
Controlling coexisting attractors of an impacting system via linear

augmentation

Yang Liua, Joseph Páez Chávezb,c
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Abstract

This paper studies the control of coexisting attractors in an impacting system via a recently developed
control law based on linear augmentation. Special attention is given to two control issues in the framework
of multistable engineering systems, namely, the switching between coexisting attractors without altering
the system’s main parameters and the avoidance of grazing-induced chaotic responses. The effectiveness
of the proposed control scheme is confirmed numerically for the case of a periodically excited, soft impact
oscillator. Our analysis shows how path-following techniques for non-smooth systems can be used in order
to determine the optimal control parameters in terms of energy expenditure due to the control signal and
transient behavior of the control error, which can be applied to a broad range of engineering problems.

Keywords: Multistability; Non-smooth system; Impact oscillator; Linear augmentation; Numerical
continuation; Optimal control

1. Introduction

Impacting systems are widely found in engineering applications, such as ground moling [1], percussive
drilling [2], self-propelled capsule systems [3, 4], where the impacting behavior is a part of the original
design, or gearboxes [5], bearings [6], and rotor systems [7], where the impact between mechanical elements
is an undesired effect due to wear or defective design. A common feature of impacting systems is that
of multistability [8], referring to the coexistence of two or more attractors for a given set of parameter
values. From a practical point of view, there are two control issues that are frequently studied in the
framework of multistable systems. The first one consists in exploiting the fact that such systems can switch
between several operation modes without altering the main system parameters. For example, the direction
of motion (forward or backward) of a self-propelled vibro-impact capsule system can be controlled by
switching between two coexisting attractors, see e.g. [9, 10]. Another case where multiple coexisting
solutions can be advantageous is considered in [2, 11], where the efficiency of drilling applications can be
improved by choosing suitable operation modes while maintaining a desired rate of penetration. On the
other hand, multistability can also be the source of system malfunctions, specially under the presence of
perturbations steering the system to an unwanted operation mode, e.g. drill-string failure due to stick-slip
oscillations [12–14], rotor-stator impacts due to imbalance [7, 15]. Therefore, the development of reliable
control methods in order to switch between coexisting attractors or suppress some certain unwanted
multistable states is crucial.

In the present work, we will study the multistability of a periodically excited oscillator with soft
impacts. Such systems are very common to a broad range of engineering applications where the repeated
collision of mechanical parts is unavoidable, see for example [5, 16, 17]. In many cases, impacting behavior
leads to undesired effects, for instance, reduction of the efficiency and operating life of the system, which
becomes even more critical in the presence of grazing bifurcations [18–20]. In [21–24], a large number
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Figure 1: Physical model of the impact oscillator.

of coexisting attractors in an impact oscillator close to grazing has been observed both numerically and
experimentally. Pavlovskaia et al. [25] studied several bifurcation scenarios, among which they observed
the occurrence of coexisting attractors through a discontinuous transition from one orbit to another via
a boundary crisis closely related to grazing events. Various investigations have shown that persistent
chaotic motion can be observed in the vicinity of grazing bifurcations in impact oscillators, leading to
undesired system operation and sensitivity to small perturbations. This issue has attracted a significant
amount of interest in the past. For instance, in [26] the authors proposed a method to control chaotic
attractors in an impacting system based on small perturbations of a suitably chosen system parameter.
De Souza et al. [27] considered a similar scenario where chaotic motion was avoided via feedback damping
control. In [28], a discrete linear feedback control strategy was presented for controlling the persistence of
a local attractor near a grazing periodic trajectory in an impact oscillator in the presence of discontinuous
jumps.

