphate buffer (100 mL) and 1 M MgSO4.7H2O (10 mL) was 

added. 

 

2.3.4 M9 minimal media 

 

The following solutions were prepared; 20 % (w/v) glucose (20.0 g/100 mL Milli-

Q® water, sterilised at 121°C for 15 minutes); 1 M MgSO4.7H2O: (246.5 g in 1 L 

of Milli-Q® water, sterilised at 121°C for 15 minutes); 0.1 % (w/v) thiamine-HCl 

(10 mg in 10 ml of Milli-Q® water, 0.35 µm filter sterilised); and 133 mM CaCl2 

(14.7 g in 1 L of Milli-Q® water, sterilised at 121°C for 15 minutes).  
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The following components were dissolved in Milli-Q® water with the final 

volume adjusted to 987 mL with Milli-Q® water; Na2HPO4 (6 g/L), KH2PO4 (3 

g/L), NH4Cl (0.5 g/L). This solution was pH adjusted to 7.0 and sterilised at 

121°C for 15 minutes. Once cooled, 10 mL of 20 % (w/v) glucose solution; 1 mL 

of 1 M MgSO4.7H2O; 1 mL of 0.1 % (w/v) thiamine-HCl; and 1 mL of CaCl2 were 

added aseptically.    

 

2.3.5 Tryptone peptone broth  

 

Oxoid tryptone soya broth (30 g/L) was added to 1 L of Milli-Q® water, adjusted 

to pH 7.3 and sterilised at 121°C for 15 minutes.    

 

2.3.6 Brain Heart Infusion broth 

 

Difco brain heart infusion broth (37 g/L) was added to 1 L of Milli-Q® water and 

sterilised at 121°C for 15 minutes.    

 

2.3.7 Brain Heart Infusion agar 

 

Difco brain heart infusion agar (52 g/L) was added to 1 L of Milli-Q® water and 

sterilised at 121°C for 15 minutes. 

 

 

 

 

 

 

 

 

 

 

 

 



70 

2.4 Microbiology techniques 

 

2.4.1 Bacterial strains and plasmids 

 

Strain or plasmid Relevant information 

B. pseudomallei K96243 Natural isolate (Holden et al., 2004) 

B. pseudomallei 1026b Natural isolate (Hayden et al., 2012) 

B. thailandensis E555 Natural isolate (Sim et al., 2010) 

B. thailandensis CDC2721121 Natural isolate (Sim et al., 2010) 

Table 1 Bacterial strains used in this thesis and reference information 

 

Master stocks of all B. pseudomallei and B. thailandensis strains were provided 

by Dr Andy Scott, Dstl, Porton Down. B. thailandensis E555 :: wbiI (Kmr) was 

provided by Dr Andy Scott, Dstl, Porton Down. Briefly, this mutant was 

generated by insertional inactivation of the wbiI gene using the pKnock-Km 

suicide vector (Alexeyev 1999). An internal fragment from the wbiI gene in 

B. thailandensis E555 was amplified by polymerase chain reaction (PCR); 

ligated into pKnock-Km vector and cloned into E. coli S17-1 λ-pir. The resulting 

vector was transferred into B. thailandensis E555 by conjugation (Hamad et al., 

2009) and recombinants selected by supplementing growth media with 

kanamycin (750 µg/mL) and gentamicin (50 µg/mL). Loss of O-antigen 

synthesis was confirmed by A. Scott by Western hybridization following SDS 

PAGE using the O-antigen specific monoclonal CC6 (Jones et al., 2002). 

Continued synthesis of CPS was confirmed by Western hybridization using the 

capsule-specific monoclonal DSTL189. 

 

2.4.2 Growth and manipulation of bacteria 

 

B. pseudomallei is classed as a hazard group 3 pathogen by The Advisory 

Committee on Dangerous Pathogens (ACDP). Therefore, all manipulation of 

B. pseudomallei was carried out within a Class III microbiological safety cabinet, 

located within a designated containment level 3 laboratory. 
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B. thailandensis is not classified as hazardous by the ACDP therefore all 

manipulation was carried out within a Class II microbiological safety cabinet, 

located within a designated containment level 2 laboratory. 

 

2.5 Extraction of CPS from B. pseudomallei K96243 and B. thailandensis 

E555 

 

2.5.1 Growth of Burkholderia spp. on solid media 

 

B. pseudomallei K96243 was inoculated into 100 mL of LB broth. 

B. thailandensis E555 :: wbiI (Kmr) was inoculated into 100 mL of LB broth with 

50 µg/mL kanamycin. Both cultures were incubated overnight at 37C, shaking 

at 180 rpm. Each culture was used to inoculate 32 large tissue culture flasks 

containing LB agar and incubated for 48 hours at 37C. Cells were harvested in 

4 mL of PBS with the use of glass beads. The cells were split into 10 mL 

aliquots and heat inactivated at 80C for 4 hours. Each 10 mL aliquot was 

sterility checked by inoculation of fresh LB with 1 mL and incubated for seven 

days at 37C followed by plating of 250 µL volumes onto LB plates and 

incubation for seven days at 37C. Plates were inspected for absence of 

bacteria.  

 

2.5.2 Growth of Burkholderia spp. in liquid cultures 

 

Burkholderia K96243 was inoculated into 50 mL LB broth and. B. thailandensis 

E555 :: wbiI (Kmr) inoculated into 50 mL of LB broth with 50 µg/mL kanamycin. 

All cultures were incubated at 37C overnight, shaking at 180 rpm. The cells 

were split into 10 mL aliquots and heat inactivated at 80C for 4 hours. Each 10 

mL aliquot was sterility checked by inoculation of fresh LB with 1 mL and 

incubated for seven days at 37C followed by plating of 250 µL volumes onto 

LB plates and incubation for seven days at 37C. Plates were inspected for 

absence of bacteria.  
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2.5.3 Extraction of CPS from Burkholderia spp. by ethanol precipitation 

 

50 mL of the cell suspension from method 2.5.1 or 2.5.2 was centrifuged (30 

minutes, 12,000 x g, 4oC), the supernatant removed and centrifuged again 

under the same conditions. The resulting supernatant was removed and 

precipitated with ice-cold absolute ethanol to a final concentration of 80 % 

vol/vol.  This was then centrifuged (30 minutes, 5,000 x g, 4oC) and the pellet 

collected. The pellet was re-suspended in 100 mL 80% ethanol before 

centrifugation (30 minutes, 5,000 x g, 4oC).  This wash stage was repeated and 

the pellet suspended in 10 mL PBS containing 1 mM CaCl2 and 1 mM MgCl2. 

100 µg/mL each of RNase A, DNase I and lysozyme was added and the sample 

incubated for 2.5 hours at 37oC.  Proteinase K was then added to final 

concentration of 100 µg/mL and the suspension incubated for a further 2.5 

hours at 37oC. Samples were then centrifuged (30 minutes, 5,000 x g, 4oC), the 

supernatant removed and precipitated with ice-cold absolute ethanol to a final 

concentration of 80 % vol/vol.  This was stored overnight at -20oC. Samples 

were centrifuged (30 minutes, 5,000 x g, 4oC) and the resulting pellet washed in 

50 mL of 80 % ethanol for 30 minutes before further centrifugation (30 minutes, 

5,000 x g, 4oC). The pellet was re-suspended in distilled water and heated to 

37oC before dialysis overnight (10,000 Da molecular weight cut-off) against 

distilled water. The final sample was obtained by lyophilisation of the dialysed 

material with an Edwards Modulyo freeze dryer.   

 

2.5.4 Phenol extraction of CPS from Burkholderia spp. utilising an LPS 

extraction method 

 

Sterility checked bacteria generated from Method 2.5.1 or 2.5.2 was lyophilised. 

5 g of bacteria was suspended in 50 mL of 50 mM sodium phosphate buffer 

(with 5mM EDTA, pH 7). Lysozyme (15,000 units per mg of bacteria) was 

added and the mixture stirred for 8 hours at room temperature, or for 16 hours 

at 4°C. The solution was then made up to 150 mL with 20 mM MgCl2 with 

20 µg/mL each of DNase and RNase added, and the solution stirred overnight 

at room temperature. The solution was made up to 90 % (vol/vol) phenol and 

stirred (10 mins, 60°C) before adding 50 µg/mL proteinase K.  This solution was 

stirred for 6 hours at room temperature. The phenol and heat-killed cell mixture 
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was warmed to 70°C before adding an equal volume of 90 % (vol/vol) phenol to 

the cells and stirring by hand vigorously for 30 minutes while maintaining the 

temperature. The solution was then dialysed 3 times per day (10,000 Da 

molecular weight cut-off)  against tap water to remove phenol (3-5 days) 

followed by lyophilisation. The lyophilised material was dissolved in 30 mg/mL 

of 10 mM Tris-HCl (pH 7) containing 1 mM CaCl2, 1 mM MgCl2 and DNase and 

RNase (20 µg/mL) and incubating for 2 hours at 37°C. Proteinase K was then 

added (50 µg/mL) and the solution incubated at 45°C for 4 hours before 

ultracentrifugation (100,000 x g for 3 hours). The gel-like pellets were 

solubilised in distilled water before dialysis against distilled water (10,000 Da 

molecular weight cut-off) and lyophilisation. 

 

2.5.5 Associate Professor Paul Brett’s CPS extraction method 

 

This modified hot-phenol CPS extraction method was provided by Assoc. Prof. 

Brett and has been described previously (Perry et al. 1995, Heiss et al. 2012). A 

starter culture was set up by inoculation of 25 mL of growth media (typically LB 

+ 50 µg/mL kanamycin) into a 250 mL Erlenmeyer flask and incubated 

overnight at 37oC. A 5 mL aliquot of this starter culture was then inoculated into 

4 x 500 mL of growth media in 2 L Erlenmeyer flasks and incubated at 37oC, 

shaking at 180 rpm on an orbital shaker for 37 hours. The bacterial culture was 

centrifuged for 10 minutes at 8000 x g and the pellet re-suspended in distilled 

water.  The re-suspended culture was then added in equal parts (vol/vol) to 90 

% (w/v) phenol and heated to 80oC. The phenol was dialysed against distilled 

water using a Spectra/Por 6-8K MWCO dialysis membrane and the resulting 

cell debris removed by centrifugation (10 minutes at 11,900 x g). The samples 

were then enzymatically digested with 50 µg/mL DNAse and RNAse at 37oC for 

2 hours and 50 µg/mL proteinase K at 60oC for 3 hours. The sample was then 

centrifuged at 11,900 x g for 40 minutes and the CPS isolated from the 

supernatant as precipitated gel following ultracentrifugation at 100,000 x g for 6 

h. The gel pellet was re-suspended in ultrapure water and lyophilised to 

concentrate. Rough LPS contaminants were then removed by acid hydrolysis 

with 2 % (v/v) acetic acid at 100oC for 2 hours. The sample was centrifuged at 

11,900 x g for 40 minutes and the supernatants lyophilised to concentrate. The 

samples were then reconstituted at 20 mg/mL in ultrapure water and loaded 
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onto a Sephadex G-50 column (40 cm x 2.6 cm). The purified CPS was eluted 

isocratically in ultrapure water at a rate of 4 mL/min. The fractions were 

analysed for carbohydrate using the phenol-sulphuric acid method (Masuko 

2005) with the appropriate fractions combined and lyophilised. 

 

2.5.6 Monosaccharide analysis of CPS 

 

The polysaccharide sample (20 µL of a 3 mg/mL solution) was mixed with 

distilled water (150 µL) and neat TFA (30 µL, 12.8 M) and the reaction was 

heated to 100oC for 4 hours.  TFA was removed by evaporation using a 

SpeedVac® evaporation centrifuge.  The polysaccharide sample was 

reconstituted in distilled water (300 µL), vortexed for 30 seconds and then 

centrifuged for 5 minutes at 14,000 x g.  10 µL (2 µg) of the polysaccharide 

sample was injected onto the Dionex® ICS-5000® HPAE-PAD for analysis.  

This method was performed by collaborators at the John Innes Centre. 

 

2.6 Development of a quantitative CPS ELISA  

 

2.6.1 Dot-blot analysis 

 

A nitrocellulose membrane was first prepared by rinsing in PBS and leaving to 

air-dry. Next, purified CPS samples were diluted, in PBS, from 1:10 down to 

1:83886080 with a 1:2 dilution factor between samples. 5 µL of the samples 

were spotted on the nitrocellulose membrane and allowed to dry. The 

membrane was then incubated in Blotto (5 % (w/v) skimmed milk powder in 

PBS) overnight at 4oC. The primary antibody (DSTL189) was added at 1:1000 

dilution in blocking reagent and incubated at room temperature, with shaking for 

45 minutes. The membrane was then washed with washing buffer (0.1 % (v/v) 

Tween 20 in PBS). Triplicate washes are performed at room temperature for 5 

minutes each. A goat anti-mouse-ALP conjugate (Biorad) was added to detect 

the DSTL189 as a 1:1000 dilution in 5 % (w/v) Blotto and incubated at room 

temperature for 45 minutes. The membrane was washed 3 times with washing 

buffer at room temperature, with shaking for 5 minutes per wash, removed from 

washing buffer and then soaked in SIGMAFASTTM 3-3’-Diaminobenzidine (DAB; 
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0.7 mg/mL, urea hydrogen peroxide; 0.67 mg/mL) and a colour change 

observed.  

 

2.6.2 ELISA utilising plate bound CPS 

 

Diluted samples of purified CPS, in PBS, from 1:10 down to 1:83886080 with a 

1:2 dilution factor between samples were prepared and 100 µL added to each 

well of a 96-well plate. The plate was incubated overnight at 4oC and washed 3 

times with 300 µL of PBS with 0.01 % (v/v) Tween 20. During all incubations, 

the microtiter plates were covered with BIS Ltd microplate sealers (7740005). 

The plate was blocked by addition of 100 µL of 5 % (w/v) Blotto. The plate was 

then incubated at room temperature for 1 hour and washed 3 times with 300 µL 

of PBS with 0.01 % (v/v) Tween 20. DSTL189 was diluted 1:1000 in Blotto and 

100 µL added to each well. The plate was then incubated at room temperature 

for 45 minutes and washed 3 times with 300 µL of PBS with 0.01 % (v/v) Tween 

20. Goat anti-mouse-HRP conjugate (Biorad) was diluted 1:1000 in blocking 

agent and 100 µL added to each well. The plate was again incubated at room 

temperature for 45 minutes and washed 3 times with 300 µL of PBS with 0.01 % 

(v/v) Tween 20. Bound antibody was detected with 100 µL of enzyme substrate 

(50 mg of 2,2’-azino-bis(ethylbenzthiazoline-6-sulphonic acid) - ABTS added to 

100 mL of ABTS buffer (Method 2.2.1) and 100 µL of hydrogen peroxide 

solution (30 % w/w). The reaction was left to develop for 15 minutes at room 

temperature and absorbance read at 414 nm on a Labsystems, Multiskan Ascent 

spectrophotometer. 

 

2.6.3 Generation of biotinylated monoclonal antibody DSTL189  

 

DSTL189 antibody was diluted to 1 mg/mL in PBS. Using a syringe and needle, 

1 mL of dimethylformamide (DMF) was introduced into a vial of hapten-NHS 

ester (Molecular Devices Corp.) and mixed until the label had completely 

dissolved. The dissolved label was removed using the syringe and introduced 

into a 1.5 mL Eppendorf tube and then placed in a foil wrapper to prevent UV 

degradation of the label. The required volume of label (Table 2) was then added 

to 1 mL of antibody solution and mixed thoroughly before incubating at room 
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temperature for 2 hours in the dark. During this incubation, a PD-10 column (GE 

Healthcare) was equilibrated with 25 mL of PBS.  A further 1 to 2 mL of PBS 

was added to the column and the bottom of the column capped (to prevent the 

upper disc from drying out over the remainder of the incubation period). Once 

incubation was complete, the cap was removed from the PD-10 column for the 

PBS to drain through. The 1 mL reaction volume was added to the columns, 

allowed to drain through and 1.25 mL of PBS added to each column to stop the 

reaction. Using graduated Eppendorfs to collect fractions, 3 mL of PBS was 

added to the column. The first 0.75 mL was collected in the first Eppendorf, 1.5 

mL in the second Eppendorf and the remaining 0.75 mL in the third Eppendorf.  

This was repeated for the remaining reactions. The absorbance of the fractions 

was measured on a UV-VIS spectrophotometer at 280 nm and 362 nm. The 

labelled antibodies were stored at -70oC until use. 

 

Molar Coupling Ratio Volume of biotin-NHS added (µL) 

5 5.4 

10 10.8 

20 21.6 

30 32.4 

Table 2 Biotinylated antibody molar coupling ratios and the volume of reconstituted label 

required to achieve them.  

 

2.6.4 ELISA method for biotin interference 

 

A 96-well plate was coated with 100 µL/well of CPS (10 µg/mL) and incubated 

at 4oC overnight. During all incubations, the microtiter plates were covered with 

BIS Ltd microplate sealers (7740005). The plate was washed 3 times with PBS 

+ 0.05 % (v/v) Tween 20, 200 µL of 1 % (w/v) Blotto added to every well and 

incubated at 37oC for 1 hour. The plate was then washed 3 times with PBS + 

0.05 % (v/v) Tween 20. Each antibody aliquot was diluted (10 µg/mL) and 100 

µL of 1 % (w/v) Blotto was pipetted into all wells except column 1. Into wells A1 

and E1 of column 1 was added 200 µL of x5 (MCR) mAb, 200 µL of x10 (MCR) 

mAb into wells B1 and F1, 200 µL of x20 (MCR) mAb into wells C1 and G1 and 

200 µL of x30 (MCR) mAb into wells D1 and H1. Each antibody was then 

diluted across the plate (100 µL) until Column 11. Column 12 contained only 
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100 µL of Blotto (blank). The plate was then incubated for 1 hour at 37oC and 

washed 3 times with PBS + 0.05 % (v/v) Tween 20. Streptavidin peroxidise (SP) 

was diluted 1:1000 and 100 µL added wells A1-D12. To control for the 

possibility of biotinylation having failed, 100 µL of goat anti-mouse horse radish 

peroxidise (HRP, Biorad) – diluted 1:1000, was added to wells E1–H12. The 

plate was incubated for 1 hour at 37oC and washed 6 times with PBS + 0.05 % 

(v/v) Tween 20. Bound antibody was detected with 100 µL of enzyme substrate 

(50 mg 2,2’-azino-bis(ethylbenzthiazoline-6-sulphonic acid) - ABTS, added to 

100 mL of ABTS buffer (Method 2.2.1) and 100 µL of hydrogen peroxide 30 % 

w/w). The reaction was left to develop for 15 minutes at room temperature and 

absorbance read at 414 nm on a Labsystems, Multiskan Ascent 

spectrophotometer. 

 

2.6.5 Development of ELISA purified CPS standard curve 

 

A 96-well microtiter plate was coated overnight at 4oC with 100 µL/well of 

purified DSTL189 monoclonal antibody diluted to 5 µg/mL in PBS. During all 

incubations, the microtiter plates were covered with BIS Ltd microplate sealers 

(7740005). Each well was washed three times with PBS supplemented with 

0.05 % (v/v) Tween 20 and blocked with 200 µL of PBS containing 2 % (w/v) 

Blotto for 1 hour at 37oC. A reference sample (purified CPS from B. 

thailandensis E555 ::wbiI (KmR)) was diluted to initial concentrations of 10, 5 or 

1.25 µg/mL and serially diluted two-fold in 100 µL aliquots on the plate. 

Following incubation for 1 hour at 37oC, each well was washed three times with 

PBS supplemented with 0.05 % (v/v) Tween 20 and 100 µL/well of biotinylated 

DSTL189 antibody (diluted in 2 % (w/v) Blotto to 5 µg/mL) was added. The plate 

was incubated for 1 hour at 37oC and each well then washed three times with 

PBS supplemented with 0.05 % (v/v) Tween 20. A 1:1000 dilution of streptavidin 

peroxidase in Blotto was then added and incubated at 37oC for 1 hour. Each 

well was washed six times with PBS supplemented with 0.05 % (v/v) Tween 20 

and bound conjugate detected with 100 µL of enzyme substrate (50 mg 2,2’-

azino-bis(ethylbenzthiazoline-6-sulphonic acid) - ABTS, added to 100 mL of 

ABTS buffer (Method 2.2.1) and 100 µL of hydrogen peroxide 30 % w/w). The 

reaction was left to develop for 15 minutes at room temperature and 
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absorbance read at 414 nm on a Labsystems, Multiskan Ascent 

spectrophotometer. 

 

2.6.6 B. pseudomallei 1026b and B. thailandensis E555 :: wbiI (Kmr) 

purified CPS recognition with DSTL189  

 

The capture ELISA method detailed under Method 2.6.5 was followed with the 

exception that CPS from both B. pseudomallei K96243 and B. thailandensis 

E555 :: wbiI (Kmr) was diluted in 2 % Blotto to an initial concentration of 10 

µg/mL, then diluted 1:3 across the plate to a concentration of 0.007 µg/mL (in 

duplicate). The last row was left blank. 

 

2.6.7 Measurement of B. thailandensis E555 :: wbiI (Kmr) CPS culture 

concentration 

 

The capture ELISA method detailed under Method 2.6.5 was followed with the 

exception that CPS from B. thailandensis E555 :: wbiI (Kmr) was diluted in 2 % 

(w/v) Blotto to an initial concentration of 1.25 µg/mL. Neat cultures of 

B. thailandensis E555 :: wbiI (Kmr) were also added and serially diluted in 2 % 

(w/v) Blotto, two-fold in 100 µL aliquots on the plate.  

 

2.6.8 Final ELISA method for determination of B. thailandensis E555 :: 

wbiI (Kmr) culture CPS content 

 

A 96-well microtiter plate was coated overnight at 4oC with 100 µL/well of 

purified DSTL189 monoclonal antibody diluted to 5 µg/mL in PBS. During all 

incubations, the microtiter plates were covered with BIS Ltd microplate sealers 

(7740005). Each well was washed three times with PBS supplemented with 

0.05 % (v/v) Tween 20 and blocked with 200 µL of PBS containing 2 % (w/v) 

Blotto for 1 hour at 37oC. A reference sample (purified CPS from 

B. thailandensis E555 ::wbiI (KmR)) was diluted to an initial concentration of 

100 ng/mL and test samples diluted 1:512 in Blotto and serially diluted two-fold 

in 100 µL aliquots on the plate. Following incubation for 1 hour at 37oC, each 

well was washed three times with PBS supplemented with 0.05 % (v/v) Tween 
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20 and 100 µL/well of biotinylated DSTL189 antibody (diluted in 2 % (w/v) Blotto 

to 5 µg/mL) was added. The plate was incubated for 1 hour at 37oC and each 

well then washed three times with PBS-Tween 20. A 1:1000 dilution of 

streptavidin peroxidase in 2 % (w/v) Blotto was then added and incubated at 

37oC for 1 hour. Each well was washed six times with PBS supplemented with 

0.05 % (v/v) Tween 20 and bound conjugate detected with 100 µL/well of 

enzyme substrate (50 mg 2,2’-azino-bis(ethylbenzthiazoline-6-sulphonic acid)) - 

ABTS, added to 100 mL of ABTS buffer (Method 2.2.1) and 100 µL of hydrogen 

peroxide 30 % w/w). The reaction was left to develop for 20 minutes at room 

temperature and absorbance read at 414 nm on a Labsystems, Multiskan Ascent 

spectrophotometer. 

 

2.6.9 Determination of ELISA LOD utilising B. thailandensis CDC2721121 

 

10 mL of LB media was inoculated with a loop of B. thailandensis CDC2721121 

from a glycerol stock and incubated overnight at 37oC with shaking (180 rpm). 

The capture ELISA method detailed under Method 2.6.8 was followed with the 

exception that 100 µL of the test samples, in this case B. thailandensis 

CDC2721121 culture, was added at a neat concentration and diluted 1:2 across 

the plate in 2 % (w/v) Blotto. B. thailandensis E555 :: wbiI (Kmr) was also added 

to the plate as a control. 

 

2.6.10 Determination of ELISA purified CPS limit of detection (LOD)  

 

The capture ELISA method detailed under Method 2.6.5 was followed with the 

exception that CPS from B. thailandensis E555 :: wbiI (Kmr) was diluted in 2 % 

(w/v) Blotto to an initial concentration of 100 ng/mL and diluted 1:2, in 2 % (w/v) 

Blotto, across the plate to a final concentration of 98 pg/mL. These were the test 

samples. A purified CPS standard curve was not added. Neat cultures of 

B. thailandensis CDC2721121 were added as a negative control.  
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2.6.11 Determination of ELISA purified CPS limit of quantification (LOQ) 

 

The capture ELISA method detailed under Method 2.6.5 was followed with the 

exception that a reference sample of purified CPS from B. thailandensis E555 :: 

wbiI (Kmr) was diluted in 2 % (w/v) Blotto to an initial concentration of 100 

ng/mL and diluted 1:2, in 2 % (w/v) Blotto, across the plate. Test samples 

(purified CPS, were diluted in 2 % (w/v) Blotto to an initial concentration of 100 

ng/mL and diluted 1:2, in 2 % (w/v) Blotto, to 98 pg/mL across the plate. Neat 

cultures of B. thailandensis CDC2721121 were added as a negative control.  

 

2.7 CPS expression optimisation – growth 

 

2.7.1 Measurement of CPS expression from a B. thailandensis E555 :: 

wbiI (Kmr) culture inoculated from a glycerol stock 

 

25 mL of LB with 50 µg/mL kanamycin was inoculated with a loop of 

B. thailandensis E555 :: wbiI (Kmr) from a glycerol stock and incubated at 37oC, 

shaking at 180 rpm in an orbital incubator. In addition, 10 mL of LB growth 

media was inoculated with B. thailandensis CDC2721121 with a loop from a 

glycerol stock and incubated overnight at 37C, shaking at 180 rpm to act as the 

negative control. 

At 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 42, 48, 66 and 72 hours after 

inoculation, 1 mL culture samples were serially diluted 1:10 and plated onto LB 

media and incubated for up to 48 hours to count the number of colony-forming 

units. Additional culture samples (1.5 mL) were taken and frozen at -20oC. 

The capture ELISA method detailed under Method 2.6.8 was followed.  

 

2.7.2 Measurement of CPS expression from a B. thailandensis E555 :: 

wbiI (Kmr) culture inoculated from a subbed culture 

 

25 mL of LB with 50 µg/mL kanamycin was inoculated with a loop of 

B. thailandensis E555 :: wbiI (Kmr) from a glycerol stock and incubated at 37oC, 

shaking at 180 rpm in an orbital incubator. This was termed the starter culture. 

50 mL of growth media with 50 µg/mL kanamycin was inoculated with 500 µL of 
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the starter culture and incubated at 37oC, shaking at 180 rpm in an orbital 

incubator. In addition, 10 mL of LB growth media was inoculated with 

B. thailandensis CDC2721121 with a loop from a glycerol stock and incubated 

overnight at 37C, shaking at 180 rpm to act as the negative control. 

At 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 42 and 48 hours after inoculation, 

1 mL culture samples were serially diluted 1:10, plated onto LB media and 

incubated for up to 48 hours to count the number of colony-forming units (CFU). 

Additional culture samples (1.5 mL) were taken and frozen at -20oC. 

The capture ELISA method detailed under Method 2.6.8 was followed.  

 

2.7.3 Measurement of CPS expression from a B. thailandensis E555 :: 

wbiI (Kmr) culture inoculated into different growth medias 

 

25 mL of growth media (LB, M9 minimal media, tryptone soya broth and 

enhanced phytone peptone) with 50 µg/mL kanamycin was inoculated with a 

loop of B. thailandensis E555 :: wbiI (Kmr) from a glycerol stock and incubated 

at 37oC, shaking at 180 rpm on an orbital incubator. This was termed the starter 

culture. 50 mL of growth media (LB, M9 minimal media, tryptone soya broth and 

enhanced phytone peptone) with 50 µg/mL kanamycin was inoculated with 500 

µL of the starter culture and incubated at 37oC, shaking at 180 rpm in an orbital 

incubator. In addition, 10 mL of LB growth media was inoculated with 

B. thailandensis CDC2721121 with a loop from a glycerol stock and incubated 

overnight at 37C, shaking at 180 rpm to act as the negative control. 

At 20, 24 and 27 hours after inoculation, 1 mL culture samples were serially 

diluted 1:10, plated onto LB media and incubated for up to 48 hours to count the 

number of colony-forming units (CFU). Additional culture samples (1.5 mL) were 

taken and frozen at -20oC. 

The capture ELISA method detailed under Method 2.6.8 was followed with the 

exception that the M9 minimal media test samples were diluted 1:16 rather than 

1:512 to allow for interpolation from the standard curve of the lower expected 

CPS concentration.  
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2.7.4 Measurement of CPS expression from a B. thailandensis E555 :: 

wbiI (Kmr) culture inoculated into baffled flasks 

 

25 mL of LB with 50 µg/mL kanamycin was inoculated with a loop of 

B. thailandensis E555 :: wbiI (Kmr) from a glycerol stock and incubated at 37oC, 

shaking at 180 rpm in an orbital incubator. This is the starter culture. Two 

aliquots of 50 mL LB media with 50 µg/mL kanamycin, one in a flat bottomed 

flask and one in a baffled flask, was inoculated with 500 µL of the starter culture 

and incubated at 37oC, shaking at 180 rpm in an orbital incubator. In addition, 

10 mL of LB growth media was inoculated with B. thailandensis CDC2721121 

with a loop from a glycerol stock and incubated overnight at 37C, shaking at 

180 rpm to act as the negative control. 

At 20, 24 and 27 hours after inoculation, 1 mL culture samples were serially 

diluted 1:10 and plated onto LB media and incubated for up to 48 hours to count 

the number of colony-forming units. Additional culture samples (1.5 mL) were 

taken and frozen at -20oC. 

The capture ELISA method detailed under Method 2.6.8 was followed.  

 

2.7.5 Measurement of CPS expression from a B. thailandensis E555 :: 

wbiI (Kmr) culture inoculated with iron sulfate 

 

25 mL of LB with 50 µg/mL kanamycin was inoculated with a loop of 

B. thailandensis E555 :: wbiI (Kmr) from a glycerol stock and incubated at 37oC, 

shaking at 180 rpm in an orbital incubator. This is the starter culture. Four 

aliquots of 50 mL LB media with 50 µg/mL kanamycin with an iron sulfate 

concentration of 0 mM, 50 µM, 0.5 mM and 5 mM, were inoculated with 500 µL 

of the starter culture and incubated at 37oC, shaking at 180 rpm in an orbital 

incubator. In addition, 10 mL of LB growth media was inoculated with 

B. thailandensis CDC2721121 with a loop from a glycerol stock and incubated 

overnight at 37C, shaking at 180 rpm to act as the negative control. 

At 20, 24 and 27 hours after inoculation, 1 mL culture samples were serially 

diluted 1:10 and plated onto LB media and incubated for up to 48 hours to count 

the number of colony-forming units. Additional culture samples (1.5 mL) were 

taken and frozen at -20oC. 
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The capture ELISA method detailed under Method 2.6.8 was followed.  

 

2.7.6 Measurement of CPS expression from a reduced volume 

B. thailandensis E555 :: wbiI (Kmr) culture  

 

25 mL of LB with 50 µg/mL kanamycin was inoculated with a loop of 

B. thailandensis E555 :: wbiI (Kmr) from a glycerol stock and incubated at 37oC, 

shaking at 180 rpm in an orbital incubator. This is the starter culture. An aliquot 

of 50 mL LB media with 50 µg/mL kanamycin was inoculated with 500 µL of the 

starter culture and incubated at 37oC, shaking at 180 rpm in an orbital 

incubator. An aliquot 25 mL LB media with 50 µg/mL kanamycin was inoculated 

with 250 µL of the starter culture and incubated at 37oC, shaking at 180 rpm in 

an orbital incubator. In addition, 10 mL of LB growth media was inoculated with 

B. thailandensis CDC2721121 with a loop from a glycerol stock and incubated 

overnight at 37C, shaking at 180 rpm to act as the negative control. 

At 20, 24 and 27 hours after inoculation, 1 mL culture samples were serially 

diluted 1:10 and plated onto LB media and incubated for up to 48 hours to count 

the number of colony-forming units. Additional culture samples (1.5 mL) were 

taken and frozen at -20oC. 

The capture ELISA method detailed under Method 2.6.8 was followed.  

 

2.7.7 Measurement of CPS expression from a B. thailandensis E555 :: 

wbiI (Kmr) culture inoculated with mannose 

 

25 mL of LB with 50 µg/mL kanamycin and 2.5 g/L mannose was inoculated 

with a loop of B. thailandensis E555 :: wbiI (Kmr) from a glycerol stock and 

incubated at 37oC, shaking at 180 rpm in an orbital incubator. This is the starter 

culture. An aliquot of 50 mL LB media with 50 µg/mL kanamycin with a 

mannose concentration of 2.5 g/L was inoculated with 500 µL of the starter 

culture and incubated at 37oC, shaking at 180 rpm in an orbital incubator. In 

addition, 10 mL of LB growth media was inoculated with B. thailandensis 

CDC2721121 with a loop from a glycerol stock and incubated overnight at 37C, 

shaking at 180 rpm to act as the negative control. 
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At 20, 24 and 27 hours after inoculation, 1 mL culture samples were serially 

diluted 1:10 and plated onto LB media and incubated for up to 48 hours to count 

the number of colony-forming units. Additional culture samples (1.5 mL) were 

taken and frozen at -20oC. 

The capture ELISA method detailed under Method 2.6.8 was followed.  

 

2.8 CPS expression optimisation – extraction 

 

2.8.1 Determination of CPS from B. thailandensis E555 :: wbiI (Kmr) 

supernatant and pellet fractions  

 

25 mL of LB with 50 µg/mL kanamycin was inoculated with a loop of 

B. thailandensis E555 :: wbiI (Kmr) from a glycerol stock and incubated at 37oC, 

shaking at 180 rpm in an orbital incubator for 24 hours. This was the starter 

culture. 50 mL of growth media with 50 µg/mL kanamycin was inoculated with 

500 µL of the starter culture and incubated at 37oC, shaking at 180 rpm in an 

orbital incubator for 27 hours. In addition, 10 mL of LB growth media was 

inoculated with B. thailandensis CDC2721121 with a loop from a glycerol stock 

and incubated for 27 hours after inoculation at 37C, shaking at 180 rpm to act 

as the negative control. At 27 hours after inoculation a 1 mL culture sample was 

taken for analysis. A further 1 mL culture sample was taken, centrifuged at 

10,000 x g for 10 minutes and the supernatant removed for ELISA analysis. The 

resultant pellet was re-suspended in 1 mL of 2 % (w/v) Blotto and also 

analysed. 

The capture ELISA method detailed under Method 2.6.8 was followed with the 

exception that the supernatant and pellet fractions were initially diluted 1:64 

rather than 1:512 to allow for interpolation from the standard curve of the lower 

expected CPS concentrations.  
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2.8.2 Determination of CPS concentration (µg/mL) from B. thailandensis 

E555 :: wbiI (Kmr) live and frozen culture fractions 

 

The procedure detailed in method 2.8.1 was repeated to obtain live culture, 

supernatant and pellet fractions for immediate analysis by ELISA. Half of each 

fraction was frozen at -20oC overnight for analysis by ELISA the following day. 

For all samples the capture ELISA method detailed under Method 2.6.8 was 

followed.  

 

2.9 Burkholderia CPS immunogenic epitope 

 

2.9.1 Recognition of purified CPS and deacetylated CPS with the 

B. pseudomallei K96243 anti-CPS monoclonal antibody DSTL189 

 

A 96-well microtiter plate was coated overnight at 4oC with 100 µL/well of 

B. thailandensis E555 :: wbiI (Kmr) purified CPS and de-acetylated CPS (gift 

from Prof. Rob Field, John Innes Centre) at 10 µg/mL in PBS. During all 

incubations, the microtiter plates were covered with BIS Ltd microplate sealers 

(7740005). Each well was washed three times with PBS supplemented with 

0.05 % (v/v) Tween 20 (PBS-Tween 20) and blocked with 200 µL of PBS 

containing 2 % (w/v) Blotto for 1 hour at 37oC. The primary antibody; DSTL189 

was diluted to 5 µg/mL in 2 % (w/v) Blotto and 100 µL was added to the plate in 

duplicate. The plate was then incubated for 1 hour at 37oC and each well 

washed three times with PBS-Tween 20. Goat anti-mouse IgG-HRP conjugate 

was diluted 1:2000 in 2 % (w/v) Blotto, 100 µL added to each well and the plate 

incubated at 37oC for 1 hour. Each well was washed six times with PBS-Tween 

20 and bound conjugate detected with 100 µL/well of enzyme substrate (50 mg 

2,2’-azino-bis(ethylbenzthiazoline-6-sulphonic acid) - ABTS, added to 100 mL of 

ABTS buffer (Method 2.2.1) and 100 µL of hydrogen peroxide 30 % w/w). The 

reaction was left to develop for 20 minutes at room temperature and 

absorbance read at 414 nm on a Labsystems, Multiskan Ascent 

spectrophotometer. 
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2.9.2 Recognition of purified CPS and deacetylated CPS with four 

B. pseudomallei K96243 anti-CPS monoclonal antibodies 

 

A 96-well microtiter plate was coated overnight at 4oC with 100 µL/well of 

B. thailandensis E555 :: wbiI (Kmr) purified CPS and de-acetylated CPS (gift 

from Prof. Rob Field) at 10, 5, 2.5 or 1.25 µg/m in PBS. During all incubations, 

the microtiter plates were covered with BIS Ltd microplate sealers (7740005). 

