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Abstract 

Siderophores are biogenic chelating ligands that facilitate the solubilization of Fe(III) and 

form stable complexes with a range of contaminant metals and therefore may significantly 

affect their biogeochemical cycling. Desferrioxamine B (DFOB) is a trihydroxamate 

siderophore that acts synergistically with fulvic acid and low molecular weight organic 

ligands to release Fe from Fe(III) oxides. We report the results of batch dissolution 

experiments in which we determine the rates of Cr(III) desorption and Fe(III) release from 

Cr(III)-treated synthetic goethite as influenced by DFOB, by fulvic acid, and by the two 

compounds in combination. We observed that adsorbed Cr(III) at 3% surface coverage 

significantly reduced Fe(III) release from goethite for all combinations of DFOB and fulvic 

acid. When DFOB (270 µM) was the only ligand present, dissolved Fe(III) and Cr(III) 

increased approximately 1000-fold and 16-fold, respectively, as compared to the ligand-free 

system, a difference we attribute to the slow rate of water exchange of Cr(III). Suwannee 

River fuvic acid (SRFA) acts synergistically with DFOB by (i) reducing the goethite surface 

charge leading to increased HDFOB
+
 surface excess and by (ii) forming aqueous Fe(III)-

SRFA species whose Fe(III) is subsequently removed by DFOB to yield aqueous Fe(III)-

DFOB complexes. These observations shed new light on the synergistic relationship between 

DFOB and fulvic acid and reveal the mechanisms of Fe(III) acquisition available to plants 

and micro-organisms in Cr(III) contaminated environments.  

 

 

Keywords: siderophore; chromium; goethite; dissolution; desferrioxamine B (DFOB); 

Suwannee River fuvic acid (SRFA) 
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1. INTRODUCTION 

 

Micro-organisms in aerobic, circumneutral aqueous environments are challenged to acquire 

sufficient nutrient Fe due to the low solubilities of Fe(III) oxides, hydroxides and 

oxyhydroxides (Kraemer, 2004; Raymond and Dertz, 2004). To overcome this low solubility, 

aerobic and facultative anaerobic micro-organisms secrete siderophores, low molecular 

weight (MW) organic ligands which are efficient sequesterers of Fe by virtue of their high 

Fe(III) binding affinities (Kraemer, 2004; Kuhn et al., 2014). The trihydroxamate siderophore 

desferrioxamine B (DFOB) (Fig. 1), for example, forms a hexadentate complex with Fe(III) 

via the hydroxamate O atoms (Raymond and Dertz, 2004; Butler and Theisen, 2010), giving 

a 1:1 binding constant, K, of 10
32.0 

(Crumbliss, 1991; Martell and Smith, 2003). However, 

DFOB does not complex exclusively with Fe(III), but rather shows considerable affinity for 

other environmentally relevant multivalent cations including Cr(III)
 
(Kruft et al., 2013; 

Duckworth et al., 2014), Cu(II) (Kruft et al., 2013), Cd(II) (Mustfa et al., 2004), Al(III)
 

(Watteau and Berthelin, 1994) and Pb(II)
 
(Kraemer et al., 1999; Dubbin and Ander, 2003). 

Among these competing cations, Cr(III) is noteworthy for its particularly high stability with 

DFOB, giving estimated 1:1 formation constants ranging from KCr
(III)

HDFOB
+ = 10

30.6
 

(Duckworth et al., 2014) to KCr
(III)

HDFOB
+ = 10

33.0
 (Kruft et al., 2013) for the reaction: 

 

Cr
3+

(aq) + H4DFOB
+

(aq)  =  CrHDFOB
+
 + 3H

+
(aq) 

 

These values compare favourably with that reported for 1:1 Fe(III)-DFOB complexes [i.e. 

KFe
(III)

HDFOB
+ = 10

32.0
 (Martell and Smith, 2003)]. The exceptional kinetic stability of the 

Cr(III)-DFOB complex derives from its octahedral ligand field and d
3
 orbital configuration 

which, like the d
5
 configuration of Fe(III), facilitates stable hexadenate complexes with 
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DFOB (Kruft et al., 2013). Chromium occurs widely in sediments and soils either as an 

anthropogenic contaminant or inherited from the parent rock, with average global Cr 

concentrations in soil varying from 0.02 to 58 µmol g
-1

 (Coleman, 1988; Richard and Bourg, 

1991). Much of this Cr is associated with Fe(III) oxides, particularly goethite, either 

incorporated into the goethite crystal lattice (Manceau et al., 2000) or held via inner-sphere 

complexes at the oxide surface (Charlet and Manceau, 1992; Barrow et al., 2012). These 

adsorption reactions greatly influence Cr(III) mobility, bioavailability and potential for 

oxidation to the more toxic Cr(VI) (Choppala et al., 2013).  