Our main concern in the present paper is to address the two control issues outlined before, namely,
the advantageous use of multistability in order to optimize the operation of an impact oscillator and the
avoidance of chaotic responses in the vicinity of grazing events. For these purposes, we will employ a
recently developed control method based on linear augmentation, which is achieved by coupling systems
via a linear feedback consisting of a simple decaying function [29]. This approach has been shown to
be effective in targeting desired steady-state solutions [30], suppressing bistability [31], regulating the
dynamics of drive response systems [32], and controlling the dynamics of hidden attractors [33], where
the linear augmentation control was used to stabilize fixed points of nonlinear oscillators. In order to
switch between coexisting attractors in non-smooth systems without affecting their basins of attraction,
we use a modified version of the linear augmentation control method studied in previous investigations.
A preliminary work in this direction has been done by Liu et al. [8] for controlling both smooth and
non-smooth dynamical systems using an intermittent feedback controller. This control scheme is applied
repeatedly in the time domain when a current attractor satisfies a proximity condition with regards to
a desired attractor. For the control issue regarding the avoidance of chaotic responses in the vicinity of
grazing events, we study in detail the bifurcation scenario of the considered impact oscillator in order
to find a suitable periodic solution that can be used as target attractor. A similar approach has been
employed in [9] to control the motion of a vibro-impact capsule system using a position feedback controller.
By slightly adjusting its position control gain, this controller was able to restrain the chaotic response
and significantly enlarge the basin of attraction of the desired solution, thereby increasing the robustness
of this operation mode against external perturbations. In this paper we will show how the modified linear
augmentation control law can be used to effectively drive the impacting system to the desired periodic
solution and, furthermore, how the control scheme can be optimized via the application of path-following
techniques for non-smooth systems, implemented via the continuation platform COCO [34].

The main contribution of the present paper is twofold: first, controlling multistability in impacting
systems without affecting the system’s dynamics, and second, a numerical approach based on path-
following techniques to optimize the control scheme in terms of the energy spent by the controller. The
modified linear augmentation control used in this paper is implemented through coupling a linear system
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describing the difference in position and velocity between a current and a desired periodic response. The
novelty of this approach is that system behavior is not affected by the controller once the system has
settled down to the desired operation mode, while the coupling strength is adjusted to optimize energy
expenditure and transient times. The rest of the paper is organized as follows. In Section 2, the physical
model and equations of motion of the impact oscillator are introduced, as well as the mathematical
formulation of the linear augmentation control law. In Section 3, the proposed control method is studied
numerically, with special attention on using multistability to suppress grazing-induced chaotic attractors.
The performance and optimal operation of the control scheme is analyzed in Section 4. For this purpose,
numerical continuation methods are applied in order to investigate the behavior of the energy costs and
the error during the transient phase before stabilization. Finally, the main conclusions of the present
work are presented in Section 5.

2. Mathematical description

Many mechanical systems experiencing intermittent impacts can be represented by a simple model of
the impact oscillator shown in Fig. 1, which will be investigated in the present work. In this model, it is
assumed that the discontinuity boundary is neither motion- nor time-dependent but fixed at x = e, with
e > 0 being the nondimensional gap (see below). The equations of motion of the impact oscillator shown
in Fig. 1 are given in nondimensional form by

{

x′(τ) = v(τ),

v′(τ) = aω2 sin(ωτ) − 2ζv(τ) − x(τ) − β(x(τ) − e)H(x(τ) − e),
(1)

where H(·) stands for the Heaviside step function and x′, v′ represent differentiation with respect to the
dimensionless time τ . In the governing equations (1), the variables and parameters of the system are
nondimensionalized according to:

ωn =

√

k1

m
, τ = ωnt, ω =

Ω

ωn

, ζ =
c

2mωn

,

x =
y

y0
, e =

g

y0
, a =

A

y0
, β =

k2

k1
,

(2)

where y0 > 0 is an arbitrary reference length, ωn is the natural frequency, ω is the frequency ratio, ζ is the
damping ratio, β is the stiffness ratio, e is the nondimensional gap between the mass and the secondary
spring, and a represents the nondimensionalized amplitude of the external excitation.

