
Evaluation and Comparison of 3D Intervertebral Disc

Localization and Segmentation Methods for 3D T2 MR

Data: A Grand Challenge

Guoyan Zhenga,∗,
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Abstract

The evaluation of changes in Intervertebral Discs (IVDs) with 3D Magnetic
Resonance (MR) Imaging (MRI) can be of interest for many clinical applica-
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tions. This paper presents the evaluation of both IVD localization and IVD
segmentation methods submitted to the Automatic 3D MRI IVD Localiza-
tion and Segmentation challenge, held at the 2015 International Conference
on Medical Image Computing and Computer Assisted Intervention (MIC-
CAI2015) with an on-site competition. With the construction of a manually
annotated reference data set composed of 25 3D T2-weighted MR images
acquired from two different studies and the establishment of a standard val-
idation framework, quantitative evaluation was performed to compare the
results of methods submitted to the challenge. Experimental results show
that overall the best localization method achieves a mean localization dis-
tance of 0.82mm and the best segmentation method achieves a mean Dice
of 91.8%, a mean average absolute distance of 1.08mm and a mean Haus-
dorff distance of 4.34mm, respectively. The strengths and drawbacks of each
method are discussed, which provides insights into the performance of differ-
ent IVD localization and segmentation methods.

Keywords: Intervertebral disc, MRI, Localization, Segmentation,
Challenge, Evaluation

1. Introduction

Low back pain (LBP) is one of the most prevalent health problems amongst
the world’s population and is a leading cause of disability that affects work
performances and well-being (Maniadakis and Gray, 2000; Andersson, 2011;
Wieser et al., 2011). A strong association between LBP and intervertebral
disc (IVD) degeneration has been repeatedly reported in various clinical stud-
ies (Luoma et al., 2000; Kjaer et al., 2005; Cheung et al., 2009). Although
almost every medical imaging modality has been used to evaluate lumbar de-
generative disc disease, Magnetic Resonance (MR) Imaging (MRI) is widely
recognized as the imaging technique of choice for the assessment of lumbar
IVD abnormalities due to its excellent soft tissue contrast and no ionizing
radiation (Emch and Modic, 2011; Parizel et al., 2007). This, in turn, has
sparked specific interest in developing methods for automated image analy-
sis and quantification for the diagnosis of spinal diseases using MR images,
though most of them work only with two-dimensional (2D) images. Here
the term image analysis refers to localization and segmentation of the IVDs,
which is a step prior to the quantification process. The published methods
can be roughly classified into two groups: disc detection and disc segmen-
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tation. Table 1 shows a summary of the state-of-the-art methods for IVD
detection and segmentation.

The methods in the first group focus on automated detection of the discs
or vertebrae but without segmenting them (Peng et al., 2005; Schmidt et al.,
2007; Corso et al., 2008; Alomari et al., 2011; Stern et al., 2010; Donner
et al., 2010; Oktay and Akgul, 2013). For example, Peng et al. (2005) used
intensity profiles to localize the 24 articulated vertebrae from whole spine
MR images and their method required a manual selection of the so-called
best MR image slice among all the sagittal slices. Schmidt et al. (2007)
proposed a part-based graphical model for spine detection and labeling. They
used the part-based graphical model to represent both the appearance of
local parts and the shape of the anatomy in terms of geometric relations
between parts. Features for detecting parts were learned from a set of training
data in manually marked image regions. Along the same line, Alomari et
al. (Corso et al., 2008; Alomari et al., 2011) presented a different graphical
model for the lumbar disc localization. They used a two-level probabilistic
model with latent variables to capture both pixel- and object-level features.
Generalized expectation maximization method was used for optimization.
The method was validated on 2D sagittal MR images. Stern et al. (2010)
described another method for automatic IVD detection from MR images
of lumbar spine. Their method worked by first extracting spinal centerlines
and then detecting the centers of vertebral bodies and IVDs by analyzing the
image intensity and gradient magnitude profiles extracted along the spinal
centreline. There also exist methods using Markov Random Field (MRF)-
based inference. Donner et al. (2010) proposed to formulate the localization
of an object model from an input image as an MRF-based optimal labeling
problem. They used MRF to encode the relation between the model and the
entire search image. Recently, Oktay and Akgul (2013) described a method
to simultaneously localize lumbar vertebrae and IVDs from 2D sagittal MR
images using support vector machine (SVM) based MRF.

In contrast, the methods in the second group aim for disc segmenta-
tion. The disc detection in these methods could be done manually, semi-
automatically or fully-automatically. Chevrefils et al. (2007, 2009) presented
a texture analysis based method for automatic segmentation of IVDs from 2D
MR images of scoliotic spines. Their method exploited a combination of sta-
tistical and spectral texture features to discriminate closed regions represent-
ing IVDs from background in MR images. The closed regions are obtained
with the watershed approach. Michopoulou et al. (2009) proposed a prob-
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Table 1: Summary of the state-of-the-art methods for IVD detection and segmentation.

Classification Method 2D or 3D? Type

IVD
Detection

Peng et al., 2005 2D Semi-automatic
Schmidt et al., 2007 3D Automatic
Corso et al., 2008;
Alomari et al., 2011

2D Automatic

Huang et al., 2009 2D Automatic
Stern et al., 2010 3D Automatic
Donner et al., 2010 2D Automatic
Zhan et al., 2012 3D Automatic
Oktay and Akgul 2013 2D Automatic
Michael Kelm et al., 2013 3D Automatic
Glocker et al., 2012;
Glocker et al., 2013

3D Automatic

Chen et al., 2015a 3D Automatic
Cai et al., 2015 3D Automatic
Suzani et al., 2015 3D Automatic
Chen et al., 2015c 3D Automatic

IVD
Segmentation

Carballido-Gamio et al., 2004 3D Automatic
Peng et al., 2005 2D Semi-automatic
Chevrefils et al., 2007;
Chevrefils et al., 2009

2D Automatic

Huang et al., 2009 2D Automatic
Michopoulou et al., 2009 2D Semi-automatic
Ben Ayed et al., 2011 2D Semi-automatic
Neubert et al., 2012 3D Semi-automatic
Egger et al., 2012 2D Semi-automatic
Law et al., 2013 2D Semi-automatic
Schwarzenberg et al., 2014 3D Semi-automatic
Ali et al., 2014 3D Automatic
Chen et al., 2015a 3D Automatic
Wang et al., 2015 3D Automatic
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abilistic atlas-based method for segmentation of degenerated lumbar IVDs
from 2D MR images of the spine. Their method was semi-automatic and re-
quired an interactive selection of the leftmost and rightmost disc points. The
reported Dice coefficents of this method were 91.6% for normal and 87.2% for
degenerated discs. A statistical shape models-based method was proposed
by Neubert et al. (2012) for automated three-dimensional (3D) segmentation
of high resolution spine MR images. Their method required an interactive
placement of a set of initial rectangles along spine curve. Different types of
graph theory based methods (Carballido-Gamio et al., 2004; Huang et al.,
2009; Ali et al., 2014; Ben Ayed et al., 2011; Egger et al., 2012; Yao et al.,
2006; Schwarzenberg et al., 2014) are also popular in disc or vertebra segmen-
tation. Among the methods in this category, there exist methods in the form
of normalized cut (Carballido-Gamio et al., 2004; Huang et al., 2009). For
example, Carballido-Gamio et al. (2004) applied the normalized cut to seg-
ment T1-weighted MR images. Huang et al. (2009) improved this method by
proposing an iterative algorithm and evaluated their method on 2D sagittal
MR slices. There also exist graph theory based methods in the form of graph
cut (Ali et al., 2014; Ben Ayed et al., 2011). For example, Ben Ayed et al.
(2011) designed new object-interaction priors for graph cut image segmen-
tation and applied their method to IVD delineation in 2D MR lumbar spine
images. Their method required a manual selection of the first disc center.
Evaluated on 15 2D mid-sagittal MR slices, this method achieved an average
2D Dice overlap coefficent of 85%. More recently, following the idea intro-
duced by Li et al. (2006), both square-cut (Egger et al., 2012) and cubic-cut
(Schwarzenberg et al., 2014) methods were proposed. The square-cut method
works only on 2D sagittal slices of MR data while the cubic-cut method can
be used for 3D spinal MR image segmentation. Another method on IVD
segmentation from middle sagittal spine MR images was introduced by Law
et al. (2013). They used the anisotropic oriented flux detection scheme to
distinguish the discs from the neighboring structures with similar intensity
with a minimal user interaction.