 

In view of their ability to complex Cr(III), organic chelating ligands, including siderophores 

such as DFOB, may be important agents in the solubilization and transport of this mineral-

associated Cr(III) in soils and sediments (Carbonaro et al., 2008; Duckworth et al., 2014). 

The high stability of the Cr(III)-DFOB complex indicates that these species may persist in the 

environment, thereby facilitating Cr(III) transport. However, despite the considerable 

potential of siderophores to influence the geochemical cycling of Cr(III), little work has been 

done to elucidate the effects of siderophores on Cr(III) desorption from mineral surfaces.  

 

The efficacy of Fe(III) acquisition by siderophores is enhanced with the presence of auxillary 

ligands, such as low MW organic acids. This synergism has been observed for in vitro batch 

experiments containing DFOB together with ubiquitous biogenic ligands, principally oxalate 

(Cheah et al,. 2003; Reichard et al., 2007; Cervini-Silva et al., 2012; Akafia et al., 2014). In 

these systems, the DFOB serves primarily to maintain a low concentration of dissolved 

Fe(III) in solution, thus promoting greater mineral dissolution. It is the oxalate, with its 

greater propensity to react with the mineral surface, which releases Fe(III) directly to solution 

through ligand promoted dissolution (Reichard et al., 2005; Reichard et al., 2007). The 
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readsorbed Fe(III)-oxalate complexes are extremely reactive and highly mobile in the 

presence of uncomplexed DFOB (Loring et al., 2008). Suwannee River fulvic acid (SRFA) 

presence similarly enhances DFOB mediated Fe(III) release from goethite, via a model 

proposed by Stewart et al. (2013). In this model for a system at pH 6.5, SRFA acts primarily 

by lowering the goethite surface charge and in this way increasing adsorption of HDFOB
+
. 

The synergy of two-ligand systems has also been observed for the dissolution of Al(III)-

goethite (Cervini-Silva and Sposito, 2002) and for the dissolution of oxides of metals other 

than Fe(III) (e.g. δ-MnO2, Saal and Duckworth (2010); CoOOH and MnOOH, Akafia et al., 

(2014)). Furthermore, two-ligand systems incorporating oxalate alongside DFOB have been 

shown to enhance the release of Fe(III) from uranyl-treated goethite (Wolff-Boenisch and 

Traina, 2007) and, conversely, to facilitate the desorption of U(VI) from the goethite surface 

(Wolff-Boenisch and Traina, 2006). These experiments further demonstrate the synergistic 

effect of two-ligand systems (e.g. DFOB–oxalate or DFOB–SRFA) and the non-exclusivity 

of DFOB for Fe(III). 

 

In this report, we extend the work of Stewart et al. (2013) to dissolution experiments with 

Cr(III)-treated goethite at pH 6.5 in the presence or absence of the trihydroxamate 

siderophore DFOB and fulvic acid, a ubiquitous natural organic material. The objective of 

our experiments was to determine the rates of Cr(III) desorption and Fe(III) release from 

Cr(III)-treated synthetic goethite as influenced by DFOB, by fulvic acid, and by the two 

organic compounds in combination. We also explore the effect of ligand addition sequence as 

there may well be large kinetic differences among the various routes of preparation.  

 

2. MATERIALS AND METHODS 

 

2.1. Goethite synthesis and characterisation 
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Goethite was prepared using the method described by Schwertmann and Cornell (1991). To 

summarise, 180 mL 5 M KOH (Fisher Chemicals, SLR) were rapidly combined with 100 mL 

1 M Fe(NO3)3.9H2O (BDH, AnalaR) in a 2 L plastic beaker while stirring constantly for 10 

min. The suspension was then brought to 2 L with ultrapure water (18 MΩ-cm, Milli-Q 

Millipore) and transferred to five, 500 mL amber wide-mouth Nalgene HDPE screw top 

bottles. Following aging for 24 h at 70 °C, the suspensions were passed through Whatman no. 

40 filters and the precipitate was washed with ultrapure water to remove soluble impurities. 

To facilitate thorough washing of the precipitate and to prevent clogging of the Buchner 

funnel, the filter paper was replaced after every 250 mL of suspension as described in Stewart 

et al. (2013). The washed precipitate was then allowed to air-dry at 21 °C. Our pure goethite 

appeared as a brownish-yellow precipitate of Munsell colour 10YR 6/8.   

