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Abstract

We consider the coupling of the Landau-Lifshitz-Gilbert equation with a quasilinear diffusion equation to describe the interplay of
magnetization and spin accumulation in magnetic-nonmagnetic multilayer structures. For this problem, we propose and analyze
a convergent finite element integrator, where, in contrast to prior work, we consider the stationary limit for the spin diffusion.
Numerical experiments underline that the new approach is more effective, since it leads to the same experimental results as for the
model with time-dependent spin diffusion, but allows for larger time-steps of the numerical integrator.
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1. Introduction and mathematical model

The classical theory of micromagnetism models the behavior of
ferromagnetic materials for constant temperature far below the
Curie point and in the absence of electric currents. To take the
interactions between magnetization and spin-polarized currents
into account, several extensions of the model based on the con-
cept of spin-transfer have been proposed [1–7]. In this work,
we consider the Landau-Lifshitz-Gilbert equation (LLG)

∂tm = −γ0m × (Heff(m, f) + cs) + αm × ∂tm in ΩT , (1a)

∂nm = 0 on (0,T ) × ∂Ω, m(0) = m0 in Ω, (1b)

where the sought vector field is the normalized magnetization
m : ΩT → R3 with |m| = 1. In (1a), Ω ⊂ R3 is the volume
occupied by some ferromagnetic body, T > 0 is some finite
time, and ΩT = (0,T )×Ω is the time-space domain. Moreover,
γ0 > 0 is the gyromagnetic ratio, α > 0 is the Gilbert constant,
and the effective field is given by

Heff(m, f) = Cexch∆m + π(m) + f. (1c)

In (1c), the first term is the exchange contribution, with Cexch =

2A/(µ0Ms) > 0, π(m) collects the m-dependent lower-order
contributions (e.g., anisotropy field and stray field), and f com-
prises the m-independent contributions (e.g., applied external
field). In (1a), s : Ω′T → R3 denotes the spin accumulation,
Ω′ ⊂ R3 is the volume of a conducting body such that Ω ⊂ Ω′,
Ω′T = (0,T ) ×Ω′, and c > 0 is the corresponding coupling con-
stant. The LLG equation is equipped with homogeneous Neu-
mann boundary conditions and initial conditions (1b) for some
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initial state m0 : Ω → R3 with |m0| = 1. The dynamics of the
spin accumulation s is governed by the diffusion equation [3, 8]

∂ts = −∇ · Js −
2D0

λ2
sf

s −
2D0

λ2
J

s ×m in Ω′T , (2a)

∂ns = 0 on (0,T ) × ∂Ω′, s(0) = s0 in Ω′. (2b)

Here, D0 denotes the diffusion coefficient, λsf , λJ > 0 are char-
acteristic lengths, and s0 : Ω′ → R3 is some initial configura-
tion. The spin current Js reads

Js =
βµB

e
m ⊗ Je − 2D0

(
∇s − ββ′m ⊗ (∇s>m)

)
in Ω′T , (2c)

where Je : Ω′T → R3 is a given electric current density and the
constants µB > 0, e > 0, and 0 < β, β′ < 1 are the Bohr mag-
neton, the electron electric charge, and polarization parameters,
respectively. The above setting covers the case of multilayer
structures, where Ω′ denotes the volume of the entire multilayer
sample, while Ω denotes its ferromagnetic part (see Section 4).

Existence of weak solutions of the nonlinear system (1)–(2)
has been established in [8]. A first numerical scheme based on
finite differences has been proposed and empirically validated
in [9]. A convergent finite element integrator has been pro-
posed, analyzed, and applied by the authors in [10, 11]. The
latter scheme extends the integrator of [12] and is uncondition-
ally convergent towards a weak solution of the system, although
each time-step decouples the integration of (1) and (2) and re-
quires only to solve two linear systems (despite the overall non-
linearities).