Recently, machine learning-based methods have gained more and more
interest in the medical image analysis community. Most of these methods
are based on ensemble learning principles that can aggregate predictions of
multiple classifiers and demonstrate superior performance in various chal-
lenging medical image analysis problems. For example, Zheng et al. (2008)
proposed marginal space learning to automatically localize the heart cham-
ber from 3D Computed Tomography (CT) data. This method has been
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successfully used for spine detection in CT and MR images (Michael Kelm
et al., 2013). Zhan et al. (2012) presented a hierarchical strategy and local
articulated model to detect vertebrae and discs from 3D MR images. They
used a Haar filter based Adaboost classifier and a local articulated model
for calculating the spatial relations between vertebrae and discs. A combi-
nation of wavelet transform based Adaboost classifier and iterative normal-
ized cut was proposed by Huang et al. (2009) for detecting and segmenting
vertebrae. Due to the successful applications of Random Forest (RF) regres-
sion for automatic localization of organs from 3D volumetric CT/MR data
(Pauly et al., 2011; Criminisi et al., 2013), such a technique has been used by
Glocker et al. (2012, 2013) for localization and identification of vertebrae in
arbitrary field-of-view CT scans. Another two regression-based approaches
were introduced by Chen et al. (2015a) and Wang et al. (2015), respectively.
More specifically, Chen et al. (2015a) proposed a unified data-driven regres-
sion and classification framework to tackle the problem of localization and
segmentation of IVDs from T2-weighted MR data while Wang et al. (2015)
proposed to address the segmentation of multiple anatomic structures in mul-
tiple anatomical planes from multiple imaging modalities with a sparse kernel
machines-based regression. More recently, the advancement of deep learn-
ing approaches provides another course of efficient methods for spinal image
processing. For example, Cai et al. (2015) proposed to use a 3D deformable
hierarchical model for multi-modality vertebra recognition in arbitrary view
where multi-modal features extracted from deep networks were used for ver-
tebra landmark detection. While both Chen et al. (2015c) and Suzani et al.
(2015) used deep learning approaches for automatic vertebrae detection and
localization from spinal CT data, they used different types of deep neural
networks. More specifically, the work done by Suzani et al. (2015) was based
on feed-forward neural networks while the work done by Chen et al. (2015c)
was based on deep convolutional neural networks.

Meaningful comparisons of algorithm performance among various state-
of-the-art IVD localization and segmentation methods are highly desired.
However, direct and objective comparisons are difficult to achieve due to fol-
lowing two issues: 1) Different MR data sets acquired with different image
acquisition protocols are used in different studies, and most of these MR data
sets are not publicly available. Although there exists one open data set for
comparing algorithms for clinical vertebral segmentation from 3D CT data
(Yao et al., 2016), to the best of our knowledge, there exists only one open
MR data set with the associated manual delineation of IVDs (Oktay and
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Akgul, 2013). This open MR data set, however, cannot be used to evalu-
ate and compare 3D IVD localization and segmentation algorithms, as only
2D mid-sagittal slices are available in the data set; and 2) Different evalu-
ation metrics are used in different studies, which precludes the possibility
of direct comparison. Therefore, to address the above mentioned challenges
in algorithm comparison, it is necessary to establish a standard validation
framework with a publicly available reference MR data set. To reach this
goal, a grand challenge on Automatic IVD Localization and Segmentation
from 3D T2 MR Data was held in conjunction with the third MICCAI Work-
shop on Computational Methods and Clinical Applications for Spine Imaging
(CSI) (http://ijoint.istb.unibe.ch/challenge/index.html).

The challenge report described in this paper intends to first construct an
annotated reference data set composed of 3D T2-weighted Turbo Spin Echo
(TSE) MR images for validation purpose and then to establish a standard
framework for an objective comparison of different IVD localization and seg-
mentation algorithms. Details of challenge setup and challenge results will be
described in the following sections. More specifically, in Section 2, challenge
organization, the established validation framework, the data sets used within
the challenge and the participation teams will be introduced. In Section 3,
summary about each submitted algorithm will be described. The validation
results for all submitted algorithms will be described in Section 4. Discus-
sions of the performance and the computational efficiency of methods of all
participating teams will be presented in Section 5, followed by conclusion in
Section 6.

2. Challenge Setup

2.1. Organization

The aim of the challenge is to investigate (semi-)automatic IVD local-
ization and segmentation algorithms and to provide a standard evaluation
framework with a set of 3D T2-weighted TSE MR images. There are 7 IVDs
T11-S1 to be localized and segmented from each image as shown in Fig. 1.
Thus, the challenge has been divided into two parts: the localization part
and the segmentation part. In the localization part, the task is to fully au-
tomatically identify the centers of 7 IVDs T11-S1 from each image. In the
segmentation part, the task is to automatically segment 7 IVD regions T11
S1 from each image. Each team can choose to participate in either one of
the two parts or in both parts.
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Figure 1: The 7 IVDs to be localized and segmented from each image.

There are two stages in the challenge. In stage 1, a training data set and
the associated ground truth were released on March 1st, 2015 for method
development and a first test data set were released on August 15, 2015 for
method testing. In stage 2, an on-site competition was organized for which
a second test data set was released on October 05, 2015.

2.2. Validation framework

The established validation framework includes five standard metrics to
evaluate the algorithm performance, two for localization and three for seg-
mentation. For evaluation of the localization performance, we propose to use
the following two metrics:

1. Mean localization distance (MLD) with standard deviation
(SD)
We first compute the localization distance R for each IVD center using

R =
√

(∆x)2 + (∆y)2 + (∆z)2 (1)

where ∆x, ∆y, and ∆z are respectively x, y, and z coordinate difference
between the identified IVD center and the ground truth (GT) IVD
center calculated from the ground truth segmentation.
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MLD and SD are then defined as follows:
MLD =

∑Nimages
i=1

∑NIV Ds
j=1 Rij

NimagesNIV Ds

SD =

√∑Nimages
i=1

∑NIV Ds
j=1 (Rij−MLD)2

NimagesNIV Ds

(2)

where Nimages is the number of MR images, and NIV Ds is the number
of IVDs.

2. Successful detection rate (SDR) with various ranges of accu-
racy
If the distance between the localized IVD center and the ground truth
center is no greater than t mm, the localization of this IVD is con-
sidered as a successful detection; otherwise, it is considered as a false
localization. The successful localization rate Pt with accuracy of less
than t mm is formulated as follows

Pt =
number of accurate IVD localizations

number of IVDs
× 100% (3)

For evaluating the segmentation performance, we use the following three
metrics:

1. Dice overlap coefficients (Dice): Dice measures the percentage of
correctly segmented voxels. Dice (Dice, 1945) is computed by

Dice =
2|A ∩B|
|A|+ |B|

× 100% (4)

where A is the set of foreground voxels in the ground-truth data and B
is the corresponding set of foreground voxels in the segmentation result,
respectively. Larger Dice metric means better segmentation accuracy.

2. Average absolute distance (AAD): AAD measures the average
absolute distance from the ground truth IVD surface and the auto-
matically segmented surface. To compute the AAD, we first generate
a surface mesh from binary IVD segmentation. For each vertex on
the surface model derived from the automatic segmentation, we find
its closest distance to the surface model derived from the associated
ground-truth segmentation. The AAD is then computed as the average
of distances of all vertices. Smaller AAD means better segmentation
accuracy.
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Table 2: Demographic statistics of the 25 subjects.