In the present work, we will consider a control signal u(τ), τ ≥ 0, which will be applied to the system’s
external excitation as follows

{

x′(τ) = v(τ),

v′(τ) =
[

aω2 sin(ωτ) + u(τ)
]

− 2ζv(τ) − x(τ) − β(x(τ) − e)H(x(τ) − e),
(3)

where
u(τ) = ǫ

[

(xd(τ) − x(τ)) + λ(vd(τ) − v(τ))
]

, τ ≥ 0, (4)

defines the linear augmentation control law. In the expression above, ǫ stands for the coupling strength
between the impact oscillator and the linear control system, λ is a constant weighting factor, and
(

xd(τ), vd(τ)
)

, τ ≥ 0, gives the position and velocity of the target solution to which the system should
be driven. In the absence of coupling (ǫ = 0), system (3) reduces to the original model (1). When the
control is activated with some suitable ǫ > 0, the current system trajectory

(

x(τ), v(τ)
)

converges to the

desired solution
(

xd(τ), vd(τ)
)

for τ sufficiently large (formally, for τ → ∞), due to which the control
signal u decays to zero and the modified system (3) becomes the original model (1). This approach will be
used in our investigation in order to drive the impact oscillator from an undesired operation mode, such
as chaotic motion or a periodic solution with high power consumption, to a desired periodic behavior,
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without altering the system’s parameters. In practice, the current state of the considered system, i.e. the
position and velocity of the oscillating mass, can be easily measured in real-time through nondestructive
testing, e.g. using eddy current probes. The control signal based on the coupling of the linear control
system can be applied through an electrodynamic shaker [21], which provides harmonic excitation of the
impact oscillator, or using a linear actuator (e.g. piezoelectric actuator) acting directly on the oscillating
mass. The control applied through an electrodynamic shaker has been verified experimentally on the
one-degree-of-freedom impact oscillator in [8].

3. Numerical investigation of the linear augmentation control law

In this section, we will study the effectiveness of the linear augmentation controller with regards to
the two control objectives outlined before, namely, switching between coexisting periodic attractors and
suppressing undesired chaotic responses. A major concern in our study will be to optimize the energy
spent in the system’s operation in the absence of control, therefore we will consider the following quantity

PAV G =
1

T

T
∫

0

aω2 sin(ωτ)v(τ) dτ, (5)

which gives the average power per period used to drive the moving mass, with T > 0 being the orbital
period. This measure will help us identify those periodic solutions for which the energy is used in an
efficient manner. In Section 4.1, we will introduce two additional measures that will be used to analyze
the performance of the linear augmented controller.
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Figure 2: (a) Bifurcation diagram and (b) average power consumption for the impact oscillator, computed for ζ = 0.01,
e = 1.26, a = 2.21, ω = 0.69 and varying stiffness ratio β. The period-1 response with one impact per period is denoted by
blue dots, and the coexisting period-1 solution with two impacts per period is shown by red dots. Internal diagrams in (a)
show the evolution of the basins of attraction of the system, while the inner plots in (b) present the corresponding periodic
orbits. The location of the impact boundary is shown by the vertical green line.

3.1. Controlling multistability

Our analysis begins with a system configuration for which bistability can be observed, see Fig. 2,
where the stiffness ratio varies in the range β ∈ [5, 30]. Panel (a) presents the bifurcation diagram of
the system, where blue dots denote period-1 attractors with one impact per period, red dots represent
period-1 attractors with two impacts per period, and the inner diagrams show the evolution of the basins
of attraction as β varies. It can be seen from this figure that the impact oscillator is monostable for
β ∈ [5, 10.6), and the period-1 attractor with two impacts emerges at β ≈ 10.6, where the system
becomes bistable. As β increases, the basin of the period-1 attractor with one impact shrinks, due to
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Figure 3: (a) Time history of the mass position of the impact oscillator (upper panel) and the control signal u (lower panel).
(b) Phase plot showing the transition from the current solution (grey) to the desired solution (black), computed for β = 29,
ζ = 0.01, e = 1.26, a = 2.21, ω = 0.69, ǫ = 2 and λ = 1. The location of the impact boundary is represented by the vertical
line in the phase diagram.

which the sensitivity of this solution to perturbations increases and therefore a control mechanism may
be required in order to guarantee that the system remains in this mode of operation. The average power
dissipated by the system under the two periodic regimes mentioned above is presented in Fig. 2(b), with
internal panels showing the corresponding periodic orbits for selected values of stiffness ratio. As can be
seen from this figure, the power consumption of the period-1 attractor with two impacts is significantly
larger than for the period-1 attractor with one impact. According to this scenario, it becomes evident
that maintaining the system on the latter operation mode is crucial to guarantee an efficient use of power.
Consider, for instance, a drilling system as that described in [2]. During operation, the hardness of the
rock formations usually changes as the drill-bit progresses into the borehole. These changes may induce
dynamical scenarios for which multiple stable periodic regimes coexist, and one of the main concerns is
to drive the system to those modes where the rate of penetration and the power consumption yield a
suitable balance. In our case, we will be therefore interested in driving the system from the undesired
state where the power consumption is high to the periodic solution with a lower power dissipation, as
shown in Fig. 2(b).