The dynamics of the spin accumulation is much faster than
the one of the magnetization [3]. If one is only interested in the
magnetization dynamics, it is thus reasonable to treat the spin
accumulation as in equilibrium, i.e., to consider the stationary
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case of the governing diffusion equation. With this approach,
the time-dependent equation (2) reduces to the boundary value
problem

− ∇ ·
(
D0(∇s − ββ′m ⊗ (∇s>m))

)
+

D0

λ2
sf

s +
D0

λ2
J

(s ×m)

= −
βµB

2e
∇ · (m ⊗ Je) in Ω′,

(3a)

∂ns = 0 on ∂Ω′. (3b)

In the present work, as a novel contribution over [8–11], we an-
alyze the numerical integration of (1) coupled to (3). We prove
convergence of the algorithm towards a weak solution of the
problem and compare the numerical results with those for (1)–
(2). The latter is computationally more expensive, since it re-
quires a smaller time-step size in order to resolve the dynamics
of the spin accumulation.

2. Variational formulation and weak solution

We assume that D0 ∈ L∞(Ω′) satisfies D0 ≥ D∗ a.e. in Ω′ for
a positive constant D∗. For the moment, we omit the time-
dependence of all quantities, assume Je ∈ H(div,Ω′), and con-
sider the setM = {m ∈ L∞(Ω) : |m| ≤ 1 a.e. in Ω}. For m ∈ M,
we define the bilinear form am : H1(Ω′) ×H1(Ω′)→ R by

am(ζ1, ζ2) =
(
D0∇ζ1,∇ζ2

)
Ω′ − ββ

′(D0m ⊗ (∇ζ>1 m),∇ζ2)Ω

+ λ−2
sf

(
D0ζ1, ζ2

)
Ω′ + λ−2

J
(
D0(ζ1 ×m), ζ2

)
Ω . (4)

for all ζ1, ζ2 ∈ H1(Ω′). The variational formulation of (3) then
reads as follows: Find s ∈ H1(Ω′) such that, for all ζ ∈ H1(Ω′),
it holds

am(s, ζ) =
βµB

2e
(m ⊗ Je,∇ζ)Ω −

βµB

2e
(Je · n,m · ζ)∂Ω′∩∂Ω . (5)

The following proposition characterizes the mapping m 7→ s.

Proposition 1. For all m ∈ M, there exists a unique solution
s ∈ H1(Ω′) of (5). Moreover, it holds

‖s‖H1(Ω′) ≤
βµB‖Je‖H(div,Ω′)

2D∗|e|min{1 − ββ′, λ−2
sf }

.

Proof. Recall |m| ≤ 1 a.e. in Ω. It follows that the bilinear form
am(·, ·) is continuous and coercive, as am(ζ, ζ) ≥ D∗min{1 −
ββ′, λ−2

sf }‖ζ‖
2
H1(Ω) for all ζ ∈ H1(Ω′). Moreover, F(·) defined as

the right-hand side of (5) is linear and continuous, as |F(ζ)| ≤
(βµB|e|−1/2) ‖Je‖H(div,Ω′)‖ζ‖H1(Ω) for all ζ ∈ H1(Ω′). Therefore,
the result follows from the Lax-Milgram theorem.

We suppose f ∈ C([0,T ]; L2(Ω)) and Je ∈ C([0,T ],H(div,Ω′)).
In the spirit of [13–15], we introduce the notion of a weak so-
lution of (1) coupled to (3):

Definition 2. Let m0 ∈ H1(Ω) with |m0| = 1 a.e. in Ω. Then,
m : ΩT → R3 is called a weak solution of the coupling of (1)
and (3) if the following properties (i)–(iv) are satisfied:

(i) m ∈ H1(ΩT ) and |m| = 1 a.e. in ΩT ,

(ii) m(0) = m0 in the sense of traces,

(iii) for all ϕ ∈ H1(ΩT ), it holds

(∂tm,ϕ)ΩT
+ α (∂tm ×m,ϕ)ΩT

= −Cexchγ0 (∇m ×m,∇ϕ)ΩT
+ γ0 (π(m) ×m,ϕ)ΩT

+ γ0 (f ×m,ϕ)ΩT
+ cγ0 (s ×m,ϕ)ΩT

,

(iv) for a.e. time T ′ ∈ (0,T ), it holds

‖∇m(T ′)‖2L2(Ω) + α

∫ T ′

0
‖∂tm(t)‖2L2(Ω)dt ≤ C, (6)

where the constant C > 0 depends only on the data.