Each well was washed three times with PBS supplemented with 0.05 % (v/v) 

Tween 20 (PBS-Tween 20) and blocked with 200 µL of PBS containing 2 % 

(w/v) Blotto for 1 hour at 37oC. Primary antibodies (DSTL189, 4VIIIA11, 3VIE5, 

4VA5) were diluted to 5 µg/mL in 2 % (w/v) Blotto and 100 µL was added to the 

plate in duplicate. The plate was then incubated for 1 hour at 37oC and each 

well washed three times with PBS-Tween 20. Goat anti-mouse IgG-HRP 

conjugate was diluted 1:2000 in 2 % (w/v) Blotto, 100 µL added to each well 

and the plate incubated at 37oC for 1 hour. Each well was washed six times with 

PBS-Tween 20 and bound conjugate detected with 100 µL/well of enzyme 

substrate (50 mg 2,2’-azino-bis(ethylbenzthiazoline-6-sulphonic acid)) - ABTS, 

added to 100 mL of ABTS buffer (Method 2.2.1) and 100 µL of hydrogen 

peroxide 30 % w/w). The reaction was left to develop for 20 minutes at room 

temperature and absorbance read at 414 nm on a Labsystems, Multiskan Ascent 

spectrophotometer. 

 

2.9.3 Heavy and light chain variable region sequencing of four 

B. pseudomallei K96243 anti-CPS monoclonal antibodies 

 

A 2-step cDNA synthesis and PCR protocol was used (Burmester, J., 

Pluckthun, A., 2001). Construction of scFv Fragments from Hybridoma or 

Spleen cells by PCR assembly. Antibody engineering, 1st edition, pp. 19-40. 

Edited by S. Dubel. Heidelberg: Springer). The full method is given below but in 

brief, RNA was extracted from hybridoma cell lines with TRIzol® (Invitrogen, 

Life Technologies), followed by synthesis of cDNA and subsequently PCR 

amplification of the variable light and variable heavy domains (ThermoScriptTM 

RT-PCR system, Invitrogen, Life Technologies). Resultant PCR products were 

then cloned into the pCR™2.1 Vector and transformed into E. coli XL1 blue. 
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The plasmids harboring the variable fragments were purified by miniprep, the 

presence of insert checked by restriction digest, and sequenced.  

 

2.9.3.1 Preparation of RNA 

 

Cells from each antibody producing hybridoma cell line were grown by BBI 

detection and supplied in T75 tissue culture flasks.  

 

The cells were lysed by addition of 2 mL of TRIzol® to each tissue culture flask 

followed by brief mixing by pipette. The homogenised samples were then 

incubated at room temperature for 5 minutes and 0.4 mL of chloroform added to 

each sample. The samples were shaken by hand and incubated for a further 3 

minutes at room temperature. The samples were then centrifuged at 10,000 x g 

for 15 minutes at 4oC. The resultant aqueous phase was transferred to a fresh 

tube and RNA precipitated by addition of 1 mL of isopropyl alcohol. Samples 

were then incubated for 10 minutes at room temperature followed by 

centrifugation at 10,000 x g for 10 minutes at 4oC. The resultant supernatant 

was discarded and the RNA pellet was washed by addition of 2 mL of 75 % 

ethanol in DEPC-water, vortex mixed and centrifuged at 7000 x g for 5 minutes 

at 4oC. The resultant supernatant was discarded and the RNA pellet allowed to 

air dry for 5 minutes. RNA was then dissolved in 50 µL RNase-free water and 

RNA concentration was measured by nanodrop ready for cDNA synthesis and 

stored at -80oC until use. 

 

2.9.3.2 First strand cDNA synthesis  

 

cDNA synthesis was performed with ThermoscriptTM RT-PCR system (product 

number 11146024, Invitrogen, Life Technologies) according to the 

manufacturer’s instructions. In a reaction volume of 20 µL for each RNA sample 

the following reaction mixture was prepared; 8 µL of master reaction mix; 1 µL 

random hexamer primers (50 ng/µL); < 500 ng template RNA, 2 µL dNTPs 

(10mM) and 8 µL DEPC-water. The reaction mixtures were transferred to a 

thermal cycler and incubated at 25oC for 10 minutes, followed by 30 minutes at 

50oC. The reaction was terminated by incubation at 85oC for 5 minutes. 1 µL of 
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RNase H was added to each reaction and incubated at 20 minutes at 37oC.  

cDNA was stored at -20oC until ready for use. 

 

2.9.3.3 PCR amplification of antibody variable gene fragments 

 

The PCR primers used in this reaction were a mixture formulated to cover all of 

the V-gene segments of the heavy and light chain of the mouse according to 

Burmester, J., Pluckthun, A., 2001. Construction of scFV Fragments from 

Hybridoma or Spleen cells by PCR assembly. Antibody engineering, 1st edition, 

pp. 19-40. Edited by S. Dubel. Heidelberg: Springer. 

 

PCR of the variable regions was performed with Platinum® Taq DNA 

polymerase according to manufacturer’s instructions (Invitrogen, Life 

Technologies). 2 µL of cDNA was added to 48 µL of master mix containing 10X 

High Fidelity PCR buffer, 50 mM MgSO4, 10 mM dNTPs and 10 µM of each 

primer. The PCR reaction conditions were an initial PCR activation step of 94oC 

for 2 minutes followed by 30 cycles of 94oC for 30 seconds (denaturation), 55oC 

for 30 seconds (annealing), 72oC for 60 seconds. A final cycle of 94oC for 30 

seconds (denaturation), 55oC for 30 seconds (annealing) and 72oC for 10 

minutes (extension) was then performed to ensure full extension of all PCR 

amplicons. Reactions were performed using an Eppendorf mastercycler 

gradient cycler.  

 

2.9.3.4 Cloning and sequencing 

 

PCR products from 2.9.3.3 were cloned directly into a TA Cloning® Kit, with 

pCR™2.1 Vector and One Shot® TOP10 Chemically Competent E. coli 

(Product number K203040, Life Technologies) as per manufacturer’s 

instructions.  

 

In brief, a 10 µL ligation reaction was setup with 1 µL of fresh PCR product and 

incubated at room temperature for 30 minutes, transformed into One Shot® 

TOP10 Chemically Competent E. coli and plated onto LB agar plates containing 

100 µg/mL of ampicillin and spread with X-Gal (40 µL of 40 mg/mL, Promega). 
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The plates were incubated overnight at 37oC and transferred to 4oC for 2 hours 

to allow for proper colour development.  

 

Following incubation, four white colonies for each antibody were grown 

overnight in 5 mL of LB broth containing 100 µg/mL of ampicillin. The plasmid 

was isolated by miniprep according to manufacturer’s instructions (Promega 

Wizard® Plus SV minipreps DNA purification system, A1460) and the presence 

of insert checked by restriction digest with EcoRI. Each insert was then 

sequenced with M13 uni 21 and M13 rev 29 primers by Eurofins. 

 

2.10 Importance of the CPS acetyl group 

 

2.10.1  CPS and deacetylated CPS-specific IgG and IgM serum antibody 

analysis of CPS and deacetylated CPS vaccinated mice 

 

ELISAs were performed on sera collected 2 weeks post-vaccination. 96 well 

plates were coated with either purified CPS, or deacetylated CPS at 10 µg/mL 

in PBS and incubated overnight at 4oC. During all incubations, the microtiter 

plates were covered with BIS Ltd microplate sealers (7740005). Each well was 

washed three times with PBS supplemented with 0.05 % (v/v) Tween 20. The 

wells were then blocked with 2 % (w/v) Blotto and incubated at 37oC for 1 hour. 

Following three further washes with PBS-Tween 20, two-fold dilutions of the 

mouse serum samples in PBS supplemented with 2 % (w/v) Blotto were made 

across the plate. To act as a standard curve, one row of wells was coated with 5 

µg/mL anti-Fab antibody (AbD Serotec), incubated and washed as described 

above. Appropriate isotype standards were diluted two-fold across the plate.  

Also included into separate wells were serum from PBS and TetHc vaccinated 

control mice as negative controls. The plate was incubated for a further 1 hour 

at 37oC and washed three times in PBS-Tween. A 1:2000 dilution of isotype 

specific goat anti-mouse horseradish peroxidase conjugate (Biorad) in 2 % (w/v) 

Blotto was added to each well and the plate incubated at 37oC for 1 hour. 

Following six washes in PBS-Tween 20, 100 µl of Tetramethylbenzidine (KPL) 

substrate was added to each well according to the manufacturer’s instructions 
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and incubated at room temperature for 20 minutes prior to measuring the 

absorbance at 620 nm with a Labsystems, Multiskan Ascent spectrophotometer.  

 

2.11 Expression of Tandem CoreTM with peptide inserts 

 

All Tandem CoreTM expression was performed by collaborators at Mologic and 

John Innes Centre. 

 

2.11.1  Determination of LolC expression in VLP-LolC fusion constructs by 

ELISA from the baculovirus expression system 

 

A 96-well microtiter plate was coated for 24 hours at 4oC with 100 µL/well of 

purified LolC (standard, 2-0.03 µg/mL), VLPs (negative control, 30-0.2 µg/mL) 

or VLP-LolC (test sample, 30-0.2 µg/mL). All samples were serially diluted two-

fold in PBS. During all incubations, the microtiter plates were covered with BIS 

Ltd microplate sealers (7740005). Each well was washed three times with PBS-

0.05% Tween 20 (PBS-Tween 20), and blocked with 200 µL of PBS containing 

5 % (w/v) Blotto for 1 hour at 37oC. Each well was then washed three times with 

PBS-0.05% Tween 20 and a 1:1000 dilution of sera from mice vaccinated with 

either; a DNA vaccine expressing LolC; E. coli expressed LolC; or endotoxin-

free LolC protein (Lionex) was added (100 µL/well) and the plate incubated for 1 

hour at 37oC. Following three washes in PBS-Tween 20, a 1:2000 dilution of 

IgG goat anti-mouse horseradish peroxidase conjugate (AbD Serotec) in 2 % 

(w/v) Blotto was added to each well (100 µL) and incubated for 1 hour at 37oC. 

Each well was washed a further six times in PBS-Tween 20 and bound 

conjugate detected with 100 µL/well of enzyme substrate (50 mg 2,2’-azino-

bis(ethylbenzthiazoline-6-sulphonic acid) - ABTS, added to 100 mL of ABTS 

buffer (Method 2.2.1) and 100 µL of hydrogen peroxide 30 % w/w). The reaction 

was left to develop for 20 minutes at room temperature and absorbance read at 

414 nm on a Labsystems, Multiskan Ascent spectrophotometer. 
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2.12 VLP expression systems 

 

2.12.1  Expression and purification of VLPs in E.coli 

 

ClearColi™ BL21 (DE3) cells were selected for expression of Tandem CoreTM 

due to the low level of endotoxicity associated with this cell line. 

Electrocompetent cells were transformed with plasmids according to 

manufacturer’s guidelines. For expression, a starter culture from one selected 

colony using 15 mL of LB broth containing 50 µg/ml kanamycin was incubated 

at 37°C and 320 rpm overnight. A 500 mL culture of LB broth in a baffled 2 L 

flask was inoculated with 3 mL of the overnight starter culture. Expression 

cultures were grown to an OD600 nm of ~0.6 and induced with 1 mM IPTG at 

12°C for 16.5-17 hours. After induction, cells were harvested by centrifugation 

at 3000 x g for 5-10 minutes. Cell pellets were stored at -20°C. To generate 

purified VLPs, approximately 6 g cells were re-suspended in 80 mL lysis buffer 

(20 mM Tris-HCl pH 8, 5 mM EDTA, 2 mM AEBSF, 5 mM DTT, 250 U 

Benzonase) lysed by 2 passes of pressure homogenisation at 1,200 bar 

(~17,400 psi). Soluble core was extracted from crude lysate with 0.05 % (v/v) 

Tween 20 in PBS for 1 hour and then centrifuged at 20,000 x g for 30 minutes 

at 4oC. The supernatant (80 mL) was diluted with 500 mL 20 mM Tris-HCl pH 8, 

5 mM EDTA and vacuum filtered through 0.8 µm, 0.45 µm and 0.22 µm 

membrane filters. The final filtrate was washed on a 1 MDa Pellicon® crossflow 

filter, reducing the volume to 25 mL and further filtered through a 0.2 µm syringe 

filter. The cleaned lysate was then further purified on a Sepharose CL4B 

column (XK26/92) and eluted into 20 mM Tris-HCl pH 8.4, 5 mM EDTA. The 

VLPs are captured in the void volume (40 mL).  

 

2.12.2  Expression and purification of VLPs from baculovirus 

 

Baculovirus was prepared by Oxford Expression Technologies under a sub-

contract. The construct was cloned by iQur into their proprietary OET1 plasmid. 

Tni cells (standard insect cell line used by Oxford Expression Technologies) 

were infected with baculovirus carrying the above plasmid and then tissue 

culture supernatant analysed for VLP expression using the following protocol; 
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Tni FastBac Ultra (FBU) pellet was thawed and re-suspended in PBS to a total 

volume of 20 mL. 5 mL aliquots were spun (2000 x g, 15 minutes) and the 

supernatant decanted. The pellet was re-suspended in 8 mL lysis buffer (20 mM 

Tris-HCl pH 8.4, 1 mM EDTA, 0.1 % (v/v) Triton X-100, 2 mM DTT, 2 mM 

AEBSF) and sonicated at 50 % power for 3 x 10 sec. The sample was then 

subjected to 5 freeze / thaw cycles (methanol-dry ice/ 37ºC water bath) before 

further sonication (50 % power 3 x 10 sec). Lysis was monitored by 100 % 

trypan blue. The lysate was centrifuged at 13,000 x g for 15 minutes and pellets 

re-suspended to original volume in lysis buffer. The samples were purified with 

a CL4B column and purity of the fractions assessed by silver staining and 

western blotting.  

 

2.12.3 Expression of Tandem CoreTM constructs in Nicotiana benthamiana 

 

All expression constructs were transformed into Agrobacterium tumefaciens 

LBA4404 by electroporation and propagated at 28°C in LB media containing 50 

µg/mL kanamycin and 50 µg/mL rifampicin. Transient expression was carried 

out by agroinfiltration of 3 - 4 week old Nicotiana benthamiana 

leaves.  Agrobacterium tumefaciens strains were sub-cultured and grown 

overnight, pelleted and re-suspended to OD600 nm = 0.4 in MMA (10 mM MES-

NaOH, pH 5.6; 10 mM MgCl2; 100 mM acetosyringone) and then infiltrated into 

leaf intercellular spaces using a blunt-ended syringe.  Plants were grown in a 

greenhouse maintained at 23 - 25°C and infiltrated 3 - 4 weeks after the 

seedlings were pricked out. The first four mature leaves of each plant were 

selected for infiltration.  Plant tissue was harvested 6 days post infiltration. 

The fresh plant material was weighed (100 g leaves harvested from 60 plants) 

and added to phosphate buffer [100 mM sodium phosphate; Roche complete 

protease inhibitor tablet (EDTA free) as per manufacturer's instructions] (3 mL 

per gram of plant material) and homogenised in a blender.  Large debris was 

removed by centrifugation at 15,000 x g for 14 minutes and the supernatant 

filtered through a 0.45 µm syringe filter.  The volume of the clarified lysate was 

then reduced from 380 mL to 180 ml on a rotavapor at 15°C. The supernatant 

was purified using a 2 step sucrose cushion with 75 % and 25 % sucrose layers 

in ultracentrifuge tubes.  The gradients were centrifuged at 240,000 x g for 2.5 

hours at 4°C.  The sucrose layers were collected and dialyzed against PBS and 
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analyzed by western blot.  The VLP containing fractions were combined and 

extensively dialyzed (5 x 1 L) against ammonium bicarbonate (20 mM, pH 7.4). 

The fractions form the 75 % and 75-25 % interface of the sucrose gradient, 

containing most of the VLPs, were subjected to further purification on a 

sephacryl S500 column over 5 runs. The first chromatography run was eluted 

into PBS and all subsequent runs were eluted into 20 mM ammonium 

bicarbonate buffer pH 7.4. Samples were analysed using SDS-PAGE, western 

blot and TEM.  

 

2.12.4 Expression of tandem core constructs in Pichia pastoris 

 

For transformation, 40 mL overnight cultures of Pichia pastoris strain X33 or 

KM71H at an early-mid phase of exponential growth were pelleted by 

centrifugation at 3,000 rpm using rotor JA (Beckmann) and re-suspended in 1 

ml YPDS-HEPES (YPDS [1 % (w/v) yeast extract, 2 % (w/v) peptone, 2 % (w/v) 

dextrose (D-glucose), 0.5 M sorbitol] + 20 mM HEPES-NaOH). The resulting cell 

suspension was transferred to a 1.5 mL microtube and 35 µL 1 M DTT added 

with gentle swirling or inversion to mix. The cells were incubated at room 

temperature for 30 minutes and harvested by pulse centrifugation at 13,000 

rpm. The resulting cell pellet was washed 6 times in 750 µL 1 M sorbitol and re-

suspended in a ‘pellet volume’ of 1 M sorbitol (80 - 200 µL). For each 

transformation, 40 µL of the cell suspension was mixed gently with 100 - 600 ng 

linearised plasmid DNA and incubated at room temperature for 15 minutes prior 

to electroporation using pre-chilled 2 mm gap electro-cuvettes at 2.0 kV in a 

Biorad E. coli Pulser electroporator. Immediately after electroporation, 1 mL 

YPDS was added, the cells transferred to clean 1.5 mL microtube and 

incubated for 1 hour at room temperature. The transformed cells (200 µL) were 

spread onto YPDS + zeocin (100 µg/mL) selective agar plates. A spread plate 

of 40 µL untransformed cells was prepared as a selection control. 

After 3 days incubation at 25°C, colonies were selected and re-streaked onto 

YPD + zeocin plates and incubated at 25°C for 3 days. Colonies were then 

picked for inoculation into 10 mL YPD medium in McCartney bottles which was 

termed the starter culture. 

A 200 µL aliquot of the starter culture was used to inoculate 200 mL BMGY (1 

% (w/v) yeast extract, 2 % (w/v) peptone, 100 mM potassium phosphate, pH 
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6.0, 0.2 % (w/v) YNB, 4 × 10-5 % (w/v) biotin, 1 % (v/v) glycerol) in 500 mL 

conical flasks. Cultures were incubated in an orbital shaker at 180 rpm at 25°C 

for 3 days prior to harvesting of cells by centrifugation at 2000 x g for 4 minutes 

and transfer to 125 mL induction media (succinate/YNB). The cells were 

returned to a 500 mL conical flask, induced with 1 mL methanol and incubated 

with shaking as above. Cultures were supplemented with a further 1 mL 

methanol after 24 and 48 hr incubation.  

After 72 hour induction, the cells were harvested by centrifugation as above. 

Supernatants were removed and the cells re-suspended in water and 

centrifuged at 2,000 x g for 3 minutes. The supernatant was discarded and cells 

re-suspended to a total of 11 mL in iQur lysis buffer (20 mM Tris-HCl pH 8.0, 5 

mM EDTA, 5 mM DTT with protease inhibitor cocktail). Tubes were then vortex 

mixed at high speed for 30 min, rested on ice for 5 minutes and vortex mixed a 

further 30 minutes. Cell debris was removed by centrifugation at 2,000 x g for 3 

minutes and the supernatant retained. 

To remove small, non-assembled contaminants, the clarified supernatant was 

sequentially filtered through 0.45 µm and 0.2 µm disc filters prior to applying to 

a distilled water flushed Pellicon XL Ultrafiltration Module, Biomax 1,000 kDa 

device. The sample was initially concentrated to 10 mL, diluted with 40 mL 20 

mM Tris-HCl pH 8.0 and re-concentrated to 10 mL. The crossflow filtered 

sample was then purified further by anion exchange chromatography. 

 

2.12.5  Expression of monomeric VLP construct  

 

Conjucore is a full length HBV core protein produced by collaborators at 

Mologic that was engineered to introduce 3 lysine residues in the antigenic loop. 

The insert was charge neutralised by 3 alternate aspartic acid residues 

(DKDKDK). 

Conjucore was expressed in P. pastoris as previously described and initially 

purified by size exclusion chromatography after filtration. The elution profile was 

similar to that seen for equivalent Tandem CoreTM constructs. Negative stain 

TEM revealed the presence of correctly assembled VLPs. SDS PAGE and 

western blot analyses of purified, pooled fractions of VLPs confirm the identity 

of the purified protein and show reproducibly high levels of purity. 
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2.13  Production and analysis of conjugate vaccines 

All conjugate vaccine production and analysis was performed by collaborators 

at John Innes Centre. 

 

2.13.1  Conjugation of CPS antigen to selected protein or rVLP 

 

CPS was oxidised according to Prof. Brett’s procedure. Purified CPS was 

dissolved in 1 x PBS buffer at 5 mg/mL concentration and sodium periodate 

(NaIO4) was added to give a final 28 mM concentration. The reaction mixture 

was vortexed until dissolution of NaIO4 and then gently shaken for 3 hours at 

room temperature. To remove the excess NaIO4, the reaction mixture was 

dialysed against MilliQ water in a dialysis tube with a molecular weight cut-off of 

6-8 KDa and lyophilised. 

 

CPS was conjugated to proteins by reductive amination according to Assoc. 

Prof. Brett’s procedure. Oxidised CPS and the chosen carrier protein were 

dissolved in 1 x PBS buffer to give a final concentration ranging from 0.2 to 6 

mg/mL. Then, 10 µL of 1 M NaCNBH3 solution in 10 mM NaOH was added for 

each mL of the reaction mixture, which was gently shaken at room temperature 

for 10 days. Afterwards, the reaction mixture was quenched by adding 10 µL of 

1 M NaBH4 solution in 10 mM NaOH for each mL of the reaction mixture with 

shaking at room temperature for 3 hours. The reaction mixture was dialysed 

against Milli-Q water in a dialysis tube with a molecular weight cut-off of 6-8 

KDa and lyophilised. The products were analysed by gel electrophoresis, 

immunoblot and TEM, if applicable. Quantification of total heptose was carried 

out by phenol-sulphuric acid assay (Masuko 2005, Section 2.13.2). Total protein 

quantification was carried out by BCA assay (Section 2.13.3). 

 

2.13.2 Phenol sulfuric acid analysis of CPS conjugate vaccines 

 

150 µL of concentrated sulphuric acid was rapidly added to 50 µL of sample to 

cause maximum mixing. Immediately, 30 µL of 5 % (v/v) phenol in water was 

added and the plate incubated at 90oC for 5 minutes in a static water bath. The 
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plate was then allowed to cool to room temperature, wiped dry and absorbance 

measured at 490 nm (Masuko 2005). 

 

2.13.3 BCA analysis of CPS conjugate vaccines 

 

This method was performed by collaborators at the John Innes centre. 

 

The BCA assay consists of two reagents. Reagent A was made of sodium 

bicinchoninate (0.1 g), Na2CO3∙H20 (2.0 g), sodium tartrate (dihydrate) (0.16 g), 

NaOH (0.4 g) and NaHCO3 (0.95 g), made up to 100 mL in water and pH 

adjusted to 11.25 with NaHCO3 or NaOH. Reagent B was made of CuSO4∙5 

H20 (0.4 g) in 10 mL of water. Standard working reagent (SWR) was then made 

by addition of 100 volumes of reagent A with 2 volumes of reagent B.  

 

For analysis of protein content, 25 µL of each standard or unknown sample was 

pipetted into a microplate well. SWR was added to each well (200 µL) and 

mixed thoroughly on a plate shaker for 30 seconds. The plate was then covered 

and incubated at 37°C for 30 minutes. The plate was allowed to cool to room 

temperature and absorbance at 562 nm was measured.  

 

2.14  Vaccine efficacy studies 

 

2.14.1 Preparation of vaccines prior to administration 

 

Vaccines for all studies were prepared on the morning of administration. The 

antigens were diluted to the required concentration in PBS and the adjuvant 

added as the final component and allowed to mix for at least 30 minutes prior at 

administration. The appropriate vaccines contained the following adjuvant 

amounts; Alhydrogel® - 15-18 %; Poly (I:C) - 30 µg per dose; AS04 - MPL 10 

µg per dose, 18 % Alhydrogel®; and MF59 - 1:1 ratio to antigen volume.  
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2.14.2 Animal Husbandry 

 

All animal investigations were performed in accordance with the Animal 

(Scientific Procedures) Act 1986. 

 

Female BALB/c mice of approximately 6 weeks of age were caged together with 

free access to food and water and subjected to a 12 hour light/dark cycle. After 

challenge, all animals were handled under containment level III conditions 

within an isolator (BS5726). 

 

2.14.3 Immunisation and challenge schedule 

 

All animals were immunised via the intra-muscular or sub-cutaneous route 

according to the individual plans for each study with the exception of naïve 

controls where indicated. Animals were challenged intraperitoneally on day 63 

with B. pseudomallei K96243 at a dose specified within the results chapter and 

monitored for signs of disease for 35 days and culled at pre-determined 

humane end-points. An illustration of the schedule for the vaccine efficacy 

studies is shown in Figure 8. 

 

Figure 8 Vaccine efficacy study schedule 
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2.14.4 Intraperitoneal exposure of B. pseudomallei K96243 

 

24 hours prior to use, 100 mL of LB broth (at room temperature) was inoculated 

with a loop of B. pseudomallei K96243 working stock in a 250 mL Erlenmeyer 

flask. This was incubated at 37oC, shaking at 180 rpm, for 24 hours. On the day 

of challenge, the B. pseudomallei culture was adjusted with LB media to 

OD590 nm 0.4. The OD adjusted culture was diluted 1:10 to 10-7 in LB. The culture 

was vortexed between each dilution to ensure efficient mixing. The 10-5, 10-6 

and 10-7 dilutions were plated onto 4 LB plates (250 µL per plate) and incubated 

at 37oC. The appropriate dilution was then diluted further with LB to get the 

required MLD challenge dose. For example; a target challenge dose of 300 x 

MLD = 2.23 x 105 CFU per mouse. 1 MLD is approximately 744 CFU of 

B. pseudomallei K96243 (Dstl data). A bacterial culture with OD590 nm 0.4 

contains approximately 4 x 108 CFU/mL. A 1:10 dilution of the 0.4 culture 

contains approximately 4 x 107 CFU/mL. A further dilution of 1:17.9 would 

contain approximately 2.23 x 106 CFU/mL. Each challenge dose (0.1 mL) would 

contain the target dose of 2.23 x 105 CFU. 

 

2.14.5 Statistical analysis  

 

The statistical analysis used throughout the results chapters were performed 

using GraphPad Prism version 6.0.2 for Windows software (GraphPad 

Software, San Diego, USA). 

 

The Mantel-Cox (Log rank) test was used to assess the significance of vaccine 

efficacy at the 95% confidence level. 

 

2.14.6 Enumeration of bacterial loads 

 

Mice surviving to day 35 post-challenge were humanely culled and the spleens, 

livers and lungs removed aseptically into 2 mL PBS. The organs were 

homogenised into 900 µL PBS using a sterile 40 µm disposable cell sieve and 

the barrel of a sterile syringe. A dilution series (10-1 to 10-7) was prepared in 24 

well-tissue culture plates (900 µL PBS per well with the addition of 100 µL of 
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sample) and 250 µL from each dilution (neat to 10-6) were plated onto LB agar. 

Plates were incubated for 48 hours at 37oC and the number of bacterial CFU 

was determined. 

 

2.14.7 Determination of sera IgG and IgM antibody levels to antigen 

 

2.14.7.1 Dose ranging ELISA of mouse sera (in order to determine 

dilution factors for sera samples) 

 

ELISA plates were coated with purified antigen (10 µg/mL CPS or 5 µg/mL 

protein antigens) in PBS and incubated at 4oC overnight. During all incubations, 

the microtiter plates were covered with BIS Ltd microplate sealers (7740005). 

The plates were washed 3 times with 300 µL of PBS + 0.05 % (v/v) Tween 20 

on a plate washer. The plate was blocked with 2 % (w/v) Blotto (200 µL/well), 

incubated at 37oC for 1 hour and washed 3 times with PBS + 0.05 % (v/v) 

Tween 20. Mouse sera (neat concentration) was added to the plate (100 

µL/well) and diluted 1:2 across the plate in 2 % (w/v) Blotto. IgG or IgM 

standards were diluted in 2 % Blotto to a starting concentration of 100 ng/mL, 

added to the plate at 100 µL/well and diluted 1:2 across the plate. The plate was 

incubated for 1 hour at 37oC and washed 3 times with 300 µL of PBS + 0.05 % 

(v/v) Tween 20. Goat anti-mouse IgG-HRP or IgM-HRP conjugate was diluted 

1:2000 in 2 % (w/v) Blotto and 100 µL added to each well. The plate was 

incubated for 1 hour at 37oC and washed 6 times with 300 µL of PBS + 0.05 % 

(v/v) Tween 20. 100 µL of TMB (3,3’,5,5’-tetramethylbenzidine) was then added 

at all wells and the colour developed. Absorbance was read at 620 nm on a 

Labsystems, Multiskan Ascent spectrophotometer. The dilution factor which 

gave an OD value closest to 1 was used in the analysis of the samples.   

 

2.14.7.2 ELISA IgG and IgM analysis of mouse sera samples 

 

Plates were coated with purified antigen (10 µg/mL CPS or 5 µg/mL protein 

antigens) in PBS and incubated at 4oC overnight. During all incubations, the 

microtiter plates were covered with BIS Ltd microplate sealers (7740005). 
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The plates were washed 3 times with 300 µL of PBS + 0.05 % (v/v) Tween 20 

on a plate washer. The plate was blocked with 200 µL/well of 2 % (w/v) Blotto, 

incubated at 37oC for 1 hour, then washed 3 times with PBS + 0.05 % (v/v) 

Tween 20. Mouse sera was diluted in 2 % (w/v) Blotto at the dilution indicated 

from the dose ranging ELISA. IgG or IgM standards were diluted in 2 % (w/v) 

Blotto to a starting concentration of 100 ng/mL. These standards and sera 

samples were added to the plate, in duplicate, at 100 µL per well and diluted 1:2 

across the plate. The plate was then incubated for 1 hour at 37oC and washed 3 

times with 300 µL of PBS + 0.05 % Tween 20 (v/v). Goat anti-mouse IgG-HRP 

or IgM-HRP conjugate was diluted 1:2000 in 2 % (w/v) Blotto and 100 µL added 

to each well. The plate was then incubated for 1 hour at 37oC and washed 6 

times with 300 µL of PBS + 0.05 % Tween 20. 100 µL of TMB (3,3’,5,5’-

tetramethylbenzidine) was then added at all wells and the colour developed. 

Absorbance was read at 620 nm on a Labsystems, Multiskan Ascent 

spectrophotometer. 

 

2.14.8 IFN- Enzyme Linked Immuno-spot assay (ELISPOT) 

 

Splenocytes were isolated by maceration of individual spleens in 5 mL of 

RPMI1640 medium (Life Technologies) supplemented with 10 % (v/v) Foetal 

Bovine Serum, non-essential amino acids - final concentration of 100 µM 

glycine, L-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, L-proline and 

L-serine (Life Technologies), 50 µM final concentration 2-mercaptoethanol (Life 

Technologies), 100 U/mL penicillin and 100 mg/mL streptomycin sulphate (Life 

Technologies) and passage through a 40 µm cell sieve. The isolated 

splenocytes were diluted to 2.5 x 106 cells/mL in supplemented RPMI1640 

medium. These were incubated in the presence of medium alone, antigen or 

mitogen (Concanavalin-A) at 37oC in a 5 % CO2 atmosphere using 96-well 

PVDF ELISPOT plates pre-coated with an IFN- capture antibody 

(Mabtech). Following a 20 hour incubation period, development of IFN- spots 

was performed using a commercially available murine IFN- ELISPOT kit 

(Mabtech). Spot enumeration was performed using an AID automated reader.    
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Chapter 3: Burkholderia capsular polysaccharide 

 

3.1 Introduction 

 

An important factor in the development of a vaccine is cost of production (Kaper 

et al., 2013). One of the technical challenges in developing a B. pseudomallei 

vaccine is the cost of extracting B. pseudomallei CPS in containment level 3 

laboratories. This requires the use of specialised facilities and the handling of 

agent within class III microbiological cabinets and is laborious and time 

consuming in comparison to working at lower levels of containment. Local 

procedures may also be in place which limit the amount of organism grown in a 

single culture or restrict the use of certain techniques such as freeze-drying to 

reduce risk in case of an accident. Depending on efficacy and protective 

duration, this may make a vaccine prohibitively expensive, especially for civilian 

use in the areas of the world where melioidosis is endemic (Peacock et al., 

2012). 

 

The aim of this chapter is to address the issue of cost with three objectives. The 

first was to determine the structural similarity of CPS extracted from 

B. thailandensis E555 to that from B. pseudomallei. This built on previous work 

from Sim et al. 2010 where B. thailandensis E555 CPS was shown to cross-

react with an anti B. pseudomallei CPS monoclonal antibody. As 

B. thailandensis can be handled in lower levels of containment, extraction of the 

CPS would be quicker, safer and cheaper. 

 

The second objective was to optimise purified CPS extraction by improving yield 

or reducing the time taken to extract CPS. This chapter focussed on improving 

yield by increasing the amount of CPS in the bacterial culture and therefore the 

amount available for extraction. This was investigated by altering growth 

conditions which included aeration and the use of different media with the 

hypothesis that improved growth would improve CPS expression. It is known 

that different carbon sources can effect polysaccharide expression (Yuksekdag 

and Aslim 2008, Audy et al., 2010), and so the addition of mannose to the 

microbiological growth media was assessed. The addition of iron sulfate was 

also assessed following demonstration of improved B. pseudomallei growth 
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(Wang-Ngarm et al., 2014). This work, however, required the development of a 

method to quantify changes in CPS concentration. Reducing the time taken to 

extract CPS focussed on quantification of CPS in culture supernatant as it is 

known that bacteria shed their CPS into the environment (Joiner 1988). 

Identification of sufficient quantities of CPS in the supernatant may reduce the 

number of purification steps required and therefore time and may also increase 

purity of the starting material due to the absence of bacterial cells and proteins.  

 

The use of CPS is not without disadvantages. These include the inability to 

generate known chain-lengths. This is known to affect conjugate vaccine 

efficacy, and so is an important variable to control in polysaccharide conjugate 

vaccine development (Carmenate et al., 2004, Rana et al., 2015). The use of 

native-length chains of CPS may also make difficult the separation of free 

polysaccharide from conjugated polysaccharide. This is also known to affect 

vaccine efficacy (Rodriguez et al., 1998) and should be within limits shown to be 

clinically safe and efficacious according to the World Health Organisation 

recommendations for production and control of pneumococcal and 

meningococcal conjugate vaccines (WHO TRS 927 2005, 924 2004). One 

solution to these problems would be chemical synthesis of the polysaccharide, 

which may also lower cost of production. However, this is technically 

challenging due to the position of the acetyl group on the CPS molecule.  

 

The final objective of this chapter was to investigate further the work by 

Marchetti et al. (2015), which suggests the importance of this acetyl group to 

antibody recognition, and confirm the importance of the acetyl moiety on CPS 

immunogenicity and protective efficacy. The focus of this work started with 

sequencing of the variable regions of the heavy and light chain of four Dstl anti-

CPS antibodies in order to determine major amino acid differences. The binding 

of these antibodies against deacetylated CPS was then assessed. Finally, 

antibody cross-reactivity to CPS and de-acetylated CPS from mice immunized 

with a CPS conjugate and de-acetylated CPS conjugate was assessed as part 

of a vaccine efficacy study performed by a Dstl colleague. 
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3.2 Extraction of CPS from B. pseudomallei K96243 and 

B. thailandensis E555 

 

The isolation of native Burkholderia CPS was a challenging process with the 

purity and yield of material lower than expected compared to reports of 10-15 

mg of CPS per litre of bacterial culture (Burtnick et al., 2012). 

 

Initial attempts at CPS extraction were performed on B. pseudomallei strain 

K96243 and B. thailandensis strain E555 by the ethanol precipitation method 

with cells grown on solid media (Chapter 2, Method 2.5.3). The B. thailandensis 

E555 strain used in this study, provided by Andy Scott, Dstl, was previously 

modified by the insertion of a kanamycin resistance marker cassette (Kmr) into 

gene wbiI; this genetic modification results in a loss of production of the 

lipopolysaccharide (LPS) O-antigen (B. thailandensis E555 :: wbiI (Kmr)). 

 

The cells were grown on solid media and an ethanol extraction method used 

previously described for B. pseudomallei CPS by George, 2013. Ethanol 

precipitation is also used in the production of several polysaccharide vaccines 

(Plotkin et al., 2013). CPS extracts from B. thailandensis E555 :: wbiI (Kmr) and 

B. pseudomallei strain K96243 were analysed by NMR by collaborators at the 

John Innes Centre (JIC) and shown to be of insufficient purity for VLP 

conjugation as the characteristic CPS spectra could not be identified.  

 

A phenol-based extraction method on liquid cultures for isolation of 

B. pseudomallei CPS has been reported (Perry et al., 1995, Heiss et al., 2012). 

Dstl use a phenol-based method to extract lipopolysaccharide. Therefore this 

method was employed for extraction of CPS utilising B. thailandensis E555 :: 

wbiI (Kmr) cultured using both liquid and solid media and B. pseudomallei 

K96243 cultured using solid media only (Chapter 2, Method 2.5.4). NMR 

analysis failed to confirm the presence of CPS in extracted material with a 

number of unidentified contaminants. The NMR analysis was negative for CPS 

from B. pseudomallei extracts. Therefore, it was concluded that the problem lay 

with the extraction method, rather than that B. thailandensis E555 did not 

produce CPS.  
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Subsequently, and via discussion with Assoc. Prof. Brett, two differences 

between the Dstl methodology and the published methodology from Assoc. 

Prof. Brett’s lab (Heiss et al., 2012) were identified:  

 

1. Live cells were used for extractions in Brett’s method whereas in Dstl’s 

method, cells were first heat-killed at 80oC for 4 hours.  

2. The phenol and culture mixture was maintained at 80oC in Brett’s method 

rather than 60oC at Dstl. 