The system response under the linear augmented controller is shown in Fig. 3, which includes time
histories of the mass position of the impact oscillator and the control signal u. As can be seen from Fig.
3(a), the linear augmented control was switched on after five periods of external excitation, at τ ≈ 36.63,
and the duration of the phase after which the transients have significantly decayed was about 7.81. In the
lower panel of Fig. 3(a), it can be seen that once the system settled on the desired attractor, the control
signal decays to zero, due to which the controlled system (3) becomes the original uncontrolled model
(1). Panel (b) of Fig. 3 shows the transition from the current solution (grey color) to the desired solution
(black color), therefore confirming the effectiveness of the control method in this case. It should be noted,
however, that the control signal observed in the lower panel of Fig. 3(a) presents a relatively high peak
in comparison to the amplitude of the periodic excitation a = 2.21, which may pose problems from a
practical point of view, as such peaks can damage the control system or the actuators. Furthermore, it is
not clear whether the duration of the transient lies within tolerable limits, which may be a crucial factor
for certain applications. Therefore, in Section 4 we will analyze in detail the performance of the linear
augmented control law via numerical continuation techniques and determine parameter values for which
the control can be applied in optimal conditions.

Let us now study the effectiveness of the linear augmentation controller for a scenario where multiple
attractors coexist. Fig. 4 shows the basins of attraction for which period-2, period-3, period-5, and period-
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Figure 4: Basins of attraction for the impact oscillator with ζ = 0.01, e = 1.26, a = 0.7, ω = 0.8044, and β = 29. The
system possesses in this case four coexisting attractors: the period-2 (blue dots with green basin), the period-3 (yellow dots
with red basin), the period-5 (orange dots with blue basin), and the period-8 solutions (black dots with grey basin).

8 solutions coexist. It can be seen from the figure that the basins of attraction are fractally interwoven
due to grazing events. These attractors are extremely sensitive to perturbations, due to which a control
mechanism for protection against noise-induced basin hopping is always desirable. Here, we will assume
that the desired operation mode is given by the period-2 solution shown in Fig. 4 (panel at the top right).
Therefore, any perturbation causing a switching to another attractor should be corrected by the linear
augmentation controller. The effectiveness of the controller is tested in Fig. 5 for two cases: switching
from the period-8 (panel (a)) and switching from the period-5 (panel (b)) solutions to the desired period-
2 attractor. In both cases the controller was switched on at τ ≈ 195, after which the system response
converged in short time to the desired period-2 solution. As can be seen from Fig. 5, the controller
produces an impulsive perturbation with amplitude significantly greater than the harmonic excitation.
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Figure 5: Trajectories and external excitations of the impact oscillator with the linear augmentation control inputs as a
function of time, computed for ζ = 0.01, e = 1.26, a = 0.7, ω = 0.8044, and β = 29. The impact oscillator is controlled
from (a) the period-8 attractor (denoted by black dots with grey basin in Fig. 4), and (b) the period-5 attractor (marked
by orange dots with blue basin in Fig. 4) to the period-2 attractor (denoted by blue dots with green basin in Fig. 4).
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Figure 6: Bifurcation diagram of the impact oscillator with respect to the excitation frequency ω, computed for ζ = 0.01,
e = 1.26, a = 0.7 and β = 28. Black and blue dots mark the coexisting attractors found during the computation. The inner
diagrams depict orbits of the system together with Poincaré sections. The location of the impact boundary is shown by the
vertical green line.