Subject Characteristics Mean ± SD Min Max
Age (year) 34.4 ± 8.1 20 45
Weight (kg) 76.1 ± 10.7 59 104
Height (cm) 179.5 ± 6.9 169.0 196.1

3. Hausdorff distance (HD): HD measures the Hausdorff distance (Hut-
tenlocher et al., 1993) between the ground truth IVD surface and the
segmented surface. To compute the HD, we use the same surface models
as we used for computing the AAD. Smaller HD means better segmen-
tation accuracy.

2.3. Description of Image Data Sets

There are 25 3D T2-weighted TSE MR images collected from 25 male
subjects in two different studies investigating IVD morphology change af-
ter prolonged bed rest (spaceflight simulation) (Belavy et al., 2012, 2011).
Table 2 summarizes the demographic statistics of the 25 subjects. Each sub-
ject was scanned with 1.5 Tesla MR scanner of Siemens Magnetom Sonata
(Siemens Healthcare, Erlangen, Germany) with following protocol to gener-
ate T2-weighted sagittal images: repetition time of 5240 ms and echo time of
101 ms were used in acquisition of 15 3D T2-weighted MR images in the first
study while repetition time of 6220 ms and echo time of 105 ms were used
in acquisition of the rest 10 3D T2-weighted MR images in the second study.
The resolution of all images were resampled to 2mm × 1.25mm × 1.25mm.
Each image contains at least 7 IVDs T11-S1. Thus, in this challenge, we only
consider 7 IVDs T11-S1. An ethical approval was obtained from the Eth-
ical Committee of the Charité University Medical School Berlin, Germany,
to conduct the study. These 25 MR images were divided into three subsets
as Training data (ten 3D T2-weighted MR images from the first study plus
five 3D T2-weighted MR images from the second study), Test1 data (four
3D T2-weighted MR images from the first study and one 3D T2-weighted
MR image from the second study) and Test2 data (one 3D T2-weighted MR
image from the first study and four 3D T2-weighted MR images from the
second study) for the challenge with two stages.

For each one of these 3D T2-weighted MR images, the segmentation of 7
IVDs T11-S1 was conducted in two stages. In the first stage, slice by slice
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Table 3: Inter-observer variability of manual segmentation generated by three trained
raters and an experienced expert using the metrics defined in Section 2.2.

MLD ± SD (mm) Mean Dice ± SD (%) Mean AAD ± SD (mm)
0.16 ± 0.17 99.1 ± 0.7 0.81 ± 0.09

manual segmentation was performed by three trained raters with different
degrees of expertise (3 - 15 years of experience with MR/CT segmentation)
using Amira software (http://www.vsg3d.com/amira) under the guidance
of clinicians. The reference segmentation for each MR image was then gener-
ated based on consensus reading of all three raters, e.g., the majority voting
of all three manual segmentations. In the second stage, an experienced sur-
geon was asked to independently segment all the 25 MR images using also
the Amira software to generate another set of segmentation.

We then evaluated the inter-observer variability for the two sets of manual
segmentations to assess the consistency and variability. The inter-observer
variability was calculated using the metrics defined in Section 2.2 and pre-
sented in Table 3. The results show that the reference segmentation has
high consistency with the expert segmentation and thus we use the reference
segmentation as the associated ground-truth for evaluating performance of
different algorithms submitted to the challenge. The ground-truth IVD cen-
ters were then calculated as centroids of the associated IVD regions.

2.4. Participating teams

A total of 16 teams (from 11 countries) from both industry and academy
registered in this challenge, and initially 10 teams submitted their results on
the Test1 data. All these 10 teams were invited to participate the on-site
competition in stage 2. Afterwards, we received agreements from 9 teams to
include their results in this paper. The name abbreviation for each included
team and the title of their contribution are given as follows. To simplify the
description below, we will use the team abbreviations to refer both the teams
and the methods introduced by the associated teams.

1. ICL: Lopez Andrade and Glocker (Lopez Andrade and Glocker, 2015).
Complementary classification forests with graph-cut refinement for ac-
curate intervertebral disc localisation and segmentation (UK).

2. Sectra: Wang and Forsberg (Wang and Forsberg, 2015). Segmen-
tation of intervertebral discs in 3D MR data using multi-atlas based
registration (Sweden).

11

(http://www.vsg3d.com/amira)


3. UNIBE: Chu et al. (Chu et al., 2015). Localization and segmentation
of 3D intervertebral discs from MR images via a learning based method
(Switzerland).

4. UNICHK: Chen et al. (Chen et al., 2015b). DeepSeg: Deep segmen-
tation networks for intervertebral disc localization and segmentation
(China).

5. UNIEXE: Hutt et al. (Hutt et al., 2015). 3D intervertebral disc
segmentation from MR using supervoxel-based Conditional Random
Fields (CRFs) (UK).

6. UNIGRA Urschler et al., (Urschler et al., 2015). Automatic interver-
tebral disc localization and segmentation in 3D MR images based on
regression forests and active contours (Austria).

7. UNILJU: Korez et al. (Korez et al., 2015a). Deformable model-based
segmentation of intervertebral discs from MR spine images by using
the SSC descriptor (Slovenia).

8. UNIQUE: Neubert et al. (Neubert et al., 2015). Automated inter-
vertebral disc segmentation using probabilistic shape estimation and
active shape models (Australia).

9. VRVIS: Wimmer and Novikov. A machine learning based pipeline
for automated intervertebral disc labeling and segmentation in 3D T2-
weighted MR data (Austria).

3. Methods

In this section, we would like to present the methods that were submitted
to the challenge. In the next section we will analyze the experimental results
achieved by these methods.

3.1. Method of team ICL

Lopez Andrade and Glocker (2015) proposed a pipeline for the task of
automatic localization and segmentation of IVDs in the lumbar spine involv-
ing a combination of several machine learning techniques. The spine detec-
tion phase aims to estimate the dimensions and location of a 3D bounding
box that contains the spine and makes use of two complementary RFs (see
(Glocker et al., 2016) for details) that classify voxels based on Histogram
of Oriented Gradients (HOG) and Haar-like features, respectively. The disc
probability maps generated by the classification are then processed by the

12



Density Based Spatial Clustering of Applications with Noise algorithm (DB-
SCAN) (Ester et al., 1996), which outputs the central points corresponding to
high density areas. An outlier removal stage discards the false disc centroids.

The segmentation is posed as an energy minimization problem solved via
graph-cuts (see Boykov and Funka-Lea (2006)). Each of the discs in the
image is segmented separately, and the result is then combined into a single
label map. The designed graph has two types of edges: terminal edges,
that connect the voxels and the terminal nodes s and t ; and non-terminal
edges, that connect neighbouring voxels. The capacities of the edges between
neighbouring voxels are defined by the following equation; where dist(vi, vj)
is the Euclidean distance between the voxels vi and vj, IF (vi) is the intensity
of voxel vi in the filtered image, σ2 is an estimation of the noise variance, k
is a constant that normalizes the edge capacities between 0 and 100, and λ
corresponds to the relative importance of non-terminal and terminal edges.
σ2 is estimated for the input filtered image as the difference between this
image and the same image after applying a discrete Gaussian filtering.

N(Li, Lj) = λ
[ k

dist(vi, vj)
exp

(
−(IF (vi)− IF (vj))

2

2σ2

)]
(5)

The capacities of the terminal edges are further modulated by the prob-
ability label maps. The minimization problem is then solved via the max-
flow/min-cut algorithm. Isolated regions whose area is smaller than 50mm2

are discarded. Similarly, if there are several connected objects, the ones
whose area is smaller than the mean area of all the objects are also deleted.