 

Whilst changes were made to risk assessments at Dstl in order to carry out the 

extraction with these different conditions, a stock of B. thailandensis E555 :: 

wbiI (Kmr) was sent to Matt Donaldson, (JIC) who could perform the modified 

hot-phenol extraction immediately, with a small amount of CPS purified from 

B. pseudomallei strain 1026b for use as a comparison in NMR analysis supplied 

from Assoc. Prof. Brett (Chapter 2, Method 2.5.5).  

 

NMR analysis of the extracted material at the JIC from live B. thailandensis 

grown in liquid media confirmed the presence of CPS in comparison to the 

reference B. pseudomallei 1026b CPS. In conjunction with monosaccharide 

analysis performed at JIC (Chapter 2, Method 2.5.6), these results confirm that 

B. thailandensis CPS is structurally identical to that of CPS from 

B. pseudomallei strain 1026b (Figure 9  and Figure 10). This permits the use of 

B. thailandensis E555 as a source of CPS in future studies. 
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Figure 9 NMR spectra of CPS isolated from B. thailandensis E555 :: wbiI (Km
r
) (Bottom) 

with reference to purified CPS from B. pseudomallei 1026b (Top). The structure of CPS is 

illustrated with proton positions.  

 

(Water is present in the sample from B. pseudomallei because the proton NMR 

was run without NOESY)  

 

 

Figure 10 Monosaccharide analysis of fully hydrolysed B. thailandensis E555 :: wbiI 

(Km
r
) CPS polysaccharide  

 

This result was also confirmed with subsequent NMR analysis of CPS extracted 

from B. thailandensis E555 :: wbiI (Kmr) grown in liquid media at Dstl. In 

addition, the modified phenol method was employed on killed B. thailandensis 

E555 :: wbiI (Kmr) grown on solid media, killed B. pseudomallei K96243 grown 

on solid media and killed B. pseudomallei 1026b grown in liquid media. Both of 
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the B. pseudomallei samples and the sample from solid media grown 

B. thailandensis E555 :: wbiI (Kmr) were determined to be of insufficient purity 

by NMR (Figure 11). This demonstrates that use of live bacterial cultures grown 

in liquid media and maintaining the phenol extraction at 80oC is essential for 

extraction of CPS.  

 

 

Figure 11 NMR spectra of phenol extract from heat-killed B. thailandensis E555 :: wbiI 

(Km
r
) sample (Bottom) with reference to purified CPS from B. pseudomallei 1026b (Top).  

 

Following successful extraction of CPS from B. thailandensis E555, an 

acceptance criteria was adopted for use of this material which stated that the 

CPS be detectable by NMR and that spectra are in agreement with the 

reference sample (B. pseudomallei 1026b CPS from Assoc. Prof. Brett). 

 

Several CPS extractions have been completed employing Assoc. Prof. Brett’s 

phenol method with B. thailandensis E555 :: wbiI (Kmr) cultured in LB broth. 

While purity of the CPS final product has remained consistently around 85 

percent, yields have varied from 0.5 mg to 18 mg per litre of bacterial culture. 

Yield differences are considered a result of biological variation in bacterial 

growth, and therefore CPS expression, and batch-to-batch variation in 

extraction efficiency. 

  

While the second objective of this work was to optimise CPS expression, 

previous studies have determined that CPS production by B. pseudomallei was 

increased if grown on Brain Heart Infusion media (BHI) containing 5 % (v/v) 
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glycerol (Kawahara et al., 1998). To produce a stock of CPS for use in 

conjugation reactions, an extraction was performed from B. thailandensis E555 

:: wbiI (Kmr) cultured in 2 L Brain Heart Infusion (BHI) broth with a resultant 

yield of 19.9 mg. NMR analysis at JIC showed the presence of an unidentified 

contaminant (Figure 12) which has not been detected in CPS extracted from LB 

media cultures. Therefore, the use of BHI broth for culture of B. thailandensis 

E555 :: wbiI (Kmr) prior to CPS extraction was discontinued.  

 

 

Figure 12 Stacked NMR spectra for CPS obtained from B. pseudomallei 1026b (Top), 

B. thailandensis E555 :: wbiI (Km
r
) cultured in LB media (Middle) and B. thailandensis 

E555 :: wbiI (Kmr) cultured in BHI media (Bottom).  

 

 

 

 

3.3 Development of a quantitative CPS ELISA  

 

In order to optimise CPS production in B. thailandensis E555 :: wbiI (Kmr) 

cultures, a method to rapidly quantitate capsular polysaccharide concentration 

in live cultures was developed as phenol extraction of CPS requires 

approximately 5 weeks to complete. It was considered that an antibody-based 

method would be suitable. Therefore a dot blot method was compared to an 

ELISA to assess detection of purified CPS bound directly to the membrane or 
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microtiter plate (Chapter 2, Method 2.6.1 and 2.6.2). Starting at a 

B. pseudomallei 1026b CPS concentration of 100 µg/mL, it was determined that 

the detection limits of both the dot blot and ELISA were acceptable. The 

provisional limit of detection was calculated to be approximately 780 ng/mL and 

48 pg/mL for the dot blot and ELISA respectively (Figure 13 and Figure 14). 

Due to the increased sensitivity and advantages in reproducibility and 

quantification, the ELISA method was employed in all further optimisation 

experiments. 

 

 
 

Figure 13 Dot-blot for detection of purified CPS with the anti-CPS monoclonal antibody 

DSTL189. CPS at a concentration of 100 µg/mL was serially diluted 1:2 and blotted onto the 

membrane, probed with antibody DSTL189 and detected with goat anti-mouse IgG-Alkaline 

phosphatase (ALP). The limit of detection (LOD) is determined at the last concentration with a 

visible blot, 781.3 ng/mL (1:1280 dilution).  
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Figure 14 Detection of purified CPS by ELISA. CPS was diluted 1:2 from a starting 

concentration of 100 µg/mL (single value for each concentration). Detection is with the anti-CPS 

monoclonal DSTL189 and goat anti-mouse IgG-horse radish peroxidase (HRP). The limit of 

detection (LOD) illustrated is calculated from the mean OD plus 3 SD of four replicates of a 

blank. The limit of detection is calculated to be 48 pg/mL.  

 

To further develop the ELISA for CPS quantification, a capture ELISA was 

produced. Capture ELISA’s are considered to have greater specificity and 

sensitivity due to the reduced variability in binding of antigen to a capture 

antibody in comparison to binding of antigen to a microtitre plate surface. Dstl 

has an anti-CPS monoclonal antibody (DSTL189), which was used for both 

capture and detection purposes. This required biotinylation of the DSTL189 

detection antibody as an anti-species monoclonal could not be used for 

detection when an antibody derived from the target animal spp. is used for 

detection and capture (Chapter 2 Method 2.6.3). Before a sandwich ELISA 

could be developed, the binding of biotinylated DSTL189 with streptavidin 

peroxidase to CPS bound directly to the microtiter plate was assessed. In the 

same study, different molar coupling ratios of biotin to DSTL189 were compared 

to determine whether biotin impaired the ability of DSTL189 to recognise CPS 

(Chapter 2, Method 2.6.4). The results demonstrated that biotinylation was 

suitable for use with the detection antibody (Figure 15). The OD readings from 

all molar coupling ratios were acceptable. While the OD readings for MCR of 

x20 and x30 were slightly higher than x10 across all antibody concentrations, 

non-linear regression analysis showed that the dose-response curve at x10 
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MCR had a greater R squared value (0.9996) than x20 or x30 MCR (0.9993 and 

0.9986 respectively). 

 

Figure 15 ELISA to assess recognition of purified CPS with biotinylated DSTL189 

monoclonal antibody at different molar coupling ratios. A microtiter plate was coated with 

CPS (10 µg/mL). Biotinylated DSTL189 antibody was added at molar coupling ratios of x5, x10, 

x20 or x30 of biotin and diluted 1:2 across the plate followed by streptavidin peroxidase (1:1000 

dilution).  

To generate and optimise a standard curve for the capture ELISA, purified CPS, 

from B. pseudomallei 1026b, supplied by Prof. Paul Brett at Alabama University, 

with a stated purity of 95% was used. The purpose of this experiment (Chapter 

2, Method 2.6.5) was to assess the assay with a lower concentration of capture 

and detection antibody of 5 µg/mL rather than 10 µg/mL, as with the 

biotinylation comparison; to assess CPS concentrations to generate the 

standard curve across the top 2 rows of a microtiter plate; and finally to assess 

OD variability across microtiter plates. A starting CPS concentration of 10, 5 

and 1.25 µg/mL was diluted 1:2, in duplicate, with the resultant OD values 

(Figure 16) plotted as a single curve against log-transformed concentration and 

analysed by non-linear regression (Figure 17) The OD values were variable 

across microtiter plates, as demonstrated by the standard deviation, but showed 

the lower antibody concentration suitable and a maximum starting concentration 

of 1.25 mg/mL CPS. The variability in OD values was also shown by a decrease 

in the R square value to 0.8704 for the collated data curve, whereas a curve 

generated from the first microtiter plate (data not shown) had an R square value 

of 0.9923. 
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Figure 16 OD values from CPS capture ELISA with purified B. pseudomallei 1026b. Eight 

microtiter plates were coated with DSTL189 antibody at 5 µg/mL, CPS added to wells A1 and 

B1 at 10, 5 or 1.25 µg/mL and diluted 1:2 across each plate. For plates with rows A-D, diluted 

sample from well A10 and B10 was diluted 1:2 into wells C1 and D1 and further diluted across 

the plate. Biotinylated DSTL189 antibody was added at 5 µg/mL followed by streptavidin at 

1:1000 dilution and ABTS.  

Measurement count: 1   Filter: 414

1 2 3 4 5 6 7 8 9 10 11 12

A 1.68 1.55 1.424 1.36 1.246 0.927 0.858 0.757 0.574 0.477 0.064 0.065

B 1.49 1.514 1.322 1.297 1.253 1.076 0.852 0.756 0.511 0.427 0.062 0.064

C 0.48 0.331 0.217 0.169 0.127 0.097 0.082 0.086 0.077 0.073 0.063 0.067

D 0.438 0.314 0.221 0.164 0.123 0.095 0.086 0.079 0.074 0.072 0.063 0.063

Starting CPS concentration of 10µg/mL

Measurement count: 1   Filter: 414 Blank

1 2 3 4 5 6 7 8 9 10 11 12

A 1.222 1.273 1.324 1.158 1.076 1.076 0.861 0.738 0.598 0.51 0.499 0.074

B 1.214 1.188 1.278 1.058 1.025 0.971 0.91 0.777 0.576 0.503 0.422 0.073

Starting CPS concentration of 5ug/mL

Measurement count: 1   Filter: 414

1 2 3 4 5 6 7 8 9 10 11 12

A 1.517 1.536 1.384 1.196 1.363 1.154 1.038 0.837 0.688 0.481 0.416 0.075

B 1.422 1.377 1.311 1.165 1.288 1.188 0.958 0.762 0.713 0.494 0.354 0.08

Starting CPS concentration of 5ug/mL

Measurement count: 1   Filter: 414 Blank

1 2 3 4 5 6 7 8 9 10 11 12

A 1.537 1.868 1.811 1.611 1.439 1.3 1.039 0.774 0.588 0.394 0.34 0.13

B 1.461 1.662 1.799 1.451 1.413 1.189 0.917 0.707 0.538 0.392 0.29 0.129

Starting CPS concentration of 1.25ug/mL

Measurement count: 1   Filter: 414

1 2 3 4 5 6 7 8 9 10 11 12

A 1.57 1.439 1.387 1.049 0.747 0.471 0.322 0.197 0.136 0.098 0.087 0.074

B 1.551 1.452 1.352 0.96 0.79 0.485 0.287 0.176 0.129 0.097 0.085 0.076

Starting CPS concentration of 1.25ug/mL

Measurement count: 1   Filter: 414

1 2 3 4 5 6 7 8 9 10 11 12

A 1.043 1.679 1.593 1.355 1.282 1.261 1.216 0.997 0.835 0.642 0.48 0.077

B 1.005 1.457 1.358 1.22 0.971 1.117 1.138 1.01 0.833 0.643 0.462 0.072

C 0.305 0.237 0.152 0.112 0.09 0.073

D 0.279 0.214 0.141 0.108 0.093 0.074

Starting CPS concentration of 5ug/mL

Measurement count: 1   Filter: 414

1 2 3 4 5 6 7 8 9 10 11 12

A 0.979 1.493 1.327 1.176 1.005 1.115 0.974 0.921 0.809 0.673 0.535 0.075

B 0.992 1.35 1.243 1.003 1.022 0.93 0.747 0.75 0.623 0.611 0.501 0.074

C 0.363 0.243 0.165 0.123 0.106 0.082

D 0.371 0.277 0.171 0.128 0.102 0.074

Starting CPS concentration of 5ug/mL

Measurement count: 1   Filter: 414

1 2 3 4 5 6 7 8 9 10 11 12

A 1.686 1.673 1.599 1.495 1.561 1.208 1.1 0.937 0.868 0.64 0.475 0.073

B 1.598 1.628 1.522 1.419 1.466 1.078 1.036 0.926 0.736 0.642 0.59 0.073

C 0.403 0.264 0.179 0.133 0.105 0.079

D 0.41 0.323 0.179 0.143 0.106 0.072

Starting CPS concentration of 5ug/mL

Purified CPS standard curve

Negative control

Blank
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Figure 17 Purified B. pseudomallei 1026b CPS ELISA standard curve generated from OD 

values in Figure 16 and plotted against log-transformed CPS concentration. Data 

represent the mean +SD of two independent experiments at 10 µg/mL, 10 independent 

experiments at 5 and 2.5 µg/mL, and 16 independent experiments for all other concentrations. 

 

As stated, CPS purified from B. pseudomallei 1026b (CPS supplied by Prof. 

Paul Brett at Alabama University) was used to generate standard curves. Once 

the structure of the CPS produced from B. thailandensis E555 :: wbiI (Kmr) was 

confirmed by NMR to be identical to that produced by B. pseudomallei the 

source of material was changed. The B. pseudomallei derived anti-CPS 

monoclonal antibody (DSTL189) was used to compare the two CPS molecules 

(Chapter 2, Method 2.6.6). These data suggested that the two CPS molecules 

were immunologically indistinguishable (Figure 18).  

 

 



113 

 

 

Figure 18 Comparison of antibody recognition to CPS extracted from B. pseudomallei 

and B. thailandensis. ELISA plates were coated with DSTL189 monoclonal antibody and 

purified B. pseudomallei (Bps CPS) and B. thailandensis E555 :: wbiI (Km
r
) CPS (Bt CPS)over a 

concentration range of 10 µg/ml to 0.007 µg/mL. There is no significant difference between the 

data sets (P 0.3434, Extra sum of squares F test). Data represent the mean +SD of 2 

independent experiments.  

To further develop the standard curve with purified CPS from B. thailandensis 

E555 :: wbiI (Kmr), a further batch of biotinylated DSTL189 monoclonal antibody 

was produced. This provided sufficient quantities to determine a limit of 

detection (LOD), upper and lower limit of quantification (ULOQ, LLOQ) and for 

all future CPS optimisation work. 

 

Before a LOD, ULOQ and LLOQ were determined, the suitability of the ELISA 

to measure B. thailandensis E555 :: wbiI (Kmr) culture CPS concentration was 

investigated (Chapter 2, Method 2.6.7). B. thailandensis E555 :: wbiI (Kmr) was 

cultured overnight at 37oC, a sample added in duplicate at 5.4 x 108 CFU/mL 

and diluted 1:2 across the plate. Purified CPS was added to the plate to further 

develop the standard curve. This showed that the maximum CPS concentration 

could be reduced and that the ELISA could detect changes in B. thailandensis 

E555 :: wbiI (Kmr), although only from a dilution of approximately 1:128 (Figure 

19). 
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Figure 19 ELISA results of B. thailandensis E555 :: wbiI (Km
r
) culture CPS concentration. 

A microtiter plate coated with anti-CPS antibody DSTL189 was incubated with B. thailandensis 

E555 :: wbiI (Km
r
) at an initial culture concentration of 5.4 x 10

8
 CFU/mL in wells C1 and D1 and 

diluted 1:2 across the plate. Samples from column 11 were diluted 1:2 into E1 and F1 and the 

dilution continued across the plate. Purified CPS was added to rows A and B for standard curve 

development starting at a concentration of 1.25 µg/mL and diluted 1:2 across the plate.  

 

While assessment of the ELISA utilised B. thailandensis E555 :: wbiI (Kmr), as 

the O-antigen mutant of B. thailandensis was to be used for CPS extraction, the 

same experiment was also performed with wild-type B. thailandensis E555 and 

the results were similar (data not shown).  

 

Determination of the LOD required OD values of a negative to be obtained. It 

was decided that the CPS-negative B. thailandensis CDC2721121 (Sim et al., 

2010) would be appropriate. B. thailandensis CDC2721121 was incubated 

overnight at 37oC, a neat culture sample added in duplicate to the plate and 

diluted 1:2 across the plate. B. thailandensis E555 :: wbiI (Kmr) was also added 

to the plate as a positive control, purified CPS added for development of the 

standard curve and 2 % milk powder in PBS added as the negative control 

(Chapter 2, Method 2.6.8). The mean OD values of both the negative control 

and the B. thailandensis CDC2721121 culture were 0.068 confirming that 

B. thailandensis CDC2721121 is CPS negative and suitable for use as the 

negative control in the CPS ELISA (Figure 20). In combination with the previous 

experiment, it also confirmed that the starting concentration of the purified CPS 

be reduced to approximately 100 ng/mL.  
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Figure 20 ELISA to determine suitability of B. thailandensis CDC2721121 as the negative 

control for CPS ELISA development. A microtiter plate coated with anti-CPS antibody 

DSTL189 was incubated with B. thailandensis CDC2721121 neat culture in wells E7 and F7 

and diluted 1:2 across the plate. Samples from wells E11 and F11 were diluted 1:2 into wells G1 

and H1 and further diluted across the plate to column 12. A neat culture sample of 

B. thailandensis E555 :: wbiI (Km
r
) was added as the positive control in wells C1 and D1 and 

diluted 1:2 across the plate. Samples from column 11 were diluted 1:2 into E1 and F1 and the 

dilution continued across the plate to wells E6 and F6. Purified CPS was added to rows A and B 

for standard curve development starting at a concentration of 1 µg/mL and diluted 1:2 across 

the plate. 2 % milk powder in PBS was added to wells in column 12 as the blank.  

 

As a back-up for B. thailandensis CDC2721121 as the negative control, 

B. thailandensis E264 was also analysed and was shown to have the same 

mean OD values as the negative control (data not shown).  

 

To calculate a limit of detection (LOD) for the ELISA, 134 individual samples of 

CPS-negative B. thailandensis strain CDC2721121 were analysed, initially over 

a concentration range of approximately 108 CFU/mL to 1 CFU/mL with later 

samples at 108 CFU/mL to 105 CFU/mL (Chapter 2, Method 2.6.8). The OD 

values (n=1492) were collated into a single dataset (Figure 21) and a mean 

optical density (OD414 nm) plus three standard deviations was calculated to be 

0.127.  
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Figure 21 Calculation of CPS ELISA limit of detection: generation of negative control 

value. OD values from 134 samples of B. thailandensis CDC2721121 analysed at a range of 

concentrations from a neat culture (~10
8
 CFU/mL) to 1 CFU/mL (concentrations not shown). 

The mean of all values (n=1492) plus three standard deviations was calculated to give an OD 

value of 0.127.  
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With an OD value of 0.127 obtained from the B. thailandensis CDC2721121 

negative control, the next step in determining the LOD of the CPS ELISA was to 

generate OD values with purified CPS. 144 samples of purified CPS were 

analysed over a concentration range of 100 ng/mL to 98 pg/mL (Chapter 2, 

Method 2.6.10). The mean OD value of 0.127 from the negative control was 

compared against the mean OD of each CPS concentration. The LOD was 

determined as the lowest CPS concentration with an OD value greater than the 

negative value (Table 3). From this a LOD of 391 pg/mL was calculated.  

 

 

Table 3 Calculation of CPS ELISA limit of detection from purified CPS mean OD values. 

144 samples of B. thailandensis E555 :: wbiI (Km
r
) purified CPS at a concentration of 100 ng/mL 

to 98 pg/mL were analysed by ELISA. (Individual values not shown). A LOD of 391 pg/mL was 

calculated as the lowest CPS concentration with a mean OD value greater than 0.127 (the 

mean OD value from the negative control B. thailandensis CDC2721121). % coefficient of 

variance was calculated to measure deviation from the mean. 

 

To calculate upper and lower limits of quantification (ULOQ/LLOQ), 30 

replicates of purified B. thailandensis E555 :: wbiI (Kmr) CPS were analysed 

over a concentration range of 100 ng/mL to 98 pg/mL (Chapter 2, Method 

2.6.11). Limits of quantification were determined as the CPS concentrations 

where the accuracy of the mean reported concentrations from the standard 

curve was within 20 % of the known concentration and the coefficient of 

variance (% CV) was less than 20. This gave upper and lower limits of 25 

ng/mL and 0.4 ng/mL respectively. Figure 22 illustrates the LOD and LOQs 

calculated and a typical standard curve generated by this ELISA following 

optimisation.  

CPS conc (µg/mL) Mean %CV n

0.1 1.348913 18.78763 144

0.05 1.234948 18.83721 144

0.025 1.01401 21.47754 144

0.0125 0.776406 22.2718 144

0.00625 0.562427 21.88934 144

0.003125 0.38984 20.84562 144

0.001371742 0.274576 17.75797 144

0.00078125 0.197681 16.37003 144

LOD 0.000390625 0.14967 13.67689 144

0.000195313 0.120135 12.00453 144

9.76563E-05 0.102836 11.09981 143
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Table 4 is a summary of the data used to calculate the limits of quantification. 

 

 

Figure 22 Typical standard curve generated from ELISA results of CPS purified from 

B. thailandensis E555 :: wbiI (Km
r
). Illustrated is the Upper Limit of Quantification (ULOQ) and 

Lower limit of quantification (LLOQ) determined from analysis of 28 samples of purified CPS 

where the calculated concentrations were accurate to within 20 % of the known concentration 

and the % CV was less than or equal to 20. Error bars = SD. n=2 at each concentration. 
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Table 4 Summary of purified B. thailandensis E555 :: wbiI (Km

r
) CPS concentration data 

used to calculate ELISA upper and lower limits of quantification (ULOQ / LLOQ). Known 

concentrations of CPS were analysed by ELISA with the OD values interpolated from the 

standard curve (data not shown) to give the mean calculated concentration. The %CV was 

calculated from all reported concentrations and the accuracy to the expected concentration (% 

accuracy) calculated from the mean calculated concentrations. Highlighted in red are the data 

that fall within the criteria of % CV ≤20 and % accuracy within 80-120 %, giving an upper limit of 

quantification of 25 ng/mL and a lower limit of 0.39 ng/mL 

 

Following development of this ELISA, it was now possible to achieve 

quantification of CPS production from crude cultures grown over 24-48 hrs in 

contrast to requiring samples from a full CPS extraction process which takes 

several weeks.  

 

3.4 CPS expression optimisation – growth 

 

With a final method to quantify changes in CPS concentration available 

(Chapter 2, Method 2.7), optimisation of CPS expression was attempted by 

increasing the growth of B. thailandensis E555 :: wbiI (Kmr) in culture.  

 

Expected 

concentration 

(ng/mL) 

Mean 

calculated 

concentration 

(ng/mL) 

% Coefficient 

of Variance 

% accuracy n 

100 88.18 34 88 30 

50 54.33 48 109 30 

25 23.65 20 95 30 

12.5 12.15 15 97 30 

6.25 6.32 13 101 30 

3.13 3.21 13 103 30 

1.56 1.82 15 116 30 

0.78 0.90 11 115 30 

0.39 0.42 13 107 30 

0.20 0.19 47 98 29 

0.10 0.06 56 66 21 
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Utilising set incubation conditions of 37oC and a shaking speed of 180 rpm, the 

amount of CPS produced (µg/mL), colony forming units (CFU/mL) and optical 

density (OD590 nm) during growth of the bacteria from 17 – 72 hours after 

inoculation with a glycerol stock was measured (Chapter 2, Method 2.7). A 

maximum CPS concentration of 34.6 µg/mL was measured 72 hours after 

inoculation (Table 5). Measurement of CPS concentration at 0, 3, and 6 hours 

after inoculation were measured in a previous experiment and shown to be 

negligible (data not shown). 

 

Incubation time after 

inoculation (Hrs) 

OD590 nm CFU/mL Bacterial culture CPS 

concentration (µg/mL) 

17 1.67 1.64E+09 7.6 

18 1.76 1.94E+09 8.3 

19 1.81 2.24E+09 9.0 

20 1.93 2.54E+09 10.5 

21 1.93 3.09E+09 14.6 

22 2.00 3.52E+09 16.2 

23 >2.00 3.40E+09 14.4 

24 >2.00 4.38E+09 15.3 

25 >2.00 4.03E+09 15.1 

26 >2.00 4.33E+09 15.7 

27 >2.00 4.56E+09 14.4 

42 >2.00 2.09E+10 26.8 

48 >2.00 2.21E+10 32.5 

66 >2.00 2.95E+10 32.4 

72 >2.00 3.56E+10 34.6 

 
Table 5 Measurement of B. thailandensis E555 :: wbiI (Km

r
) bacterial culture CPS 

concentration (µg/mL), OD590 nm and CFU/mL, 17-72 hours after inoculation of LB media 

from a glycerol stock.  

 

To boost CPS concentration, the experiment was repeated but with three 

cultures that were inoculated with a B. thailandensis E555 :: wbiI (Kmr) starter 

culture rather than glycerol stock. The starter culture was inoculated with a 

glycerol stock of B. thailandensis E555 :: wbiI (Kmr) and incubated for 24 hours 

at 37oC, shaking at 180 rpm. A 500 µL aliquot of this culture was then 
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inoculated into 50 mL of LB media and incubated for 48 hours at 37oC, shaking 

at 180 rpm. CPS concentration and colony forming units were measured hourly 

from 17 – 27 hours, and at 42 and 48 hours after inoculation (Chapter 2, 

Method 2.7.2). Mean CPS concentration was at a maximum 48 hours after 

inoculation (57.7 µg/mL Table 6). At maximum CPS concentration for both test 

conditions, cultures were in stationary phase with CFU greater than 1 x 1010/mL. 

Figure 23 illustrates the measured CPS concentration (µg/mL) for the culture 

inoculated with the glycerol stock and the three bacterial cultures inoculated 

with a starter culture. Due to time constraints while optimisation work is being 

performed and to give the greatest chance of detecting differences in CPS 

concentration, future samples were taken at 20, 24 and 27 hours after 

inoculation. For all future optimisation work, a subbed culture will be also be 

used. 

 

Incubation time after 

inoculation (Hrs) 

Average 

CFU/mL 

Average 

bacterial culture CPS 

concentration (µg/mL) 

17 6.25E+09 19.8 

18 6.55E+09 21.4 

19 7.73E+09 22.8 

20 8.21E+09 19.9 

21 9.32E+09 23.0 

22 9.31E+09 23.0 

23 1.00E+10 25.3 

24 1.00E+10 31.3 

25 1.24E+10 32.2 

26 1.44E+10 37.8 

27 1.61E+10 38.8 

42 2.03E+10 52.0 

48 2.04E+10 57.7 

 

Table 6 Average CPS concentration (µg/mL) and CFU/mL of three B. thailandensis E555 :: 

wbiI (Km
r
) bacterial cultures, 17-72 hours after inoculation of LB media from a starter 

culture.   

 



122 

 

 

 

Figure 23 Comparison of glycerol stock to starter culture inoculate on B. thailandensis 

E555 :: wbiI (Km
r
) culture CPS concentration LB microbiological growth media was 

inoculated with a glycerol stock or starter culture of B. thailandensis E555 :: wbiI (Km
r
) and 

incubated for 50 hours at 37
o
C,shaking at 180 rpm. *** p ≤0.001 

 

Following determination of incubation time following inoculation and the use of a 

subbed culture, CPS concentration and CFU/mL by B. thailandensis E555 :: 

wbiI (Kmr) was then assessed in triplicate in four different microbiological growth 

medias; LB, M9 minimal media, Tryptone soya broth and Enhanced phytone 

peptone at 20, 24 and 27 hours after inoculation at 37oC, shaking at 180 rpm 

(Chapter 2, Method 2.7.3). LB is the standard media for CPS extraction. M9 

media is a defined media with the potential to provide CPS with increased 

purity. Tryptone soya broth and enhanced phytone peptone media are complex 

media with the potential to significantly increase bacterial growth.  

Changing growth media results in a statistically significant difference in culture 

CPS concentration compared to LB (Figure 24A). CPS concentration was 

lowest in M9 minimal media (3.7 µg/mL at 27 hr) and highest in enhanced 
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phytone peptone broth (58.7 µg/mL at 27 hr). The increase in CPS with 

enhanced phytone peptone broth when compared to LB broth results from 

increased expression per CFU rather than an increase in bacterial biomass 

(Figure 24B&C). The enhanced phytone peptone broth will be used for future 

CPS production with LB broth used as a comparator.  

 

 
Figure 24 Effect of different microbiological growth media on B. thailandensis E555 :: 

wbiI (Km
r
) growth and CPS expression. An aliquot of a B. thailandensis E555 :: wbiI (Km

r
) 

starter culture was inoculated into four different microbiological media and culture samples 

analysed at 20, 24 and 27 hours after inoculation for CPS expression (A), CFU/mL (B), and 

CPS per CFU (C) Each value represents the mean +SD of three independent experiments. ** p 

≤0.01 **** p ≤0.0001. 

To investigate the impact of increased aeration on B. thailandensis E555 :: wbiI 

(Kmr) culture CPS concentration, baffled Erlenmeyer flasks were used 

compared to non-baffled Erlenmeyer flasks (Chapter 2, Method 2.7.4). Utilising 

LB media, culture CPS concentration and CFU/mL were measured at 20, 24 

and 27 hours after inoculation. As illustrated in Figure 25, baffled flasks did 

significantly increase culture CPS concentration from an average of 29.1 to 40.7 

µg/mL 27 hrs after inoculation (Figure 25A). This is explained by the significant 
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increase in CFU/mL rather than increased expression of CPS per CFU (Figure 

25B and C).  

 

 

Figure 25 Effect of baffled Erlenmeyer flasks on B. thailandensis E555 :: wbiI (Km
r
) 

growth and CPS expression inoculated into LB media. An aliquot of a B. thailandensis E555 

:: wbiI (Km
r
) starter culture was inoculated into baffled and non-baffled Erlenmeyer flasks 

containing LB media and culture samples analysed at 20, 24 and 27 hours after inoculation for 

CPS expression (A), CFU/mL (B), and CPS per CFU (C) Each value represents the mean +SD 

of three independent experiments. * p ≤0.05, NS = no statistical significance (two-way RM 

ANOVA). 

The effect of baffled Erlenmeyer flasks with enhanced phytone peptone broth 

on B. thailandensis E555 :: wbiI (Kmr) culture CPS concentration was compared 

to non-baffled Erlenmeyer flasks. Culture CPS concentration (µg/mL) and 

CFU/mL were measured at 20, 24 and 27 hours after inoculation. CPS 

concentration was significantly increased at 24 and 27 hours (p ≤0.001 and p 

≤0.0001 respectively) when compared to non-baffled flasks (Figure 26A). This 

was a result of a significant increase in both CFU/mL and the amount of CPS 

per CFU produced (Figure 26B and C).  
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Figure 26 Effect of baffled Erlenmeyer flasks on B. thailandensis E555 :: wbiI (Km

r
) 

growth and CPS expression inoculated into enhanced phytone peptone broth. An aliquot 

of a B. thailandensis E555 :: wbiI (Km
r
) starter culture was inoculated into baffled and non-

baffled Erlenmeyer flasks containing enhanced phytone peptone broth and culture samples 

analysed at 20, 24 and 27 hours after inoculation for CPS expression (A), CFU/mL (B), and 

CPS per CFU (C) Each value represents the mean +SD of three independent experiments. * p 

≤0.05, *** p ≤0.001, **** p ≤0.0001 (two-way RM ANOVA) 

 

 

B. pseudomallei growth is significantly enhanced by increasing iron 

concentration (Wang-Ngarm et al., 2014). The addition of 50 µM, 0.5 mM and 5 

mM iron sulfate to enhanced phytone peptone broth (Chapter 2, Method 2.7.5) 

did not significantly increase CPS culture concentration (p=0.3066, Figure 27A). 

However, a significant increase in colony forming units (CFU/mL) was seen with 

5 mM iron sulfate at 24 and 27 hours (p=≤0.05, Figure 27B). There was a 

corresponding decrease in the amount of CPS per CFU with 5 mM at iron 

sulfate at 24 and 27 hours, but this was not statistically significant (p=0.0762, 

Figure 27C). 
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Figure 27 Effect of iron sulfate on B. thailandensis E555 :: wbiI (Km
r
) growth and CPS 

expression. An aliquot of a B. thailandensis E555 :: wbiI (Km
r
) starter culture was inoculated 

into enhanced phytone peptone broth with 50 µM, 0.5 mM or 5 mM FeSO4 and culture samples 

analysed at 20, 24 and 27 hours after inoculation for CPS expression (A), CFU/mL (B), and 

CPS per CFU (C). Each value represents the mean +SD of three independent experiments. * 

p≤0.05 (two-way RM ANOVA).  

 

 

Other procedures assessed for effect on CPS culture concentration included 

decreasing the volume of culture media in the 250 mL flask from 50 mL to 25 

mL in order to further improve aeration (Chapter 2, Method 2.7.6) and the 

addition of 2.5 g/L mannose to the culture media to act as an additional carbon 

source (Chapter 2, Method 2.7.7). Reducing the volume of media did not result 

in a significant increase in CPS culture concentration, CFU/mL and 

subsequently CPS per CFU; (Figure 28A, B and C). 

 

The addition of mannose to LB media appeared to slightly decrease the amount 

of culture CPS concentration but statistically significance was not achieved 
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(Figure 29A). No statistically significant effects were seen on CFU/mL or CPS 

per CFU (Figure 29B and C). 

 

 

Figure 28 Effect of reducing culture volume on B. thailandensis E555 :: wbiI (Km
r
) growth 

and CPS expression An aliquot of a B. thailandensis E555 :: wbiI (Km
r
) starter culture was 

inoculated into 25 or 50 mL of LB microbiological media in a 250 mL baffled Erlenmeyer flask 

and culture samples analysed at 20, 24 and 27 hours after inoculation for CPS expression (A), 

CFU/mL (B), and CPS per CFU (C). Each value represents the mean +SD of three independent 

experiments.  
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Figure 29 Effect of mannose on B. thailandensis E555 :: wbiI (Km
r
) growth and CPS 

expression. An aliquot of a B. thailandensis E555 :: wbiI (Km
r
) starter culture was inoculated 

into LB microbiological media with and without 2.5 g/L mannose and culture samples analysed 

at 20, 24 and 27 hours after inoculation for CPS expression (A), CFU/mL (B), and CPS per CFU 

(C). Each value represents the mean +SD of three independent experiments. 

 

With the assessment of incubation time following inoculation, the use of starter 

cultures, different microbiological growth media, the use of baffled flasks, 

altering culture volume and the addition of iron sulfate, the optimisation of CPS 

culture concentration was completed. An increase in CPS concentration (as 

determined by ELISA of whole culture samples) was achieved by inoculating 

enhanced phytone peptone broth with a B. thailandensis E555 :: wbiI (Kmr) 

starter culture, and culturing for 24-27 hours in baffled flasks (Figure 30).  
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Figure 30 Increase in B. thailandensis E555 :: wbiI (Km
r
) CPS expression from the use of 

starter cultures, enhanced phytone peptone broth, baffled flasks, and a 27 hour 

incubation period. Each value represents the mean +SD of three independent experiments. 

**** p≤0.0001 (two-way ANOVA) 

 

To determine yield and purity of CPS with optimised conditions, 5 mL of 

B. thailandensis E555 :: wbiI (Kmr) starter culture was inoculated into 2 L of 

enhanced phytone peptone broth, within baffled flasks, and incubated for 27 

hours at 37oC, shaking at 180 rpm using the phenol extraction method. 

Approximately 2 mg of CPS was obtained but purity was decreased according 

to NMR analysis (Figure 31). As enhanced phytone peptone broth is a rich, 

complex media, additional purification steps may be required in order to 

improve purity. 
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Figure 31 Stacked NMR spectra for CPS obtained from B. thailandensis E555 :: wbiI (Km
r
) 

cultured in enhanced phytone peptone media (Top) and B. thailandensis  E555 :: wbiI 

(Km
r
) cultured in LB media (Bottom).  

 

Although results from the optimisation work determined low culture CPS 

concentration with M9 minimal media, a highly pure product may be obtained as 

this media is simple and defined. CPS was extracted from 2 L of 

B. thailandensis E555 :: wbiI (Kmr) cultured in M9 minimal media but the 

resultant sample was insufficient for NMR analysis (<1 mg) indicating that 

regardless of purity, CPS yield is simply insufficient with this media. 

 

3.5 CPS expression optimisation – extraction 

 

In order to optimise the modified hot-phenol based CPS extraction procedure, 

CPS concentration was measured in B. thailandensis E555 :: wbiI (Kmr) LB 

culture supernatant and pellet fractions to determine the amount of CPS 

released from the bacterial cell wall (Chapter 2, Method 2.8.1). CPS culture 

concentration was assessed in the supernatant and pellet fractions of a 

B. thailandensis E555 :: wbiI (Kmr) culture 27 hours after inoculation  with a 

starter culture. The CPS concentrations are similar in the pellet and supernatant 

(Figure 32). This indicates that following a 2 L B. thailandensis E555 :: wbiI 

(Kmr) culture, the supernatant fraction could be utilised with the potential to 

increase CPS yield. This could possibly alter the extraction process allowing the 

removal/reduction of phenol (the function of which is to dissolve proteins in the 

cellular membrane and free the CPS anchored to the cellular membrane for 

partition in the phenol phase). However, until extraction procedures have been 
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carried out on the supernatant and the purity of the CPS determined the utility of 

this approach is unproven.  