-4 -2 0 2
-6

-3

0

3

6

V
el

oc
ity

Displacement
-4 -2 0 2

-6

-3

0

3

6

V
el

oc
ity

Displacement
-4 -2 0 2

-6

-3

0

3

6

V
el

oc
ity

Displacement

-4 -2 0 2
-6

-3

0

3

6

V
el

oc
ity

Displacement
-4 -2 0 2

-6

-3

0

3

6

V
el

oc
ity

Displacement
-4 -2 0 2

-6

-3

0

3

6

V
el

oc
ity

Displacement

(a) (b) (c)

(e)(d) (f)

Figure 7: Evolution of the basins of attraction of the impact oscillator computed for ζ = 0.01, e = 1.26, a = 0.7, β = 28
and (a) ω = 0.7, (b) ω = 0.75, (c) ω = 0.802, (d) ω = 0.85, (e) ω = 0.908 and (f) ω = 0.95. The basins of attraction of the
solutions depicted with black and blue dots are shown in orange and red colors, respectively.
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Figure 8: Trajectories and external excitations of the impact oscillator with the linear augmentation control inputs as a
function of time, computed for ζ = 0.01, e = 1.26, a = 0.7, β = 28, ǫ = 2, λ = 1 and (a) ω = 0.706, (b) ω = 0.802, (c)
ω = 0.87, (d) ω = 0.99.
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Previous studies have revealed that such peaks can be reduced by suitably choosing the time at which
the controller is activated. This is, however, a matter that lies outside the scope of the present work and
will be investigated in more detail in a future publication.

3.2. Suppressing grazing-induced chaos

In this section we will consider the scenario in which chaotic motion and periodic behavior coexist
for the same set of parameter values. Such dynamical scenario is presented in Fig. 6, where a bifurcation
diagram has been generated by following two coexisting solutions as the excitation frequency ω varies.
Our numerical investigation reveals that chaotic attractors due to grazing events can be found in the
parameter windows ω ∈ [0.704, 0.707], ω ∈ [0.801, 0.805] and ω ∈ [0.893, 0.914]. The evolution of the
basins of attraction of the impact oscillator is depicted in Fig. 7, for some selected values of ω. In
these pictures, it can be verified that the system indeed evolves from monostability to bistability as the
excitation frequency is changed. Furthermore, it can be observed that for some frequency values chaotic
and periodic behavior coexist, and the main purpose in this case will be to suppress such chaotic responses
by driving the system to a suitably chosen periodic solution, for the parameter window ω ∈ [0.7, 1.0].

In order to achieve the goal outlined in the previous paragraph, we will choose a reference solution
(

xd(τ), vd(τ)
)

, τ ≥ 0, as a period-1 response of the impact oscillator with one impact period for ω = 1,
corresponding to the right end of the black branch shown in Fig. 6. With this reference solution fixed,
we will apply the linear augmented controller in order to drive the system to a period-1 response. The
result can be seen in Fig. 8, which presents time histories of the mass position of the impact oscillator
and the external excitation resulting from the sinusoidal forcing and the control signal u. Here, the
controller is switched on after eleven periods of sinusoidal excitation, and in all cases the system response
was successfully driven to the desired period-1 behavior with one impact per period, both for the cases
where the system was operating under undesired periodic modes or chaotic motion. Consider for instance
the case shown in panel (b) of Fig. 8, for ω = 0.802. The first two plots correspond to the situation for
which the system is operating under a period-5 motion at the beginning, while the two lower figures
resembles a similar situation where the initial state is in this case a chaotic response. After the controller
is switched on, it can be observed that in both cases the system settles down to the same period-1 motion,
once transients have decayed. This pattern can be observed in all scenarios displayed in Fig. 8, which
confirms the effectiveness of the linear augmented controller for the considered cases. Fig. 9 presents
the evolution of the desired period-1 solutions of the impact oscillator obtained by applying the linear
augmented control law, as the frequency of excitation varies. In this picture we can verify that the target
period-1 solution persists over the whole parameter window ω ∈ [0.7, 1.0].
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Figure 9: Periodic orbits of the impact oscillator with the linear augmentation control law under variation of excitation
frequency ω ∈ [0.7, 1.0], computed for ζ = 0.01, e = 1.26, a = 0.7, β = 28, ǫ = 2 and λ = 1.
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4. Performance analysis of the linear augmentation control law