3.2. Method of team Sectra

Building upon two earlier works, with one for vertebral body detection
and labeling in MR data (Lootus et al., 2015) and the other for multi-
atlas based segmentation of vertebrae in CT data (Forsberg, 2015), Wang
and Forsberg (2015) propose an approach for the task of localization and
segmentation of IVDs in MR data. In the first step, vertebral bodies are
detected and labeled using integral channel features and a graphical parts
model. The second step consists of image registration, where a set of image
volumes with corresponding IVD atlases are registered to the target volume
using the output from the first step as initialization for the registration. In
the final step, the registered atlases are combined using label fusion to derive
the combined localization and segmentation of the IVDs.
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3.3. Method of team UNIBE

Building upon the work introduced by Chen et al. (2015a), Chu et al.
(2015) develop a two-stage coarse-to-fine approach to tackle the problems of
fully automatic localization and segmentation of 3D IVD from MR images.
More specifically, in the first stage, the learning-based, unified data-driven
regression and classification framework introduced by Chen et al. (2015a) is
used to roughly localize and segment each disc. The localization of 3D IVD
is solved with a data-driven regression where they aggregated the votes from
a set of randomly sampled image patches to get a probability map of the
location of a target vertebral body in a given image. The resultant proba-
bility map is then further regularized by Hidden Markov Model (HMM) to
eliminate potential ambiguity caused by the neighboring discs. The output
from the localization allows one to define a region of interest (ROI) for the
segmentation step, where a data-driven classification is used to estimate the
likelihood of a pixel in the ROI being foreground or background. The es-
timated likelihood is combined with the prior probability, which is learned
from a set of training data, to get the posterior probability of the pixel. The
coarse segmentation of the target IVD is then done by a binary thresholding
on the estimated probability. In the second stage, after the IVDs are roughly
segmented, a multi-atlas fusion based graph cut method is used to modify
the coarse segmentation of each IVD. A registration framework is developed
which allows not only accurate alignment of multiple atlases within the tar-
get image space but also a fast selection of atlas for generating probabilistic
atlas (PA). The generated PAs is finally used in a graph cut method (Boykov
and Funka-Lea, 2006) to get the refined segmentation of IVDs.

3.4. Method of team UNICHK

Chen et al. (2015b) propose a deeply supervised segmentation network
called DeepSeg-3D for automatic IVD localization and segmentation from
MR images. DeepSeg-3D takes full advantage of volumetric information based
on 3D convolutional kernels and makes full use of volumetric information in
all dimensions for better discrimination performance. They implement the
convolutional network in a 3D format, which inputs 3D volumetric data and
directly outputs a 3D prediction mask. Specifically, the architecture of neu-
ral network contains 2 convolutional layers, 2 max-pooling layer for down-
sampling and 2 unpooling layers for up-sampling. Three architectures with
different convolutional kernel sizes are used. The details of one architecture
of DeepSeg-3D can be seen in Table. 4. Finally, a softmax classification layer
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Table 4: The architecture of DeepSeg-3D model

Layer Kernel size Stride Output size Feature maps

Input - - 40×304×304 1
C1 5×7×7 1 40×304×304 4
M1 2×2×2 2 20×152×152 4
C2 3×5×5 1 20×152×152 8
M2 2×2×2 1 10×76×76 8
U3 3×3×3 1 20×152×152 2
U4 3×3×3 1 40×304×304 2

Softmax - - 40×304×304 2

C: convolution, M: max-pooling, U: unpooling

is followed to generate the prediction probabilities. All the convolutional ker-
nels of the DeepSeg-3D model were initialized from the Gaussian distribution
and the input to the network is the direct 3D volumetric data. The model was
trained by minimizing the cross-entropy loss via standard back-propagation.
The output from DeepSeg-3D is further processed with thresholding and disk
filtering to generate local smooth maps. Then the segmentation mask can
be obtained by finding the connected component after removing small areas.
Furthermore, the center of IVD can be determined as the centroid of the
connected component.

3.5. Method of team UNIEXE

Hutt et al. (2015) propose a fully automated method for IVD segmen-
tation based on a CRF operating on supervoxels (groups of similar voxels).
To generate supervoxels for a volume, they use a modified version of sim-
ple linear iterative clustering (SLIC) (Achanta et al., 2012) which results in
supervoxels with approximately equal physical extent in all directions. An
unsupervised feature learning approach is then developed to learn descriptive
representations of the data over multiple scales to characterize the supervoxel
regions. The features are used to train an SVM with a generalized radial basis
function (RBF) kernel for estimating the class labels of the supervoxels. The
classifier predictions are incorporated into the potential functions of a CRF
along with a learned metric between supervoxels, which enables efficient seg-
mentation using graph cuts (Boykov and Funka-Lea, 2006). For more details,
we refer to (Hutt et al., 2015).
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Figure 2: A schematic illustration of the method developed by Korez et al. (Korez et al.,
2015a).

3.6. Method of team UNIGRA

The algorithm developed by Urschler et al. (2015) is built upon a machine
learning based landmark localization step using regression forests (Gall et al.,
2011; Donner et al., 2013) together with a high-level MRF model of the global
configuration of the relative landmark positions. While the regression forests
predict a number of candidates for each landmark (both IVDs and vertebral
bodies) individually, the purpose of the MRF is to select the most probable
configuration given the individual voted for locations and the distribution of
landmarks in a training data set. After landmark prediction, they develop
a three-step image processing pipeline for segmentation. First, they roughly
segment vertebral bodies based solely on image gradient information, followed
by a merging of pairs of adjacent vertebral bodies to single objects to initialize
IVD segmentation. Finally, they formulate the IVD segmentation problem
as a convex geodesic active contour (GAC) optimization task based on edges
resembling geometrical similarity to the shape of IVDs (Hammernik et al.,
2015). Solving the convex GAC model is enabled by a formulation based on
weighted total variation and a primal-dual optimization scheme. Enabled by
the robustness of previous localization, this latter segmentation step requires
no a priori information on appearance but only a very rough shape prior.
For more details, we refer to (Urschler et al., 2015).
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3.7. Method of team UNILJU

Korez et al. (2015a) propose a supervised framework as shown in Fig. 2
for fully automated localization and segmentation of IVDs from magnetic
resonance (MR) images by integrating modern image analysis approaches
such as RF-based anatomical landmark detection and surface enhancement,
computationally efficient Haar-like features and self-similarity context (SSC)
descriptor, and robust shape constrained deformable models.

In their method, IVD localization is performed by detecting its visually
distinguishable or anatomically relevant points, i.e. landmarks. Each IVD
is described by five landmarks that define its mid-point and most superior,
inferior, anterior and posterior points. The properties of these landmarks are
studied using training images of manually segmented discs and then used for
identification of the same landmarks on a new target image. The intensity
appearance of each landmark is captured by Haar-like features, which proved
effective for detecting landmarks from MR images of soft tissue (Ibragimov
et al., 2015). To minimize landmark mis-detection, for example, when a land-
mark is positioned on a neighboring disc, they model the shape of the disc by
measuring the pairwise spatial relationships among the landmarks. Optimal
landmark positioning is therefore obtained at the point of best agreement
between the appearance and shape models (Ibragimov et al., 2014).

IVD segmentation is performed by iterative deformation of the corre-
sponding mean disc model towards the edges of the image. As IVD edges are
poorly visible on MR images, they propose a RF-based descriptor for disc
edge identification. Using training images and corresponding manual segmen-
tations, they model the appearance of each edge point as a 26-dimensional
feature vector that includes image intensity, Canny edge operator response,
gradient orientation and magnitude, SSC features (Heinrich et al., 2013) and
other relevant features (Korez et al., 2015b,a). During the segmentation pro-
cess, the disc model deforms under the influence of the external energy that
moves the model surface towards the detected edge points, and the internal
energy that preserves the integrity of the model, its resemblance to the IVD
and does not allow its parts to be separated from each other. The final seg-
mentation is obtained at the point of equilibrium between the external and
internal energy.