 

 

Figure 32 CPS concentration of B. thailandensis E555 :: wbiI (Km
r
) culture, supernatant 

and pellet fractions. An aliquot of a B. thailandensis E555 :: wbiI (Km
r
) starter culture was 

inoculated into LB microbiological media and incubated for 27 hours followed by ELISA analysis 

of culture, supernatant and pellet fractions. Each value represents the mean +SD of three 

independent experiments. 

 

It is not possible to determine B. thailandensis E555 :: wbiI (Kmr) culture CPS 

concentrations by ELISA on the same day after incubating the culture for up to 

27 hours after inoculation. Cultures were frozen overnight at -20oC for analysis 

the following day. To determine the effect on culture CPS concentration, 

triplicate samples of culture, supernatant and pellet fractions were frozen and 

then analysed in comparison to live cultures and culture fractions (Chapter 2, 

Method 2.8.2). The results indicated that freezing overnight does not 

significantly affect CPS concentration (Figure 33).  
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Figure 33 CPS concentration of B. thailandensis E555 :: wbiI (Km
r
) culture, supernatant 

and pellet fractions following overnight storage at -20
o
C. An aliquot of a B. thailandensis 

E555 :: wbiI (Km
r
) starter culture was inoculated into LB microbiological media and incubated for 

27 hours. CPS concentration was determined for fresh culture, supernatant and pellet fractions 

and samples of the same fractions frozen overnight at -20
o
C and analysed by ELISA the 

following day. Each value represents the mean +SD of three independent experiments. NS, 

p>0.05 (2-way ANOVA) 

 

3.6 Burkholderia CPS immunogenic epitope 

 

Work by Marchetti et al. (2015) showed that the acetyl group of the CPS 

molecule is involved in binding to an anti-CPS monoclonal antibody. To expand 

this work, the binding of four Dstl monoclonal antibodies to CPS and 

deacetylated CPS was investigated.  

 

3.6.1 Antibody recognition to deacetylated CPS 

 

An alternative to native Burkholderia CPS as part of a conjugate vaccine is the 

use of synthetic CPS. The synthesis of CPS is made difficult by the presence of 

the acetyl groups. The synthesis of deacetylated CPS is less complicated, but 

the immunogenicity of the resulting structure is unknown. Deacetylated CPS, 

provided by Prof. Rob Field, was utilised in the CPS ELISA in comparison with 

native CPS from B. pseudomallei 1026b (Chapter 2, Method 2.9.1). No 

recognition by DSTL189 was observed (Figure 34). Dstl have another three 
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anti-CPS monoclonals; DSTL187, DSTL188 and DSTL190, so an ELISA using 

these antibodies was performed with deacetylated CPS bound to the plate 

(Chapter 2, Method 2.9.2). None of these antibodies recognised the 

deacetylated CPS either (Figure 35).  

 

 

Figure 34 Lack of DSTL189 antibody recognition to deacetylated CPS. Purified 

B. pseudomallei 1026b CPS (Bps CPS) and deacetylated B. thailandensis E555 :: wbiI (Km
r
) 

(Deacetylated Bt CPS) were diluted 1:2 from 10 µg/mL and probed with DSTL189. p=0.0002 

two-tailed paired t-test. Each value represents the mean +SD of two independent experiments  
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Figure 35 Detection of acetylated and deacetylated B. thailandensis E555 :: wbiI (Km
r
) 

CPS with four anti-CPS monoclonal antibodies. Purified B. thailandensis E555 :: wbiI (Km
r
) 

CPS (at 10 µg/mL) and deacetylated CPS (at 10, 5, 2.5 and 1.25 µg/mL)  was bound to an 

ELISA plate and probed with four anti-CPS monoclonal antibodies (DSTL187,188,189,and 190). 

(NS, p >0.05, 2 way ANOVA). Each value represents the mean +SD of two independent 

experiments  

 

3.6.2 Comparison of CPS antibody sequences 

 

No Dstl anti-CPS monoclonal antibody recognised de-acetylated CPS. As CPS 

recognition was not significantly different between them, the variable regions of 

the light and heavy chain of each antibody was sequenced (Chapter 2, Method 

2.9.3). In brief, RNA from four clones of each antibody cell line was sequenced 

and the consensus sequence detailed below. As sequence can differ between 

hybridomas, four clones were sequenced for each antibody cell line.  

 

The antibody nucleotide sequences were translated into amino acid sequences 

by ExPASy (http://web.expasy.org/translate/) and the amino acid sequences are 

shown in Figure 36. Highlighted framework (FR) and complementarity 

http://web.expasy.org/translate/
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determining regions (CDR) were obtained by NCBI blast search 

(https://www.ncbi.nlm.nih.gov/igblast/). 

 

An immunoglobulin blast search (https://www.ncbi.nlm.nih.gov/igblast/) of the 

antibody sequences showed each antibody to have a high degree of homology 

to the germline sequence of IgHV6-6*01 (DSTL189; 95 %, DSTL187; 95 %, 

DSTL188; 93 %, DSTL190; 96 %) and IGKV8-28*01 (DSTL189; 93 %, 

DSTL187; 93 %, DSTL188; 93 %, DSTL190 91 %). 

             10        20        30        40        50        60 

                   |         |         |         |         |         | 

DSTL189   MADYKDIVMTQSPSSLSVSAGEKVTMTCKSSQSLLNSVNQKNYLAWYQQRPGQPPKLLIY 

DSTL187   MADYKDIVMTQSPSSLSVSAGEKVTMTCKSSQSLLNSVNQKNYLAWYQQRPGQPPKLLIY 

DSTL188   MADYKDIVMTQSPSSLSVSAGEKVTMTCKSSQSLLNSVNQKNYLAWYQQRPGQPPKLLIY 

DSTL190   MADYKDIVMTQSPSSLSVSAGEKVTMSCKSSQSLFNSENQKNYLAWYQQKPGQPPKLLIY 

          ----------VLFR1-------------¦------VLCDR1---¦---VLFR2------¦ 

 

              70        80        90       100       110       120 

                   |         |         |         |         |         | 

DSTL189   GASTRASGVPDRFTGSGSGTDFTLTVSSVQAEDLAVYYCQNAHTYPLTFGAGTKLELKRG 

DSTL187   GASTRASGVPDRFTGSGSGTDFTLTVSSVQAEDLAVYYCQNAHTYPLTFGAGTKLELKRG 

DSTL188   GASTRASGVPDRFTGSGSGTDFTLTVSSVQAEDLAVYYCQNAHTYPLTFGAGTKLEIKRG 

DSTL190   GASTRFSGVPDRFTGSGSGTDFTLAISNIQTEDLAVYYCQNAHSFPLTFGAGTKLEIKRG 

          VLCDR2¦-------------VLFR3--------------¦-VLCDR3¦---VLFR4---¦ 

 

 

      

             130       140       150       160       170       180 

                   |         |         |         |         |         | 

DSTL189   GGGSGGGGSGGGGSGGGGSGGGGSEVKVEESGGGLVQPGGSMKLSCAASGFTFSDAWMDW 

DSTL187   GGGSGGGGSGGGGSGGGGSGGGGSEVKVEESGGGLVQPGGSMKLSCAASGFTFSDAWMDW 

DSTL188   GGGSGGGGSGGGGSGGGGSGGGGSEVMVVESGGGLVQPGGSMKLSCAASGFTFSDAWMDW 

DSTL190   GGGSGGGGSGGGGSGGGGSGGGGSEVKVVESGGGLVQPGGSMKVSCAASGFTFSDAWMDW 

          ¦---------LINKER--------¦-----------VHFR1------------¦VHCDR1 

 

 

             190       200       210       220       230       240 

                   |         |         |         |         |         | 

DSTL189   VRQSPEKGLEWVAEIRSKANNHAIFYAESVKGRFTISRDDSKSSVSLQMNSLRAEDTGIY 

DSTL187   VRQSPEKGLEWVAEIRSKANNHAIFYAESVKGRFTISRDDSKSSVSLQMNSLRAEDTGIY 

DSTL188   VRQSPEKGLEWVAEIRSKANNHAIFYAESVKGRFTISRDDSKSSVSLQMNSLRAEDTGIY 

DSTL190   VRQSPEKGLEWVAEIRNKANNHATYYAESVKGRFTISRDDSRSSVYLQMNSLRAEDTGIY 

          ---VHFR2----¦-----VHCDR2-------¦----------VHFR3------------- 

 

                 250       260 

                      |         | 

DSTL189      YCTRGGWAFDYWGQGTTLTVSSA 

DSTL187      YCTRGGWAFDYWGQGTTLTVSSA 

DSTL188      YCTRGGWAFDYWGQGTTLTVSSA 

DSTL190      YCTRGGWGFDYWGQGTTLTVSSA 

                         ---¦VHCDR3¦--VHFR4----- 

Figure 36 Amino acid sequence of variable light (VL) and heavy (VH) chain framework 

regions (FR1-4) and complementarity determining regions (CDR1-3) of four Dstl anti-CPS 

antibodies (DSTL189, DSTL187, DSTL188 and DSTL190). Amino acid differences between 

the antibodies are highlighted in green. For clarity, CDRs are highlighted in yellow 

https://www.ncbi.nlm.nih.gov/igblast/
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In the top 5 results of an NCBI blast search of the DSTL189 light chain was a 

murine antibody to pneumococcal C-polysaccharide backbone with 94 % 

sequence identity and identity of the CDR regions alone was 88 % (Accession 

number CAQ76891). A blast search of the pneumococcal antibody showed it to 

be 100 % homologous to the germline sequence of IGKV8-28*01. 

 

Interestingly, within the NCBI blast search results was an anti-Francisella 

tularensis O-antigen antibody (Accession number 4OTX_L) with 89 % full 

sequence identity to DSTL189 and CDR region homology of 79 %. A BLAST 

search of the F. tularensis antibody showed it to be 100 % homologous to the 

germline sequence of IGKV8-19*01 and 95 % homologous to IGKV8-28*01. 

Sequence comparison for both of these antibodies to DSTL189 is shown in 

Figure 37. 

 

                         10        20        30        40        50        60 

                   |         |         |         |         |         | 

DSTL189   DIVMTQSPSSLSVSAGEKVTMTCKSSQSLLNSVNQKNYLAWYQQRPGQPPKLLIYGASTR 

CAQ76891  DIVMTQSPSSLSVSAGEKVTMSCKSSQSLLNSGNQKNYLAWYQQKPGQPPKLLIYGASTR 

4OTX_L    QIVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQPPKLLIYWASTR 

          ---------VLFR1--------¦------VLCDR1----¦----VLFR2-----VLCDR2 

                     70        80        90       100       110 

                      |         |         |         |         | 

DSTL189      ASGVPDRFTGSGSGTDFTLTVSSVQAEDLAVYYCQNAHTYPLTFGAGTKLELKR 

CAQ76891     ESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDHSYPLTFGAGTKLELK- 

4OTX_L       ESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDYSYPLTFGAGTKLELKR 

             -¦-------------FR3---------------¦-VLCDR3-¦----FR4---- 

 

Figure 37 Amino acid sequence of variable light (VL) chain framework regions (VLFR1-4) 

and complementarity determining regions (VLCDR1-3) of DSTL189; Dstl’s anti-CPS 

antibody, an anti-pneumococcal C-polysaccharide backbone antibody (CAQ76891) and 

an anti-F. tularensis O-antigen antibody (4OTX_L). Amino acid differences between the 

antibodies are highlighted in green. For clarity, CDRs are highlighted in yellow 

 

In the top 5 results of an NCBI blast search of the DSTL189 heavy chain was an 

anti-B. pseudomallei single-chain variable fragment (scFV) antibody with 89 % 

full sequence homology (Accession number ACZ65030.1) and CDR region 

homology of 81 %. A blast search of the Burkholderia antibody showed it to be 

96 % homologous to the germline sequence of IGHV6-6*01. There was also an 

entry within the first 10 hits for an antibody to Shigella flexneri Y 

lipopolysaccharide with 86 % homology to DSTL189 (Accession number 1M71 
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B). A blast search of the S. flexneri antibody showed it to be 98 % homologous 

to the germline sequence of IgHV6-6*02.  Interestingly, DSTL189 has also 88 % 

sequence homology to IgHV6-6*02. Sequence comparison for both of these 

antibodies to DSTL189 is shown in Figure 38.  

 

                    10        20        30        40        50        60 

                   |         |         |         |         |         | 

DSTL189   EVKVEESGGGLVQPGGSMKLSCAASGFTFSDAWMDWVRQSPEKGLEWVAEIRSKANNHAI 

ACZ650301 QVKLQQSGGGLVQPGGSMKLSCAASGFTFSDAWMDWVRQSPEKGLEWVAEIRDKANNHAT 

1M71B     EVKVEESGGGLVQPGGSMKLSCVASGFTFSNYWMEWVRQSPEKGLEWVAEIRLKSNNYAT 

          ------------VHFR1------------¦VHCDR1¦---VHFR2---¦---VHCDR2-- 

              70        80        90       100       110       120 

                   |         |         |         |         |         | 

DSTL189   FYAESVKGRFTISRDDSKSSVSLQMNSLRAEDTGIYYCTRGG--WAFDYWGQGTTLTV-- 

ACZ650301 YYAESVKGRFTISRDDSKSSVYLQMNSLRAEDTGIYYCTRAG--GAMDYWGQGTTVTV-- 

1M71B     HYAESVKGRFTISRDDSKSSVYLQMNNLRAEDTGIYYCTRGGAVGAMDYW---------- 

          -------¦-------------VHFR3-------------¦-VHCDR3-¦---VHFR4--- 

 

Figure 38 Amino acid sequence of variable heavy (VH) chain framework regions (VHFR1-

4) and complementarity determining regions (VHCDR1-3) of DSTL189; Dstl’s anti-CPS 

antibody, an anti-B. pseudomallei antibody (ACZ650301) and anti-S. flexneri LPS 

antibody (1M71B). Amino acid differences between the antibodies are highlighted in green. For 

clarity, CDRs are highlighted in yellow 

 

3.7 Importance of the CPS acetyl group 

 

An animal study performed separately to this work by a Dstl colleague (Andy 

Scott) showed that deacetylated CPS conjugated to a carrier protein (TetHc) 

was significantly less efficacious in vaccinated mice to B. pseudomallei 

challenge than a conjugate with acetylated CPS (Figure 39). Analysis of the 

CPS specific IgG and IgM titres from mouse sera following the third vaccination 

showed an IgG and IgM response in mice vaccinated with TetHc-CPS (Chapter 

2, Method 2.10.1). There was no CPS-specific antibody response in mice 

vaccinated with deacetylated CPS conjugated to TetHc. Analysis of the 

deacetylated CPS specific antibody response showed a very low IgG titre in 

CPS-TetHc vaccinated mice and low titre in deacetylated CPS vaccinated mice. 

Interestingly, there was no IgM antibody to deacetylated CPS in deAcCPS 

vaccinated mice (Figure 40). In conjunction with the antibody binding data, this 

suggests that the acetyl group is crucial in the formation of the CPS 

immunogenic epitope.  
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Figure 39 Survival of BALB/c mice vaccinated with CPS-TetHc (acetylated and non-

acetylated CPS), TetHc and alum followed by challenge with 1.17 x 10
5
 CFU via the IP 

route of B. pseudomallei K96243 (approximately 157 x median lethal doses (MLDs). Mice 

were vaccinated three times in two-week intervals prior to challenge. Vaccination with 

acetylated CPS conjugate offered significantly greater protection than the deacetylated CPS 

conjugate (p=0.0015 Log-Rank (Mantel Cox test)). The deacetylated CPS-TetHc conjugate did 

not offer any significantly greater protection than adjuvant or TetHc alone (p=0.1694 and 

p=0.0872 respectively Log-Rank (Mantel Cox test)). Data provided by Andy Scott, Dstl. 

Figure 40 ELISA analysis of acetylated and deacetylated CPS-specific IgG and IgM 

immune responses following vaccination with CPS conjugate vaccines. Mice were 

vaccinated with acetylated CPS-TetHc or deacetylated CPS-TetHc three times at 2-week 

intervals. Serum was obtained from mice 14 days after the third vaccination, and titres of IgG 

and IgM specific for CPS or deacetylated CPS were determined by ELISA. Individual symbols 

represent a single immunised mouse. Significance was determined by unpaired t-test. LOD, 

limit of detection.  
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3.8 Discussion 

 

Burkholderia capsular polysaccharide (CPS) is one of the main surface-

associated antigens of B. pseudomallei and B. mallei (Tuanyok et al., 2012). It 

is a known virulence determinant as B. pseudomallei mutants lacking CPS 

demonstrate a 105-fold increase in the median lethal dose (MLD) in an animal 

model (Atkins et al., 2002). CPS has also been demonstrated to be a protective 

antigen in animal models against B. pseudomallei challenge (Nelson et al., 

2004) and is therefore a good candidate for vaccine development.   

 

B. pseudomallei and B. mallei are categorised as Hazard Group 3 organisms by 

the Advisory Committee on Dangerous Pathogens (ACDP). This means that 

these agents must be handled in Containment Level 3 laboratories which are 

specialised facilities with enhanced containment measures. These include 

maintenance of the workplace at negative air pressure to the environment and 

high efficiency particulate absorption (HEPA) filtration on extract air. Material 

must also be handled in a safety cabinet or isolator which is burdensome and 

time-consuming (ACDP guidance - The management, design and operation of 

microbiological containment laboratories 2001). Local procedures can also be in 

place to restrict the volume of agent that can be cultured or techniques that may 

increase risk of aerosol generation such as freeze-drying. This means that the 

use of B. pseudomallei or B. mallei for extraction of CPS is expensive and time-

consuming. Whilst this project was funded by DTRA to develop a vaccine for 

use in a defence setting, cost is an important factor in the development of any 

product. With the use of a carrier protein as well, this may make a CPS 

conjugate vaccine prohibitively expensive in a public health setting given the 

relative wealth of countries endemic for melioidosis (Choh et al., 2013).  

 

The aim of these experiments was to reduce the cost of vaccine production with 

several objectives. The first was to further the work of Sim et al. 2010 where 

B. thailandensis E555 was found to cross-react with a monoclonal antibody 

raised against B. pseudomallei CPS. In this study, CPS was extracted from 

B. thailandensis E555 and comparative NMR analysis with CPS extracted from 

B. pseudomallei 1026b determined the structure of these molecules to be the 

same. Recognition of these two CPS molecules with a monoclonal antibody that 
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recognises B. pseudomallei CPS (DSTL189) was not significantly different 

which also suggests a similar secondary structure. These results indicate that 

B. thailandensis E555 could replace B. pseudomallei for the extraction of CPS. 

B. thailandensis is considered essentially avirulent and can be handled at lower 

levels of containment than B. pseudomallei. This significantly reduces costs for 

the production of CPS. In the US, a derivative of the select-agent excluded 

B. pseudomallei strain Bp82, for use at containment level 2, can be used in 

CPS production (Burtnick et al., 2012) but, as with any mutant, there exists a 

small chance of reversion to wild-type. The use of a naturally avirulent strain of 

Burkholderia may also make licensing of a potential vaccine easier. 

 

Extraction and purification of CPS was only achieved with the modified hot-

phenol extraction method first reported by Perry et al. (1995), and further 

developed by Assoc. Prof. Brett at the University of South Alabama. The 

modified hot-phenol method required the addition of phenol to live bacterial 

cultures at a temperature of 80oC. This contrasts to the phenol method initially 

attempted, which used cultures heat-killed at 80oC for 4 hours and the use of 

phenol at 60oC. It is considered that the extract obtained from this first phenol 

method and by ethanol precipitation does contain CPS, as demonstrated by 

anti-CPS antibody binding by George, 2013, but the purity is not sufficient to 

identify CPS by NMR.  

 

The yield of CPS obtained in this study from B. thailandensis E555 varied from 

0.25 to 9 mg per litre of culture and was lower than the 10-15 mg per litre yield 

recently reported (Burtnick et al., 2012). It is possible that operator inexperience 

or slight differences in execution of the procedure between laboratories was 

responsible. In the literature, CPS extraction is from B. pseudomallei so it is 

possible that yield differences may be a result of differences in CPS expression 

between the two species. 

 

Once the utility of B. thailandensis E555 for CPS extraction was established, the 

focus of this study shifted to maximising the amount of CPS in culture with the 

aim of increasing CPS yield following purification to again reduce cost. As CPS 

extraction takes approximately 5 weeks, a way to quickly assess changes in 

bacterial CPS concentration was required. Initial efforts therefore focussed on 
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development of a quantitative ELISA. The ELISA developed was acceptable for 

use with lower and upper limits of quantification defined at 25 and 0.39 ng/mL 

respectively. The ELISA could also determine CPS concentration of the final 

vaccine after conjugation to a carrier protein. This is an essential step in 

production of a conjugate vaccine (WHO TRS 924, 2004) and is currently 

performed by phenol-sulfuric acid assay (Masuko et al., 2005), a technique 

used for detection of carbohydrates. 

 

Following development of the ELISA to quantify changes in bacterial CPS 

culture concentration, efforts to increase CPS concentration focussed on 

improving B. thailandensis E555 growth with the hypothesis that increasing 

bacterial growth increases CPS expression. Assessment of increased culture 

aeration by the use of baffled flasks and providing more nutrients through the 

use of different microbiological growth media were performed first. Both were 

found to significantly increase culture CPS concentration as did the use of 

starter cultures to inoculate the larger volumes required (2 L) for CPS extraction 

and purification. A literature search for other relevant conditions to assess found 

that iron sulfate increased B. pseudomallei growth (Wang-Ngarm et al., 2014). 

Whilst this finding was replicated, the increase in CFU/mL did not significantly 

increase CPS concentration. An additional carbon source was also investigated 

as it is has been reported that different sugars modulate exopolysaccharide 

biosynthesis (Yuksekdag and Aslim 2008, Audy et al., 2010). In this study, 

mannose was added to LB media, but there were no significant differences in 

CPS concentration. Through the use of a starter culture, baffled flasks and 

enhanced phytone peptone broth, culture CPS concentration increased 8 fold 

over the use of non-baffled flasks without a starter culture with LB media. NMR 

analysis of CPS extracted from these enhanced conditions showed a decrease 

in purity over standard conditions. This may result from the use of enhanced 

phytone peptone broth and may require additional purification steps to be added 

to the extraction protocol. CPS yield with the enhanced conditions was low, but 

due to the variable yield experienced from multiple CPS extractions under 

standard conditions, the extraction following enhanced conditions would need to 

be repeated. Utilising standard media (LB) with a starter culture and baffled 

flasks also improved culture CPS concentration. 
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The aim of improving CPS yield also focussed on optimisation of the CPS 

extraction method. CPS concentration was measured in the supernatant and 

pellet fractions after centrifugation of a B. thailandensis E555 culture. CPS was 

measured in similar quantities in both fractions meaning that the supernatant 

could be utilised for CPS extraction. The current extraction method utilises only 

the pellet fraction of a B. thailandensis E555 culture and requires the addition of 

phenol to disrupt the cellular membrane to release the CPS and partition the 

CPS in the phenol phase. Utilisation of the supernatant as well as the pellet 

would improve CPS yield and utilisation of the supernatant only could reduce 

the amount of phenol required. Given the toxicity of phenol, the removal or 

reduction of phenol from the procedure would make waste disposal cheaper 

and easier. This may also make registration of the vaccine product easier as 

removal of reagents and by-products should be confirmed (WHO TRS 924, 

2004). Until extraction of CPS from supernatant is achieved and yield and purity 

assessed, however, the utility of supernatant for CPS production cannot be 

determined. 

 

The lack of anti-CPS antibody binding to deacetylated CPS suggests that the 

acetyl group forms part of the epitope recognised by these anti-CPS 

monoclonal antibodies and confirms the work by Marchetti et al. 2015. As 

monoclonal antibodies have been shown to provide protection against 

B. pseudomallei challenge following passive transfer (Jones et al., 2002), this 

suggested that the acetyl group is important for CPS immunogenicity. This work 

was furthered by demonstration that the protective efficacy of a deacetylated 

CPS conjugate vaccine is significantly lower than a native CPS conjugate to 

B. pseudomallei challenge. Together, these data suggest that CPS has a major 

immunodominant protective antigen and that the acetyl group is either part of 

the epitope or is involved in its formation. Given that acetyl groups are common 

across a wide range of molecules, it is likely that the epitope formed is 

conformational. This observation is also in agreement with several other 

polysaccharides such as Neisseria meningitidis serogroup A CPS (Berry et al., 

2002) and Salmonella typhi (Szu et al., 1991) where an acetyl group is essential 

for immunogenicity. Not all acetyl groups are essential for bacterial CPS 

immunogenicity, however. Examples include the N. meningitidis serogroup 

W135 polysaccharide (Gudlavalleti et al., 2007) and group C meningococcal 
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CPS, where for the latter the O-acetyl group masks the protective epitope 

(Fusco et al., 2007). The demonstration of the importance of the acetyl group on 

Burkholderia CPS immunogenicity is important for development of synthetic 

CPS as it confirms that the acetyl group must be present. This is important as 

production of the acetylated molecule is more technically demanding and 

expensive. This conclusion is also supported by analysis of the antibody titres of 

mice vaccinated with deacetylated CPS, which do not raise antibodies that 

recognise native CPS. Interestingly, IgG antibody titres were significantly higher 

to CPS, in CPS conjugate vaccinated mice, than IgG titres to deacetylated CPS 

in mice vaccinated with a deacetylated CPS conjugate. The reduced IgG titres 

and lack of IgM antibody generated to deacetylated CPS suggests that 

deacetylated CPS is significantly less immunogenic than native CPS. While the 

strict requirement for the acetyl group increases the complexity of synthesising 

CPS, its use may still be advantageous because as indicated by the World 

Health Organization (WHO Technical Report Series 784, 1989) the use of 

synthetic antigens means that no infectious material is present and quality 

control would be easier as the product would be precisely defined and may be 

cheaper to produce. 

 

The importance of the acetyl group on immunogenicity is also important for the 

development of a native CPS conjugate vaccine. The production of shorter CPS 

chains may be essential for vaccine development as it has been reported that 

long chains of polysaccharide can affect conjugate vaccine efficacy (Carmenate 

et al., 2004, Rana et al., 2015). Furthermore, the use of native chain lengths 

may mean separation of conjugated CPS from unconjugated CPS is difficult, 

which again affects vaccine efficacy (Rodriguez et al., 1998). A method to 

generate shorter chains lengths of CPS, in use for Streptococcus pneumoniae 

polysaccharide 6B (Perciani et al., 2013) and N. meningitidis serogroup X 

polysaccharide (Micoli et al., 2013), is acid hydrolysis. However, due to the 

acid-labile nature of CPS, hydrolysis may lead to a degree of deacetylation and 

therefore a loss of immunogenicity. 

 

The high sequence homology of the anti-CPS monoclonal antibodies is 

interesting because it also suggests that the CPS epitope is highly restricted. 

Further work to determine the influence of amino acid differences between the 
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antibodies on binding affinity to CPS could be performed by competitive ELISA 

or surface plasmon resonance. The high sequence homology of the anti-CPS 

antibodies to germline sequences IGKV8-28*01 and IgHV6-6*01, which is also 

seen in antibodies that recognise C-pneumococcal polysaccharide backbone 

and Francisella tularensis O-antigen, suggests that antibodies raised against 

bacterial polysaccharides in mice are derived from a restricted set of germline 

sequences that do not undergo extensive maturation. This is already suggested 

for pneumococcal C-polysaccharide (Fernandez-Sanchez et al., 2009) and for 

light-chain antibody responses in humans to Hib CPS (Adderson et al., 1992). 
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Chapter 4: Immunogenic Burkholderia proteins 

 

4.1 Introduction 

 

A vaccine aims to induce immunity to a particular infection, typically by the 

generation of a protective-immune response to a vaccine component equal or 

improved to the immune response elicited from natural infection of the disease-

causing organism.  

 

Traditionally, the vaccine component that fulfilled this requirement was the use 

of live organism (as for smallpox), killed whole organism (as for plague) or 

protein and polysaccharide subunits (as for Hepatitis B) (Hussein et al., 2015). 

For melioidosis all of these approaches have been considered (Silva and Dow, 

2013, Choh et al., 2013), but recent vaccine approaches have focused on 

polysaccharide conjugated to a carrier protein (Scott et al., 2014, Garcia-

Quintanilla et al., 2014). 

 

It is hypothesised that both humoral and cellular protective immune responses 

are required for complete protection against B. pseudomallei (Healey et al., 

2005, Silva and Dow, 2013). The aim of this chapter was to identify 

immunogenic Burkholderia proteins that could be used in a vaccine with CPS in 

order to provide melioidosis relevant T-cell epitopes. The proteins were used in 

three ways; chemically conjugated to CPS to form a CPS-Burkholderia protein 

conjugate, co-mixed with a CPS-Virus-like particle conjugate or inserted into the 

Tandem CoreTM (VLP) construct for expression of the VLP molecule displaying 

the Burkholderia protein with the resultant molecule chemically conjugated to 

CPS. The protective efficacy of two of these constructs against bacterial 

challenge is detailed in Chapter 5; Immunogenicity and efficacy of candidate 

vaccines. Insertion of Burkholderia protein into major immunodominant region 1 

or 2 of the Tandem CoreTM construct hindered VLP assembly. Several of the 

proteins were membrane associated which may have hindered VLP assembly 

due to the presence of hydrophobic transmembrane regions, therefore a second 

objective of this chapter was to identify extracellular regions of each protein to 
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aid in the development of truncated proteins by our collaborator for insertion into 

the Tandem CoreTM construct. 

 

The final objective of this chapter was to identify immunogenic T-cell epitopes of 

Burkholderia proteins to distinguish key immunogenic regions to ensure that 

immunogenicity was not lost following the development of truncated proteins.  

T-cells recognize a complex formed between a major histocompatibility complex 

(MHC) molecule and a bound epitope (Sidney et al., 2008). There are two major 

types of MHC molecule; MHC-I which presents endogenous epitopes degraded 

by the proteasome and is important in the development of an immune response 

against intracellular bacteria and viruses and MHC-II which binds peptides 

generated by antigen proteolysis in endosomal/lysosomal compartments in 

antigen processing cells (APCs) for processing and presentation to CD4+        

T-helper cells (Roche and Cresswell, 2016). 

 

The binding groove of MHC-I molecules typically bind peptides of 9 amino acids 

whereas the more open groove of MHC-II molecules can bind between 11 to 30 

(Meydan et al., 2013). If immunogenic epitopes of protective antigens are 

identified, they can form the basis of a vaccine as demonstrated for the licensed 

Human Papillomavirus vaccine (Huber and Tantiwongkosi, 2014). The 

advantages of this approach would be a vaccine with an improved safety profile 

as unnecessary components would not be present with the potential to cause 

side-effects which may make licensure less difficult due to the highly pure and 

well characterized antigens. They would also be safe to use in 

immunosuppressed individuals and production of a single component may 

reduce cost. The disadvantage is that epitope based vaccines can have 

decreased immunogenicity because of the use of highly pure antigens (Vartak 

and Sucheck, 2016). 

 

In this study, epitopes bound by mouse MHC-I and MHC-II molecules were 

predicted as this was the animal model the candidate vaccines were tested in. 

This was carried out for the H2d (BALB/c) and H2b haplotypes (C57BL/6). Class 

I genes are K, D and L whilst class II are I-A and I-E. While this project only 

proposed the use of BALB/c mice, C57BL/6 mice are an established model of 

chronic melioidosis and were included for any potential future work. C57BL/6 
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mice do not have the Class I L and class II I-E genes. If peptide insertion into 

Tandem CoreTM improved vaccine efficacy, further  epitope predictions would 

have to be performed for human leukocyte antigen (HLA) class I and II 

molecules. HLA is extremely polymorphic comprising several thousand alleles 

(Hoof et al., 2009) but it has been reported that prediction of eight 

representatives of the 875 known HLA-DR alleles can cover the genetic 

background of most humans worldwide (Jawa et al., 2013). The computer 

programs used for transmembrane and epitope predictions, as well as a 

summary of their function, are detailed in the supplementary information below. 

 

4.2 Immunogenic Burkholderia protein selection 

 

Following a literature review, several Burkholderia proteins were identified that 

could be considered for use in a vaccine (Table 7). Selection criteria for 

identification of immunogenic Burkholderia proteins included evidence of 

protective immunity in an animal model or evidence of an immuno-stimulatory 

effect. Also considered was cellular location of the protein with preference given 

to those on the exterior of the cell so as to be readily available for immune 

system recognition. 

 

LolC (BPSL2277), PotF (BPSS0467) and OppA (BPSS2141) are 

B. pseudomallei proteins of ATP-binding cassette (ABC) systems which have 

roles in bacterial survival, virulence and pathogenicity. LolC is a membrane 

protein associated with the LolCDE ABC system, which is involved in lipoprotein 

sorting between the inner and outer membranes of Gram-negative bacteria. 

PotF is a periplasmic binding protein of the PotFGHI system, involved in 

putrescine import in E. coli and OppA, an oligopeptide-binding protein of the 

Opp system in E.coli (Harland et al., 2007b). All three proteins were chosen for 

inclusion on the basis of work by Harland et al. 2007a, which showed that the 

proteins are recognized by mouse T-cells primed with B. pseudomallei. The 

mice generate IgG2a (Th1 bias) antibody responses and protection in LolC and 

PotF vaccinated mice was significantly greater than controls to B. pseudomallei 

challenge at 54 x MLD. Tippayawat et al. (2009) demonstrated that recovered 

melioidosis patients had T-cell responses that recognized LolC, PotF and 

OppA. 
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The outer membrane protein Omp85 (BPSL2151) was chosen on the basis of 

work by Su et al. in 2010, following identification of the protein by the same 

group from a B. pseudomallei genomic expression library screened with 

melioidosis patient sera (Su et al., 2008). Mice immunized with Omp85 

generated high levels of Omp85 specific IgG titres and had significantly greater 

protection to B. pseudomallei challenge than controls. Omp85 is also highly 

conserved within B. pseudomallei strains and with other Burkholderia species 

(Su et al., 2010). 

 

Hcp2 (BPSS0518) and Hcp6 (BPSL3105) are surface-associated proteins from 

B. pseudomallei type VI secretions systems (T6SSs) which are hypothesized to 

inject effector proteins directly into the cytosol of eukaryotic and/or bacterial 

cells (Burtnick et al., 2011). Hcp2 and Hcp6 were included in this study on the 

basis of work by Burtnick et al. (2011) which showed them to be protective 

antigens in a mouse model against B. pseudomallei challenge. 

 

Protein  Comment  

LolC (BPSL2277) 

 

Protective antigen in animal model. Harland et al. 2007a.  

T-cell response in melioidosis patients. Tippayawat et al., 
2009 

PotF (BPSS0467) 

 

Protective antigen in animal model. Harland et al. 2007a.  

T-cell response in melioidosis patients. Tippayawat et al., 
2009 

OppA (BPSS2141)  T-cell response in animal model and melioidosis patients. 
Harland et al., 2007a, Tippayawat et al., 2009 

Omp85 (BPSL2151)  Protective antigen in animal model. Su et al. 2010  

Hcp2 (BPSS0518) Protective antigen in animal model. Burtnick et al. 2011  

Hcp6 (BPSL3105) Protective antigen in animal model. Burtnick et al. 2011 

 

Table 7 Identified Burkholderia proteins from the literature that could be used as 

antigens in a Burkholderia vaccine 
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4.3 Expression of Tandem CoreTM with peptide inserts 

 

Various constructs were prepared by Mologic with a number of Burkholderia 

peptide sequences inserted in one or both of the major immunodominant 

regions (MIR) of the tandem core constructs. Although Mologic demonstrated 

that green fluorescent protein (GFP) could be successfully inserted into the VLP 

(data not shown), Burkholderia proteins could not be inserted without disrupting 

assembly of the VLP. With LolC protein as an example, transmission electron 

microscopy (TEM) analysis by Mologic revealed that the tandem core 

containing the full-length LolC fusion construct had formed heterogeneous, 

irregularly shaped assemblies. Over time these misfolded VLPs tended to form 

aggregates and were therefore not suitable for conjugation to CPS (Figure 41). 

 

A summary of Mologic’s work expressing Tandem CoreTM with peptide inserts is 

detailed in supplementary data (4.5.1).  

 

 

Figure 41 Transmission Electron Microscopy (TEM) analysis of E. coli expressed Tandem 

Core
TM

 VLPs containing LolC fusion protein.  

 

Although insertion of peptide sequences disrupted VLP formation, to determine 

correct Burkholderia protein expression and folding, a VLP-LolC construct 

expressed from baculovirus was tested by ELISA (Chapter 2, Method 2.11.1) 

utilising sera from mice previously immunised by a Dstl colleague with a LolC 

expressing DNA vaccine. VLP was used as the negative control and purified 

LolC as the positive control. The results indicated a high degree of cross-

reactivity of mouse sera to the negative control (Figure 42). 
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Figure 42 Recognition of purified VLP and VLP-LolC antigen by ELISA with sera from 

mice immunised with adenovirus expressing LolC. A microtiter plate was coated with VLP 

and VLP-LolC from 0.2 to 30 µg/mL and probed with sera from mice taken 2 weeks following 

immunisation with adenovirus expressing LolC.  

 

The experiment was repeated, but with mouse sera from animals previously 

immunised by a Dstl colleague (A. Scott) with LolC expressed from E. coli. 

Cross-reactivity was seen to the negative control VLP, although at a reduced 

level compared to the previous experiment (Figure 43).  