One of the main purposes of a control method is to enable the user to regulate the transient and
steady-state response of a system. However, these regulation capabilities are very often achieved at a
certain cost, in terms of power consumption, computational effort, operational costs, etc. From a practical
point of view, it is useful to define certain performance indices that allow the user to measure how well
the control scheme carries out the tasks for which it was designed. Furthermore, the system specifications
are usually given precisely in terms of two or more performance indices, which in many cases need to be
adjusted so as to effect a compromise, since optimizing one performance index may lead to a detrimental
value of another. Therefore, a control method is considered to be optimum when the control parameters
are adjusted so that a performance index reaches an extremum (usually a minimum value), while other
indices are kept within predefined suitable boundaries. In the present section we will show how the
proposed linear augmentation control law can be studied via numerical continuation techniques in order
to determine system parameters yielding an optimal control scheme.
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Figure 10: (a) Coexisting attractors of system (6) computed for the parameter values ω = 0.69, a = 2.21, ζ = 0.01, e = 1.26
and β = 28 (without control ǫ = λ = 0). The dots indicate the instant at which the control is switched on (at T0 = 10).
Panels (b) and (c) show the behavior of the control signal u(τ) and the quadratic error e2(τ), respectively, after the control
is turned on, with ǫ = 2 and λ = 1. In this implementation, the system response is switched from the current solution (red
attractor) to the desired orbit (black attractor).

4.1. Preliminary setup

In the present section we will consider the case in which the linear augmentation control law is applied
to induce a transition from the red (current) to the black (desired) periodic solution shown in Fig. 10(a),
which coexist at the same parameter values. This scenario is motivated by the fact that for the desired
attractor, the average power consumed per period by the impact oscillator is significantly less than for the
red periodic solution, see Fig. 2(b). In order to investigate the performance of the control law for this case
we will apply numerical continuation methods implemented by the continuation software COCO [34], an
analysis and development platform for the numerical solution of continuation problems in MATLAB.

A remarkable characteristic of COCO is that it provides the user with a general-purpose computational
platform based on the extended continuation paradigm [35]. The key idea of continuation is, in the
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simplest form, to approximate a one-dimensional branch of solutions of a (nonlinear) system F (z) = 0
(referred to as a zero problem) of n equations in n+1 unknowns, in the context of the Implicit Function
Theorem [36]. In many practical problems, it may be useful to monitor the value of certain test functions

along a particular solution branch during the continuation process. In our case, such functions will
provide relevant information regarding the performance of the control method considered in the present
work (see below). The main idea of the extended continuation paradigm is to embed the test functions
and the system F (z) = 0 in a zero problem of larger dimension. This approach offers great flexibility
for detecting special points on a solution branch and then tracing a locus of the same by allowing an
additional continuation parameter to vary, in the case when the system F (z) = 0 has more than n + 1
unknowns. By means of the COCO feature described above, we will carry out a detailed investigation of
the performance of the control method studied in the present work. Specifically, we will make use of the
COCO-toolbox ‘hspo’, which enables the numerical continuation and bifurcation detection of periodic
orbits of non-smooth dynamical systems. One of the main features of this toolbox is that it implements a
segment-specific discretization strategy in the framework of multisegment boundary-value problems [34].

The control scenario to be considered in this section involves the computation of two coexisting
periodic solutions, the current and the desired ones, as shown in Fig. 10(a). Therefore, it will be convenient
to consider the following augmented system for the numerical computations























x′(τ) = v(τ),

v′(τ) = aω2 sin(ωτ) + u(τ)− 2ζv(τ) − x(τ) − β(x(τ) − e)H(x(τ) − e),

x′

d(τ) = vd(τ),

v′d(τ) = aω2 sin(ωτ)− 2ζvd(τ) − xd(τ) − β(xd(τ) − e)H(xd(τ) − e),

(6)

with u(τ) = ǫ
[

(xd(τ) − x(τ)) + λ(vd(τ) − v(τ))
]

, for τ ≥ 0. As before, (x(τ), v(τ)) and (xd(τ), vd(τ))
stand for the current and desired trajectories of the system, respectively. The numerical approach will
consist in performing the continuation of the current and desired solutions simultaneously, computed
from the augmented system (6) for ǫ = λ = 0. During the continuation we will monitor the values of
some predefined performance indices (see below), as outlined before, with ǫ 6= 0 and λ 6= 0, which can
be readily implemented in COCO due to the possibility of introducing user-defined monitor functions.
In this way, the numerical scheme is divided into two separate tasks that are run simultaneously, that
is, the continuation of the current and desired solutions (with ǫ = λ = 0) and the study of the transient
behavior when the control law is switched on (with ǫ 6= 0 and λ 6= 0), via the performance indices defined
as monitor functions in COCO.