3.8. Method of team UNIQUE

The method developed by Neubert et al. (2015) extends and fully auto-
mates their previous work on active shape model (ASM) based volumetric
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segmentation of lumbar and thoracic IVDs from magnetic resonance (MR)
images of the spine (Neubert et al., 2012). The initial version of this algo-
rithm was developed for high-resolution volumetric MR images acquired in
the axial plane. However, routine clinical examinations are typically acquired
using 2D TSE images in the sagittal plane. The original ASM approach was
successfully applied to the segmentation of lumbar IVDs from TSE scans by
developing a novel initialization scheme. Specifically, an automated localiza-
tion approach using multi-atlas registration and probabilistic shape regres-
sion was used to initialize volumetric ASM segmentation driven by grey-level
intensity models, as presented in their previous work (Neubert et al., 2012).
For details, we refer to (Neubert et al., 2015).

3.9. Method of team VRVIS

Wimmer and Novikov propose a machine learning based pipeline for au-
tomated IVD labeling and segmentation. Their method localizes disc center
candidates by RF regression (Breiman, 2001) from 2000 sampled positions.
They extract 3D Haar-like features (Viola and Jones, 2001) and HOG fea-
tures (Dalal and Triggs, 2005) around each position. The HOG parameters
were set to 9 orientation bins and a cell size of 8mm. Patch sizes were chosen
empirically based on the morphometry of the discs. They propose to extract
HOG features from the sagittal and coronal plane to increase the regression
efficiency. As a second step, filtering of positions inside discs is performed by
SVM classification based on HOG features, whereby 20 best candidates are
selected for every disc and the sacrum. Final disc centers are retrieved by ap-
plying a graphical model on the filtered disc candidates, similarly to Schmidt
et al. (2007). Two connected models are used to reduce the Computational
Complexity (CC) of the labeling problem. The first model covers the discs
from the sacrum up to L2/L3 and the second model comprises of discs L2/L3
to T11/T12. Due to a higher matching performance of the first model, they
made the second model dependent on the matching result of the first one.
Finally, IVDs are segmented around the detected centers by a learning-based
active contour model built upon a Morphological Active Contour Without
Edges (Marquez-Neila et al., 2014). The model is enhanced with RF classi-
fiers trained on field-specific, contextual features for each disc separately.
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Figure 3: Quantitative evaluation of the localization results for 8 submitted methods on
Test1 data.

4. Experimental Results

Quantitative evaluation of the methods of all participating teams is sum-
marized in this section. All the methods were evaluated against the ground
truth on 10 3D testing volumes, including 5 Test1 volumes and 5 Test2
volumes. In the localization step, 8 teams submitted their automatic IVD
localization results except team UNIQUE where they used manual clicks for
initialization purpose. Thus we do not include their results for evaluation and
comparison. In the segmentation step, all the 9 teams submitted their re-
sults obtained on both Test1 data and Test2 data. However, in stage 2, team
UNIGRA failed to segment disc T12-T11 in case 5 although they achieved
quite good segmentation results in other 4 cases. Thus, we do not include
their results for quantitative evaluation and comparison purpose on Test2
data. For all the statistical tests, the significance level is chosen to be 0.01.

4.1. Stage 1

Fig. 3 compares the overall localization results among 8 participating
teams in detection of in total 35 IVDs of Test1 data. MLD, SD and SDRs
using 3 precision ranges t = 2.0mm, 4.0mm, and 6.0mm (Bars) achieved
by these 8 teams are shown in this figure. In Fig.4, we visually compare
the ground truth localization with the localization results achieved by all 8
submitted methods on the middle sagittal images extracted from 5 3D MR
images of Test1 data.

19



Figure 4: Visual comparison of localization results for the ground truth (GT) as well as
for the 8 submitted methods on Test1 data, where localization results of 7 IVDs on the
mid-sagittal slice are shown. The GT localization and the results from different teams are
displayed in different color.
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Figure 5: Segmentation results on Test1 data.

Fig. 5 shows the segmentation results achieved by the 9 participating
teams on Test1 data. It compares the overall results of Dice, AAD and
HD in segmentation of 35 IVDs between the 9 participating teams on Test1
data. Fig. 5 (b, c, d) present the per case per algorithm evaluation results
on Test1 data when we use respectively Dice, AAD, and HD as metrics. Fig.
6 shows the visual comparisons of the segmentation results obtained by all 9
submitted algorithms on 3 cases of Test1 data.

4.2. On-site competition

Fig.7 compares the localization results between 8 participating teams in
detection of 35 IVDs on Test2 data, which was released for on-site compe-
tition. MLD, SD and SDRs using 3 precision ranges t = 2.0mm, 4.0mm,
and 6.0mm (Bars) are shown in this figure. Please note that during on-site
competition we only allowed maximally one and half hours for each team to
finish localization and segmentation of 5 3D T2 MR images. In Fig. 8, we
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visually compare the localization results obtained by all teams on each image
of Test2 data.

Fig. 9 shows the segmentation results obtained by the 8 participating
teams on Test2 data (excluding team UNIGRA). It compares the overall
results of Dice, AAD and HD in segmentation of 35 IVDs between the 8
participating teams. In Fig. 9 (b, c, d), the per case per algorithm evaluation
results are given when we use respectively Dice, AAD, and HD as metrics for
evaluation. Fig. 10 shows the visual comparisons of the segmentation results
obtained by all submitted algorithm on 3 cases of Test2 data.

5. Discussions

5.1. Results of stage 1

The performance of the localization methods of the participating teams
on Test1 data ranges from 0.79mm to 4.19mm in MLD and 2.9% to 97.1% in
SDR for 2.0mm precision range. It is observed that in overall, the best local-
ization result on Test1 data is achieved by the method from team UNICHK
with the lowest MLD (0.79mm). On the other hand, the method from team
Sectra achieves the highest SDR (97.1% ) when evaluated using 2mm preci-
sion range and lowest SD (0.42mm). All the 8 submitted methods are able
to achieve a SDR better than 80% when the precision range is 6mm and 6
teams are able to achieve a SDR better than 80% when the precision range is
4mm. However, when the precision range is set to 2mm, only 5 teams obtain
the SDR better than 80%.

When the localization results are evaluated by MLD and SD, it is ob-
served that the top ranked teams such as UNICHK, Sectra, UNIBE, ICL,
and UNIEXE achieve quite accurate results that are close to or less than
1.0mm. Paired student’s t-tests were performed to detect whether the dif-
ferences between the localization results of different methods are statistically
significant. No statistically significant difference was found among the lo-
calization results of the 5 top ranked teams, which was consistent with the
results shown in Fig. 3. Among the 8 submitted methods, 6 of them are able
to achieve MLD lower than 2mm, which is regarded as accurate enough for
clinical use (Belavy et al., 2011).

From Fig. 4, it is observed that all the submitted methods are able
to localize 35 IVDs with reasonable accuracy although for some cases the
localization results are much diverse. Specifically, the localization results
for case 4 are quite accurate for all submitted methods and the localization
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Figure 6: Visual comparisons of segmentation results on case 1 (top row), 3 (middle row),
and 5 (bottom row) of Test1 data. Segmentation contours on 2 typical sagittal slices are
shown at each row. The ground truth (GT) segmentation and the segmentation results
from different teams are visualized in different colors.
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Figure 7: Quantitative evaluation of localization results for 8 teams on Test2 data.

Table 5: Paired student’s t-tests (p-value) to detect whether there are statistically signif-
icant differences between the localization results achieved by 8 teams on Test1 data.