 

 

Figure 43 Recognition of purified VLP and VLP-LolC antigen by ELISA with sera from 

mice immunised with LolC. A microtiter plate was coated with VLP and VLP-LolC from 0.2 to 

30 µg/mL and probed with sera from mice taken 2 weeks following immunisation with LolC. 
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The experiment was repeated a third time but with sera from mice previously 

immunised with endotoxin-free LolC expressed from E. coli. A small degree of 

cross-reactivity was seen to the VLP but strong recognition to the VLP-LolC 

construct was apparent thus confirming the correct folding of the LolC protein by 

this expression system (Figure 44).  

 

 

Figure 44 Recognition of purified VLP and VLP-LolC recognition by ELISA with sera from 

mice immunised with purified LolC. A microtiter plate was coated with VLP and VLP-LolC 

from 0.2 to 30 µg/mL and probed with sera from mice taken 2 weeks following immunisation 

with purified LolC.  

 

The cross-reactivity seen to VLP in all three experiments was considered to be 

a result of virion/host cell component contamination. Although insertion of full-

length protein sequences into Tandem CoreTM was no longer considered viable, 

the ELISA developed for this analysis could have been expanded for use with 

other expression systems.  

 

For LolC and OppA, hydrophilic transmembrane domains within the full protein 

sequence were considered responsible for hindering VLP assembly so 

truncated forms of the proteins were produced. For completeness, 

transmembrane helices predictions were performed with the TMHMM program 

(http://www.cbs.dtu.dk/services/TMHMM/) for all proteins and the predicted 

major extracellular portion of LolC was constructed into a fusion construct by 

Mologic.  

 

http://www.cbs.dtu.dk/services/TMHMM/
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The purpose of the addition of Burkholderia proteins to a CPS conjugate 

vaccine was to provide T-cell epitopes. To confirm the presence of T-cell 

epitopes within the truncated form of LolC and OppA, MHC-I and MHC-II 

epitope predictions were performed. Should the use of truncated proteins also 

be unsuccessful, a fusion construct of Tandem CoreTM and selected peptide 

epitopes could also be produced. If this work was to be taken forward, the MHC 

predictions are available for all selected Burkholderia proteins. 

 

For clarity of the process followed, the following membrane domain predictions 

and MHC predictions are shown for LolC only. Data for the remaining 

Burkholderia proteins is given in the supplementary information 4.5.2 and 4.5.3. 

 

4.3.1 Prediction of Burkholderia protein membrane spanning domains 

The output of TMHMM for LolC transmembrane helices prediction is given in 

Figure 45 and overlay of the domain predictions on the amino acid sequence is 

shown in Figure 46. The first 23 amino acids are located intracellularly, followed 

by a membrane spanning domain of 23 amino acids. Amino acids 47-273 were 

predicted to be extracellular but expression of this sequence as a fusion protein 

with Tandem CoreTM disrupted VLP assembly. TEM analysis by Mologic 

showed that the VLPs had formed heterogeneous, irregularly shaped 

assemblies as they had with full length LolC (EM data not shown). 

 

Figure 45 TMHMM calculated probabilities for transmembrane domains within the 

Burkholderia protein LolC [BPSL2277]. 
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LolC [BPSL2277] 

Inside membrane Membrane spanning domain Outside membrane 

MKLPYEWQIGWRYTRAGKRTTGNGFISFIALVSMLGIALGVAALIVVLSVMNGFQKEVRD 

RMLSVLAHVEIFSPTGSMPDWQLTAKEARLNRSVIGAAPYVDAQALLTRQDAVSGVMLRG 

VEPSLEPQVSDIGKDMKAGALTALAPGQFGIVLGNALAGNLGVGVGDKVTLVAPEGTITP 

AGMMPRLKQFTVVGIFESGHYEYDSTLAMIDIQDAQALFRLPAPTGVRLRLTDMQKAPQV 

ARELAHTLSGDLYIRDWTQQNKTWFSAVQIEKRMMFIILTLIIAVAAFNLVSSLVMTVTN 

KQADIAILRTLGAQPGSIMKIFVVQGVTIGFVGTATGVALGCLIAWSIPWLIPMIEHAFG 

VQFLPPSVYFISELPSELVAGDVIKIGVIAFALSALATLYPSWRGAKVRPAEALRYE 

 

Figure 46 Overlay of TMHMM transmembrane helices prediction onto the amino acid 

sequence of LolC. Illustrated are the amino acid sequences predicted to be inside the 

membrane, spanning the membrane and outside the membrane. The amino acid sequence of 

the major extracellular portion of the protein, highlighted in red was inserted into Tandem 

Core
TM

 as a fusion construct. 

 

4.3.2 In-silico Burkholderia protein MHC-I and MHC-II epitope predictions 

 

For all proteins, MHC-I predictions for H2-Kd, Dd, Ld and MHC-II predictions I-

Ad and I-Ed were performed. For clarity, the output for LolC only is shown 

below in Figure 48 to Figure 56. The output for all other Burkholderia proteins is 

given in the supplementary information section 4.5.3. H2-Kd MHC-I predictions 

can also be performed on the basis of decamer sequence size. This was carried 

out for each protein sequence (Figure 49). 

 

To increase confidence, sequences were generated from three different 

programs for each MHC region, with the exception of I-Ed as three different 

programs were not available. The top 10 highest scoring sequences generated 

by each program were taken for comparison to the other sequences predicted 

for that MHC gene. Sequences highlighted in red were predicted by all three 

programs and sequences highlighted in green were predicted by two of the 

three programs. These sequences were collated into a single shortlist for each 

region and then expanded to include the shortlists for each other region to give 

the total MHC-I or MHC-II predictive output (Figure 52 and Figure 56). An 

illustration of the procedure used to generate MHC-I predictions is shown in  

Figure 47, although this was the same procedure used for MHC-II predictions.  
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Figure 47 A flow diagram for generation of MHC-I epitope predictions. Three programs 

(P1-P3) were used to generate epitope predictions for H2-Kd, Dd and Ld with the 10 highest 

scoring sequences compared within each MHC-I region. Sequences that were predicted by at 

least two of the programs were collated into a shortlist. Each shortlist was then collated into the 

final MHC-I predicted epitope sequences 
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Figure 48 The top 10 highest scoring LolC protein H2-Kd (MHC-I) nonamer epitope 

predictions from Syfpeithi, Immuneepitope and Propred. Sequences highlighted in red are 

predicted by all three programs, sequences highlighted in green are predicted by two programs. 

Sequences highlighted red or green are tabulated to form a shortlist to merge with similar 

results from the other alleles.  

 

Syfpeithi Immuneepitope

H2-Kd H2-Kd

Start End Sequence NONAMER % of max score Start End Sequence NONAMER Percentile rank

99 107  PYVDAQALL 65.78% 27 35 SFIALVSML 0.1

330 338  GFVGTATGV 65.78% 124 132 SLEPQVSDI 1

27 35  SFIALVSML 60.52% 18 26 KRTTGNGFI 1.2

202 210  EYDSTLAMI 60.52% 43 51 ALIVVLSVM 1.7

321 329  IFVVQGVTI 57.89% 286 294 AAFNLVSSL 1.8

37 45  IALGVAALI 55.26% 149 157 FGIVLGNAL 1.9

200 208  HYEYDSTLA 52.63% 136 144 MKAGALTAL 2.2

376 384  SELVAGDVI 52.63% 332 340 VGTATGVAL 2.6

219 227  FRLPAPTGV 50% 303 311 ADIAILRTL 3.1

24 32  GFISFIALV 47.36% 388 396 VIAFALSAL 3.1

Propred

H2-Kd

Start End Sequence % of Highest on log scale

202 210 EYDSTLAMI 96.09

27 35 SFIALVSML 93.4

275 283 MFIILTLII 91.2

321 329 IFVVQGVTI 89

330 338 GFVGTATGV 76.68

24 32 GFISFIALV 74.48

99 107 PYVDAQALL 74.48

287 295 AFNLVSSLV 68.32

149 157 FGIVLGNAL 57.26

163 171 VGVGDKVTL 57.26

Start Common sequences Syfpeithi Immuneepitope Propred

27  SFIALVSML 60.52 0.1 93.4

330  GFVGTATGV 65.78 76.68

99  PYVDAQALL 65.78 - 74.48

202  EYDSTLAMI 60.52 - 96.09

321  IFVVQGVTI 57.89 - 89

24  GFISFIALV 47.36 - 74.48

149 FGIVLGNAL - 1.9 57.26

Score
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Figure 49 The top 10 highest scoring LolC protein H2-Kd (MHC-I) decamer epitope 

predictions from Syfpeithi, Immuneepitope and NetMHC3.2. Sequences highlighted in red 

are predicted by all three programs, sequences highlighted in green are predicted by two 

programs. Sequences highlighted red or green are tabulated to form a shortlist to merge with 

similar results from the other alleles.  

 

 

Syfpeithi Immuneepitope

H2-Kd H2-Kd

Start End Sequence DECAMER % of max score Start End Sequence DECAMER Percentile rank

362 371  QFLPPSVYFI Not given 99 108 PYVDAQALLT 0.6

369 378  YFISELPSEL Not given 399 408 LYPSWRGAKV 0.7

218 227  LFRLPAPTGV Not given 252 261 LYIRDWTQQN 1.4

399 408  LYPSWRGAKV Not given 368 377 VYFISELPSE 1.5

390 399  AFALSALATL Not given 62 71 MLSVLAHVEI 2

148 157  QFGIVLGNAL Not given 309 318 RTLGAQPGSI 2.1

273 282  RMMFIILTLI Not given 262 271 KTWFSAVQIE 2.2

309 318  RTLGAQPGSI Not given 169 178 VTLVAPEGTI 2.3

116 125  VMLRGVEPSL Not given 123 132 PSLEPQVSDI 3

135 144  DMKAGALTAL Not given 205 214 STLAMIDIQD 3.8

NetMHC 3.2

H2-Kd

Start End Sequence DECAMER affinity (nM)

85 94 KEARLNRSVI 583

319 328 KIFVVQGVTI 633

389 398 AFALSALATL 1456

368 377 YFISELPSEL 2143

272 281 RMMFIILTLI 4072

11 20 RYTRAGKRTT 4654

147 156 QFGIVLGNAL 5174

199 208 HYEYDSTLAM  5662

134 143 DMKAGALTAL 6834

38 47 LGVAALIVVL 7097

Start Common sequences Syfpeithi Immuneepitope NetMHC 3.2

369  YFISELPSEL 19 1.5 2143

399  LYPSWRGAKV 18 0.7 -

390  AFALSALATL 17 - 1456

148  QFGIVLGNAL 16 - 5174

273  RMMFIILTLI 16 - 4072

309  RTLGAQPGSI 16 2.1 -

135  DMKAGALTAL 1 - 6834

Score
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Figure 50 The top 10 highest scoring LolC protein H2-Dd (MHC-I) epitope predictions 

from NetMHC3.2, Immuneepitope and Propred. Sequences highlighted in red are predicted 

by all three programs, sequences highlighted in green are predicted by two programs. 

Sequences highlighted red or green are tabulated to form a shortlist to merge with similar 

results from the other alleles.  

 

 

NetMHC 3.2 Immuneepitope

H2-Dd H2-Dd

Start End Sequence affinity (nM) Start End Sequence Octamer Percentile rank

76 84 SMPDWQLTA 275 183 190 MMPRLKQF 0.2

398 406 LYPSWRGAK 3257 32 39 VSMLGIAL 0.3

120 128 VEPSLEPQV 3630 389 396 IAFALSAL 0.3

96 104 AAPYVDAQA 4275 274 281 MMFIILTL 0.7

313 321 QPGSIMKIF 5937 283 290 IAVAAFNL 0.8

363 371 LPPSVYFIS 6400 344 351 IAWSIPWL 0.8

181 189 GMMPRLKQF 8958 367 374 SVYFISEL 0.9

362 370 FLPPSVYFI 9040 41 48 VAALIVVL 1

331 339 VGTATGVAL 10081 363 370 FLPPSVYF 1

2 10 LPYEWQIGW 10918 347 354 SIPWLIPM 1.4

Propred

H2-Dd

Start End Sequence % of Highest on log scale

236 244 KAPQVAREL 31.6

149 157 FGIVLGNAL 29.89

153 161 LGNALAGNL 29.89

23 31 NGFISFIAL 28.17

332 340 VGTATGVAL 28.17

347 355 SIPWLIPMI 23.37

363 371 FLPPSVYFI 23.37

21 29 TGNGFISFI 21.66

75 83 TGSMPDWQL 21.66

313 321 AQPGSIMKI 21.66

Common sequences NetMHC 3.2 Immuneepitope Propred

363 LPPSVYFIS 6400 0.9 23.37

76 SMPDWQLTA 275 - 21.66

313 QPGSIMKIF 5937 - 21.66

181 GMMPRLKQF 8958 0.2 -

331 VGTATGVAL 10081 - 28.17

Score
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Figure 51 The top 10 highest scoring LolC protein H2-Ld (MHC-I) nonamer epitope 

predictions from Syfpeithi, Immuneepitope and Propred. Sequences highlighted in red are 

predicted by all three programs, sequences highlighted in green are predicted by two programs. 

Sequences highlighted red or green are tabulated to form a shortlist to merge with similar 

results from the other alleles.  

 

 

Syfpeithi Immuneepitope

H2-Ld H2-Ld

Start End Sequence % of max score Start End Sequence Percentile rank

221 229  LPAPTGVRL 80.64% 26 34 ISFIALVSM 0.95

145 153  APGQFGIVL 70.96% 179 187 TPAGMMPRL 1.1

223 231  APTGVRLRL 70.96% 282 290 IIAVAAFNL 1.35

98 106  APYVDAQAL 67.74% 98 106 APYVDAQAL 1.65

179 187  TPAGMMPRL 67.74% 145 153 APGQFGIVL 1.65

314 322  QPGSIMKIF 67.74% 364 372 LPPSVYFIS 1.65

63 71  LSVLAHVEI 58.06% 221 229 LPAPTGVRL 1.75

366 374  PSVYFISEL 58.06% 314 322 QPGSIMKIF 1.95

26 34  ISFIALVSM 54.83% 299 307 TNKQADIAI 2.1

346 354  WSIPWLIPM 54.83% 355 363 IEHAFGVQF 2.25

Propred

H2-Ld

Start End Sequence % of Highest on log scale

314 322 QPGSIMKIF 87.03

98 106 APYVDAQAL 76.45

145 153 APGQFGIVL 76.45

179 187 TPAGMMPRL 76.45

221 229 LPAPTGVRL 76.45

223 231 APTGVRLRL 76.45

3 11 LPYEWQIGW 62.47

73 81 SPTGSMPDW 62.47

400 408 YPSWRGAKV 62.47

237 245 APQVARELA 58.08

Start Common sequences Syfpeithi Immuneepitope Propred

221  LPAPTGVRL 25 1.75 76.45

145  APGQFGIVL 22 1.65 76.45

98  APYVDAQAL 21 1.65 76.45

179  TPAGMMPRL 21 1.1 76.45

314  QPGSIMKIF 21 1.95 87.03

366  PSVYFISEL 18 1.65 -

26  ISFIALVSM 17 0.95 -

Score



159 

 

 

Figure 52 Predicted LolC MHC-I epitopes collated from shortlists generated for each H2-d 

allele. Sequences highlighted in red are predicted by all three programs for each allele and 

sequences highlighted in green by two of the three programs 

 

The data from Figure 52 shows that LolC MHC-I epitopes for the BALB/c mouse 

are spread across the whole amino acid sequence. Sequences for multiple 

MHC-I alleles start at amino acid positions 24-35, 98-107, 145-157, 179-190, 

309-323, 330-340 and 363-377 and are highlighted on the amino acid sequence 

of LolC which also shows the transmembrane helices predictions (Figure 53). 

 

 

 

 

Start Sequence Region

24  GFISFIALV Kd

26  ISFIALVSM Ld

27  SFIALVSML Kd

76 SMPDWQLTA Dd

98  APYVDAQAL Ld

99  PYVDAQALL Kd

135  DMKAGALTAL Kd

145  APGQFGIVL Ld

148  QFGIVLGNAL Kd

149 FGIVLGNAL Kd

179  TPAGMMPRL Ld

181 GMMPRLKQF Dd

202  EYDSTLAMI Kd

221  LPAPTGVRL Ld

273  RMMFIILTLI Kd

286 AAFNLVSSL Kd

309  RTLGAQPGSI Kd

313 QPGSIMKIF Dd

314  QPGSIMKIF Ld

321  IFVVQGVTI Kd

330  GFVGTATGV Kd

331 VGTATGVAL Dd

363 LPPSVYFIS Dd

366  PSVYFISEL Ld

369  YFISELPSEL Kd

390  AFALSALATL Kd

399  LYPSWRGAKV Kd
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Inside membrane Membrane spanning domain Outside membrane 

MKLPYEWQIGWRYTRAGKRTTGNGFISFIALVSMLGIALGVAALIVVLSVMNGFQKEVRD 

RMLSVLAHVEIFSPTGSMPDWQLTAKEARLNRSVIGAAPYVDAQALLTRQDAVSGVMLRG 

VEPSLEPQVSDIGKDMKAGALTALAPGQFGIVLGNALAGNLGVGVGDKVTLVAPEGTITP 

AGMMPRLKQFTVVGIFESGHYEYDSTLAMIDIQDAQALFRLPAPTGVRLRLTDMQKAPQV 

ARELAHTLSGDLYIRDWTQQNKTWFSAVQIEKRMMFIILTLIIAVAAFNLVSSLVMTVTN 

KQADIAILRTLGAQPGSIMKIFVVQGVTIGFVGTATGVALGCLIAWSIPWLIPMIEHAFG 

VQFLPPSVYFISELPSELVAGDVIKIGVIAFALSALATLYPSWRGAKVRPAEALRYE 

 

Figure 53 LolC amino acid sequence highlighting transmembrane helices and MHC-I 

epitope predictions. Transmembrane helices predictions are highlighted in green, cyan or 

yellow and MHC-I epitope predictions in bold with underlined text for amino acid positions 24-

35, 98-107, 145-157, 179-190, 309-323, 330-340 and 363-377 

 

Figure 54 to Figure 56 show the LolC MHC-II epitope predictions 
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Figure 54 The top 10 highest scoring LolC protein H2 I-Ad (MHC-II) epitope predictions 

from Syfpeithi, Immuneepitope and NetMHCII. Sequences highlighted in green are predicted 

by two of the three programs and were tabulated to form a shortlist to merge with the shortlist 

for H2 I-Ed. 

 

Syfpeithi Immuneepitope

I-Ad I-Ad

Start End Sequence (15-mer) Score Start End Sequence (15-mer) Percentile rank

276 290  FIILTLIIAVAAFNL 30 204 218 DSTLAMIDIQDAQAL 0.2

77 91  SMPDWQLTAKEARLN 29 205 219 STLAMIDIQDAQALF 0.23

132 146  IGKDMKAGALTALAP 29 203 217 YDSTLAMIDIQDAQA 0.28

391 405  FALSALATLYPSWRG 28 202 216 EYDSTLAMIDIQDAQ 0.47

35 49  LGIALGVAALIVVLS 27 206 220 TLAMIDIQDAQALFR 0.53

38 52  ALGVAALIVVLSVMN 27 207 221 LAMIDIQDAQALFRL 0.53

95 109  IGAAPYVDAQALLTR 27 201 215 YEYDSTLAMIDIQDA 0.57

279 293  LTLIIAVAAFNLVSS 27 229 243 LRLTDMQKAPQVARE 0.75

400 414  YPSWRGAKVRPAEAL 27 228 242 RLRLTDMQKAPQVAR 0.87

24 38  GFISFIALVSMLGIA 26 227 241 VRLRLTDMQKAPQVA 0.98

NetMHCII

I-Ad

Start End Sequence (15-mer) % rank

133 147 GKDMKAGALTALAPG  0.3

132 146 IGKDMKAGALTALAP  0.3

131 145 DIGKDMKAGALTALA  0.3

130 144 SDIGKDMKAGALTAL  0.4

297 311 TVTNKQADIAILRTL  0.4

300 314 NKQADIAILRTLGAQ  0.6

299 313 TNKQADIAILRTLGA  0.6

298 312 VTNKQADIAILRTLG  0.6

226 240 GVRLRLTDMQKAPQV  0.6

227 241 VRLRLTDMQKAPQVA  0.7

Common sequences Syfpeithi Immuneepitope NetMHCII

132 IGKDMKAGALTALAP 29 - 0.3

229 LRLTDMQKAPQVARE - 0.75 0.3

228 RLRLTDMQKAPQVAR - 0.87 0.6

227 VRLRLTDMQKAPQVA - 0.98 0.7

Score
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Figure 55 The top 10 highest scoring LolC protein H2 I-Ed (MHC-II) epitope predictions 

from Syfpeithi and Immuneepitope. There is not another program available for I-Ed 

predictions. Sequences highlighted in red are predicted by both programs and were tabulated to 

form a shortlist to merge with the shortlist for H2 I-Ad. 

 

The common sequences predicted for the H2 I-Ad and H2 I-Ed regions are 

collated into a single table (Figure 56). The common sequences are located 

mainly in the region located intracellularly as highlighted on the amino acid 

sequence of LolC showing the transmembrane helices predictions (Figure 57). 

Syfpeithi Immuneepitope

I-Ed I-Ed

Start End Sequence (15-mer) Score Start End Sequence (15-mer) Percentile rank

262 276  KTWFSAVQIEKRMMF 28 5 19 YEWQIGWRYTRAGKR 10.04

8 22  QIGWRYTRAGKRTTG 26 7 21 WQIGWRYTRAGKRTT 10.53

2 16  KLPYEWQIGWRYTRA 20 6 20 EWQIGWRYTRAGKRT 10.72

397 411  ATLYPSWRGAKVRPA 20 8 22 QIGWRYTRAGKRTTG 11.42

4 18  PYEWQIGWRYTRAGK 18 4 18 PYEWQIGWRYTRAGK 13.22

51 65  MNGFQKEVRDRMLSV 18 396 410 LATLYPSWRGAKVRP 13.97

78 92  MPDWQLTAKEARLNR 18 395 409 ALATLYPSWRGAKVR 14.42

126 140  EPQVSDIGKDMKAGA 18 397 411 ATLYPSWRGAKVRPA 15.14

261 275  NKTWFSAVQIEKRMM 18 394 408 SALATLYPSWRGAKV 15.98

9 23  IGWRYTRAGKRTTGN 16 9 23 IGWRYTRAGKRTTGN 17.01

Common sequences Syfpeithi Immuneepitope

8  Q I G W R Y T R A G K R T T G 26 11.42

397  A T L Y P S W R G A K V R P A 20 15.14

4  P Y E W Q I G W R Y T R A G K 18 13.22

9  I G W R Y T R A G K R T T G N 16 17.01

Score
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Figure 56 MHC-II collated LolC sequences from both alleles of the H2-d region. 

Sequences highlighted in red are predicted by all three programs for each allele, with the 

exception of I-Ed, and sequences highlighted in green by two of the three programs 

 

Inside membrane Membrane spanning domain Outside membrane 

MKLPYEWQIGWRYTRAGKRTTGNGFISFIALVSMLGIALGVAALIVVLSVMNGFQKEVRD 

RMLSVLAHVEIFSPTGSMPDWQLTAKEARLNRSVIGAAPYVDAQALLTRQDAVSGVMLRG 

VEPSLEPQVSDIGKDMKAGALTALAPGQFGIVLGNALAGNLGVGVGDKVTLVAPEGTITP 

AGMMPRLKQFTVVGIFESGHYEYDSTLAMIDIQDAQALFRLPAPTGVRLRLTDMQKAPQV 

ARELAHTLSGDLYIRDWTQQNKTWFSAVQIEKRMMFIILTLIIAVAAFNLVSSLVMTVTN 

KQADIAILRTLGAQPGSIMKIFVVQGVTIGFVGTATGVALGCLIAWSIPWLIPMIEHAFG 

VQFLPPSVYFISELPSELVAGDVIKIGVIAFALSALATLYPSWRGAKVRPAEALRYE 

 

Figure 57 LolC amino acid sequence highlighting transmembrane helices and MHC-II 

epitope predictions. Transmembrane helices predictions are highlighted in green, cyan or 

yellow and MHC-II epitope predictions in bold with underlined text for amino acid positions 4-23, 

132-146, 227-243 and 397-411 

 

From the MHC predictions, the development of a truncated form of LolC (aa 47 

to 273 – the amino acid sequence for the large extracellular loop highlighted in 

yellow) would contain MHC-I epitopes for the Ld, Kd and Dd allele and the 

MHC-II epitopes for Ad as shown in Figure 58. 

 

 

 

 

 

 

 

 

Start Sequence Region

4  PYEWQIGWRYTRAGK Ed

8  QIGWRYTRAGKRTTG Ed

9  IGWRYTRAGKRTTGN Ed

132  IGKDMKAGALTALAP Ad

227 VRLRLTDMQKAPQVA Ad

228 RLRLTDMQKAPQVAR Ad

229 LRLTDMQKAPQVARE Ad

397  ATLYPSWRGAKVRPA Ed
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Inside membrane Membrane spanning domain Outside membrane 

MKLPYEWQIGWRYTRAGKRTTGNGFISFIALVSMLGIALGVAALIVVLSVMNGFQKEVRD 

RMLSVLAHVEIFSPTGSMPDWQLTAKEARLNRSVIGAAPYVDAQALLTRQDAVSGVMLRG 

VEPSLEPQVSDIGKDMKAGALTALAPGQFGIVLGNALAGNLGVGVGDKVTLVAPEGTITP 

AGMMPRLKQFTVVGIFESGHYEYDSTLAMIDIQDAQALFRLPAPTGVRLRLTDMQKAPQV 

ARELAHTLSGDLYIRDWTQQNKTWFSAVQIEKRMMFIILTLIIAVAAFNLVSSLVMTVTN 

KQADIAILRTLGAQPGSIMKIFVVQGVTIGFVGTATGVALGCLIAWSIPWLIPMIEHAFG 

VQFLPPSVYFISELPSELVAGDVIKIGVIAFALSALATLYPSWRGAKVRPAEALRYE 

 

Figure 58 LolC amino acid sequence highlighting transmembrane helices, MHC-I and 

MHC-II epitope predictions. Transmembrane helices predictions are highlighted in green, cyan 

or yellow. MHC-I epitope predictions are in bold with underlined text for amino acid positions 98-

107, 145-157 and 179-190 and the MHC-II epitope predictions in bold and underlined text for 

amino acid positions 132-146 and 227-243 

 

4.4 Discussion 

 

It is hypothesised that a fully efficacious vaccine for melioidosis will need to 

develop both humoral and cellular protective immune responses (Healey et al., 

2005, Silva and Dow, 2013). In this thesis, the protective antibody-generating 

antigen of the vaccine is CPS, which has already shown to be protective against 

B. pseudomallei challenge (Nelson et al., 2004). The objective of this chapter 

was to identify Burkholderia proteins which provide cellular immunity with 

melioidosis relevant T-cell epitopes. Selected proteins were mixed as co-

antigens in a CPS conjugate vaccine or expressed as fusion proteins on the 

surface of the Tandem CoreTM VLP. 

 

Burkholderia proteins were chosen on the basis that they were proven 

protective antigens against B. pseudomallei challenge or provided an immuno-

stimulatory effect (Harland et al., 2007a, Tippayawat et al., 2009, Su et al., 

2010, Burtnick et al., 2011). Preference was given to proteins located 

extracellularly as they would be amongst the first antigens recognised by cells 

of the immune system. The proteins chosen for inclusion in this thesis were 

LolC, PotF, OppA, Omp85, Hcp2 and Hcp6. 

 

Hepatitis B core antigen (HBcAg) is known to be assembly competent 

containing fusion peptides within the MIR spike up to approximately 100 amino 

acids (Pumpens and Grens, 2001) and fusion of two HBcAg open reading 
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frames to produce the HBcAg dimer as a single polypeptide chain (Tandem 

CoreTM) permits insertion of green fluorescent protein (GFP) with VLP assembly 

(Peyret et al., 2015). Unfortunately, the Burkholderia proteins selected in this 

thesis hindered VLP formation of the Tandem CoreTM fusion construct. The 

reason for this is not known but factors which affect VLP assembly of non-

Tandem CoreTM HBcAg fusion constructs include molecular size of the protein 

insert and unfavorable physicochemical characteristics such as hydrophobicity 

(Pumpens and Grens, 2001). Molecular weight is not the sole predictor of 

Tandem CoreTM VLP assembly as truncated LolC has an estimated molecular 

weight of 24.6 kDa in comparison to 26.9 kDa for GFP. The main factor is likely 

to be the differences in amino acid sequence and hydrophobicity. In addition, 

proximity of the insert N to C termini, which is unknown for these proteins, is 

instrumental for hepatitis B core assembly as juxtaposed termini fit within the 10 

A distance between the Asp-78 and Ser-81 insert acceptor sites within the core 

monomer and therefore maintains native VLP structure (Walker et al., 2008). 

This may explain the failure to insert Hcp2 and Hcp6 as the N and C termini for 

Acinetobacter baumannii Hcp are located on opposite sides of the subunit (Ruiz 

et al., 2015). Although Tandem CoreTM fusion constructs were not assembly 

competent, it was demonstrated in this thesis that full-length LolC was correctly 

expressed and so demonstrates the validity of this approach. Further work to 

identify compliant Burkholderia proteins would be beneficial. 

 

The assembly failure of Tandem CoreTM fused with full-length LolC or OppA 

was initially thought to result from high hydrophobicity due to the presence of 

transmembrane helices. Based on the predictive output of the TMHMM 

program, Tandem CoreTM constructs containing the truncated forms of LolC 

were produced by Mologic which contained only the main extracellular domain. 

To determine whether this construct would have removed important 

immunogenic areas, MHC-I and MHC-II epitope predictions were performed by 

multiple programs which suggest that areas of potential immunogenicity are 

spread across the whole amino acid sequence. The main extracellular domain 

contained predicted epitopes for all H2-d MHC alleles so a truncated LolC 

protein should not hinder the generation of an immune response although 

potential immunodominant and protective epitopes in the membrane spanning 
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and intracellular domains would be lost and the validation of these in-silico 

predictions to in-vivo immunogenicity was not determined. 

 

Anticipating that truncated LolC as a fusion construct with Tandem CoreTM may 

still impair VLP assembly, MHC predictions were performed for all Burkholderia 

proteins used in this thesis for insertion of short peptide sequences into Tandem 

CoreTM. As immunogenicity is influenced by factors that cannot yet be 

accurately predicted, an in-vitro T-cell test may be required before this option is 

pursued (Jawa et al., 2013). This could be performed by mouse vaccination and 

assessment of spleen or peripheral blood mononuclear cell IFN- recall 

response by ELISpot or ELISA (Shete et al., 2011). 

 

MHC epitope prediction is important as experimental identification is costly and 

time consuming (Wang et al., 2008) and has been reported to reduce 

downstream in-vitro testing of therapeutic proteins by at least 20-fold (Jawa et 

al., 2013). Different methods are available to predict MHC peptide binding 

motifs, each with their own advantages and disadvantages (Sidney et al., 2008) 

so predictive immunogenicity screening often involves more than one approach 

which may include in-silico predictions, in-vitro T-cell assays and in-vivo testing 

in humanised mouse models (Jawa et al., 2013). In this thesis, computational 

prediction of MHC epitopes provided reassurance that a truncated form of LolC 

would be immunogenic, but clinical use of Burkholderia peptides in a 

melioidosis vaccine would require that HLA T-cell predicted peptides replace 

H2-d predicted peptides and further immunogenicity tests to be performed. 

 

4.5 Supplementary information 

 

4.5.1 Expression of Tandem CoreTM with peptide inserts 

 

Attempts to insert Burkholderia peptide sequences into Tandem CoreTM 

included various derivatives of the amino acid sequence for LolC from full-

length to the large extracellular loop in all four VLP expression systems; plant, 

yeast, insect cell and bacterial. 
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Tandem CoreTM containing either full-length LolC insert or truncated LolC 

containing the major extracellular domain (ExLolC) were also expressed in 

N. benthamiana. VLPs were not readily seen by negative stain TEM. Figure 59 

shows VLPs are present containing the ExLolC construct but these were not 

representative of the entire grid where few fields of view contained VLPs. 

 

 

Figure 59 Negative stain TEM images of plant expressed VLP-ExLolC in clarified lysate, 

after filtration and sucrose density gradient purification.  

 

LolC or ExLolC were also placed in the Tandem CoreTM construct and 

expressed in P. pastoris. While high levels of LolC protein synthesis were 

demonstrated by dot blot, VLPs were clumped, misassembled and heterologous 

in size and morphology (data not shown). 

 

4.5.2 Prediction of Burkholderia protein membrane spanning domains 

The output of TMHMM for PotF transmembrane domain prediction is given in 

Figure 60. There are no predicted transmembrane domains so only the amino 

acid sequence is shown in Figure 61. Expression of the PotF fusion construct 

was successful with as demonstrated by western blot but VLPs were not seen 

by negative stain TEM (Data not shown).  
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Figure 60 TMHMM calculated probabilities for transmembrane domains within the 

Burkholderia protein PotF [BPSL1555] 

 

PotF [BPSL1555] 

MKAKVAGRLTALALCAGATVAAAKDTQLNVYNWSDYIAKDTIPNFEKQTGVKVRYDNYDSDDTLQAKLLT 

GNSGYDIVVPTSNYAGKQIQAGIFTPLDKSKLPNLKYLDAQLMALVAGADPGNKYVVPWAYGTTGLGYNV 

DKAQKVLGKVPLDNWDILFKPENLSKLKTCGVSVLDAPDQMFAATLHYIGKDPMSTNPADYQAAMQVLKK 

IRPYITQFNSSGYINDMVGGDICFAFGWSGDVVIAKHRALEAKKPYKLEYYVPKGGAPVWFDVMAIPKDA 

KNKDAALQWINYIEDPKVHASITNAVYYPSANAQARKYVRPDVANDPAVYPPPDVVKTLFLLKPLPPEIQ 

RLQTRLWTELKSGR 

 

Figure 61 Amino acid sequence of PotF. No membrane spanning domains are predicted. 

 

The output of TMHMM for OppA transmembrane domain prediction is given in 

Figure 62. The first 20 amino acids are predicted to be intracellular, followed by 

23 amino acids spanning the membrane and the remainder of the protein 

located extracellularly (Figure 63). Expression of the OppA fusion construct was 

successful as demonstrated by western blot but VLPs were not seen by 

negative stain TEM (Data not shown). 
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Figure 62 TMHMM calculated probabilities for transmembrane domains within the 

Burkholderia protein OppA [BPSS2141] 

 

 

OppA [BPSS2141] 

Inside membrane Membrane spanning domain Outside membrane 

MRRALPFRYHYQSHTMKHTHAFAAVLAALALTIAPSAPAVTVASNVTLADQQDLTRQVPAEVESLDPAHI

ESWTGNTIGLDLFEGLARIDASGAVVPGVAQAWEHKAPDTWIFKLRRDAKWSNGQPVTAADFVYAWQRLA

DPKTGSKYTILVEFVKNASAIIAGKQPPGDLGIRAIDPYTIEVKTEVPVSYFPELTAMAPLTPVNKDAVA

KFGDAWTRPKNIVSNGPYTLVDWQPNNRIVMAKSDKYWNARNVVIRKVTYLPIENDETALRMYQAGQIDY

TYSIPAGGFGQISKQFGKELRPGLQLATYYYYLKNSDPALKDKRVREALAMVLDREILTSKITQAGEVPM

YGLMPKGVKGVQRPFTPDWASWPMARRVDYAKNLLKQAGHGDANPLTFTLTYNTNDLHKKVALFAASEWR

TKLGVTAKLENVEFKVLMKQRHDGKVQIARDGWFADYNDAMTFFDLIRCGSSQNTVGYCNPKVDSLVAEA

NQKLDDGARAALLTQAHDLAMNDYPMVPLFQYSADRLVKSYVGGYTLTNYIDMRASQDMYLIKH 

 

Figure 63 Amino acid sequences of OppA highlighting transmembrane helices 

predictions 

 

The output of TMHMM for Omp85 transmembrane domain prediction is given in  

Figure 64. There are no predicted transmembrane domains. Due to the lack of 

success of VLP assembly expressing LolC, PotF or OppA (full protein or 

truncated extracellular), it was hypothesised that molecular mass may be 

disrupting VLP assembly. As Omp85 is the largest protein selected (84.9kDa), 

the decision was taken to exclude Omp85 from the study. The amino acid 

sequence of Omp85 is below (Figure 65)  
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Figure 64 TMHMM calculated probabilities for transmembrane domains within the 

Burkholderia protein Omp85 [BPSL2151] 

 

Omp85 [BPSL2151] 

MLFKPHRFVPKTVAAAALAAHGLAAHATAPFVVQDIKIEGLQRVEAGSVFAYLPIKQGDTFTDDKASEAI 

RALYATGFFNDVRIATQGGVVIVQVQERPAIASIDFTGIKEFDKDNLNKALKAVGLSQGRYYDKALVDKA 

EQELKRQYLTRGFYAAEVSTTVTPVDANRVSILFAVAEGPSAKIRQINFIGNKAFKTSTLRDEMQLSTPN 

WFSWYTKNDLYSKEKLTGDLENVRSYYLNRGYLEFNIESTQVSISPDKKDMYLTVALHEGEPYTVSSVKL 

AGNLLDRQAELEKLVKIKPGDRFSAEKLQQTTKAIVDKLGQYGYAFATVNAQPEIDQATHKVGLTLVVDP 

SRRVYVRRINIVGNTRTRDEVVRREMRQLESSWFDSSRLALSKDRVNRLGYFTDVDVTTVPVEGTNDQVD 

VNVKVAEKPTGAITLGAGFSSTDKVVLSAGISQDNVFGSGTSLAVNVNTAKSYRTLTVTQVDPYFTVDGI 

KRITDVFYRTYQPLYYSTNSSFRIITAGGNLKFGIPFSETDTVYFGAGFEQNRLDVDSNTPQSYQDYVNE 

FGRVSNTVPLTIGWSRDARDSALIPSRGYFTQANAEYGVPVGKIQYYKMDVQGQYYYSFARGFILGLNFQ 

AGYGNGIGNPYPIFKNYYAGGIGSVRGYEPSSLGPRDTKTNDPIGGSKMVVGNIELTFPLPGTGYDRTLR 

VFTFLDGGNVWGNAPGGTSTGANGLRYGYGIGLAWISPIGPLKLSLGFPLQKHEGDQYQKFQFQIGTAF 

 

Figure 65 Amino acid sequence of Omp85. No membrane spanning domains are 

predicted. 