In order to investigate the performance of the control method, we will introduce the error function

e2(τ) = (xd(τ)− x(τ))2 + (vd(τ) − v(τ))2, τ ≥ 0,

which will be used to measure the distance between the current and desired solutions during the transient
phase, after the control has been activated. Thus, in our study the following performance indices will be
considered

Eu =

Tf
∫

T0

u(τ)2 dτ, Se2 =

Tf
∫

T0

(τ − T0) e
2(τ) dτ, (7)

where T0 represents the time at which the control law is activated, while the upper limit Tf > T0 is
a given final time that allow the transients to decay. In our investigation, we will choose Tf so that
Tf −T0 = 10 · 2π

ω
, i.e., the measures in (7) will be computed over the first 10 periods of external excitation

after the control scheme has been switched on. The first index Eu represents the expenditure of energy
due to the control signal u(τ), for τ ∈ [T0, Tf ], and in many applications this is considered as a cost that
should be kept as low as possible. The second index Se2 is referred in the literature as the integral of

time multiplied by the squared error [37], which we will abbreviate as integral quadratic error. This index
measures the system’s performance in terms of the behavior of the error during the transient phase, after
the control is activated. An important feature of this index is that it pays less attention to possible large
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initial errors, while it penalizes transients with long duration. In the next section we will investigate the
behavior of the performance indices defined in (7) when the system parameters are varied. In particular,
we will use numerical continuation techniques via the platform COCO to determine parameter values
yielding an optimal control scheme.
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Figure 11: Numerical continuation of the dynamic response of system (6), computed for the parameter values indicated in
Fig. 10. The panels show the behavior of the energy Eu (black curve) and the integral quadratic error S

e
2 (red curve) with

respect to (a) ω, (b) β, (c) ǫ and (d) λ. Panels (e) and (f) show the time series of the control signal u(τ) and the quadratic
error e2(τ), respectively, for the points P1–P4 shown in panel (c). In panels (a), (b) and (d) the blue and green dots denote
parameter values at which the energy Eu and the integral quadratic error S

e
2 attain a local minimum, respectively.

4.2. Optimization of the control scheme via continuation methods

Our main concern in this section will be to study in detail the behavior of the performance indices
introduced before with respect to parameter variations. In Fig. 11 we show the numerical continuation
of the dynamic response of system (6) with respect to the parameters, ω, β, ǫ, and λ. During each
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continuation step, the performance indices defined in (7) are calculated and their behavior can be seen
in panels (a) to (d). Here, points of optimal operation are detected, which are plotted in blue, when
the energy Eu is minimized, and in green, when the integral quadratic error Se2 is minimized. For the
cases where ω, β and λ are adjusted, it can be observed that, when one performance index is minimized,
the other one achieves values above its optimum, which reveals that there is a compromise between the
measures Eu and Se2 . This compromise is even more noticeable when the coefficient ǫ is varied. As can
be seen in Fig. 11(c), the energy of the control signal and the integral quadratic error vary monotonically
when the parameter increases. Specifically, when ǫ increases, the expenditure of energy for control grows,
while the integral quadratic error reduces. This can be verified in Figs. 11(e) and (f), where the time
series of the control signal u(τ) and the quadratic error e2(τ), τ ≥ 0, are presented. Here, it can be
seen that the smaller ǫ, the longer the transient phase takes before the error decays, and the smaller
the energy spent for control. However, this apparent correlation between energy expenditure for control
and duration of the transients need not be true when other parameters are adjusted. For instance, in
Fig. 11(a) we can see that after the integral quadratic error has reached a minimum (at ω ≈ 0.6954),
an increment in the energy Eu does not lead to a reduction in the error, meaning that there may be an
inefficient use of energy in the system. This motivates a further numerical study of the behavior of the
performance indices Eu and Se2 , using path-following techniques, as detailed below.