Sectra UNIBE UNIEXE ICL UNILJU UNIGRA VRVIS
UNICHK 7.8E-01 2.5E-01 2.2E-02 1.6E-02 2.5E-08 4.6E-17 4.6E-10
Sectra 2.8E-01 3.7E-02 2.7E-02 7.8E-08 4.6E-17 3.3E-10
UNIBE 6.0E-01 4.3E-01 3.5E-04 2.6E-16 5.0E-09
UNIEXE 8.1E-01 7.0E-05 7.4E-13 1.8E-08
ICL 4.1E-04 3.0E-14 1.1E-09
UNILJU 2.1E-10 2.0E-06
UNIGRA 6.5E-01

results for case 1 and case 5 are acceptable. However for case 2 and case 3,
localization results from team VRVIS are far from the IVD centers such as
for IVDs L5-L4 and L4-L3 in case 2, S1-L5 and L5-L4 in case 3.

The performance of the segmentation methods of the participating teams
ranges from 80.8% to 91.5% in mean Dice, 1.10mm to 1.62mm in mean AAD,
and 4.48mm to 6.36mm in mean HD. It is observed that the best segmenta-
tion results is achieved by team UNILJU with an average Dice of 91.5 ± 2.3
%, an average AAD of 1.10 ± 0.18 mm, and an average HD of 4.48 ± 0.71
mm. In overall, all the 9 teams obtain an average Dice greater than 80%
and an average AAD lower than 1.7 mm, which are acceptable for clinical
practice (Belavy et al., 2011). From the visual comparison as shown in Fig.
6, it is observed that obvious over-segmentation and under-segmentation ex-
ist, indicating that this is still a challenging problem and requires further
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Figure 8: Visual comparison of the localization results for the ground truth (GT) as well
as for the 8 teams on Test2 data, where localization results of 7 IVDs on the mid-sagittal
slice are shown. The GT localization and the results from different teams are displayed in
different colors.
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Figure 9: Segmentation results on Test2 data.

improvement. Paired student’s t-tests are performed to detect whether the
differences of the segmentation results (35 IVDs) between different teams are
statistically significant and the test results (p-values) are described in Table
6. When we evaluate the segmentation results using Dice as the evaluation
metric, it can be found that the differences between team UNILJU and all
other 8 teams are of statistical significance (all p-values are less than 0.01),
which is consistent with the results reported in Fig. 5. It is also observed
that there is no statistically significant difference between team UNIQUE
and VRVIS. However, statistically significant differences are found when we
compare these 2 teams with other 7 teams. When we evaluate the segmen-
tation results using AAD as the metric, again we find that the differences
between team UNILJU and almost all other teams are statistically significant
(except for team UNIBE where p-value is slightly greater than 0.01). We also
find that there are no statistically significant difference between following 5
teams: ICL, Sectra, UNIBE, UNICHK, and UNIEXE. However, when we
compare these 5 teams with other two teams such as UNIQUE and VRVIS,
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Figure 10: Visual comparisons of segmentation results on case 1 (top row), 3 (middle row),
and 5 (bottom row) of Test2 data. Segmentation contours on 2 typical sagittal slices are
shown at each row. The ground truth (GT) segmentation and the segmentation results
from different teams are visualized in different colors.
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Table 6: Paired student’s t-tests (p-value) to detect whether the differences between seg-
mentation results obtained from different methods when evaluated on Test1 data are
statistically significant. For two metrics used in our study, we conduct t-tests separately.

Dice (%)
Sectra UNIEXE UNIBE UNICHK ICL UNIGRA UNIQUE VRVIS

UNILJU 9.6E-04 5.5E-03 1.4E-03 4.2E-06 7.1E-07 3.7E-07 9.7E-14 1.5E-13
Sectra 6.2E-01 4.8E-01 4.9E-04 3.2E-03 2.8E-04 4.4E-13 3.9E-13
UNIEXE 9.9E-01 4.4E-02 4.9E-03 1.4E-03 1.9E-09 2.1E-11
UNIBE 1.2E-02 1.5E-02 2.0E-03 3.3E-11 5.5E-11
UNICHK 5.4E-01 1.3E-01 7.5E-09 1.5E-10
ICL 4.4E-01 2.0E-06 7.5E-08
UNIGRA 3.2E-05 5.8E-10
UNIQUE 4.1E-02

AAD (mm)
Sectra UNIEXE UNIBE UNICHK ICL UNIGRA UNIQUE VRVIS

UNILJU 4.0E-03 7.4E-03 1.7E-02 5.7E-04 7.8E-03 2.5E-05 4.9E-08 4.7E-10
Sectra 5.9E-01 6.3E-01 7.1E-02 3.8E-01 2.8E-03 5.3E-06 5.9E-09
UNIEXE 9.9E-01 4.0E-01 6.1E-01 4.1E-03 1.6E-03 1.4E-08
UNIBE 4.4E-01 6.5E-01 6.5E-03 2.6E-03 3.6E-06
UNICHK 9.1E-01 1.6E-02 5.8E-03 1.8E-06
ICL 3.6E-02 6.0E-03 1.0E-04
UNIGRA 4.5E-01 3.1E-02
UNIQUE 2.3E-04

statistically significant differences are observed (p-values smaller than 0.01).

5.2. Results of on-site competition

The performance of the localization methods of the participating teams
on Test2 data ranges from 0.81mm to 4.58mm in MLD and 0.0% to 100.0%
in SDR for 2.0mm precision range. It is observed that in overall, team ICL
obtains the best localization results with the highest SDR (100.0% ) when
evaluated using 2mm precision range and the lowest MLD (0.81mm) and SD
(0.37mm). When we focus on SDR, all the 8 teams are able to achieve a SDR
better than 80% when the precision range is 6mm and 6 teams are able to
achieve a SDR better than 80% when the precision range is 4mm. However,
when we use 2mm precision range, only 4 teams obtain the SDR better than
80%.

When the localization results are evaluated with MLD, the top ranked
4 teams of ICL, Sectra, UNICHK, and UNIEXE are able to achieve MLD
lower than 1.0mm, which is regarded as accurate enough for clinical usage.
Paired student’s t-tests are performed to detect whether the differences be-
tween different teams in localization of 35 IVDs on Test2 data are statistically
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significant and the results are presented in Table 7. No statistically signifi-
cant difference is detected among following 4 teams: ICL, Sectra, UNICHK
and UNIEXE. These four teams obtain quite accurate localization results as
shown in Fig. 7.

From Fig. 8, it is observed that quite promising results are obtained
on case 1, case 2, and case 5, even though the appearance around each IVD
region is quite different from each other. However, there exist obvious outliers
in localization of IVD L3-L2, L2-L1 in case 3 and T12-T11 in case 4 as the
results obtained by some teams are out of the IVD regions. These results
indicate the room for improvement and need further investigation.

The performance of the segmentation methods of the participating teams
on Test2 data ranges from 81.6% to 92.0% in mean Dice, 1.07mm to 1.53mm
in mean AAD, and 4.27mm to 5.06mm in mean HD. It is observed that the
best segmentation result on Test2 data is achieved by team UNILJU with an
average Dice of 92.0 ± 1.9 %, an average AAD of 1.07 ± 0.07mm, and an
average HD of 4.33 ± 0.61mm. In overall, all the 8 teams obtain an average
Dice greater than 80% and an average AAD lower than 2.0 mm. From the
visual comparison as shown in Fig. 10, it is observed that obvious leakage
exists, especially in case 3 and case 5 where IVD L1-T12 are severely over-
segmented by several teams. Besides over-segmentation, there also exists
under-segmentation such as IVD L5-L4 in case 3 and case 4. The experimen-
tal results show that it is still an unsolved and challenging task to reduce
both over-segmentation (leakage) and under-segmentation and needs further
investigation. Paired student’s t-tests are performed to detect whether the
differences of the segmentation results (35 IVDs) obtained by different teams
are statistically significant and the results are described in Table 8. When
we evaluate the segmentation results using both Dice and AAD metric, it is
observed that the differences between team VRVIS and the other 7 teams are
of statistical significance. We also find that there are no statistically signif-
icant differences between following 5 teams such as ICL, Sectra, UNICHK,
UNIEXE, and UNIQUE.