 

The output of TMHMM for Hcp2 transmembrane domain prediction is given in  

Figure 66. There are no predicted transmembrane domains. Expression of the 

Hcp2 fusion construct was successful with as demonstrated by western blot but 

VLPs were not seen by negative stain TEM (Data not shown). 
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Figure 66 TMHMM calculated probabilities for transmembrane domains within the 

Burkholderia protein Hcp2 [BPSS0518] 

 

Hcp2 [BPSS0518]  

MANALVDYFLQIDGVEGESTDQQYPGLIQIQSWQWAEENSGRWGFGSGGGAGKVEMKDFEFRMVSNKASP

KLFLMCATGEHIQNAKLICRKSGKGQQEFLTISFASGLVSSFRTLGNMPISQLGHASGEVDGVLPTDQIR

INFAQIEFEYREQRNDGTMGAVIKAGYDLKQNAP 

 

Figure 67 Amino acid sequence of Hcp2. No membrane spanning domains are predicted. 

 

 

The output of TMHMM for Hcp6 transmembrane domain prediction is given in  

Figure 68. There are no predicted transmembrane domains. The amino acid 

sequence of Hcp6 is shown in Figure 69. Expression of the Hcp6 fusion 

construct was successful as demonstrated by western blot but VLPs were not 

seen by negative stain TEM (Data not shown).  
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Figure 68 TMHMM calculated probabilities for transmembrane domains within the 

Burkholderia protein Hcp6 [BPSL3105] 

 

Hcp6 [BPSL3105] 

MLHMHLKFGSPAIKGESADKDHEGWIELKSWDHSIVQPRSATASTAGGHTATRCEHGDMVFTKEIDSSSP

LLYQHASGGTTFDEVTIDFLRADGEGQRVKYLEIKLKYVIISSIAPSVHTEGLPVETFSLKYAAVQWKQT

QQKIGGNQGGNTQGAWSLTKNDKTYAV 

 

Figure 69 Amino acid sequence of Hcp6. No membrane spanning domains are predicted. 
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4.5.3 In-silico Burkholderia protein MHC-I and MHC-II epitope predictions 

 

Figure 70 MHC-I collated PotF amino acid sequences from all H2-d alleles. Sequences 

highlighted in red are predicted by all three programs for each allele and sequences highlighted 

in green by two of the three programs 

 

 

 

 

 

 

 

 

 

Start Sequence Region

16 VALAGASAL Kd

41 WSDYIAKDTI Dd

91 NYMAKQIQA Kd

91 NYMAKQIQAG Kd

101  V Y Q K L D K S K L Kd

108  S K L P N L S N L Kd

113  L S N L D P T L M Ld

147  N V Q A V K K A L Kd

178 CGVSFLDQAV Dd

182  S F L D Q A V D V Kd

190 VFAATLQYM Kd

196 QYMGRNPNST Kd

206  N P A D Y Q A A F Ld

209  D Y Q A A F E V L Kd

221 RPYITQFNS Ld

228  N S S G Y I N D L Ld

269  F S N P K E G G L Ld

275 GGLLWFDVM Dd

340  P P E D V L K K M Ld

351 MRPMPADIL Dd
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Figure 71 MHC-II collated PotF sequences from both alleles of the H2-d region. 

Sequences highlighted in red are predicted by all three programs for each allele, with the 

exception of I-Ed, and sequences highlighted in green by two of the three programs 

 

 

Figure 72 MHC-I collated OppA amino acid sequences from all H2-d alleles. Sequences 

highlighted in red are predicted by all three programs for each allele and sequences highlighted 

in green by two of the three programs 

 

Start Sequence Region

3  V S H L R H A V A R A A L V A Ad

5 HLRHAVARAALVALA Ad

6 HLRHAVARAALVALA Ad

8  H A V A R A A L V A L A G A S Ad

10  V A R A A L V A L A G A S A L Ad

17 ALAGASALALPAAHA Ad

18 LAGASALALPAAHAA Ad

19 AGASALALPAAHAAG Ad

20  G A S A L A L P A A H A A G A Ad

99  A G V Y Q K L D K S K L P N L Ed

Start Sequence Region

8 RYHYQSHTM Kd

21  A F A A V L A A L Kd

35  P S A P A V T V A Ld

107  A P D T W I F K L Ld

125 QPVTAADFV Ld

131  D F V Y A W Q R L Kd

147  K Y T I L V E F V Kd

153  E F V K N A S A I Kd

178  P Y T I E V K T E V Kd

187  V P V S Y F P E L Ld

190  S Y F P E L T A M Kd

190  S Y F P E L T A M A Kd

224 NGPYTLVDWQ Dd

246  K Y W N A R N V V Kd

246  K Y W N A R N V V I Kd

259 TYLPIENDET Kd

284  I P A G G F G Q I Ld

311  Y Y L K N S D P A L Kd

350  M Y G L M P K G V Kd

366  T P D W A S W P M Ld

372 WPMARRVDY Ld

477  G Y C N P K V D S L Kd

514 YPMVPLFQY Ld

519  L F Q Y S A D R L Kd

530  S Y V G G Y T L T Kd

531 VGGYTLTNYI Dd
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Figure 73 MHC-II collated OppA sequences from both alleles of the H2-d region. 

Sequences highlighted in red are predicted by all three programs for each allele, with the 

exception of I-Ed, and sequences highlighted in green by two of the three programs 

 

Start Sequence Region

17  K H T H A F A A V L A A L A L Ad

20  H A F A A V L A A L A L T I A Ad

29  T H A F A A V L A A L A L T I Ad

106  K A P D T W I F K L R R D A K Ed

110  T W I F K L R R D A K W S N G Ed

366  T P D W A S W P M A R R V D Y Ed

405  N D L H K K V A L F A A S E W Ad

496 DGARAALLTQAHDLA Ad
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Figure 74 MHC-I collated Omp85 amino acid sequences from all H2-d alleles. Sequences 

highlighted in red are predicted by all three programs for each allele and sequences highlighted 

in green by two of the three programs 

 

Start Sequence Region

30  P F V V Q D I K I Kd

51  A Y L P I K Q G D Kd

51 AYLPIKQGDT Kd

52 YLPIKQDTF Dd

53  L P I K Q G D T F Ld

73  L Y A T G F F N D V Kd

98  R P A I A S I D F Ld

147  Q Y L T R G F Y A Kd

147  Q Y L T R G F Y A A Kd

153  F Y A A E V S T T V Kd

179  G P S A K I R Q I Ld

235  S Y Y L N R G Y L Kd

255  S P D K K D M Y L Ld

272  P Y T V S S V K L Kd

276  S S V K L A G N L Ld

321  Q Y G Y A F A T V Kd

348 VDPSRVYVR Dd

354  V Y V R R I N I V Kd

383  W F D S S R L A L Kd

438  G F S S T D K V V Kd

455  N V F G S G T S L Kd

481 VDPYFVDGI Dd

482  D P Y F T V D G I Ld

488 DGIKRTDVF Dd

496 VFYRTYQPL Kd

500  T Y Q P L Y Y S T Kd

504 LYYSTNSSFR Kd

505  Y Y S T N S S F R I Kd

525 IPFSETDTV Ld

550 TPQSYQDYV Ld

556  D Y V N E F G R V Kd

596  E Y G V P V G K I Kd

615  Y Y Y S F A R G F I Kd

616  Y Y S F A R G F I Kd

616  Y Y S F A R G F I L Kd

617  Y S F A R G F I L Ld

618  S F A R G F I L G L Kd

628  N F Q A G Y G N G I Kd

639  N P Y P I F K N Y Ld

641 YPIFKNYYA Ld

646  N Y Y A G G I G S V Kd

647  Y Y A G G I G S V Kd

663 LGPRDKTND Dd

693 TGYDRLRVF Dd

697  R T L R V F T F L Kd

727 YGYGILAWI Dd

728  G Y G I G L A W I Kd

736  I S P I G P L K L Ld

739 IGPLKSLGF Dd

740  G P L K L S L G F Ld

757  Q Y Q K F Q F Q I Kd
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Figure 75 MHC-II collated Omp85 sequences from both alleles of the H2-d region. 

Sequences highlighted in red are predicted by all three programs for each allele, with the 

exception of I-Ed, and sequences highlighted in green by two of the three programs 

 

Start Sequence Region

8  F V P K T V A A A A L A A H G Ad

9  V P K T V A A A A L A A H G L Ad

10 PKTVAAAALAAHGLA Ad

11  K T V A A A A L A A H G L A A Ad

12  T V A A A A L A A H G L A A H Ad

13 VAAAALAAHGLAAHA Ad

60 TFTDDKASEAIRALY Ad

61 FTDDKASEAIRALYA Ad

62 TDDKASEAIRALYAT Ad

63 DDKASEAIRALYATG Ad

64  D K A S E A I R A L Y A T G F Ad

65 KASEAIRALYATGFF Ad

347  V V D P S R R V Y V R R I N I Ed

470  A K S Y R T L T V T Q V D P Y Ad
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Figure 76 MHC-I collated Hcp2 amino acid sequences from all H2-d alleles. Sequences 

highlighted in red are predicted by all three programs for each allele and sequences highlighted 

in green by two of the three programs 

 

 

Start Sequence Region

1  M A N A L V D Y F Ld

2  A N A L V D Y F L Ld

7  D Y F L Q I D G V Kd

23  Q Y P G L I Q I Q Kd

24  Y P G L I Q I Q S Ld

37  E E N S G R W G F Ld

64  V S N K A S P K L Ld

65  S N K A S P K L F L Kd

67 KASPKLFL Dd

73 FLMCATGEHI Kd

91 SGKGQQEFL  Dd

91  K S G K G Q Q E F Ld

92  S G K G Q Q E F L Kd

100  L T I S F A S G L Kd

103  S F A S G L V S S F Kd

106  S G L V S S F R T L Kd

106 GLVSSFRTL Dd

107  G L V S S F R T L Kd

110  S S F R T L G N M Ld

111  S F R T L G N M P I Kd

113 RTLGNMPISQ Kd

116 NMPISQLGH   Dd

118 MPISQLGHA Ld

121  S Q L G H A S G E V Kd

126  A S G E V D G V L Ld

132 VLPTDQIRI Dd

135  P T D Q I R I N F Ld

166  G Y D L K Q N A P I Kd
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Figure 77 MHC-II collated Hcp2 sequences from both alleles of the H2-d region. 

Sequences highlighted in red are predicted by all three programs for each allele, with the 

exception of I-Ed, and sequences highlighted in green by two of the three programs 

 

4.5.4 Programs for transmembrane helices prediction and MHC-

I/MHC-II epitope predictions  

 

The software used for prediction of transmembrane domains was TMHMM 

(http://www.cbs.dtu.dk/services/TMHMM/) which is based on a hidden Markov 

model (HMM) and shown to correctly predict 97-98 % of transmembrane helices 

(Krogh et al., 2001). The HMM works by defining a set of states corresponding 

to regions of the protein being modelled which include helix caps, middle of the 

helix, regions close to the membrane and globular regions. Each state has an 

associated probability distribution over the 20 amino acids characterising the 

variability of amino acids in the region it models incorporating hydrophobicity, 

charge bias and helix lengths. The probability of transition between states is 

also calculated. Topology is calculated from the states with the highest amino 

acid and transition probabilities (Sonnhammer et al., 1998, Krogh et al., 2001).  

 

The top 10 highest scoring sequences generated by each program were taken 

for comparison to the other sequences predicted for that MHC gene. 

Sequences highlighted in red were predicted by all three programs and 

sequences highlighted in green were predicted by two of the three programs. 

These sequences were collated into a single shortlist for each region and then 

expanded to include the shortlists for each other region to give the total MHC-I 

Start Sequence Region

56  M K D F E F R M V S N K A S P Ed

58  D F E F R M V S N K A S P K L Ad

79  G E H I Q N A K L I C R K S G Ed

80  E H I Q N A K L I C R K S G K Ed

84  N A K L I C R K S G K G Q Q E Ed

110 SSFRTLGNMPISQLG Ad

111 SFRTLGNMPISQLGH Ad

112 FRTLGNMPISQLGHA Ad

153 QRNDGTMGAVIKAGY Ad

155  N D G T M G A V I K A G Y D L Ad

http://www.cbs.dtu.dk/services/TMHMM/
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or MHC-II predictive output. These programs were chosen as they are 

recognised programs for this function and use different methodologies. 

For MHC-I predictions, Immunepitope uses the Consensus method consisting 

of artificial neural networks (ANN), stabilized matrix method (SMM), and 

CombLib if any corresponding predictor is available for the molecule, otherwise 

NetMHCpan is used (http://tools.iedb.org/main/tcell/). 

 

ProPred is a matrix based method for the prediction of MHC-I binding sites 

(http://www.imtech.res.in/raghava/propred1/). The matrices used were obtained 

from the BIMAS server (a T-cell epitope prediction server that implements 

algorithms based on a quantitative matrix-driven method and from the literature. 

It allows for the simultaneous prediction of MHC binders and proteasome 

cleavage sites as it has been demonstrated that MHC binders with a cleavage 

site at the C terminus are likely to be T-cell epitopes (Singh and Raghava 

2003). 

 

For the BIMAS method, it is assumed that the amino acids at each position 

along the sequence contribute with a given binding energy, which when added 

up yield the overall binding energy of the peptide. This is also the basis of 

Syfpeithi. These predictions fail to recognize however, where the binding affinity 

of an amino acid at one position is influenced by amino acids in other positions. 

Artificial neural networks (ANN) take such correlations into account (Nielsen et 

al., 2003). 

 

ANN uses a combination of two neural networks using different sequence 

encoding strategies and input derived from a HMM. One neural network uses a 

classic orthogonal sparse encoding and another where amino acids are 

encoded as their Blosum50 scores to the 20 different amino acids. Sparse 

encoding is where each amino acid is encoded as a 20-digit binary number, 

with specific series of amino acids corresponding to a certain binding affinity 

value. Blosum50 is where amino acids are scored for replacement with each of 

the 20 amino acids based on knowledge of which amino acids are similar and 

dissimilar to each other (Nielsen et al., 2003). 

 

http://tools.iedb.org/main/tcell/
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The SMM method generates quantitative models of the sequence specificity of 

biological processes which in turn are used to predict these processes. The 

experimental data used as input consists of same length amino acid sequences 

associated with a quantitative measurement (Peters and Sette, 2005). 

 

CombLib predicts binding specificity of MHC molecules based on the use of 

positional scanning combinatorial peptide libraries. The libraries consist of 

combinatorial mixtures of large numbers of different peptides all sharing a single 

residue at a certain position. Measuring the binding affinity of each library 

evaluates the average influence of the shared residue (Sidney et al., 2008). 

 

NetMHCpan uses quantitative peptide MHC binding data consisting of 79,137 

unique interactions (Hoof et al., 2009).  

For MHC-II predictions, Immunepitope uses the Consensus approach 

combining NN-align, SMM-align, and CombLib if any corresponding predictor is 

available otherwise NetMHCIIpan is used (http://tools.iedb.org/main/tcell/).  

 

NN-align is a novel artificial neural network based method that allows for 

simultaneous identification of the MHC II binding core and binding affinity. It 

encodes peptide flanking residues for amino acid composition and length and 

deals with data redundancy inherent in peptide data due to multiple examples of 

identical binding cores (Nielsen and Lund, 2009).  

 

SMM align is also used to simultaneously identify the peptide binding core and 

predict the binding strength (Nielsen and Lund, 2009).  

 

NetMHCIIpan is a neural network-based algorithm that integrates SMM align 

with information about the peptide flanking residues (Nielsen and Lund, 2009). 

 

Syfpeithi evaluates every amino acid of a peptide and gives a score of 1 if they 

are only slightly preferred in the respective position while optimal anchor 

residues are given the value 15. Any value between 1 and 15 is possible as are 

negative values which are disadvantageous for the peptide's binding capacity at 

a certain sequence position. The allocation of values is based on the frequency 

of the respective amino acid in natural ligands, T-cell epitopes, or binding 

http://tools.iedb.org/main/tcell/
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peptides (http://www.syfpeithi.de/bin/MHCServer.dll/Info.htm Rammensee et al., 

1999). 

NetMHC3.2 predicts the binding of peptides to a number of different MHC-I 

alleles using ANNs and weight matrices 

(http://www.cbs.dtu.dk/services/NetMHC-3.2/ Nielsen et al., 2003). 

 

NetMHCII predicts binding of peptides to HLA-DR, HLA-DQ, HLA-DP and 

mouse MHC class II alleles using ANNs. The prediction values are given as a 

percentage rank to a set of 1,000,000 random natural peptides 

(http://www.cbs.dtu.dk/services/NetMHCII/ Nielsen and Lund 2009, Nielsen et 

al., 2007). 

 

  

http://www.syfpeithi.de/bin/MHCServer.dll/Info.htm
http://www.cbs.dtu.dk/services/NetMHC-3.2/
http://www.cbs.dtu.dk/services/NetMHCII/
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Chapter 5: Immunogenicity and efficacy of candidate vaccines 

 

5.1 Introduction 

 

The aim of this chapter was to assess the protective efficacy of CPS chemically 

conjugated to Crm197, Virus-Like particles (VLP) or a Burkholderia protein 

against an intraperitoneal B. pseudomallei challenge in a BALB/c mouse model 

of melioidosis. CPS for conjugation was extracted from B. thailandensis E555 :: 

wbiI (Kmr), following inoculation of LB media with a B. thailandensis strain E555 

:: wbiI (Kmr) starter culture and incubation for 27 hours at 37oC, shaking at 180 

rpm within baffled Erlenmeyer flasks.  

 

Capsular polysaccharide is a known virulence determinant and protective 

antigen of both B. pseudomallei and B. mallei (Wikraiphat et al., 2009, Nelson et 

al., 2004) but polysaccharides generally are T-cell independent antigens and 

poor inducers of immunological memory (Fernandez et al., 2009). Although 

some effective vaccines consist of polysaccharide antigen (Jones 2005), it is 

hypothesised that both a T- and B-cell response is required for a protective 

Burkholderia vaccine (Silva and Dow 2013). In 1931, it was discovered that 

conjugation of a polysaccharide to a protein augments the immune response to 

the polysaccharide (Avery and Goebel 1931) which led to development of 

licensed carbohydrate vaccines for Haemophilus influenzae type b and 

Streptococcus pneumoniae where polysaccharide conjugation to a protein 

carrier invokes T-cell help (Pollabauer et al., 2009, Knuf et al., 2011). It is on 

this basis that conjugation to a carrier protein is believed necessary for a CPS-

based Burkholderia vaccine. 

 

Crm197 is a commercially available, non-toxic mutant of Diphtheria toxin and is 

already used in several licensed polysaccharide conjugate vaccines (Knuf et al., 

2011). Licensed vaccines containing VLPs are available but with the VLP as the 

primary antigen such as the hepatitis B virus (HBV) vaccine Engerix® which 

contains purified HBV surface antigen (Kushnir et al., 2012). In this study, the 

VLP is made of Tandem CoreTM which is a fusion construct of two HBcAg open 

reading frames to produce HBcAg dimers as a single polypeptide chain (Peyret 
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et al., 2015). A proposed advantage of Tandem CoreTM is insertion of whole 

proteins within the MIR spike of HBcAg for expression on the surface of 

assembly competent VLPs. This would allow production of a number of 

constructs such as a multivalent vaccine containing a VLP expressing a 

Burkholderia protein, chemically conjugated to CPS. VLPs are also highly 

immunogenic (Kushnir et al., 2012) and may give greater protection against an 

aerosol challenge than a Crm197 based vaccine which is desirable given the 

potential exposure of B. pseudomallei via the aerosol route which is associated 

with severe illness and high mortality (Lafontaine et al., 2013).  

 

Throughout this chapter, all VLPs utilised were of heterotandem core. 

Production of homo-tandem core VLPs was attempted, as the complete 

absence of contaminating expression-system nucleic acid, through loss of the 

binding domain, was perceived as an advantage for potential GMP manufacture 

and licensure. However, stable VLP formation was not achieved with homo-

tandem core as a nucleic acid binding domain was found to be essential for 

assembly. 

 

A further consideration in development of a Burkholderia vaccine would be the 

use of a Burkholderia protein as the carrier protein. This would negate potential 

interference effects from other vaccines that contain Crm197 (Dagan et al., 

2010). Use of a Burkholderia protein is appropriate if an immunogenic protein, 

ideally a protective antigen, is found to provide T-cell help for conjugated CPS. 

This study identified several potential Burkholderia protein candidates from the 

published literature (see Chapter 4; Immunogenic Burkholderia proteins) and 

the protective efficacy of one Burkholderia protein-CPS conjugate was 

determined against intraperitoneal challenge with B. pseudomallei. 

 

In addition to testing CPS conjugate vaccines, this study also assessed the 

protective efficacy of adding the Burkholderia proteins LolC, PotF, OppA, and 

Hcp6 as single co-antigens to a Crm197-CPS conjugate in order to produce a 

multivalent vaccine.  

 

This work also assessed the protective efficacy of four adjuvants; Alhydrogel®, 

MF59®, Poly (I:C) with Alum and AS04. 
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Aluminium compounds have been used as adjuvants for more than 70 years in 

both human and veterinary vaccines but the most commonly used adjuvants 

today work by antigen adsorption onto aluminium hydroxide and aluminium 

phosphate hydrated gels (Lindblad 2004). Alhydrogel® is an aluminium 

hydroxide wet gel suspension (www.invivogen.com/alhydrogel) and studies 

have shown that aluminium adjuvants can stimulate Th2 type responses and IL-

4 and IL-5 cytokine production but fails to stimulate Th1 responses such as IFN-

 production (Brewer 2006). 

 

AddavaxTM is a squalene-based oil-in-water nano-emulsion with a similar 

formulation to MF59® which is owned by Novartis 

(www.invivogen.com/addavax). MF59 is licensed in more than 20 countries for 

use in influenza vaccines (Fluad®) including avian H5N1 (Aflunov®) and H1N1 

(Focetria® and Celtura®) influenza. MF59 has shown to be a more potent 

adjuvant than Alum for the induction of both humoral and cell-mediated 

responses and enhances the recruitment and activation of antigen presenting 

cells (APC) and stimulation of cytokines and chemokine production by 

macrophages and granulocytes (Tritto et al., 2009, O’Hagan et al., 2012). 

 

Polyinosinic-polycytidylic acid (Poly (I:C)) is a synthetic analog of double-

stranded RNA and has shown to improve mucosal antigen presentation of HIV 

antigens by MHC class I molecules. Poly (I:C) activates Toll-like receptor 3 

(TLR3) to induce IL-12 and type I IFNs production leading to improved MHC I 

expression (Liu et al., 2012). It also interacts with the retinoic acid-inducible 

gene (RIG-I) and melanoma differentiation-associated gene (MDA-5) receptors 

which are hypothesised to enhance T- and B-cell immunity (Toussi and Massari 

2014). 

 

Adjuvant System 04 (AS04) contains the TLR4 agonist monophosphoryl lipid A 

(MPL) and aluminium salt which promotes cytokine secretion and immune cell 

activation. It is licensed for use in the HPV vaccine CervarixTM and Hepatitis B 

vaccine FendrixTM and has shown to induce a higher and longer lasting immune 

response than aluminium salt (Didierlaurent et al., 2009). MPL is a derivative of 

lipid A from Salmonella minnesota R595 and is considerably less toxic than 

http://www.invivogen.com/alhydrogel
http://www.invivogen.com/addavax
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lipopolysaccharide and promotes a Th1-biased response towards co-

administered antigens (Lawson et al., 2011). 

 

The mouse model used in this study is the BALB/c. The proinflammatory 

cytokine response to B. pseudomallei infection and the poor recruitment of 

macrophages and lymphocytes to clear bacteria mean that BALB/c mice are the 

established animal model of acute melioidosis (Choh et al., 2013). 

 

Survival following challenge is an important criterion for assessment of vaccine 

efficacy, but on animal welfare grounds death is not a humane end-point. For all 

animal studies in this chapter clinical signs were recorded and mice culled upon 

reaching humane end-points. Although not an exhaustive list, these included 

pathology involving the eyes or where movement was significantly restricted as 

common signs of melioidosis in the BALB/c mouse model involve the CNS and 

include hind limb paralysis and eye protrusion (Morris et al., 2015, Welkos et al., 

2015). Analysis of survival data is performed by log-rank Mantel-Cox test. This 

test compares survival curves giving equal weight to deaths at all time points 

(Bewick et al., 2004).  

 

In addition to survival and clinical signs, bodyweight was also recorded. Animals 

which survived until study end were culled and the liver, lung and spleen 

removed, mashed and plated onto microbiological media for assessment of 

bacterial load. The liver and spleen are assessed due to the organotropism of 

B. pseudomallei for these tissues (Hoppe et al., 1999) and lung as a measure of 

systemic spread of the organism. 

 

For clarity, a flow diagram illustrating the animal studies performed in this thesis 

and a brief justification for them are detailed in Figure 78. 
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Figure 78 Animal study schedule and justification 

 

5.2 VLP expression systems 

 

VLPs were produced from bacterial (E. coli), insect cell (baculovirus), plant 

(Nicotiana benthamiana) and yeast (Pichia pastoris) expression systems by our 

collaborators at Mologic and JIC. A summary of these results are given in the 

supplementary data (5.6.1). Briefly, Tandem CoreTM expression by E. coli and 

baculovirus was not suitable due to low purity of VLP. The plant and yeast 

expression systems produced high yields of >80 % pure VLPs which were 

utilised in challenge experiments. The methods of production are detailed in 

Chapter 2, Methods 2.12.1 to 2.12.5 
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5.3 Production and analysis of conjugate vaccines 

 

Chemical conjugation of CPS to carrier protein was achieved by reductive 

amination. Analysis of the conjugates was performed by phenol sulfuric acid 

assay (for carbohydrate) and BSA (for protein). All production and analysis was 

performed by our collaborators at the JIC and methods described in Chapter 2, 

Method 2.13.1 to 2.13.3. 

 

5.4 Initial vaccine efficacy study of candidates in mice using IP 

challenge with B. pseudomallei  

 

The initial animal challenge experiment was performed to assess efficacy of the 

conjugate vaccines, especially VLP-CPS since we had no prior experience of 

this construct. Two different challenge doses of 103 x median lethal dose (MLD) 

and 240 x MLD were employed which were chosen on the basis of previous 

work with CPS conjugates (data not shown). BALB/c mice received three 

immunisations at two-week intervals via the intra-muscular route with the 

experimental vaccines adjuvantised with Alhydrogel®. Details of vaccine 

preparation, animal husbandry, immunisation schedule, challenge preparation, 

statistical analysis and enumeration of bacterial loads are detailed in Chapter 2, 

method 2.14.1 to 2.14.6. Table 8 details the vaccinations and animal numbers 

for this study. 
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Cohort Vaccine Number of mice Adjuvant 

A VLP-CPS (plant) 12 Alum 

B VLP (plant) 12 Alum 

C CPS 12 Alum 

D Crm197-CPS 12 Alum 

E Crm197 12 Alum 

F PBS 12 Alum 

G PBS 12 - 

 

Table 8 Experimental plan for initial efficacy study detailing vaccine candidates, number 

of mice and adjuvant. For determination of efficacy range for these candidates, six mice from 

each cohort were challenged with either 103 or 240 x median lethal doses of B. pseudomallei 

K96243 via the intra-peritoneal route and observed for 35 days.  

 

Groups of twelve mice were immunised with either VLP-CPS, VLP, CPS, Crm-

197, Crm-197-CPS or PBS, challenged with either 7.66 x 104 CFU (103 x 

median lethal doses (MLD)) or 1.79 x 105 CFU (240 x MLD) of B. pseudomallei 

K96243 via the intra-peritoneal route (IP) and observed for 35 days in order to 

determine appropriate challenge doses and group sizes for full efficacy testing 

in the next study using IP challenge with B. pseudomallei. Tail bleeds were also 

taken to monitor the development of immune responses two weeks after each 

immunisation. The VLPs were derived from the N. benthamiana expression 

system. Conjugation of CPS to protein is variable between reactions and it is 

not possible to give exactly the same amount of both protein and 

polysaccharide to each group. For this reason, each vaccine was formulated on 

the basis of CPS content to contain 10 µg of CPS per dose. In this study the 

amount of protein the mice receiving was 2.2 µg of Crm197 or 3.4 µg of VLP 

per dose.  

 

Survival data from the 103 x MLD challenge is shown in Figure 79A. Highest 

levels of survival were observed in the VLP-CPS vaccinated group although 

statistical significance from the Crm197-CPS vaccinated group was not 



190 

achieved (p=0.1385 log-rank (Mantel-Cox) test). Both conjugate vaccines gave 

significantly greater protection than CPS alone (p=0.0003 log-rank (Mantel-Cox) 

test).  

 

Survival data from the 240 x MLD challenge is shown in Figure 79B. The 

highest level of survival was seen in the VLP-CPS vaccinated group although 

statistical significance from the Crm197-CPS was not achieved (p=0.0982 log-

rank (Mantel-Cox) test). In this instance, both vaccines did not give significantly 

greater protection than CPS alone (p=0.1780 (log-rank (Mantel-Cox) test). This 

may be a consequence of a high CPS to protein ratio which may mask the 

carrier protein from the immune system. For this reason, the amount of CPS per 

dose would be decreased in the next study to 4 µg per dose. 

 

Survival data from the two challenge doses (103 and 240 MLD) is combined to 

produce Figure 79C. Highest levels of survival were observed in the VLP-CPS 

conjugate vaccinated groups and this was significantly higher than the 

CRM197-CPS conjugate vaccinated group (p=0.0282 Log-Rank (Mantel-Cox 

test).  
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Figure 79 Efficacy of antigens against 103 and 240 x MLD B. pseudomallei K96243 

challenge. Mice (n = 6 mice per group) were immunized with VLP-CPS and Crm197-CPS 

conjugate vaccines, formulated with Alum, via the i.m. route on days 0, 14, and 28. Five weeks 

after the final immunisation, mice were challenged i.p. with 103 x MLD (A) and 240 x MLD (B) of 

B. pseudomallei K96243 and observed for 35 days. Survival curves from both challenge doses 

were combined into a single curve (C). Significance was determined by the log-rank (Mantel-

Cox) test.  

 

ELISA analysis (Chapter 2, Method 2.14.7) of serum obtained from the tail 

bleed after the third vaccination showed a CPS-specific IgM response from CPS 

vaccinated mice and isotype switching to IgG from Crm197-CPS and VLP-CPS 

vaccinated mice (Figure 80). These results were expected as polysaccharide 

responses are generally IgM biased and the use of a conjugate is to evoke T-

cell help leading to development of an IgG response.  

 

Mice vaccinated with Crm197-CPS had significantly greater CPS-specific IgM 

and IgG titres compared to mice vaccinated with VLP-CPS (p ≤ 0.05 and p ≤ 

0.001 respectively).  
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On day 35, surviving animals were culled and the liver, lung and spleen 

processed for recovery of B. pseudomallei. Sterilising immunity was achieved in 

one mouse that received Crm197-CPS. Several mice that received VLP-CPS 

had very low levels of bacteria in the spleen with no B. pseudomallei detected in 

liver or lung tissue (Figure 81A, B and C). There was no significant difference in 

splenic, liver or lung bacterial burden between VLP-CPS and Crm197-CPS 

vaccinated mice (p > 0.05 respectively).  

 

As sterilising immunity was not achieved in the majority of mice, it is likely that 

these animals had progressed to the chronic stage of infection and would have 

eventually succumbed to disease. This is illustrated by the loss in bodyweight of 

these animals over 35 days which in the majority showed no sign of recovery 

(Figure 82 and Figure 83). The bodyweight data also demonstrates the 

difference in severity between 103 and 240 x MLD challenge dose with 

decreases in bodyweight seen at an earlier stage in mice that received 240 x 

MLD of B. pseudomallei. 

 

 

Figure 80 ELISA analysis of the CPS specific IgG and IgM antibody response from mouse 

sera obtained from the 103 and 240 x MLD challenge study. Mice were immunised on days 

0, 14 and 28 via the i.m. route. Sera was obtained from mice 14 days after the final boost, and 

titres of IgG and IgM specific for CPS were determined by ELISA. Individual symbols represent 

a single immunised mouse with exception of the VLP, Crm197, adjuvant (Adj.) and PBS 

controls (n=6).*p≤0.05, ***p≤0.001 (1-way ANOVA).   
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Figure 81 Initial vaccine efficacy study – bacterial burden. 35 days after challenge at either 

103 or 240 x MLD B. pseudomallei K96243, remaining mice were culled, organs were removed, 

and bacterial burdens were determined. Individual symbols represent an individual mouse. 

Horizontal lines indicate geometric means for each group. 
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Figure 82 Bodyweight data of VLP-CPS vaccinated groups from the initial efficacy study 

up to 35 days after challenge with 103 or 240 x MLD of B. pseudomallei K96243.  
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Figure 83 Bodyweight data of Crm197-CPS vaccinated groups from the initial efficacy up 

to 35 days after challenge with 103 and 240 x MLD of B. pseudomallei K96243.  
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5.4.1 Efficacy testing of conjugates in mice with a high challenge dose 

of B. pseudomallei. 

 

Due to high survival up to day 35 in the initial efficacy study from groups 

vaccinated with CPS conjugate vaccines, this study utilised a higher challenge 

dose of 489 x MLD.  

 

195 female BALB/c mice were vaccinated via the intramuscular route according 

to the groups in Table 9. The aim of this study was to assess protective efficacy 

of the VLP-CPS and Crm197-CPS conjugate vaccines at a higher challenge 

dose and to make a preliminary assessment of the protective efficacy of a 

Burkholderia protein conjugated to CPS (LolC-CPS). A second aim was to 

assess the impact of VLPs produced from the plant and yeast expression 

systems. 
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Cohort Vaccine Number of mice Adjuvant 

A VLP-CPS (plant) + LolC 15 Alum 

B LolC-CPS + VLP (plant) 15 Alum 

C VLP-CPS (plant) 15 Alum 

D LolC-CPS 15 Alum 

E VLP (plant) 15 Alum 

F LolC 15 Alum 

G CPS 15 Alum 

H PBS 15 Alum 

I Crm197-CPS 15 Alum 

J Crm197 15 Alum 

K VLP-CPS (yeast) 15 Alum 

L VLP (yeast) 15 Alum 

M VLP-CPS (yeast) + LolC 15 Alum 

 

Table 9 Experimental plan for full efficacy study detailing vaccine candidates, number of 

mice and adjuvant. Groups of 15 mice from each cohort were challenged with 489 x median 

lethal doses of B. pseudomallei K96243 via the IP route and observed for 35 days. 

 

Groups of fifteen mice were immunised, challenged with 3.63 x 105 CFU (489 x 

MLD) of B. pseudomallei K96243 via the IP route and observed for 35 days. Tail 

bleeds were also taken to monitor the development of immune responses two 

weeks after each immunisation. At formulation, vaccines were diluted for each 

mouse to receive 4 µg per dose of CPS. Due to variation in CPS conjugation 

efficiency between the conjugates this resulted in mice receiving 0.51 µg VLP 

(plant), 5.61 µg VLP (yeast), 1.9 µg Crm197 and 1.3 µg LolC.  
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For clarity, only the test vaccines are shown in Figures 85 to 88. The controls 

are shown in Figure 84. At this high challenge dose, as expected, control animal 

survival is poor with most animals dying in the first few days after challenge. 

 

 

Figure 84 Efficacy of control antigens against 489 x MLD B. pseudomallei K96243 

challenge. Mice (n = 15 mice per group) were immunized with the control antigens; plant and 

yeast expressed VLP (VLP plant, VLP yeast), adjuvant, Crm197 and LolC, formulated with 

Alum, via the i.m. route on days 0, 14 and 28. Five weeks after the final immunisation, mice 

were challenged i.p. with 489 x MLD of B. pseudomallei K96243.  

 

Protection was greatest in the Crm197-CPS vaccinated group and was 

significantly higher than mice that received plant expressed VLP conjugated to 

CPS (p=0.0185, Figure 85). Survival in the plant expressed VLP-CPS conjugate 

groups was significantly greater than from yeast expressed VLPs (p=0.0301, 

Figure 85). The protective efficacy of the VLP-CPS (yeast) was not significantly 

greater than CPS alone (p=0.4167).  

 

The LolC-CPS conjugate did not offer significantly greater protection than CPS 

alone (p=0.5803, Figure 85). 

 

The protective efficacy of the VLP-CPS (plant) and VLP-CPS (yeast) was not 

increased with the addition of LolC (p=0.4957 and p=0.6873 respectively, 

(Figure 86). The same was also true for the addition of VLP (plant) to the LolC-

CPS vaccine (p=0.24, Figure 87). The addition of LolC to the yeast VLP 

conjugate was not carried out.  
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Although survival from the Crm197-CPS vaccinated groups was significantly 

greater than mice that received VLP-CPS (plant), and addition of LolC to VLP-

CPS (plant) did not significantly increase protection, the protection from VLP-

CPS + LolC was not significantly different to the Crm197-CPS vaccine 

(p=0.1581) as shown in Figure 88. Reports in the literature also state 

improvement in conjugate vaccine efficacy with Burkholderia protein co-

antigens (Scott et al., 2014). 

 

As with the initial efficacy study, the majority of mice challenged with 

B. pseudomallei lost weight over the course of the study and therefore this is 

not presented here. Sterilising immunity was not achieved in any animal that 

survived to the end of the study. 