We point out that stronger (dissipative) bounds than (6) in terms
of the Gibbs free energy require additional assumptions on π
and f; see [14, 15].

3. Numerical algorithm

For the spatial discretization, let {TΩ′

h }h>0 be a quasi-uniform
family of conforming tetrahedral triangulations of Ω′ with
meshsize h. We assume that Ω is resolved, i.e., the restric-
tion TΩ

h =
{
K ∈ TΩ′

h : K ⊆ Ω
}

satisfies Ω =
⋃

K∈TΩ
h

K. We
denote by Vh(Ω′) = S1(TΩ′

h )3 the standard finite element space
of globally continuous and piecewise affine functions from Ω′

to R3 and define Vh(Ω) analogously. The set of vertices of the
triangulation TΩ

h is denoted byNΩ
h . We define the set of admis-

sible discrete magnetizations by

Mh :=
{
φh ∈ Vh(Ω) : |φh(z)| = 1 for all z ∈ NΩ

h

}
⊂ M

and consider, for φh ∈ Mh, the discrete tangent space

Kφh
:=

{
ψh ∈ Vh(Ω) : ψh(z) · φh(z) = 0 for all z ∈ NΩ

h

}
.

We note that these definitions are inspired by mimicking the
properties |m| = 1 and m · ∂tm = 1

2 ∂t |m|2 = 0 a.e. in ΩT which
are satisfied for each solution m of (1).

For the time discretization, we consider a uniform partition
of the time interval [0,T ] with time-step size ∆t = T/N, i.e.,
ti = i∆t for 0 ≤ i ≤ N. Algorithm 3 approximates m(ti) ≈
mi

h ∈ Mh as well as ∂tm(ti) ≈ vi
h ∈ Kmi

h
. Instead of (5), we

consider the following discrete problem: Given Ji
e := Je(ti),

find si
h ∈ Vh(Ω′) such that, for all ζh ∈ Vh(Ω′), it holds

ami
h
(si

h, ζh) =
βµB

2e
(mi

h ⊗ Ji
e,∇ζh)Ω −

βµB

2e
(Ji

e · n,m
i
h · ζh)∂Ω′∩∂Ω.

(7)
Arguing as for Proposition 1, we see that (7) is well-posed and
that si

h ∈ Vh(Ω′) satisfies

‖si
h‖H1(Ω′) ≤

βµB‖Je‖C([0,T ],H(div,Ω′))

2D∗|e|min{1 − ββ′, λ−2
sf }

. (8)

Let m0
h ∈ Mh be a suitable discretization of the initial con-

dition which satisfies m0
h ⇀ m0 in H1(Ω) as h → 0. As-

sume that the general contribution π(m) is approximated by
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πh :Mh → L2(Ω) such that ‖πh(φh)‖L2(Ω) ≤ C for all φh ∈ Mh,
and πh(φh) ⇀ π(φ) in L2(Ω) whenever φh → φ in L2(Ω).
This general framework for the discretization of general m-
dependent field contributions has been introduced in [15] and
covers many classical strategies, e.g., the hybrid FEM/BEM
method from [16] for the computation of the stray field. For the
numerical integration of the coupling of (1) and (3), we propose
the following algorithm, where fi := f(ti).

Algorithm 3. For all 0 ≤ i ≤ N − 1 iterate the steps (i)–(iii):

(i) Compute πh(mi
h) ∈ Vh(Ω), compute si

h ∈ Vh(Ω′) from (7).

(ii) Compute vi
h ∈ Kmi

h
such that, for all φh ∈ Kmi

h
, it holds

α
(
vi

h,φh

)
Ω

+
(
mi

h × vi
h,φh

)
Ω

+ Cexchγ0θ∆t
(
∇vi

h,∇φh

)
Ω

= −Cexchγ0

(
∇mi

h,∇φh

)
Ω

+ γ0

(
πh(mi

h),φh

)
Ω

+ γ0

(
fi,φh

)
Ω

+ cγ0

(
si

h,φh

)
Ω
. (9)

(iii) Define mi+1
h ∈ Mh by

mi+1
h (z) =

mi
h(z) + ∆t vi

h(z)

|mi
h(z) + ∆t vi

h(z)|
for all z ∈ NΩ

h .