Fig. 12 shows the result of the two-parameter continuation of the dynamic response of system (6)
with respect to the control parameters ǫ and λ. Specifically, using the continuation platform COCO, we
computed a number of curves in the ǫ-λ plane for which the condition Eu = K is imposed, for various
fixed values of K. During the continuation process, we monitored the behavior of the integral quadratic
error Se2 , which is shown in Fig. 12(a). In this way, we could determine a point in the ǫ-λ plane at
which Se2 attains the minimum value under the restriction Eu = K. Therefore, depending on the system
specifications regarding energy consumption, we can determine the control parameters yielding an optimal
control scheme. Fig. 12(b) shows how the optimal control point varies when the fixed condition Eu = K

is changed.
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Figure 12: Two-parameter continuation of the dynamic response of system (6) with respect to ǫ and λ, keeping the energy
Eu constant. Panel (a) shows the behavior of the integral quadratic error S

e
2 for fixed Eu = 6, 7, 8, 9 and 10. The inner

set depicts an enlargement of the boxed region. In this diagram, points for which the integral quadratic error attains a
minimum value are labeled P1 (ǫ ≈ 0.6148, λ ≈ 1.9357), P2 (ǫ ≈ 0.9029, λ ≈ 1.6839), P3 (ǫ ≈ 1.4276, λ ≈ 1.4035), P4
(ǫ ≈ 2.4871, λ ≈ 1.1465) and P5 (ǫ ≈ 5.0599, λ ≈ 0.9209). Panel (b) shows a family of curves on the ǫ-λ plane for which
the energy Eu remains constant. The points P1–P5 correspond to the optimal operation points depicted in panel (a).

5. Conclusions

This paper presents a numerical study of a recently developed control method based on linear aug-
mentation. Our study considers a particular case where the control scheme is applied to an impacting
system modeled by a non-smooth dynamical system exhibiting multistability. The main objective in
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this application is to drive the impacting system to a desired periodic solution via the linear augmented
controller. This approach allows us to address two control issues that are common to a wide range of
engineering applications, namely, switching between coexisting attractors without altering the system’s
parameters and suppressing undesired chaotic responses. The first control issue is motivated by a dy-
namical scenario where the impacting system is bistable, with two coexisting periodic solutions for which
there is a significant difference in the power required to operate the system. Specifically, the linear aug-
mentation control law is used to drive the system from the periodic regime with high energy consumption
to a periodic response with a much lower power dissipation. The second control issue is investigated for a
parameter range in which chaotic and periodic behavior coexist in the impacting system. In this case, the
controller is applied in such a way that the system can switch from a grazing-induced chaotic attractor
to a suitably chosen periodic solution, which is a common problem in many engineering applications.

The effectiveness of the proposed control scheme is studied by a number of numerical techniques. For
this purpose, bifurcation diagrams and basins of attraction are computed for various dynamical scenarios
with a practical relevance. Furthermore, the performance of the linear augmentation control law is
analyzed in terms of integral indices related to the expenditure of energy due to the control signals and
the behavior of the error during the transient phase after the controller is activated. To study in detail
the effect of the system and control parameters on these performance indices, numerical continuation
methods for non-smooth dynamical systems were applied via the continuation platform COCO [34].
Our numerical study revealed a compromise between the performance indices when the parameters are
adjusted. Specifically, optimizing one index may lead to unsuitable values of the other, as is common
in many practical cases. To investigate this issue further, we used COCO’s capabilities to introduce
parameter constraints during continuation in order to generate a family of curves in a two-dimensional
space defined by the main control parameters. In this way, we were able to systematically determine
parameter values yielding optimal control for given energy constraints, and one path of future research
may be the implementation of the proposed optimization scheme to more involved mechanical systems
and the experimental verification of the numerical predictions.
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[14] M. Kapitaniak, V. Vaziri Hamaneh, J. Páez Chávez, K. Nandakumar, and M. Wiercigroch, “Unveil-
ing complexity of drill-string vibrations: Experiments and modelling,” Internat. J. of Mech. Sci.,
vol. 101-102, pp. 324–337, 2015.
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