 

Similar to the previous challenge study, ELISA analysis of serum obtained from 

the tail bleed after the third vaccination showed a CPS-specific IgM response 

from CPS vaccinated mice, isotype switching to IgG from Crm197-CPS and 

VLP-CPS vaccinated mice with significantly greater CPS-specific IgG and IgM 

titres in the Crm197-CPS vaccinated group (p≤0.05, Figure 89 and p≤0.0001 

Figure 90).  

 

ELISA analysis of serum obtained from the tail bleed after the third vaccination 

for LolC-specific IgG and IgM antibody titres (Figure 91 and Figure 92) shows 

that LolC is highly immunogenic. As protective efficacy of the LolC-CPS vaccine 

was poor and CPS-specific IgG titres low, these results suggest stimulation of 

an immune response by the LolC protein that did not promote a protective 

immune response to the CPS molecule.  
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Figure 85 Efficacy of conjugate vaccines against 489 x MLD B. pseudomallei K96243 

challenge. Mice (n = 15 mice per group) were immunized with Crm197-CPS, LolC-CPS and 

VLP-CPS conjugate vaccines, formulated with Alum, via the i.m. route on days 0, 14 and 28. 

Five weeks after the final immunisation, mice were challenged i.p. with 489 x MLD of 

B. pseudomallei K96243. Significance was determined by the log-rank (Mantel-Cox) test.  

 

 

Figure 86 Effect of LolC on VLP-CPS conjugate efficacy against 489 x MLD 

B. pseudomallei K96243 challenge. Mice (n = 15 mice per group) were immunized with VLP-

CPS (plant) and VLP-CPS (yeast) with and without the addition of LolC, formulated with Alum, 

via the i.m. route on days 0, 14 and 28. Five weeks after the final immunisation, mice were 

challenged i.p. with 489 x MLD of B. pseudomallei K96243. Significance was determined by the 

log-rank (Mantel-Cox) test. VLP-CPS plant comparison p=0.4957. VLP-CPS yeast comparison 

p=0.6873.  
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Figure 87 Effect of VLP on LolC-CPS conjugate efficacy against 489 x MLD 

B. pseudomallei K96243 challenge. Mice (n = 15 mice per group) were immunized with LolC-

CPS and LolC-CPS with the addition of plant expressed VLP, formulated with Alum, via the i.m. 

route on days 0, 14 and 28. Five weeks after the final immunisation, mice were challenged i.p. 

with 489 x MLD of B. pseudomallei K96243. Significance was determined by the log-rank 

(Mantel-Cox) test (p=0.24). 

 

 

Figure 88 Efficacy comparison of plant purified VLPs conjugated to CPS, with and 

without addition of LolC, to Crm197-CPS against 489 x MLD B. pseudomallei K96243 

challenge. Mice (n = 15 mice per group) were immunized with Crm197-CPS, VLP-CPS (plant) 

and VLP-CPS (plant) +LolC, formulated with Alum, via the i.m. route on days 0, 14 and 28. Five 

weeks after the final immunisation, mice were challenged i.p. with 489 x MLD of 

B. pseudomallei K96243. Significance was determined by the log-rank (Mantel-Cox).  
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Figure 89 ELISA analysis of the CPS specific IgG antibody response from mouse sera 

obtained from the 489 x MLD challenge study. Mice were immunised on days 0, 14 and 28 

via the i.m. route. Sera was obtained from mice 14 days after the final boost, and titres of IgG 

specific for CPS were determined by ELISA. Individual symbols represent a cage of 5 mice.     

*p ≤0.05). LOD = limit of detection 

 

Figure 90 ELISA analysis of the CPS specific IgM antibody response from mouse sera 

obtained from the 489 x MLD challenge study. Mice were immunised on days 0, 14 and 28 

via the i.m. route. Sera was obtained from mice 14 days after the final boost, and titres of IgM 

specific for CPS were determined by ELISA. Individual symbols represent a cage of 5 mice. 

****p ≤0.0001. LOD = limit of detection. 
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Figure 91 ELISA analysis of the LolC specific IgG antibody response from mouse sera 

obtained from the 489 x MLD challenge study. Mice were immunised on days 0, 14 and 28 

via the i.m. route. Sera was obtained from mice 14 days after the final boost, and titres of IgG 

specific for CPS were determined by ELISA. Individual symbols represent a cage of 5 mice. 

LOD = limit of detection. 

 

 

Figure 92 ELISA analysis of the LolC specific IgM antibody response from mouse sera 

obtained from the 489 x MLD challenge study. Mice were immunised on days 0, 14 and 28 

via the i.m. route. Sera was obtained from mice 14 days after the final boost, and titres of IgM 

specific for CPS were determined by ELISA. Individual symbols represent a cage of 5 mice. 

LOD = limit of detection. 
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vaccines (p=0.1385 and p=0.0982 respectively). At 489 x MLD, the protective 

efficacy of the Crm197-CPS vaccine is significantly greater than from VLP-CPS 

(p=0.0185). When survival data from all challenge doses is combined (Figure 

93 - All data), there is no significant difference in protection between the 

Crm197-CPS and VLP-CPS vaccine (p=0.5458). 

 

 

Figure 93 Efficacy comparison of vaccine antigens to 103, 240 and 489 x MLD B. 

pseudomallei K96243 challenge. Mice were immunized with CPS, Crm197-CPS, VLP-CPS, 

formulated with Alum, and adjuvant (Alum), via the i.m. route on days 0, 14 and 28. Five weeks 

after the final immunisation, mice were challenged i.p. with 103, 240 or 489 x MLD of 

B. pseudomallei K96243. Significance was determined by the log-rank (Mantel-Cox). 103 and 

240 x MLD, n=6 per group. 489 x MLD n=15 per group 
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expressed VLPs contained this motif which may have resulted in the poor 

protective efficacy of the yeast expressed VLPs. 

 

190 female BALB/c mice were vaccinated via the intramuscular route according 

to the groups in Table 10 (5-15 mice per group) on three separate occasions, 

challenged with 2.97 x 105 CFU (399 x MLD) of B. pseudomallei K96243 by the 

IP route and observed for 35 days. The challenge dose was high to improve the 

chance of observing differences in efficacy between the proteins. These 

proteins were added to the Crm197-CPS vaccine due to the significantly 

increased protective efficacy from Crm197-CPS at high challenge doses seen in 

the previous study.  
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Cohort Vaccine 
Number of mice 

 

Adjuvant 

A VLP D3K6D3 (plant) 5 Alhydrogel 

B VLP D3K6D3 (yeast) 5 Alhydrogel 

C Crm197 5 Alhydrogel 

D PBS – no challenge  5 Alhydrogel 

E PBS 10 Alhydrogel 

F 
VLP-CPS D3K6D3 

(plant) 
15  Alhydrogel 

G 
VLP-CPS D3K6D3 

(yeast) 
15  Alhydrogel 

H 
VLP-CPS D3K6D3 

(yeast) + Hcp6 
15  Alhydrogel 

I Crm197-CPS 15  Alhydrogel 

J Crm197-CPS + PotF 15  Alhydrogel 

K Crm197-CPS + OppA 15  Alhydrogel 

L Crm197-CPS + Hcp6 15  Alhydrogel 

M Crm197-CPS + LolC 15  Alhydrogel 

N PotF 10  Alhydrogel 

O OppA 10  Alhydrogel 

P Hcp6 10  Alhydrogel 

Q LolC 10  Alhydrogel 

 

Table 10 Experimental plan for assessment of Burkholderia protein and VLP expression 

system efficacy, detailing vaccine candidates, number of mice and adjuvant. Each cohort 

were challenged with 399 x median lethal doses of B. pseudomallei K96243 via the intra-

peritoneal route and observed for 35 days. 
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At formulation, vaccines were diluted for each mouse to receive 5 µg per dose 

of CPS. Due to variation in CPS conjugation efficiency between the conjugates 

this resulted in the relevant mice receiving 2 µg VLP (plant), 1 µg VLP (yeast) or 

17 µg Crm197. All Burkholderia proteins were administered at 5 µg per dose.  

The addition of Burkholderia proteins as co-antigens with the Crm197-CPS 

conjugate gave no significant difference in protection compared to the Crm197-

CPS only vaccinated group (p=0.7335, Figure 94). However, Table 11 shows 

that a Crm197-CPS conjugate containing LolC offers the greatest median 

survival. For this reason Crm197-CPS conjugate with LolC was used as the 

basis to assess the protective efficacy of different adjuvants in the next study.  

The use of Burkholderia proteins as vaccines alone gave significantly less 

protection than the Crm197-CPS vaccinated group (p≤0.0001, Figure 95). 

ELISA analysis of serum obtained after the third vaccination for the 

Burkholderia protein-specific IgG response (Figure 96) showed that antibody 

generated to LolC was significantly lower than for the other proteins, both as the 

sole vaccine antigen (p=0.0020) and added to the Crm197-CPS conjugate 

(p=0.0023). Interestingly, when added as co-antigens to Crm197-CPS, the LolC 

and Hcp6 specific IgG titres was significantly reduced compared to these 

proteins as sole antigens (p=0.0085 and p=0.0007 respectively). The reduction 

in Hcp6 specific IgG titer was not seen when Hcp6 was added to the VLP-CPS 

conjugate (p=0.4950). 

 

Survival in the Crm197-CPS conjugate vaccinated group was not significantly 

higher than survival in the plant VLP-CPS conjugate vaccinated group 

(p=0.1046, Figure 97) although mean time to death (MTTD) in the Crm197-CPS 

group was 26.5 days in comparison to 19.5 days with plant expressed VLP-

CPS.  

 

Vaccination with plant expressed VLPs conjugated to CPS resulted in 

statistically greater protection than yeast expressed VLPs (p=0.0469, Figure 98) 

although due to the concentration of antigen provided, each dose of VLP-CPS 

(yeast) vaccine contained 9 % alum, not 15 % like the other vaccine candidates. 

Addition of Hcp6 to yeast expressed VLP-CPS did not significantly increase 

protection to B. pseudomallei challenge (p=0.11) but did increase MTTD from 6 

days to 19.5 days (Figure 99). There was no statistical difference in the VLP-
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specific IgG titres generated by the plant or yeast expressed VLPs conjugated 

to CPS (p=0.3739, (Figure 100).  

 

ELISA analysis of serum obtained after the third vaccination detected a CPS 

specific IgG response to CPS in CPS-conjugate vaccinated mice (Figure 101). 

Significantly higher titers were observed in mice where the vaccine contained 

Crm197-CPS (p≤0.0001) and the addition of Burkholderia protein had no 

adverse effect on CPS specific titres (p=0.4516).  

 

Due to the large variation in bacterial burden within the liver, lung and spleen in 

animals surviving to study end, no statistical significance was observed 

although the geometric mean was lowest in the mice immunised with VLP-CPS 

(plant) (Figure 102). 

Figure 94 Efficacy comparison of Crm197-CPS conjugate vaccines with and without 

Burkholderia proteins added as co-antigens against 399 x MLD B. pseudomallei K96243 

challenge. Mice (n = 15 mice per conjugate vaccine group, n = 5 Crm197 control) were 

immunized with Crm197-CPS, and Crm197-CPS with the addition of PotF, OppA, Hcp6 or LolC, 

formulated with Alum, via the i.m. route on days 0, 14 and 28. Five weeks after the final 

immunisation, mice were challenged i.p. with 399 x MLD of B. pseudomallei K96243.  
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Table 11 Median survival of Crm197-CPS conjugate vaccine co-mixed with the 

Burkholderia proteins PotF, OppA, Hcp6 and LolC. 

 

 

 

Figure 95 Efficacy comparison of Burkholderia protein antigens against 399 x MLD 

B. pseudomallei K96243 challenge. Mice (n = 10 mice per Burkholderia protein group, n = 15 

for Crm197-CPS, n = 10 for adjuvant control) were immunized with LolC, Hcp6, OppA and PotF, 

formulated with Alum, via the i.m. route on days 0, 14 and 28. Five weeks after the final 

immunisation, mice were challenged i.p. with 399 x MLD of B. pseudomallei K96243. 
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Figure 96 ELISA analysis of the Burkholderia protein specific IgG antibody response 

from mouse sera obtained from the 399 x MLD challenge study. Mice were immunised on 

days 0, 14 and 28 via the i.m. route. Sera was obtained from mice 14 days after the final boost, 

and titres of IgM specific for CPS were determined by ELISA. Individual symbols represent a 

cage of 5 mice. *** p=0.0007, ** p=0.0085).  

 

Figure 97 Efficacy comparison of plant-expressed VLPs conjugated to CPS vs Crm197-

CPS against 399 x B. pseudomallei K96243 challenge. Mice (n = 15 mice per group, n = 10 

adjuvant control, n = 5 Crm197, VLP controls) were immunized with antigens formulated with 

Alum, via the i.m. route on days 0, 14 and 28. Five weeks after the final immunisation, mice 

were challenged i.p. with 399 x MLD of B. pseudomallei K96243. Significance was determined 

by the log-rank (Mantel-Cox). 
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Figure 98 Efficacy comparison of plant-expressed VLPs conjugated to CPS vs yeast 

expressed VLPs conjugated to CPS against 399 x B. pseudomallei K96243 challenge. 

Mice (n = 15 mice per conjugate vaccine group, n = 5 VLP controls) were immunized with 

antigens formulated with Alum, via the i.m. route on days 0, 14 and 28. Five weeks after the 

final immunisation, mice were challenged i.p. with 399 x MLD of B. pseudomallei K96243. 

Significance was determined by the log-rank (Mantel-Cox). 

 

 

 

Figure 99 Efficacy comparison of yeast-expressed VLPs conjugated to CPS with and 

without Hcp6 against 399 x B. pseudomallei K96243 challenge. Mice (n = 15 mice per 

group) were immunized with antigens formulated with Alum, via the i.m. route on days 0, 14 and 

28. Five weeks after the final immunisation, mice were challenged i.p. with 399 x MLD of 

B. pseudomallei K96243. Significance was determined by the log-rank (Mantel-Cox). 
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Figure 100 ELISA analysis of the VLP specific IgG antibody response from mouse sera 

obtained from the 399 x MLD challenge study. Mice were immunised on days 0, 14 and 28 

via the i.m. route. Sera was obtained from mice 14 days after the final boost, and titres of IgG 

specific for VLP were determined by ELISA. Individual symbols represent a cage of 5 mice. NS, 

no statistical significance (determined by 1-way ANOVA). LOD: limit of detection.  
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Figure 101 ELISA analysis of the CPS specific IgG antibody response from mouse sera 

obtained from the 399 x MLD challenge study. Mice were immunised on days 0, 14 and 28 

via the i.m. route. Sera was obtained from mice 14 days after the final boost, and titres of IgG 

specific for CPS were determined by ELISA. Individual symbols represent a cage of 5 mice. ** p 

≤0.01 (determined by 1-way ANOVA). LOD: limit of detection  
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Figure 102 Liver, Spleen and Lung bacterial burden from the 399 x MLD challenge study. 

35 days after challenge with 399 x MLD B. pseudomallei, remaining mice were culled, organs 

were removed, and bacterial burdens were determined. Individual symbols represent an 

individual mouse. Horizontal lines indicate geometric means for each group.  
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5.4.3 Animal efficacy study – formulation 

 

The primary aim of this study was to directly compare the effect of different 

adjuvant formulations on the protective efficacy of a conjugate vaccine 

containing CPS and Crm197.  

 

A secondary aim was to compare the efficacy of Tandem CoreTM based VLPs 

and HBcAg (non-Tandem CoreTM) VLPs as a platform for a CPS-based 

conjugate vaccine. As peptide sequences could not successfully be inserted 

into Tandem CoreTM based VLPs, the need for this construct was not apparent.  

The final aim was to assess the effect of vaccine immunisation route on vaccine 

efficacy. 

 

205 female BALB/c mice were vaccinated via the intramuscular (IM) or 

subcutaneous (SC) route according to the groups in Table 12 (15 mice per 

group) on three separate occasions, challenged with either 3.35 x 105 CFU (450 

x MLD) or 5.58 x 105 CFU (750 x MLD) of B. pseudomallei K96243 by the IP 

route and observed for 35 days. A high challenge dose was administered to 

increase the chances of discriminating between vaccine groups and is based on 

the preceding studies.  

 

To monitor the development of the immune response, sera were taken at two 

week intervals after each immunisation by tail bleeds from each mouse for 

antibody assessment by ELISA. Cell-mediated immunity was also assessed in 

mice following the vaccination schedule when the mice were culled and 

splenocyte IFN- response assessed (Chapter 2, method 2.14.8). 
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Vaccine 
Number of mice 

 

Adjuvant 

Non-vaccinated 

(750 x MLD) 
10 PBS 

PBS 

(750 x MLD) IM 
10 Alhydrogel® 

Crm197-CPS + LolC 

(750 x MLD) IM 
20 Alhydrogel® 

PBS 

(750 x MLD) IM 
10 

Poly(I:C)  + 

Alhydrogel® 

Crm197-CPS + LolC 

(750 x MLD) IM 
20 

Poly(I:C)  + 

Alhydrogel® 

PBS 

(750 x MLD) IM 
10 AddaVaxTM 

Crm197-CPS + LolC 

(750 x MLD) IM 
20 AddaVaxTM 

PBS 

(750 x MLD) 

1st/2nd IM 3rd SC 

10 AS04 

Crm197-CPS + LolC 

(750 x MLD) 

1st/2nd IM 3rd SC 

20 AS04 

PBS 

(750 x MLD) SC 
10 

Poly(I:C)  + 

Alhydrogel® 

Crm197-CPS 

(750 x MLD) SC 
10 

Poly(I:C)  + 

Alhydrogel® 
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Crm197-CPS 

(750 x MLD) IM 
10 

Poly(I:C)  + 

Alhydrogel® 

Naïve 

(450 x MLD) 
5 PBS 

Yeast tandem core VLP-

CPS 

(450 x MLD) IM 

15 Alhydrogel® 

Yeast monomeric VLP-CPS 

(450 x MLD) IM 
15 Alhydrogel® 

Yeast monomeric VLP 

(450 x MLD) IM 
5 Alhydrogel® 

Yeast tandem core VLP 

(450 x MLD) IM 
5 Alhydrogel® 

 

Table 12 Experimental plan for Adjuvant selection study detailing vaccine candidates, 

number of mice, adjuvant and immunisation route. Each cohort were challenged with 450 or 

750 x median lethal doses of B. pseudomallei K96243 via the IP route and observed for 35 

days. 

 

At formulation, vaccines were diluted for each mouse to receive 5 µg per dose 

of CPS. Due to variation in CPS conjugation efficiency between the conjugates 

this resulted in mice receiving 0.2 µg VLP (tandem coreTM), 0.3 µg VLP 

(monomeric) or 7 µg Crm197. Burkholderia proteins were administered at 5 µg 

per dose. 

 

The main focus of the study was to assess the difference in protective efficacy 

of a Crm197-CPS conjugate with the Burkholderia protein LolC added as a co-

antigen with four different adjuvants; Alhydrogel®, Poly (I:C), AddaVaxTM or 

AS04. These groups were immunized by the intramuscular (IM) route. There 

was no significant difference in protective efficacy between any of the adjuvants 
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(p=0.3578, Figure 103) although median survival was greatest in the groups 

that received Alum and Poly (I:C) with alum (Table 13).  

 

Following vaccine administration however, the development of severe swellings 

at the injection site in mice that received AS04 resulted in the cull of one mouse 

following the second vaccination. To avoid further animal loss, the third 

vaccination for groups that received AS04 was altered to the subcutaneous 

route.  

 

Analysis of the splenocyte IFN- recall response to the Crm197 carrier protein 

from these mice revealed a statistically significant increase in IFN- in those 

mice vaccinated with the Poly (I:C) + Alhydrogel® adjuvant (p≤0.0001) 

compared to mice vaccinated with Alum, indicating that the Poly(I:C) + 

Alhydrogel® adjuvant offers the greatest enhancement to carrier protein 

immunogenicity (Figure 104).  

 

This is also confirmed by ELISA analysis of the Crm197 specific IgG response 

from mouse sera taken after each vaccination. The results indicate that 

Alhydrogel® vaccinated mice have significantly lower Crm197-specific IgG titres 

following the third vaccination then mice that received MF59TM (p≤0.01) or Poly 

(I:C) + Alhydrogel (p≤0.0001) (Figure 105). 

 

Following the third vaccination, LolC-specific IgG titres were significantly lower 

in the Alhydrogel® vaccinated groups (p=0.0076). Interestingly, after the second 

vaccination, IgG antibody titres to LolC were significantly higher in the mice that 

received AS04 (p≤0.0001) (Figure 106). 

 

CPS specific IgG and IgM titres were at the limit of detection from the Crm197-

CPS conjugates and so are not presented. 

 

To provide a comparison in conjugate protective efficacy between immunisation 

routes, mice were vaccinated by the intramuscular and subcutaneous routes 

with Crm197-CPS. No significant difference in protection was observed 

(p=0.0902) (Figure 107). 
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CPS specific titres from the Dstl vaccines given by either route were at the limit 

of detection for the assay and are not reported. 

 

In this study, the protective efficacy of a VLP-CPS conjugate vaccine made of 

Tandem CoreTM VLPs was compared against a VLP assembled from HBcAg 

(Conjucore). There was no significant difference in protection between the two 

vaccines (p=0.8787, Figure 108) but the median survival was 3 days from 

Tandem CoreTM vaccinated mice and 11 days from Conjucore. 

 

Figure 109 shows the VLP specific IgG response from mouse sera taken after 

each vaccination determined by ELISA. The IgG response was significantly 

higher following the second and third vaccination in those mice that received 

HBcAg VLPs (p≤0.01 and p≤0.0001 respectively). This may result from the 

difference in VLP concentration that the mice received. For each dose of 5 µg 

CPS, mice received 0.2 µg of Tandem CoreTM VLP or 0.3 µg of HBcAg VLP. 

This may also account for the relatively low IgG response to VLPs in 

comparison to previous studies where the amount of VLPs each mouse 

received was greater than 1 µg.  

 

Neither mouse that received Crm197-CPS + AS04 nor Tandem CoreTM VLP-

CPS that survived until the end of the study had cleared B. pseudomallei 

infection from the spleen. Both animals had lost approximately 10 % of 

bodyweight and the continued presence of clinical signs means that both 

animals would probably have succumbed to infection (data not shown). 
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Figure 103 Efficacy comparison of Crm197-CPS conjugate with different adjuvants 
against a 750 x MLD B. pseudomallei K96243 challenge. Mice (n = 15 mice per group) were 

immunized with Crm197-CPS + LolC formulated with Alum; MF59; Poly(I:C) + Alum; and AS04  

via the i.m. route on days 0, 14 and 28. Five weeks after the final immunisation, mice were 

challenged i.p. with 750 x MLD of B. pseudomallei K96243. Significance was determined by the 

log-rank (Mantel-Cox). 

 

 

 

Table 13 Median survival of mice following vaccination with Crm197-CPS + LolC 

adjuvantised with either Alhydrogel®, Poly (I:C) + Alhydrogel®, AddaVax
TM

 or AS04. 
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Figure 104 Vaccinated mice splenocyte IFN- recall response to Crm197 determined by 

ELISpot. Mice (n = 5 mice per group) were vaccinated on days 0, 14 and 28. Two weeks after 

the final boost, mice were culled, spleens removed and splenocytes cultured for antigen re-

stimulation and measurement of IFN-  by ELISpot (****p≤0.0001). 
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Figure 105 ELISA analysis of the Crm197 specific IgG antibody response from mouse 

sera obtained after each vaccination from the adjuvant selection study. Mice were 

immunised on days 0, 14 and 28 via the i.m. route. Sera was obtained from mice 14 days after 

the final boost, and titres of IgG specific for Crm197 were determined by ELISA. Individual 

symbols represent a cage of 5 mice. **** p≤0.0001, **p≤0.01).  

 

 

 

Figure 106 ELISA analysis of the LolC specific IgG antibody response from mouse sera 

obtained after each vaccination from the adjuvant selection study. Mice were immunised 

on days 0, 14 and 28 via the i.m. route. Sera was obtained from mice 14 days after the final 

boost, and titres of IgG specific for Crm197 were determined by ELISA. Individual symbols 

represent a cage of 5 mice. **** p≤0.0001, ** p≤0.01, * p≤0.05 (1-way ANOVA).  

 



223 

 

 

Figure 107 Effect of vaccination route on Crm197-CPS vaccine efficacy against a 750 x 

MLD B. pseudomallei K96243 challenge. Mice (n = 10 mice per group) were immunized with 

Crm197-CPS + LolC formulated with Poly(I:C) + Alum via the i.m. and s.c. route on days 0, 14 

and 28. Five weeks after the final immunisation, mice were challenged i.p. with 750 x MLD of 

B. pseudomallei K96243. NS, no statistical significance by the log-rank (Mantel-Cox) test. 

 

 

 

 

Figure 108 Efficacy comparison of Tandem Core
TM

 and monomeric core VLPs conjugated 
to CPS against a 450 x MLD B. pseudomallei K96243 challenge. Mice (n = 15 mice per 

group) were immunized with Tandem Core
TM

 VLP-CPS, and monomeric core VLP-CPS, 

formulated with Alum via the i.m route on days 0, 14 and 28. Five weeks after the final 

immunisation, mice were challenged i.p. with 450 x MLD of B. pseudomallei K96243. NS, no 

statistical significance by the log-rank (Mantel-Cox) test. 
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Figure 109 ELISA analysis of the VLP specific IgG antibody response from mouse sera 

obtained after each vaccination from the adjuvant selection study. Mice were immunised 

on days 0, 14 and 28 via the i.m. route. Sera was obtained from mice 14 days after the final 

boost, and titres of IgG specific for VLP were determined by ELISA. Individual symbols 

represent a cage of 5 mice. ** p ≤0.01, **** p ≤0.0001. (2-way ANOVA). 

 

5.5 Discussion 

 

The aim of this chapter was to assess the protective efficacy of conjugate 

vaccines in mice against intraperitoneal challenge with B. pseudomallei 

K96243. These candidates included capsular polysaccharide (CPS) conjugated 

to a non-toxic mutant of diphtheria toxin (Crm197-CPS), virus-like particles 

(VLP-CPS) and the Burkholderia protein LolC (LolC-CPS). The protective 

efficacy of several Burkholderia proteins were also determined as well as their 

impact on efficacy of a CPS conjugate vaccine when added as co-antigens. The 

effect of adjuvant selection on Crm197-CPS conjugate vaccine efficacy was 

also assessed with Alhydrogel®, Poly (I:C) + Alhydrogel®, AddaVaxTM and 

AS04. Finally, the effect of vaccination route, intramuscular or subcutaneous, on 

vaccine efficacy against bacterial challenge was also determined. These were 

investigated over four animal studies, each at different challenge doses.  

 

The use of each carrier protein reflects different levels of risk. A commercially 

available carrier protein such as Crm197 represents the lowest level of risk as 
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large-scale production of pure material, which can be used in man, is already 

available. The effectiveness of Crm197 as a carrier protein has also been 

demonstrated by its use in several licensed vaccines for meningococcal, Hib 

and pneumococcal disease (Knuf et al., 2011). The use of VLPs was a 

medium/high risk as their compatibility with Burkholderia antigens had not been 

demonstrated. The use of VLPs for the treatment of bacterial infections is also 

not well established as the main utility are as vaccine candidates or carrier 

proteins to viral or parasitic infections (Pumpens and Grens, 2001, Grgacic and 

Anderson, 2006, Kushnir et al., 2012). Methods for VLP extraction and 

purification are however available. The use of a Burkholderia protein as a 

carrier is high risk. To the author’s knowledge, no one has attempted 

conjugation of CPS to a Burkholderia protein, although Burkholderia O-

polysaccharide has been successfully conjugated with flagellin from the same 

species (Brett et al., 1996) and CPS conjugation to bovine serum albumin (Scott 

et al., 2014). While conjugation of CPS to a Burkholderia protein would be 

relatively straightforward, protective efficacy is completely unknown and is likely 

to vary with each different protein. Protein expression would also rely on generic 

methods which are not optimised for Burkholderia proteins.  

 

The first animal study was performed in order to determine an initial vaccine 

efficacy range. The protective efficacy of both VLP-CPS, constructed with VLPs 

expressed from N. benthamiana, and Crm197-CPS were assessed against two 

B. pseudomallei challenge doses of 103 and 240 x MLD. At both challenge 

doses the absolute level of survival was greatest in mice that received the VLP-

CPS vaccine although statistical significance over Crm197-CPS was not 

achieved. Combining the data from both challenge doses into a single survival 

curve resulted in significantly greater protection with VLP-CPS than Crm197-

CPS. ELISA analysis of mouse sera taken after the third vaccination showed 

the presence of CPS-specific IgM antibody titres in mice that received CPS and 

CPS-specific IgM and IgG antibody titres in the groups that received the 

conjugate vaccines. This finding was expected as the carrier protein stimulates 

development of T-cell dependent immunogenicity against the polysaccharide, 

which includes antibody isotype switching from IgM to IgG (Jones et al., 2005). 

Interestingly, CPS specific IgG titres were highest in the Crm197-CPS 

vaccinated groups suggesting that total IgG or IgM antibody titres are not 
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necessarily indicative of protection at these challenge doses. This is unusual as 

humoral immunity has been reported as an important mechanism of protection 

against B. pseudomallei infection (Silva and Dow, 2013) and for most other 

vaccines (Plotkin 2008).  

 

The second animal study determined the protective efficacy of Crm197-CPS, 

VLP-CPS constructed with VLPs expressed by P. pastoris (VLP-CPS (yeast)) 

and N. benthamiana (VLP-CPS (plant)) and LolC-CPS, at a higher challenge 

dose of 489 x MLD. The challenge dose was increased due to the high survival 

from VLP-CPS vaccinated mice in the previous study. At this dose, Crm197-

CPS provided significantly greater protection to B. pseudomallei challenge in 

vaccinated mice than VLP-CPS. Efficacy of the VLP-CPS (plant) conjugate 

mixed with LolC however, was not significantly different to Crm197-CPS which 

is in agreement with published data where addition of LolC to a CPS conjugate 

vaccine significantly improved survival (Scott et al., 2014).  

 

Crm197-CPS vaccinated mice had greater CPS-specific IgG titres. In 

conjunction with the previous study, this suggests that antibody titres become 

important for protection when the challenge dose is high. This is not unexpected 

as it is known that correlates of protection are often relative to the challenge 

dose (Plotkin 2008). A LolC-CPS conjugate gave significantly less protection 

than either the Crm197-CPS or VLP-CPS (plant) conjugate vaccine. The 

protective efficacy of LolC as the primary antigen was also poor as survival in 

vaccinated mice was not significantly different to mice vaccinated with adjuvant 

(Alhydrogel®) only. Reported data demonstrating the protective efficacy of LolC 

was at a much lower challenge dose of approximately 50 x MLD (Harland et al., 

2007) so it is possible that 489 x MLD is too high a challenge for LolC to provide 

protection as the primary antigen. High LolC-specific IgG titres, in groups that 

received LolC, demonstrate the difference between an immunogenic and 

protective antigen. The lack of CPS-specific antibody titres in mice vaccinated 

with LolC-CPS suggests LolC contains immunodominant epitopes which directs 

the immune response away from CPS. It has been reported that the ideal 

carrier protein should induce strong immune responses to the conjugated B-cell 

epitope without inducing a high antibody response to itself (Baraldo et al., 2004, 

Pobre et al., 2014). The use of other Burkholderia proteins may be successful.  
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The VLP conjugates made from plant expressed VLPs gave significantly better 

protection in mice to B. pseudomallei challenge than conjugates from yeast 

expressed VLPs. The reason for this is unknown but yeast expressed VLPs 

contained a double lysine (K1K1) binding motif for conjugation to CPS whereas 

plant expressed VLPs contained six lysine’s flanked on either side by 3 

aspartates (D3K6D3). As each lysine could theoretically conjugate CPS, plant 

expressed VLPs may conjugate more CPS molecules and the flanking 

aspartate (D3) moieties may have shielded the lysine positive charge leading to 

efficient VLP assembly. To determine whether the disparity in efficacy was due 

to these differences in the MIR of the VLPs, a yeast expressed VLP with the 

D3K6D3 insert was produced and tested in the following study.  

 

The third animal study in this thesis assessed the protective efficacy of 

Burkholderia proteins added as co-antigens with a Crm197-CPS conjugate 

against B. pseudomallei challenge at 399 x MLD. Published data reports that 

addition of LolC to a CPS conjugate vaccine significantly improved efficacy 

against B. pseudomallei challenge (Scott et al., 2014). This is not unexpected 

as cellular and humoral immune responses may be required for protection 

against B. pseudomallei challenge (Silva and Dow 2013) therefore addition of a 

melioidosis relevant protein antigen would be beneficial. Addition of 

Burkholderia proteins as co-antigens in this study gave no significant difference 

in protection to the Crm197-CPS only vaccinated group, although a Crm197-

CPS conjugate containing LolC offers the greatest median survival. The 

difference between this result and that of Scott et al. maybe due to the use of 

bovine serum albumin (BSA) by Scott as the carrier protein. LolC and Hcp6-

specific IgG titres were significantly reduced when added to Crm197-CPS 

compared to when the protein was administered as the primary antigen, which 

was also seen for LolC by Scott et al. The reduction in Burkholderia-specific IgG 

titres was not seen with the addition of PotF or OppA to Crm197, or Hcp6 to 

VLP-CPS (yeast). This suggests that within a vaccine, individual antigen 

immunogenicity affects the immune response to the other components. 

 

The poor protective efficacy of the Burkholderia proteins against 

B. pseudomallei challenge is probably a result of the challenge dose used in 
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this study as LolC and PotF have been shown to be protective at ~50 x MLD 

(Harland et al.,2007a) and Hcp6 at ~67 x MLD (Burtnick et al., 2011). 

 

An additional objective in this study was to compare plant and yeast expressed 

VLPs conjugated to CPS. As in the previous study, vaccination with plant 

expressed VLPs conjugated to CPS resulted in statistically greater protection in 

mice to B. pseudomallei challenge than yeast expressed VLPs. In this study, 

both VLP constructs contained a D3K6D3 binding motif for chemical 

conjugation to CPS, thereby discounting this structural difference as the reason 

for the difference in protection. It is not known why plant expressed VLPs are 

more efficacious. It is possible that despite the high purity of the VLPs, 

contaminants specific to the expression system remain and plant-derived 

contaminants act as an additional adjuvant increasing vaccine efficacy. 

Alternatively, yeast expression systems have differences in protein 

glycosylation to mammalian cells whereas plants do not (Mett et al., 2008). As 

expression of hepatitis B surface antigen for the licensed vaccine Recombivax 

HB® is expressed in yeast (Kushnir et al., 2012), it is unlikely that this is the 

reason. In communication with Mologic, it was reported that plant expressed 

VLPs were more robust than yeast expressed VLPs which may have effect 

conjugate stability. 

 

Vaccines consisting of pure or recombinant antigens can be less immunogenic 

than whole-cell alternatives and usually require an adjuvant to increase 

immunogenicity (Mohan et al., 2013). Aluminium salts are the most widely used 

human adjuvants and generate a strong Th2 response (Ghimire 2015) which 

means that Alhydrogel® may not provide full protection against B. pseudomallei 

infection if both humoral and cellular immune responses are required (Silva and 

Dow, 2013). Therefore, the final animal study assessed the protective efficacy 

of a Crm197-CPS conjugate vaccine containing LolC with four different 

adjuvants; Alhydrogel®, Poly (I:C) + Alhydrogel®, AddaVaxTM and AS04 in mice 

against 750 x MLD challenge of B. pseudomallei. There was no significant 

difference in protection between them although median survival was lower in 

groups that received AS04. The LolC and Crm197 specific IgG antibody 

response was lower in mice vaccinated with Alhydrogel®, indicating increased 

T-cell recruitment from the other adjuvants. The IFN- response to Crm197, the 
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classical indicator of a Th1 response, was only significantly improved with Poly 

(I:C) with Alhydrogel®. AddaVaxTM stimulates a mixed Th1 and Th2 response 

and AS04 Th1 (Hagan et al., 2012, Didierlaurent et al., 2009) so the lack of IFN-

 to Crm197 was unexpected but the immune response to an adjuvant is 

multifactorial and depends on the antigen and immune status of the host 

(O’Hagan et al., 2012). It is possible that Crm197 is predominantly processed 

as a Th2 stimulating antigen or that it is difficult to stimulate cell mediated 

reactions in BALC/c mice as they are Th2-biased. The suggestion in this thesis 

that CPS-specific antibody titres are not a good correlate of protection indicates 

that a Th1 stimulating adjuvant may still improve vaccine efficacy compared to 

Alhydrogel®, therefore assessment of alternative adjuvants is still justified. It 

may be appropriate for adjuvant assessment in C57BL/6 mice as they are Th1-

biased (Hoppe et al., 1999). The replacement of aluminium based adjuvants 

may be beneficial as Alhydrogel® cannot be frozen or lyophilised (Sivakumar et 

al., 2011) which is an important aspect of any military medical countermeasure 

as it can be difficult to maintain a cold chain.  

 

The inflammatory immune response at the injection site in mice that received 

AS04 resulted in the cull of one mouse following the second vaccination and a 

change in administration route from intramuscular to subcutaneous to avoid 

potential animal loss following the third vaccination. It is possible that this 

response was deleterious to the protective efficacy of the vaccine. Alternatively, 

the LolC-specific IgG titres were highest in mice that received AS04, whereas 

the Crm197-CPS specific IgG titres generated in mice that received this 

adjuvant were not significantly different to Alum vaccinated mice. This suggests 

that AS04 has directed the immune response towards LolC, which at this 

challenge dose is not protective.  

 

Adjuvants also considered include CpG and immune stimulating complexes 

(ISCOM). CpG is composed of small sequences of cytosine and guanine 

separated by phosphate and is a TLR9 agonist. It induces strong Th1 

responses and has been investigated for use in cancer, HIV and malaria 

vaccines (Lawson et al., 2011). ISCOM are ring structures containing 

cholesterol, phosphatidylcholine and saponins. They induce a Th1 and Th2 

immune response and have been investigated for use with influenza and cancer 
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vaccines (Levast et al., 2014). CpG and ISCOM were not included because 

they are still in the research phase and it will be many years before they can be 

used in the clinic.   