The algorithm combines the tangent plane scheme [12, 14, 15]
with (7). We note that (9) fits in the form of the Lax-Milgram
theorem and thus admits a unique solution vi

h ∈ Kmi
h
. In par-

ticular, it holds |mi
h + ∆t vi

h|
2 = 1 + ∆t2|vi

h|
2 ≥ 1. It follows

that Algorithm 3 is well-defined for all discretization parame-
ters h,∆t > 0. Overall, only two well-posed linear systems are
solved per time-step, although the system is nonlinear in m and
nonlinearly coupled with s.

The output {mi
h}0≤i≤N of Algorithm 3 induces the piecewise

linear time approximation of the magnetization defined by

mh∆t(t) :=
t − ti
∆t

mi+1
h +

ti+1 − t
∆t

mi
h

for all t ∈ [ti, ti+1], 0 ≤ i ≤ N − 1. To see that the sequence
{mh∆t}h,∆t>0 converges towards a weak solution in the sense of
Definition 2, we apply the framework for general effective field
contributions introduced in [15].

Theorem 4. Suppose that any mesh of the family {TΩ′

h }h>0 sat-
isfies the angle condition

(∇ϕz,∇ϕz′ )Ω ≤ 0 for all distinct vertices z, z′ ∈ NΩ
h . (10)

Then, the sequence {mh∆t}h,∆t>0 converges, upon extraction of
a subsequence, weakly in H1(ΩT ) towards a weak solution of
the LLG equation in the sense of Definition 2 as h,∆t → 0. If
1/2 < θ ≤ 1, the convergence is unconditional.

Proof. The proof uses the same arguments as in [12, 14, 15].
Therefore, we only sketch it. In particular, the result follows
from [15, Theorem 3.1], once we show that ‖si

h‖L2(Ω′) ≤ C for all
0 ≤ i ≤ N − 1, see [15, equation (3.12)], and that the piecewise
constant time approximation of the spin accumulation defined
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Figure 1: µMAG standard problem #5. Damped gyration of a magnetic vortex
under the influence of a DC current. The results of Algorithm 3 are compared
to the nonequilibrium algorithm which discretizes the coupling of (1) and (2)
proposed in [10, 11] and the model of Zhang and Li [5]. The insets depict the
equilibrium configuration of the vortex without and with applied current.

by s−h∆t(t) := si
h for all t ∈ [ti, ti+1), 0 ≤ i ≤ N − 1 satisfies the

convergence property s−h∆t ⇀ s in L2(Ω′T ) as h,∆t → 0, see [15,
equation (3.13)]. The first condition directly follows from (8).
From (8), we also obtain that the sequence {s−h∆t}h,∆t>0 is uni-
formly bounded in L∞(0,T ; H1(Ω′)). In particular, we deduce
that, upon extraction of a subsequence, s−h∆t ⇀ s̃ in L2(Ω′T ) for
some s̃ ∈ L2(Ω′T ). Exploiting the fact that mh∆t → m in L2(ΩT ),
the identification of s̃ with the solution s of (5) is obtained by
passing to the limit (7) for h,∆t → 0.

Remark 5. The angle condition (10) is a technical assumption
that is required for the convergence analysis of Algorithm 3. It
is needed to ensure the H1-stability of the nodewise projection
from step (iii) [17]. In 3D, a sufficient condition for (10) is
that all angles between faces of tetrahedra are bounded by π/2.
If the triangulation does not satisfies the angle condition, then
the convergence proof requires the discretization parameters to
satisfy the CFL condition ∆t h−2 ≤ C. However, extended nu-
merical experiments show that the method seems to be stable
even if the angle condition is violated. This might signify that
assumption (10) is only an artifact of the proof technique.

Remark 6. Arguing along the lines of [10], one can show that
the projection step can be omitted. The constraint then fails
to hold at the nodes of the triangulation, but the violation is
uniformly bounded by the time-step size, independently of the
number of iterations. In particular, the limit of m of {mh∆t}h,∆t>0
satisfies |m| = 1 a.e. in ΩT also in this case. However, the pro-
jection step must be included in the definition (4) of the bilinear
form ami

h
(·, ·) in order to preserve its coercivity. Then, Theo-

rem 4 remains valid even if the triangulation does not satisfies
the angle condition (10).