 

Precipitates were analysed by X-ray diffraction (XRD) using an Enraf-Nonius PSD 120 

diffractometer utilising Cu Kα1 radiation (45 mV; 45 kV) and fitted with an INEL 120° 

curved position sensitive detector. Comparison of the powder X-ray diffraction patterns of 

the synthetic goethite with those reported in the International Centre for Diffraction Data
® 

Files (ICDD Files 1081-464) confirmed that our precipitate was goethite (α-FeOOH). All the 

XRD peaks produced by the precipitates related to the structure of goethite, while the absence 

of extraneous peaks indicated that no other phases were present at detectable levels. Based on 

previous quantitative XRD analyses (Batchelder and Cressey, 1998; Chipera and Bish, 2013) 

we estimate a limit of detection of less than 5% (v/v). Importantly, we could find no evidence 

in the X-ray diffraction pattern of two-line or six-line ferrihydrite, the precursors of goethite 

(Schwertmann and Cornell, 1991), indicating near-complete transformation to goethite.    
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The goethite was further characterised by Fourier transform infrared (FTIR) spectroscopy by 

first preparing KBr pellets as described by Prasad et al. (2006), mixing ~1 mg of sample with 

100–200 mg spectroscopy grade KBr (Uvasol
®
, Merck). When not in use, the KBr pellets 

were stored in a desiccator to minimise uptake of water. All FTIR data were collected over 

200–4000 cm
-1

 on a Perkin Elmer Spectrum One FTIR spectrometer with dedicated spectrum 

handling software (version 5.0.1). The spectra are an aggregate of 128 scans and have a 

resolution of 4 cm
-1

.  

 

The surface area of goethite was determined by N2-BET analysis using a Micrometrics 

Gemini III 2375 instrument following degassing of the samples with N2 at 100 °C for 24 h. A 

reference kaolinite (15.9+0.8 m
2
 g

-1
) was analysed alongside the goethite samples to ensure 

accuracy. The N2-BET surface area was 43 m
2
 g

-1
, which is slightly greater than that reported 

elsewhere for synthetic goethite (e.g. 35+3 m
2
 g

-1
; Kraemer et al., 1999; 38 m

2
 g

-1
; Carrasco 

et al., 2007).  

 

2.2. Adsorption of Cr(III) to goethite 

A series of adsorption experiments were performed to determine the optimum aqueous 

Cr(III) concentration required to achieve approximately 3% surface coverage of our goethite 

at pH 6.5. Percent coverage is defined here as the proportion of singly and triply-coordinated 

hydroxyl groups complexed by Cr(III) (Fendorf et al., 1996; Zhong et al., 2007). We choose 

3% coverage as it is similar to that used in comparable experiments (Kraemer et al., 1999).   

Eighteen mL goethite suspensions at pH 6.5 were placed in each of four 50 mL amber HDPE 

bottles. To each suspension we then added a predetermined quantity of 0.5 mM Cr(III) nitrate 

solution (pH 6.5), prepared by dissolving Cr(III) nitrate nonahydrate [(Cr(NO3)3.9H2O, 

AlfaAesar, 98.5%)] in 1 mM MOPS [3-(N-morpholino) propanesulfonic acid, VWR] a non-
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complexing buffer, and 10 mM NaNO3 (AnalaR, BDH). The suspensions, in duplicate, were 

then brought to total volumes of 33.6 mL at pH 6.5 by addition of MOPS/NaNO3 solution, 

giving final Cr concentrations of 1.5, 5, 10, and 15 µM. All eight bottles were then agitated 

with a magnetic stirrer and 5 mL aliquots were removed from each vessel after 5, 10, 15 and 

30 min reaction, then filtered through 25 mm nitrocellulose membrane filters (pore size 0.025 

µm) into clear polythene screw cap tubes. Filtrates were acidified with 70% HNO3 (Fisher 

Scientific) to form a 2% HNO3 matrix thereby preventing precipitation of Fe hydroxide. 

Chromium in all supernatant solutions was measured by ICP-AES analysis (Varian Vista Pro, 

ICP Expert version 4.1.0, emission line 267.7).  

 

The hydrolytic polymerization of Cr(OH2)6
3+

 over the pH range 5 – 11 yields a series of low 

oligomers, principally dimers, trimers and tetramers (Spiccia and Marty, 1986). The 

proportion of these oligomers increases nonlinearly with time and is pH dependent. The rate 

of polymerization decreases from pH 5 to 6, reaches a minimum at pH 6 – 7, then increases 

above pH 8. In their study of Cr(OH2)6
3+

 aging, using 41.4 µM Cr at pH 6.08, Spiccia and 

Marty (1986) found that the proportion of Cr(III) monomers in aqueous solution decreased 

over time from 98.0% (10 min) to 94.1% (16 h) to 90.6% (72 h). As our Cr(III) stock 

solutions were used within several hours of preparation we estimate, on the basis of the above 

rates of aging, that ~95% of the Cr(III) was introduced to the goethite suspensions as 

monomers. 