 

The final animal study also assessed the protective efficacy of a Crm197-CPS 

conjugate administered by either the subcutaneous or intramuscular route. 

There were no significant differences in survival or generation of CPS-specific 

IgG titres. Subcutaneous vaccination with these conjugates is an improvement 

to animal welfare as localised swelling at the injection site, which was seen in all 

studies in this thesis, may restrict mobility following intramuscular 

administration. Muscle fibre distension can also be painful following 

intramuscular injection (Ward, 2008). 

 

The advantage of the Tandem CoreTM system lies in the ability to manipulate 

the two antigenic loops of core protein dimers individually and had been 

selected on the basis that proteins could be expressed in a single MIR on a 

dimer spike (Peyret et al., 2015).  However, since this advantage could not be 

exploited, the efficacy of monomeric HBcAg VLPs conjugated to CPS was 

assessed in the final study against 450 x MLD challenge with B. pseudomallei. 

Conjucore, made by our collaborators at Mologic, is a full length HBV core 

protein that was engineered to introduce 3 lysine residues in the antigenic loop. 

The insert was charge neutralised by 3 alternate aspartic acid residues 

(DKDKDK). There was no significant difference in protection between the 

Tandem CoreTM based VLP conjugated to CPS and monomeric VLP-CPS 

thereby allowing the use of monomeric based VLPs for future studies.  

 

To summarise, VLP-CPS vaccines had greater efficacy than Crm197-CPS at 

the lower challenge doses of 103 and 240 x MLD whereas Crm197-CPS had 

greater efficacy at 399 and 489 x MLD. The significantly lower CPS-specific IgG 

antibody titres generated by a VLP-CPS conjugate suggests that titre is not 

indicative of vaccine efficacy at lower challenge levels but may become 

significant at higher challenge doses. This is unexpected as for nearly all 

vaccines, prevention of infection correlates with the induction of specific 

antibodies. For the three of the main bacterial pathogens that cause disease; 

H. influenzae type b, pneumococci, and meningococci, the correlates are 
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opsonophagocytic or bactericidal antibodies (Plotkin 2010). A possible 

explanation is that a VLP-CPS conjugate may generate low levels of high-

affinity antibody or is efficacious via a different, perhaps cellular mediated, 

mechanism. This effect is superior at low doses but at high doses bacterial 

numbers may overwhelm the immune response, and therefore the relatively low 

antibody titre, or denies the time needed for generation of a cellular response.  

 

The majority of mice surviving up to day 35 on all studies, with all vaccines, 

displayed continued bodyweight loss and clinical signs over this period. At study 

end it is possible that these mice had entered the chronic phase of melioidosis 

infection and would have eventually succumbed to the infection. It could be 

argued that these vaccine candidates had essentially extended the mean time 

to death as sterilising immunity was not achieved in the majority of animals. 

While this may be true, it would be argued that the challenge doses used across 

these studies were chosen to discriminate the protective efficacy between 

vaccine candidates only and they are not indicative of challenge doses that a 

vaccine would be expected to provide full protection against and that despite 

the high challenge doses, several mice did clear B. pseudomallei infection from 

the liver, lung or spleen. The pathology and clinical signs associated with the IP 

route of infection in this thesis correlate well with those reported by Welkos et 

al., (2015). The most common pathological finding included abscess formation 

in the spleen and splenomegaly. A few animals developed large swellings on 

the tail. The majority of mice were culled due to immobility, with no movement 

despite provocation. Some of the mice culled had developed rear limb paralysis. 

As reported by Welkos et al., (2015), mice usually presented with a limp before 

progression to paralysis.  

 

An important consideration for production of a conjugate vaccine and comparing 

protective efficacy is the polysaccharide to carrier protein ratio. Licensed 

vaccines typically have a 1:1 ratio by weight (Plotkin et al., 2013). Production of 

a CPS vaccine is made difficult by the unknown chain length of CPS and the 

difficulty of reliable fragmentation of CPS whilst retaining immunogenicity 

(Chapter 3; Burkholderia capsular polysaccharide). Inefficiencies with 

carbohydrate coupling to protein by reductive amination also results in different 

CPS to carrier protein ratios (Gildersleeve et al., 2008). Assessment of the 
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importance of CPS-protein ratio is difficult with the VLP conjugates due to 

differences in construct binding motifs and use of different expression systems. 

For this reason, the effect of CPS-protein ratio on vaccine efficacy across these 

studies has focussed on the Crm197-CPS conjugates only, without the addition 

of LolC (Figure 110). 

Three of the Crm197-CPS conjugates have polysaccharide to protein ratios in 

favour of CPS (efficacy assessed at 103, 240 and 489 x MLD challenge doses). 

For these, the protective efficacy of the conjugate decreases as the challenge 

dose increases. At a challenge dose of 399 x MLD, the CPS: Crm197 ratio 

(w/w) was in favour of Crm197. At this challenge dose, the protective efficacy of 

the vaccine is not significantly different to vaccine efficacy at 240 x MLD, 

although the CPS-specific IgG titre is significantly lower. As carrier protein is 

critical for development of a TD response to polysaccharide, it is perhaps not 

surprising that a greater amount of Crm197 leads to an improved immune 

response to CPS and protective efficacy against challenge. A greater amount of 

polysaccharide may lead to greater polysaccharide-specific antibody titres but 

this is offset by the comparatively reduced T-cell help and reduced antibody 

affinity or protective functionality. 

 

The MW of CPS is approximately 200 kDa, whilst that of Crm197 is 58.4 kDa, 

therefore a w/w ratio of 1:3.4 is required to achieve a 1:1 ratio based on 

molecular weight. This is exactly the ratio for the vaccine assessed against 399 

x MLD. This suggests that production of a Crm197-CPS conjugate should aim 

for antigen equivalency based on molecular weight rather than the amount of 

each component administered.  
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Figure 110 Efficacy of Crm197-CPS conjugate vaccines with different CPS-protein ratios 

against 103, 240, 399 and 489 x MLD B. pseudomallei K96243 challenge. Mice were 

immunised with Crm197-CPS formulated with Alum, via the i.m. route on days 0, 14 and 28. 

Five weeks after the final immunisation, mice were challenged i.p. with 103, 240, 399 or 489 x 

MLD of B. pseudomallei K96243. Significance was determined by the log-rank (Mantel-Cox). n 

= 6 for 103 and 240 x MLD, n = 15 for 399 and 489 x MLD. 

 

With large differences in CPS-protein ratios (w/w) in favour of CPS, the carrier 

protein may not be displayed efficiently to the immune system and a ratio in 

favour of the protein may be insufficient to generate a CPS antibody response if 

the protein is present in excessive amounts. This has been demonstrated in 

paediatric studies with meningococcal group C (MenC) conjugates where 

Crm197 amounts greater than 47 µg per dose lowered geometric mean 

antibody titres to MenC (Lee and Blake 2012).  

 

Analysis of the CPS to VLP ratio on vaccine efficacy is more complex due to 

changes in binding motif and expression system but Figure 111 suggests that 

for yeast expressed VLPs conjugated to CPS, the CPS to protein ratio does not 

make any significant difference to protective efficacy and that an increase in the 

ratio of CPS does not improve CPS specific IgG antibody titres. The CPS-VLP 

ratio for nearly all constructs were in favour of CPS with the exception of VLP-

CPS (yeast) assessed against 489 x MLD challenge (1:1.4). As the MW of the 

Tandem CoreTM is approximately 39 kDa and CPS ~200 kDa then the CPS-

protein ratio would need to be 1:5.1 to achieve a 1:1 ratio based on molecular 
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weight. This assumes however, that each Tandem CoreTM is conjugated to a 

CPS molecule which is unknown.  

 

 

Figure 111 Efficacy of VLP-CPS conjugate vaccines with different CPS-protein ratios 

against 399, 450 and 489 x MLD B. pseudomallei K96243 challenge. Mice (n = 15 mice per 

group) were immunised with yeast expressed VLPs conjugated to CPS formulated with Alum, 

via the i.m. route, on days 0, 14 and 28. Five weeks after the final immunisation, mice were 

challenged i.p. with 399, 450, or 489 x MLD of B. pseudomallei K96243. Significance was 

determined by the log-rank (Mantel-Cox).  

 

Several difficulties remain in the production of a CPS conjugate vaccine. It is 

reported that free polysaccharide can reduce the effectiveness of a conjugate 

vaccine (Rodriguez et al., 1998). In licensed vaccines, free polysaccharide is 

removed by size fractionation although this is made possible by hydrolysis of 

the polysaccharide to small chain lengths prior to conjugation (Plotkin et al., 

2013). As CPS cannot be hydrolysed reproducibly and without potential removal 

of the acetyl group (Chapter 3; Burkholderia capsular polysaccharide), free CPS 

cannot easily be removed from the conjugate and there is no method available 

to determine the amount of free or conjugated polysaccharide. This problem is 

faced by all researchers of Melioidosis vaccines and may reduce the potency of 

vaccine candidates.  
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5.6  Supplementary information 

 

5.6.1 VLP expression systems 

 

5.6.1.1 Expression and purification of VLPs in E.coli 

 

While high levels of tandem core expression were achieved with the use of 

E. coli (Chapter 2, Method 2.12.1), protein purified by size exclusion 

chromatography was of approximately 40 % purity (determined by SDS PAGE). 

Transmission Electron Microscopy (TEM) analysis revealed that the tandem 

core had formed heterogeneous, irregularly shaped assemblies. Over time 

these miss-folded VLPs tended to form aggregates with contaminating host 

protein and were therefore not suitable for conjugation to CPS (Figure 112). 

 

 

Figure 112 TEM analysis of E. coli expressed tandem core VLPs. 

 

5.6.1.2 Expression and purification of VLPs from baculovirus 

 

The baculovirus expression system is a versatile platform for the production of 

recombinant proteins requiring multiple post-translational modifications (Liu et 

al., 2012) and FDA approval for an influenza recombinant product made in 

baculovirus was attained in 2012. A baculovirus expression system was 

investigated and found to be capable of producing the VLPs (Chapter 2, Method 

2.12.2). Expression was reasonable but was contaminated with baculovirus 

itself as capsids were clearly visible by electron microscopy (Figure 113). 
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Purification by CL4B size exclusion chromatography resulted in co-elution of 

tandem core. 

 

 

 

Figure 113 Electron micrograph of VLP from Baculovirus 

5.6.1.3 Expression of tandem core constructs in Nicotiana benthamiana 

 

Plants are considered as a novel, speedy and economical production platform 

for VLP-based vaccines (Chen and Lai, 2013) and therefore were investigated 

in this work. Expression in plants was achieved using Agrobacterium-mediated 

transient transformation technology with six Nicotiana benthamiana plants 

producing approximately 3 mg of rVLP containing a K6 insert at 90 % purity 

(Chapter 2, Method 2.12.3). This material was shown to be highly immunogenic 

for core protein and from 100 g infiltrated leaves, 20 mg VLP were purified with 

an estimated purity of > 80 % by SDS PAGE and TEM analysis (Figure 114).  

 

 

Figure 114 SDS PAGE (a) western blot (b), and negative stain TEM analysis of purified 

VLP. 1. Protein standards, 2. Purified VLPs (neat), 3 Purified VLPs (1:10 diluted). 
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5.6.2 Expression of tandem core constructs in Pichia pastoris 

 

Transformation of P. pastoris with the tandem core construct, codon optimised 

for expression in P. pastoris, followed by selection of high expression clones 

using zeocin concentrations up to 10 mg / mL resulted in high levels of protein 

expression. TEM analysis of cell lysates revealed that this construct produced 

very high yields of symmetrical VLPs with the expected size (34-38 nm) and 

morphology at an estimated 90 % purity. Immunogold labelling with negative 

stain TEM confirmed the presence of HBV core (Data not shown). 
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Chapter 6: Discussion 

 

6.1 Introduction 

 

Burkholderia capsular polysaccharide (CPS) is one of the main surface-

associated antigens of B. pseudomallei and B. mallei (Tuanyok et al., 2012) and 

is a known virulence determinant demonstrated by the fact that B. pseudomallei 

mutants lacking CPS have a 105-fold increase in the median lethal dose (MLD) 

in an animal model (Atkins et al., 2002). CPS has also been shown to be a 

protective antigen in animal models against B. pseudomallei challenge (Nelson 

et al., 2004) and is therefore a good candidate for vaccine development. 

 

The aim of this thesis was to assess the protective efficacy of a capsular 

polysaccharide protein conjugate vaccine utilising Tandem CoreTM, (VLPs), 

Crm197 and the Burkholderia protein LolC against B. pseudomallei challenge. 

This work was made up of three main objectives. The first was to investigate a 

potentially less-expensive source of CPS expressed by B. thailandensis E555. 

This work included optimising purified CPS extraction, and determining the 

importance of the CPS acetyl moiety to inform synthetic CPS production. The 

second was to identify Burkholderia proteins and the key immunogenic regions 

that could be used as co-antigens with a CPS-based conjugate vaccine. The 

final objective was to test the immunogenicity and protective efficacy of 

developed CPS conjugate vaccines in mice against an intraperitoneal 

B. pseudomallei challenge and assess adjuvant effect on efficacy. 

 

6.2 Summary of results 

 

6.2.1 CPS extraction and optimisation 

 

A primary objective of this thesis was to optimise the extraction of CPS from 

Burkholderia species with a focus on improving yield or lowering cost of 

production (Chapter 3: Burkholderia capsular polysaccharide).  
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The work carried out in this project furthers the results of Sim et al., (2010) by 

demonstrating that the CPS expressed by B. thailandensis E555 is structurally 

and immunologically indistinguishable from the CPS expressed by 

B. pseudomallei and B. mallei. The Advisory Committee on Dangerous 

Pathogens (ACDP) categorises B. pseudomallei as a Hazard Group 3 organism 

(approved list of Biological agents, HSE, 2013). This is defined as a biological 

agent that can cause severe human disease but effective prophylaxis or 

treatment is available. This means that B. pseudomallei  has to be handled in 

containment level 3 (CL3) laboratories, which in the UK means the use of 

specialised laboratories and manipulation of the organism within a safety 

cabinet or isolator. This makes work at CL3 burdensome, time-consuming and 

expensive. Local procedures at Dstl also restrict the volume of bacterial culture 

that can be grown to 100 mL in a single volume. Given that the method for CPS 

extraction requires two litres of bacterial culture, this makes the use of 

B. pseudomallei onerous. In addition, the extraction procedure generates up to 

40 litres of phenol waste and involves ultracentrifugation, freeze-drying and gel 

filtration (Perry et al., 1995). All of these would be difficult to perform in a 

containment level 3 laboratory. B. thailandensis is not classified as hazardous 

by the ACDP and is considered essentially avirulent. CPS extraction from 

B. thailandensis can therefore be performed at lower levels of containment and 

this is highly advantageous in terms of cost, time and safety. 

 

Extraction of CPS from B. thailandensis E555 was initially attempted by ethanol 

precipitation and phenol extraction, but both methods were unsuccessful. 

Utilising a modified hot-phenol extraction method used in previous studies 

(Perry et al., 1995), native Burkholderia CPS was successfully extracted. This 

CPS was used for the development of a reliable and robust ELISA in order to 

measure CPS concentration. This was an invaluable tool for yield optimisation.  

Optimisation of purified CPS extraction focussed on improving yield by 

maximisation of bacterial culture CPS content. I hypothesised that a greater 

input would translate into a greater output and therefore reduce the cost of 

purified CPS. Other options considered to decrease cost were reducing the time 

taken to complete the extraction process by removal of unnecessary steps; and 

replacing phenol given the toxicity of the chemical and necessity to incinerate 

phenol-contaminated waste. Whilst these options were worthy of investigation, 
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maximising yield by increasing culture CPS concentration was considered to 

have the greatest potential impact. 

 

The results from the CPS optimisation showed that the use of a bacterial starter 

culture, an extended incubation time, use of baffled flasks and enhanced 

phytone peptone broth increased CPS culture content 8-fold. However, the 

translation of this to yield of purified CPS is uncertain. Calculation of CPS was 

performed on live bacterial cultures so it is not unexpected that a multi-step 

extraction process, taking approximately 5 weeks to complete, would lead to a 

variable purified CPS yield. A CPS extract from B. thailandensis cultured in 

enhanced phytone peptone broth resulted in a yield of approximately 9 mg of 

purified CPS, which has been previously achieved with cultures in LB media. As 

CPS yield has varied from 0.5 to 18 mg with LB broth, further extractions would 

have to be performed utilising enhanced phytone peptone broth before a 

conclusion can be reached as to whether this is reproducibly increasing CPS 

yield.  

 

Demonstration that CPS is released into the supernatant of a B. thailandensis 

E555 culture offers the opportunity to increase CPS yield as the supernatant is 

discarded in the current extraction method (Perry et al., 1995). The feasibility of 

this approach is however unclear. Extraction of CPS from one litre of culture 

supernatant was attempted, but resulted in a negligible quantity of purified CPS 

(<1 mg). It is clear that the method for isolating CPS from supernatant will 

require optimisation to resolve this problem. 

 

6.2.2 CPS immunogenicity 

 

There is potential to lower the production cost of CPS by chemical synthesis of 

the molecule which is technically challenging due to the presence of an acetyl 

group on the second carbon. Less challenging would be synthesis of the 

molecule without this moiety but recent work suggested that the acetyl group is 

essential for the interaction of the CPS epitope with a monoclonal antibody 

(Marchetti et al., 2015). 
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The development of an ELISA assay for CPS quantification also allowed for 

investigation of the importance of the acetyl group on immunogenicity. A total 

lack of anti-CPS monoclonal binding affinity was observed over a range of 

deacetylated CPS concentrations. This result was confirmed with three other 

anti-CPS monoclonal antibodies at Dstl. The importance of the acetyl group on 

CPS immunogenicity was confirmed in the animal study by A. Scott at Dstl and 

CPS-specific antibody analysis in this thesis. Deacetylated CPS was 

significantly less efficacious against B. pseudomallei challenge and sera from 

mice vaccinated with deacetylated CPS did not recognise CPS (Chapter 3: 

Burkholderia capsular polysaccharide). This result will guide the manufacture of 

synthetic CPS and development of a purified CPS-based vaccine, when 

production of known chain-lengths of CPS may be important. If this were 

achieved by hydrolysis, this might also remove a proportion of acetyl groups. 

 

6.2.2.1 Anti-CPS antibody sequencing 

 

The sequences of described anti-CPS monoclonal antibodies were investigated 

to determine heterogeneity. The high sequence homology of anti-CPS 

monoclonal antibodies suggests that the CPS epitope is highly restricted and 

underlines the importance of the acetyl group. The anti-CPS antibodies show 

high sequence homology to germline IGKV8-28*01 and IgHV6-6*01 (Chapter 4: 

Immunogenic Burkholderia proteins). This is also seen in antibodies that 

recognise C-pneumococcal polysaccharide backbone and F. tularensis O-

antigen. This suggests that antibodies raised against bacterial polysaccharides 

are derived from a restricted set of germline sequences that do not undergo 

extensive maturation. This is already suggested for pneumococcal C-

polysaccharide (Fernandez-Sanchez et al., 2009) and for light-chain antibody 

responses in humans to Hib CPS (Adderson et al., 1992). 

 

6.2.3 VLP fusion constructs 

 

An initial aim of this work was to generate a VLP based vaccine by insertion of 

whole sequences or key immunogenic regions of Burkholderia proteins into the 

Tandem CoreTM construct. However, protein insertion into major 
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immunodominant region 1 or 2 prevented VLP assembly, but the expressed 

Burkholderia protein LolC retained antibody epitopes which suggests correct 

folding of LolC had occurred. Whilst the physicochemical properties of the 

Burkholderia proteins may hinder VLP formation, it is possible that insertion of 

foreign sequences into Hepatitis B core VLPs is restricted. It may be that only 

small, hydrophilic proteins (e.g. green fluorescent protein) or peptide 

sequences, as has been demonstrated for influenzae (Tsybalova et al., 2015), 

can be added to VLPs. 

 

6.2.4 CPS conjugate vaccine efficacy 

 

The primary objective of this project was to compare the protective efficacy of a 

VLP-CPS conjugate vaccine against CPS conjugated to the commercially 

available, classic-carrier Crm197. Both VLPs and Crm197 were shown in this 

thesis to be suitable carrier proteins for conjugation to CPS on the basis of 

protection against B. pseudomallei challenge in an animal model of melioidosis 

(Chapter 5: Immunogenicity and efficacy of candidate vaccines). The use of the 

Burkholderia protein LolC was not suitable for use as a carrier protein. At lower 

challenge levels, mice vaccinated with VLP-CPS had greater survival than mice 

that received Crm197-CPS. As the challenge dose increased, efficacy of the 

Crm197 conjugate was significantly greater. Interpretation of these results is 

difficult however due to the different protein to polysaccharide ratios between 

the conjugate vaccines. For nearly all studies, the protein to polysaccharide 

ratio for both Crm197-CPS and VLP-CPS was in favour of CPS but the effect of 

ratio differences is unknown. The addition of Burkholderia proteins added to a 

Crm197-CPS conjugate did not improve survival over Crm197-CPS alone, 

although this may be due to the high challenge dose employed.  The use of 

modern Th1/Th2 biased adjuvants did not significantly affect vaccine efficacy 

compared to the traditional alum (Alhydrogel®) adjuvant.  

 

6.3 Challenges encountered in this work 

 

The majority of challenges in this thesis relate to the use of CPS. The extraction 

of CPS was a challenging process and would have been very difficult to achieve 
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without a detailed method provided by Assoc. Prof. Brett which is based on the 

modified hot-phenol method of Perry et al., 1995. Initial attempts to extract CPS, 

while unsuccessful and were made difficult due to the lack of a method for CPS 

quantification. NMR analysis, the standard technique for analysis of 

polysaccharides (Frasch 2009), requires a sample with high purity and is 

unsuitable for CPS extraction or purification method development. The key 

marker for any CPS extraction method development however is purity of the 

final product. As the modified hot-phenol extraction procedure can take up to 5 

weeks to complete, the effect on purity of any method alterations to increase 

yield take a significant time to become apparent as a full extraction will be 

required to give an unequivocal result. 

 

While sufficient CPS was extracted for this project, the yield from each CPS 

extraction was lower than the reported 10-15 mg per litre yield in the literature 

(Burtnick et al., 2012). It is possible that operator inexperience or slight, 

unknown, procedural differences in the modified hot-phenol extraction method 

may account for this. In the literature, CPS is extracted from B. pseudomallei 

whereas the use of B. thailandensis in this project means that yield differences 

may result from differences in CPS expression between the two Burkholderia 

species. 

 

The work carried out by our collaborators at Mologic highlights the technical 

difficulties for expression of foreign proteins in the Tandem CoreTM VLP 

construct. It is hypothesised that the genetic linker between hepatitis B core 

protein monomers would increase stability and allow for insertion of larger 

proteins but this was proved not to be the case for Burkholderia proteins. 

Foreign protein insertion into the Tandem CoreTM VLP construct has been 

demonstrated with green fluorescent protein (Peyret et al., 2015) which has a 

molecular weight of 27 kDa. However, as the proteins selected in this study 

ranged from 18 to 57 kDa and the VLP core protein is 38 kDa, it may not be 

surprising that VLP assembly was impaired. In the literature, fusion proteins of 

hepatitis B core protein, not made of Tandem CoreTM, have been limited to 

peptides for influenza (Tsybalova et al., 2015), tuberculosis (Dhanasooraj et al., 

2013), anthrax (Yin et al., 2014) and malaria (Gregson et al., 2008). This 

suggests that insert size is important for competent VLP assembly. 
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The importance of the acetyl group on CPS immunogenicity and protective 

efficacy has been demonstrated in this thesis. However, identification of the 

minimum protective epitope would have directed CPS synthesis to structures 

less technically challenging to produce. The identification of polysaccharide 

epitopes is difficult as there are fewer tools in comparison to those available for 

proteins. For proteins, the methods include X-ray crystallography for 

visualization of bound antigen and antibody; overlapping peptide scanning 

where overlapping peptide sequences are tested for antibody recognition; 

nucleotide mutagenesis with assessment of antibody binding affinity to the 

target; antigen proteolysis with antibody-bound fragments detected by either 

mass spectroscopy or western blot; and in-silico predictions which have been 

performed in this study. By comparison, the tools available for investigation of 

carbohydrate epitopes are limited to the specialised NMR techniques; 

saturation-transfer-difference NMR spectroscopy, where ligand binding is 

determined by subtraction of saturated receptor binding from a reference 

spectrum without saturation and surface plasmon resonance where binding is 

detected by changes in refractive index. Diffraction data from fibrillar 

polysaccharide samples are usually not of a sufficient quality to resolve the 

crystal structure (Sarkar et al., 2012). Nucleotide mutagenesis can be difficult as 

although more is now known about the genes that encode polysaccharide 

biosynthesis and expression, it can be a complex pathway including synthesis 

of component monosaccharides, activation and coordinated transfer of each 

sugar to the repeating oligosaccharide and subsequent polymerisation (Guidolin 

et al., 1994). Hydrolysis of polysaccharide for fragment-antibody recognition is 

also difficult as hydrolysis can be indiscriminate and may result in the loss of 

key antigenic moieties as demonstrated in this thesis. 

 

As polysaccharide epitope elucidation is made difficult by the lack of analytical 

tools, so is the production of CPS conjugate vaccines. The inability to hydrolyse 

Burkholderia CPS to shorter chain lengths, due to the acid-labile nature of CPS, 

means that CPS chains may tangle to form large complexes which may mask a 

protein carrier from the immune system following conjugation. In addition, long 

chains of conjugated CPS may reduce vaccine efficacy as recent reports in the 

literature suggest that low molecular weight polysaccharide conjugate vaccines 
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generate an optimal immune response for H. influenzae type b (Rana et al., 

2015). 

 

All licensed polysaccharide vaccines utilise specific chain-lengths (Plotkin et al., 

2013). The large size of native CPS may make separation of unconjugated 

polysaccharide from the conjugate difficult. This has been shown to reduce 

vaccine efficacy of a Streptococcus pneumoniae vaccine (Rodriguez et al., 

1998), and is further compounded by the lack of methodology to determine the 

amount of free CPS in a conjugate vaccine. The inefficiencies of reductive 

amination conjugation also mean it is impossible to produce conjugates with a 

specific carrier protein to CPS ratio. Batch-to-batch variation can therefore 

make comparison of efficacy difficult. An approach used by other melioidosis 

vaccine researchers is to measure protein content and assume the rest of the 

material is conjugated polysaccharide. This does not, however, account for 

contaminants or unconjugated polysaccharide (Scott et al., 2014). 

 

6.4 Implications for Burkholderia vaccine development 

 

Producing CPS from B. thailandensis at containment level 2 is less expensive, 

quicker and safer than the containment level 3 required for B. pseudomallei. 

This should increase the pace of melioidosis vaccine research.  The 

improvement of bacterial CPS content may also increase CPS yield but further 

work is required to confirm this. CPS extraction from large-scale batch 

fermentation would require further growth condition optimisation but this work 

has shown that aeration, a nutrient-rich media and extended incubation time 

following inoculation all increase bacterial culture CPS content. 

 

The suggestion that CPS is released into the culture supernatant would allow 

the possible replacement of the phenol extraction process as only the 

supernatant from a culture would be required. To the knowledge of the author, 

all other research groups use a phenol-based extraction method to isolate CPS 

from Burkholderia (Burtnick et al., 2012, Heiss et al., 2012, Reckseidler et al., 

2005, Masoud et al., 1997, Perry et al., 1995). Approximately 40 litres of liquid 

phenol waste is produced from two litres of B. thailandensis E555 :: wbiI culture. 
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Therefore, the replacement of phenol would be advantageous for all future CPS 

production. Alternatively, CPS extraction from both the supernatant and 

bacterial pellet could increase CPS yield as opposed to the use of the pellet 

only. Furthermore, the development of a quantitative ELISA for CPS means that 

alternative methods of CPS extraction can be quickly assessed rather than 

having to wait for NMR analysis of the final purified product which may take 

several weeks. 

 

The demonstration of the importance of the acetyl group for CPS 

immunogenicity and protective efficacy confirms that although technically 

challenging, attempts to synthesise CPS must be of the full molecule. However, 

if the immunodominant epitope was identified, a synthetic polysaccharide 

epitope/mimitope could be produced. This has been recently proposed following 

the development of peptide mimitopes of B. pseudomallei CPS and LPS (Guo 

et al., 2016). 

 

The demonstration of protective efficacy of both a VLP-CPS and Crm197-CPS 

conjugate vaccines, which generate different levels of CPS-specific IgG 

antibody, suggests that antibody titres are not a good correlate of protection. 

Analysis of survival and antibody titres generated from a Crm197-CPS vaccine 

at different polysaccharide to protein ratios, where protection from a CPS-

specific IgG titre of 5333 was not significantly different to 100,000, further 

indicates that antibody titre is not indicative of protection. It is considered that 

antibody is important for protection against melioidosis infection, as the CPS 

antigen is protective. However, it is probable that antibody affinity/function is 

important or that VLP use as a carrier effects a different immune pathway. It is 

possible that a combination vaccine of VLP and Crm197 would be beneficial. 

Alternatively, a carrier with an immunodominant T-cell epitope and a carrier with 

an immunodominant B-cell epitope could be used. 

 

The efficacy data from Crm197-CPS vaccination in the BALB/c mouse suggests 

that a Crm197 conjugate should have an equivalency of CPS and protein based 

on molecular weight and not the amount of each antigen added. This is in 

contradiction to licensed vaccines which utilise a 1:1 polysaccharide to protein 

ratio based on amount of antigen per dose (Plotkin et al., 2013). 
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The demonstration that the Burkholderia protein LolC was a poor carrier protein 

for CPS does not mean that the use of a Burkholderia protein as a carrier 

should be abandoned. However, it does show that the immunogenicity of the 

protein should be considered: highly immunogenic epitopes may direct the 

immune response away from CPS. When added as co-antigens, 

immunogenicity of Burkholderia proteins may not be a concern. In the case of 

the Crm197-CPS vaccine, the immunogenicity of the co-antigen did not affect 

the development of the CPS-specific IgG antibody titres. The failure of 

Burkholderia proteins to increase vaccine efficacy when added as co-antigens 

suggest that at high challenge doses, melioidosis relevant T-cell epitopes are 

not protective in the acute animal model of melioidosis. As only a small number 

of surviving animals were clear of infection in this study, T-cell epitopes with 

more relevance to infection may be required. Alternatively, the effective 

treatment for melioidosis may be a combination therapy of vaccine and 

antibiotics. It would be interesting to see the effect of Burkholderia proteins on 

CPS conjugate vaccine efficacy in the chronic animal model of melioidosis, as 

the Th1-biased immune response of C57BL/6 mice may change the outcome. 

 

It was demonstrated that there was no significant difference in protective 

efficacy between VLPs made up of Tandem CoreTM and monomeric hepatitis B 

core protein. This means that should VLPs prove efficacious against an aerosol 

challenge of B. pseudomallei, monomeric based VLPs can be used in future 

research. This will lower the cost of development and production as they do not 

attract costs associated with intellectual property. 

 

6.5 Future work 

 

There are a number of important areas where this work with CPS could be 

extended. Further study into the factors affecting CPS gene transcription and 

resultant expression in B. thailandensis E555 would be beneficial in order to 

increase yield. This could be investigated by microarray analysis as performed 

by Reckseidler-Zenteno et al., (2010) for CPS-III. The use of B. thailandensis 

supernatant for CPS extraction as an alternative or addition to the use of the 

culture pellet could also be a key area of work. Investigation into the anchor of 
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CPS to the extracellular membrane could be beneficial: a knockout mutant of 

the anchor would mean all CPS expressed is shed in the media which may 

simplify the CPS extraction procedure and remove the need for phenol. A lipid 

has been suggested as a polysaccharide anchor for Salmonella enterica, 

Campylobacter jejuni and Streptococcus pneumoniae and could be a place to 

start (Liston et al., 2016, Corcoran et al., 2006, Cartee et al., 2005). The 

development of an unmarked O-antigen mutant of B. thailandensis E555 will 

also be advantageous as it removes the requirement for antibiotic in the culture 

media. This would be particularly beneficial if CPS production moves to large-

scale batch fermentation. Optimisation of the current modified hot-phenol 

method could also be attempted as changes in CPS content could be quickly 

assessed by the CPS ELISA. This work could start with ELISA analysis of the 

product at each stage in the extraction procedure to determine where CPS loss 

occurs which would highlight steps to optimise.  Gene knockouts of the CPS 

gene cluster would also be useful to determine the genes responsible for α1-3 

mannan expression (Heiss et al., 2012). This would allow subsequent mannan 

extraction in order to elucidate its role in protection and immunogenicity studies.  

 

The VLP and Crm197 conjugates showed similar efficacy against bacterial 

challenge but generated markedly different CPS-specific antibody titres. This 

suggests a difference in immune function between the two vaccines.  

Investigation of this difference could be important for development of a 

melioidosis vaccine as stimulation of these two pathways by a combination 

vaccine may provide full protection with sterilising immunity. The work in this 

thesis suggests that efficacy of a Crm197-CPS conjugate is improved when the 

vaccine contains similar amounts of protein and polysaccharide based on 

molecular weight. This is in disagreement with licensed conjugate vaccines, 

which are produced on weight equivalency (Plotkin et al., 2013). Investigation 

into the effect of different protein and polysaccharide ratios on melioidosis 

vaccine efficacy would be a key requirement for future development. This in turn 

requires a method to be developed for the production of known chain-lengths of 

CPS, and an ability to effectively separate free polysaccharide from the 

conjugate. Development of these methods is also critical for further 

development and licensure of a vaccine as the presence of unconjugated 

polysaccharide, the removal of which is reliant on the generation of short chain 
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lengths of CPS, is known to adversely affect vaccine efficacy (Rodriguez et al., 

1998). 

 

Assessment of VLP and Crm197 conjugate vaccine efficacy against a 

B. pseudomallei aerosol challenge must be performed before the use of VLPs 

as a carrier protein for melioidosis is halted. This would be in the chronic mouse 

model of melioidosis (C57BL/6) as BALB/c’s are 10- to 100-fold more 

susceptible to B. pseudomallei infection (Tan et al., 2008) and as aerosol 

exposure is associated with severe disease this may render the use of BALB/c’s 

ineffective. Additional work could focus on administration of conjugates via the 

inhalational route rather than the intraperitoneal route. The generation of 

secretory IgA antibody may improve disease outcome as has been reported for 

rotavirus infection (Blutt et al., 2012) and respiratory infection of Mycobacterium 

bovis Bacillus Calmette-Guerin (Rodriguez et al., 2005). 

 

A deficiency of the conjugate vaccines used in this thesis is the lack of 

sterilising immunity in mice that survived to study end. This may be caused by 

intracellular infection and the lack of effective CD8+ T-cell responses due to the 

ability of B. pseudomallei to escape from the phagosome (Willcocks et al., 

2016). All of Dstl’s anti-CPS monoclonal antibodies were derived from mouse 

immunisation with inactivated whole-cell B. pseudomallei. This infers that CPS 

is a major B-cell epitope of the organism. In combination with the strong 

suggestion that CPS contains one immuno-dominant epitope, the following 

novel therapy could be investigated: an anti-CPS antibody with 

opsonophagocytosis effector function conjugated to an antibiotic with an acid-

labile linker. In the phagosome, hydrolysis of the conjugate linker would free the 

antibiotic to clear infection. In combination with a vaccine, this therapy may 

effectively control B. pseudomallei infection. 

 

6.6 Conclusion 

 

The fact that isolates of B. pseudomallei and B. mallei appear to express only a 

limited repertoire of capsular polysaccharides (Burtnick et al., 2012) means that 

the prospect of a vaccine against both melioidosis and glanders utilising -3-)-2-
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O-acetyl-6-deoxy-β-D-manno-heptopyranose-(-1 is feasible. In this thesis I have 

also discussed the extraction of CPS from B. thailandensis E555 and 

confirmation of structural and immunological identity to CPS extracted from 

B. pseudomallei with the advantages this confers. 

 

In this thesis I have also shown that a CPS conjugate vaccine is able to protect 

mice against B. pseudomallei challenge at doses potentially higher than would 

be expected in either a clinical or bio-threat exposure. Both virus-like particles 

and Crm197 have been shown to be efficacious, although difficulties associated 

with VLP expression favour the use of Crm197. At this point it would be unwise 

to abandon VLPs as they have yet to be tested against an aerosol challenge of 

B. pseudomallei. Given the potential for immune interference from licensed 

Crm197-containing vaccines, the use of VLPs may still be appropriate. It is 

thought that both a cellular and humoral response is required for protection 

against B. pseudomallei infection. While the addition of Burkholderia proteins in 

this study did not achieve this aim, the mechanism of protection between 

Crm197 and VLP carrier proteins is different. Investigation of this difference and 

use of a combination vaccine of either these two components, or components 

with similar effector responses, could be instrumental to development of an 

effective melioidosis vaccine. 

 

There is still much to be done to develop a glycoconjugate vaccine for 

melioidosis. The work in this project has shown the difficulty in utilising CPS as 

an antigen, as there are far fewer tools available for vaccine development as 

there are for proteins. A pressing technical need is for the production of known 

chain-lengths of CPS, an ability to effectively separate conjugated and free 

polysaccharide and determination of the optimum protein to polysaccharide 

content. All of these variables are known to affect polysaccharide conjugate 

vaccine efficacy and need to be controlled for development and eventual 

licensure. 

 

This thesis has shown that CPS conjugate vaccines can be efficacious against 

B. pseudomallei challenge doses of over half a million bacteria. A correlate of 

protection and demonstration of efficacy against an aerosol challenge will be 

crucial next steps. 
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