4. Numerical experiments

In this section, we compare the simulation results of Algo-
rithm 3, which integrates the coupling of (1) and (3) with the
algorithm proposed in [10, 11] which discretizes (1)–(2).
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(a)
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Figure 2: Spin-torque oscillator. (a) Material stack. (b) Magnetization config-
uration during oscillation.

A suitable benchmark for current driven domain-wall mo-
tion is the micromagnetic standard problem #5 proposed by the
µMAG group [18]. A thin square of size 100 × 100 × 10 nm3

with material parameters of permalloy (Ms = 8 × 105 A/m,
A = 1.3 × 10−11 J/m, α = 0.1) is prepared in a magnetic vor-
tex state. A homogeneous DC current in x-direction is then
applied, which leads to a damped gyration of the vortex core
around a shifted equilibrium. While the µMAG group pro-
poses to solve this problem with the model of Zhang and Li
[5], we use the presented diffusion model with an equivalent
choice of current-related material parameters [11], i.e., D0 =

1 × 10−3 m/s2, β = 0.9, β′ = 0.8, λsf = 10 nm, λJ = 2.236 nm,
c = 3.155 × 10−3 N/A2. The simulations are carried out with
the time-step ∆t = 1 × 10−13 s, the results are shown in Fig-
ure 1. While the results of the considered model slightly differ
from the Zhang and Li solution, there is no notable difference
between the coupling with the time-dependent spin diffusion (2)
and with the equilibrium ansatz (3). This justifies the simplified
equilibrium treatment of the spin accumulation.

As a second benchmark, we consider the circular multi-
layer structure depicted in Figure 2(a) with diameter 60 nm
and layer thicknesses {5, 3, 1.5, 10, 5} nm from top to bottom.
The 3 nm free layer has soft magnetic properties, i.e., Ms =

7.96 × 105 A/m, A = 2.8 × 10−11 J/m, K = 0, α = 0.012.
The 10 nm fixed layer has similar properties, but higher sat-
uration magnetization Ms = 9.87 × 105 A/m as well as uni-
axial anisotropy with K = 1 × 106 J/m3 and easy axis in the
z-direction (perpendicular to the stack interfaces). The dif-
fusion parameters in the magnetic material are chosen simi-
larly to those of the standard problem #5. The same parame-
ters are used for the nonmagnetic regions, except for a higher
diffusion constant D0 = 5 × 10−3 m/s2. The system is simu-
lated under the influence of an external field in z-direction with
µ0|Hext| = 0.6 T and a DC current in z-direction with a density
of |Je| = 4 × 1011 A/m2. The simulation is carried out with the

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

t [ns]

〈m
x
〉

Figure 3: Averaged x-component of the magnetization in the free layer of the
spin-torque oscillator. A stable oscillation with f ≈ 6.86 GHz is established
after a short transient period.

time-step ∆t = 1 × 10−13 s, the corresponding results are shown
in Figure 3. After a short transient period, the magnetization
in the free layer performs a stable oscillation with a frequency
f ≈ 6.86 GHz. A typical magnetization state during the oscil-
lation is depicted in Figure 2(b). This oscillation originates in
the spin torque excerted on the free layer by itinerant electrons
that are polarized in the fixed layer.

5. Conclusions

We have introduced a mathematically convergent integrator
for the coupling of the LLG equation and a stationary drift-
diffusion equation for the spin accumulation. The numerical
experiments demonstrate how the presented model can be used
to describe the spin torque in both multilayer structures and do-
main walls. Furthermore, it is shown that in order to describe
the magnetization dynamics accurately it is sufficient to treat
the spin accumulation in equilibrium in contrast to the full dy-
namic description considered in [8–11]. Within the considered
approach, the electric current density is assumed to be given.
Future work in the direction of a fully self-consistent model will
include also the computation of the current, in order to take also
the influence of the magnetization configuration to the electrical
resistance into account. This will be achieved by coupling (1)
and (3) with a suitable form of the Maxwell equations.
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