5.3. Combined results on Test1 and Test2 data

When we combine results on Test1 and Test2 data (see Table 9 for details),
the performance of the localization methods of the participating teams ranges
from 0.82mm to 4.39mm in MLD and 1.45% to 98.55% in SDR for 2.0mm
precision range. It is observed that in overall, team UNICHK achieves the
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Table 7: Paired student’s t-tests (p-value) to detect whether the differences of the local-
ization results between different teams on Test2 data are statistically significant.

UNICHK UNIEXE Sectra UNIBE UNILJU UNIGRA VRVIS
ICL 6.6E-01 4.2E-01 1.9E-01 9.9E-05 3.7E-11 8.5E-18 5.5E-13
UNICHK 7.7E-01 4.1E-01 6.8E-04 1.2E-09 8.0E-18 1.6E-12
UNIEXE 5.5E-01 2.3E-04 3.9E-08 2.5E-18 1.1E-13
Sectra 3.6E-02 8.9E-07 1.3E-15 7.4E-13
UNIBE 2.7E-04 1.2E-15 1.2E-11
UNILJU 1.1E-10 6.1E-08
UNIGRA 5.9E-01

lowest MLD (0.82mm) and SD (0.49mm) and team ICL achieves the highest
SDR (98.55% ) when evaluated using 2mm precision range.

The performance of the segmentation methods of the participating teams
on Test1 and Test2 combined data ranges from 81.2% to 91.8% in mean Dice,
1.08mm to 1.57mm in mean AAD, and 4.34mm to 5.09mm in mean HD. It
is observed that in overall, team UNILJU achieves the best segmentation
results with a mean Dice of 91.8%, a mean AAD of 1.08mm and a mean HD
of 4.34mm.

We also compared the results achieved by all teams on Test1 data with
those on Test2 data. The average MLD achieved by the localization meth-
ods of all teams on Test1 data is 1.83mm while the average MLD on Test2
data is 2.0mm. With 2mm precision range, the average SDR by the local-
ization methods of all teams on Test1 data is 69.28% while the average SDR
on Test2 data is 62.49%. Such an observation indicates that overall the lo-
calization methods of all participating teams perform better on Test1 data
than on Test2 data. In contrast, the mean Dice and the mean AAD achieved
by the segmentation methods of all teams on Test1 data are 87.6% and
1.29mm, respectively, while the mean Dice and the mean AAD achieved by
the segmentation methods of all teams on Test2 data are 89.0% and 1.22mm,
respectively. Paired student’s t-tests indicate that there are statistically sig-
nificant differences between the segmentation results achieved on Test1 data
and those on Test2 data (p-values are smaller than 0.01 for both Dice and
AAD metrics). The comparison result indicates that overall the segmenta-
tion methods of all participating teams perform worse on Test1 data than on
Test2 data. This probably can be explained by our challenge design. Specif-
ically, we have 25 3D T2 MR data from two different studies. Our training
data in stage 1 contains 10 3D T2 MR data from the first study and 5 3D T2
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Table 8: Paired student’s t-tests (p-value) to detect whether the differences of the seg-
mentation results between different teams on Test2 data are statistically significant. For
two metrics used in our study, we conduct t-tests separately.

Dice (%)
UNIBE UNIEXE Sectra ICL UNICHK UNIQUE VRVIS

UNILJU 5.3E-02 8.4E-05 1.2E-06 1.7E-08 9.9E-08 1.5E-09 6.1E-13
UNIBE 1.9E-02 7.0E-03 1.2E-03 1.3E-04 2.4E-06 6.7E-12
UNIEXE 6.0E-01 1.1E-01 5.6E-03 1.1E-03 1.1E-11
Sectra 1.2E-01 5.0E-02 4.6E-03 2.6E-10
ICL 5.7E-01 1.7E-01 3.3E-08
UNICHK 3.9E-01 9.3E-10
UNIQUE 3.6E-09

AAD (mm)
UNIBE UNIEXE Sectra ICL UNICHK UNIQUE VRVIS

UNILJU 8.2E-01 7.0E-05 8.3E-07 3.6E-04 4.4E-06 6.1E-12 5.6E-15
UNIBE 3.7E-04 7.4E-06 1.6E-03 3.0E-05 3.1E-09 5.2E-13
UNIEXE 2.0E-01 5.0E-01 5.5E-01 2.8E-01 6.4E-10
Sectra 5.1E-02 4.5E-01 5.8E-01 1.9E-06
ICL 2.4E-01 2.9E-02 2.4E-09
UNICHK 6.0E-01 2.6E-09
UNIQUE 5.0E-08

MR data from the second study while Test1 data is designed to have 4 3D T2
MR data from the first study and 1 3D T2 MR data from the second study
and Test2 data is designed to have 1 3D T2 MR data from the first study and
4 3D T2 MR data from the second study. The comparison results indicate
that the performance of the localization methods of all participating teams
depends more on training data than that of the segmentation methods.

5.4. Computer Specification and efficiency

Details about the computer specification and the efficiency of the 9 par-
ticipating teams are presented below. A summary of the details is presented
in Table 10.

1. ICL: The pipeline from team ICL has been implemented in Python
with some accelerated functions, such as the feature extraction, making
use of C++. The authors use the RF and DBSCAN implementations
provided in scikit-learn. All the tests were executed on a desktop PC
equipped with an Intel Xeon Quad-Core 3.5GHz CPU. Average running
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times for the full pipeline including localization and segmentation are
about 3 minutes.

2. Sectra: The implementation of the whole segmentation pipeline from
team Sectra was primarily done in MATLAB but with the registration
implemented in CUDA. The Parallel Computing Toolbox of MATLAB
was used to take some advantage of the multi-core architecture of the
CPU. The pipeline was executed on a workstation with Windows 7 SP1
(x64), MATLAB 2014b and CUDA 5.5. The CPU was an Intel Core i7
960 with four cores with 24 GB of RAM and the GPU was a GeForce
GTX 660 Ti with 1344 CUDA cores. The complete processing time
for a single data set was approximately 8 minutes and 30 seconds with
1 minute and 15 seconds for detection and labeling, 7 minutes and 10
seconds for registration and 5 seconds for label fusion.

3. UNIBE: The algorithm was implemented in Matlab for Data-driven
based method and in C++ for multi-atlas fusion based graph cut
method. The unoptimized implementation requires on average 18 min-
utes to localize and segment one subject on a laptop with 3.0 GHz
CPU and 12 GB RAM, where it takes about 3 minutes to do a rough
localization and segmentation and the rest 15 minutes to finish the
multi-atlas-based segmentation.

4. UNICHK: DeepSeg-3D was implemented with Python3 based on the
Theano library and it took about 0.3 seconds to process one test image
with size 40 × 512 × 512 using a standard PC with a 2.50 GHz Intel(R)
Xeon(R) E5-1620 CPU and a NVIDIA GeForce GTX X GPU., which
was much faster with one single forward propagation.

5. UNIEXE: The implementation was written in MATLAB with C++
code for computationally intensive tasks including supervoxel genera-
tion, SVM optimisation and computation of the CRF max-marginals.
The execution time for processing a single volume after learning was
approximately 6 min using an Intel Core i5 2.50 GHz machine with
8GB of RAM running Linux (64-bit).

6. UNIGRA: The whole localization and segmentation approach was
implemented in C++ and OpenMP, with the exception of the Matlab-
based MRF solver. Costly image processing operations were accelerated
using NVidia’s CUDA environment. The algorithm was executed on a
notebook with an Intel Core i7-4700HQ CPU, 16 GByte of RAM, an
NVidia Geforce GTX 760M GPU with 2GB of RAM, running Ubuntu
Linux 15.04. The running time for localization and segmentation was
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around 8 minutes per data set, where the computational effort goes
roughly half into localization and segmentation, respectively.

7. UNILJU: The detection and segmentation parts of the framework
were implemented using C++ and Matlab. The experiments were exe-
cuted on a personal computer with Intel Core i5 processor at 3.20 GHz
and 16GB of memory without a graphical processing unit. The detec-
tion of all seven IVDs took on average 85s, whereas the segmentation
of each individual IVD took on average 30s.

8. UNIQUE: The methods were implemented in C++ using Insight Seg-
mentation and Registration Toolkit (ITK) and Visualization Toolkit
(VTK) libraries for image and mesh processing, an in-house C++ soft-
ware library for statistical shape modeling and visualization. The ex-
periments were run on a desktop computer Intel(R) Core(TM) i7-4770
CPU @ 3.40GHz with 32 GB RAM memory under Ubuntu 14.04 LTS.
Using 8 threads, on average it took about 4 minutes to segment one
data set with 7 IVDs.

9. VRVIS: The complete framework was implemented in Java. All test-
ing experiments were conducted on an Intel Xeon E5-2620 v3 windows
machine with 16 GB of RAM. Overall processing time for disc local-
ization and segmentation of one data set is around 4.2 minutes. The
bottleneck in terms of computation time is the disc and sacrum classifi-
cation with SVMs. Even though they use multi-threading in this stage,
this step is the most expensive part with a runtime of approx. 2.7 min-
utes. The rest of the pipeline runs in a single-threaded environment.
Feature calculation and regression take around 30 seconds, the appli-
cation of the graphical model around 50 seconds and the segmentation
of all discs only around 10 seconds.

5.5. Analysis of advantages and drawbacks of all methods

The advantages and drawbacks of all methods are summarized in Fig. 11.
From the results presented in Sections from 5.1 to 5.3, the method of team
UNICHK shows the best localization performance in this challenge while the
method of team UNILJU shows the best segmentation performance.

For localization, the crucial difference that makes the method of team
UNICHK superior to other competitors is the deep segmentation network
which leverages flexible 3D convolution kernels by considering spatial infor-
mation for a fast speed with volume-to-volume classification. Their method
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Table 9: Combined Results on Test1 and Test2 Data
Overall Localization Results (Measured with MLD)

Rank Team Name Test1 Results (mm) On-site (Test2) Results (mm) Average (mm)
1 UNICHK 0.79 ± 0.56 0.85 ± 0.52 0.82 ± 0.54
2 Sectra 0.81 ± 0.42 0.99 ± 0.78 0.90 ± 0.60
3 ICL 1.09 ± 0.60 0.81 ± 0.37 0.95 ± 0.49
4 UNIEXE 1.05 ± 0.69 0.89 ± 0.63 0.97 ± 0.66
5 UNIBE 0.96 ± 0.77 1.35 ± 0.71 1.16 ± 0.74
6 UNILJU 1.74 ± 0.88 2.18 ± 0.82 1.96 ± 0.85
7 UNIGRA 3.97 ± 1.19 4.37 ± 1.17 4.17 ± 1.18
8 VRVIS 4.19 ± 2.34 4.58 ± 1.99 4.39 ± 2.17

Overall Segmentation Results (Measured with Dice Overlap Coefficients)
Rank Team Name Test1 Results (%) On-site (Test2) Results (%) Average (%)
1 UNILJU 91.5 ± 2.3 92.0 ± 1.9 91.8 ± 1.2
2 UNIBE 89.8 ± 2.9 91.2 ± 2.0 90.5 ± 1.4
3 UNIEXE 89.8 ± 3.6 90.2 ± 2.6 90.0 ± 1.7
4 Sectra 90.0 ± 2.6 90.0 ± 2.2 90.0 ± 1.3
5 UNICHK 88.4 ± 3.7 88.9 ± 3.4 88.6 ± 1.8
6 ICL 87.9 ± 3.4 89.3 ± 2.6 88.6 ± 1.2
7 UNIQUE 82.8 ± 3.7 88.4 ± 2.9 85.6 ± 3.5
8 VRVIS 80.8 ± 5.8 81.6 ± 6.4 81.2 ± 3.6

Table 10: Details on computation time and computer systems used for the different al-
gorithms. We indicate whether an algorithm uses multi-threaded (MT) or graphical pro-
cessing unit (GPU).
Team
name

Avg.
time

System MT GPU
Programming
Language

Remarks

ICL 3 min
3.5 GHz
4-cores

No No
Python
and C++

RF and DBSCAN
implemented in scikit-learn

Sectra 8.5 min
3.2 GHz
4-cores

Yes Yes
Matlab
and Cuda

GeForce GTX 660 Ti with 1344
CUDA cores

UNIBE 18 min
3.0 GHz
4-cores

No No
Matlab
and C++

UNICHK 0.3 s
2.5 GHz
4-cores

Yes Yes Python

UNIEXE 6 min
2.5 GHz
4-cores

Yes No
Matlab
and C++

UNIGRA 8 min
2.4 GHz
4-cores

Yes Yes
C++
and Matlab

UNILJU 5 min
3.2 GHz
4-cores

No No
C++
and Matlab

UNIQUE 4 min
3.4 GHz
4-cores

Yes No C++
Requires manual localization
of the first IVD

VRVIS 4.2 min
2.4 GHz
6-cores

Partially No Java
Mixture of multi-threaded with
single-threaded
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Figure 11: Summary of the advantages and limitations of all methods.
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Table 11: Comparison of two different methods from team UNICHK for IVD localization.

Method MLD(mm) SD(mm)
SDR with
t = 2.0mm

SDR with
t = 4.0mm

SDR with
t = 6.0mm

DeepSeg-2D 1.07 0.62 91.4% 100% 100%
DeepSeg-3D 0.91 0.58 94.3% 100% 100%
Combined
Results

0.79 0.56 91.4% 100% 100%

takes a volume as input and generates a volumetric segmentation mask within
one single forward propagation without restoring to a sliding window strat-
egy. Thus, their localization method is not only the most accurate one but
also the fastest one. To confirm this assumption, Chen et al. (2015b) imple-
mented another type of deep neural networks by making use of adjacent slices
(the kernal size of the third dimension is 3) and refer this one as DeepSeg-2D.
The performance of DeepSeg-2D was compared with that of DeepSeg-3D on
Test1 data and the results are presented in Table 11.

For segmentation, the crucial difference that makes the method of team
UNILJU superior to other competitors is the efficient combination of machine
learning and shape constrained deformable models. This has been observed
in several other top ranked segmentation methods, i.e., efficient integration of
learned likelihood terms within different types of energy minimization-based
segmentation framework.

6. Conclusion

The paper presents the construction of a manually annotated reference
data set composed of 25 3D T2-weighted TSE MR images acquired from two
different studies and the establishment of a standard framework for an objec-
tive comparison of a representative selection of the state-of-the-art methods
that were submitted to the Automatic MRI IVD Localization and Segmen-
tation Challenge held at MICCAI 2015. A total of ten teams submitted their
results in Test1 data, and all of them were accepted to the on-site competi-
tion. Results from 9 teams were included in this study.

It is worth to point out the limitations of the challenge. Although the 25
3D T2-weighted MR data set used in this challenge are from two different
studies investigating the IVD morphology change after prolonged bed test, all
the participants included in these two studies are medically and psychologi-
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cally healthy subjects. Though the majority of the methods of participating
teams achieved quite accurate results, further investigation is required to see
whether similar results can be obtained when evaluated on data acquired
from patients with severe pathology.

The evaluation of changes in IVDs with MR images can be of interest for
many applications beyond IVD degeneration quantification. For example, it
is important to know the changes of IVDs during prolonged bed rest which
is used to understand the effects of inactivity on the human body and to
simulate the effects of microgravity on human body by space agencies (Belavy
et al., 2012, 2011). At this moment, clinicians lack tools to conduct a true
3D quantification even when 3D MR image data are available. Instead, they
seek to use 2D surrogate measurements measured from selected 2D slices
to quantify 3D spinal morphology (Belavy et al., 2012, 2011). Automated
methods save time and manual cost, and allow for a true 3D quantification
avoiding problems caused by 2D measurements.
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