 

2.3. Batch dissolution experiments 

A series of batch dissolution experiments were undertaken to assess the effect of DFOB and 

SRFA on Fe(III) release and Cr(III) desorption from Cr(III)-treated goethite. Reaction times 

and reagent addition sequences are shown schematically in Fig. 2. Ninety mL of goethite 
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suspension (1256 mg L
-1

), in MOPS/NaNO3 buffer, were transferred into each of six 250 mL 

amber HDPE bottles. Subsequently, 0.9 mL Cr(NO3)3 solution, prepared in MOPS/NaNO3 

buffer as above, was added to each suspension to give 3% surface coverage. After 30 min 

reaction, 9.0 mL DFOB (500 µM) or 30.0 mL SRFA (65 mg C L
-1

) were added to the bottles 

as indicated in Fig. 2. Desferrioxamine B, obtained as the mesylate salt 

[C25H46N5O8NH3
+
(CH3SO3

-
)] from Sigma-Aldrich, occurs predominantly as cationic species 

at pH < 7 (Fig. S1). The SRFA, with a molecular weight ~1360 g mol
-1 

(Chin et al., 1994), 

was obtained from the International Humic Substance Society (Sample 1S101F). The weakly 

associated DFOB-SRFA ion pair (Higashi et al., 1998) of system 4 was equilibrated for 30 

min before addition to the goethite suspension. One of the six reaction vessels (system 6) 

contained only goethite, without DFOB or SRFA. A further two bottles contained only 

DFOB (system 7) or only SRFA (system 8) and served as procedural blanks to test for 

adsorption of these organic components onto container walls and filters. 

 

All eight reaction vessels were brought to 129 mL by addition of MOPS/NaNO3 solution then 

left to equilibrate for 24 h on an orbital shaker (Orbital Incubator SI50) operating at 100 rpm 

and 25°C. Following this 24 h reaction, 30.0 mL SRFA solution was added to system 2 and 

9.0 mL DFOB solution was added to system 3 as indicated in Fig. 2. All suspensions, 

prepared in duplicate, were brought to final volumes of 168 mL with MOPS/NaNO3 then 

placed on the orbital shaker for the remainder of the dissolution period (i.e. 336 h). The final 

DFOB concentration in all batch reactors (except systems 6 and 8, which contained no 

DFOB) was 270 µM, whilst SRFA concentrations for all samples were 11.6 mg C L
-1

, with 

the exception of systems 1, 6 and 7, which contained no SRFA. Suspension pH was measured 

before and after each reagent addition and before each aliquot removal. At all times the pH 

was maintained at 6.5 and did not require further adjusting. Maintaining pH at 6.5 ensured 
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that proton promoted dissolution was negligible. Changes in H
+
 activity can also influence 

ligand-controlled dissolution by modifying the concentrations and speciation of adsorbed 

ligands (Reichard et al., 2007).   

 

At reaction times of 0.5, 24, 48, 120, 192, 312 and 336 h, 15 mL aliquots of suspension were 

removed with a syringe and subsequently filtered through 25 mm cellulose acetate filters 

(pore size 0.2 µm) followed by filtration through 25 mm nitrocellulose membrane filters 

(pore size 0.025 µm) into clear polythene screw cap tubes. Suspensions were stirred during 

aliquot extraction to prevent fractionation of solid and solution and thus maintain a constant 

solid:solution ratio throughout the reaction period. We completed sampling and filtration of 

each 15 mL aliquot within 60 s to ensure a rapid and uniform sampling protocol across all 

batch experiments. Residual solids on the filters were rinsed with ultrapure water, allowed to 

air dry then stored in plastic vials and placed in a desiccator for subsequent analysis by FTIR. 

The supernatant solutions were stored at 4°C until analysis, described below.  

 

2.4. Quantification of aqueous Fe, Cr, DFOB and SRFA 

Aqueous Fe and Cr in supernatant solutions were measured by first adding 2 mL portions of 

the filtrate to 4 mL 2% (v/v) HNO3 (SpA grade, Romil) for subsequent Fe and Cr analysis by 

inductively coupled plasma mass spectrometry (ICP-MS) (Agilent Technologies, ASX-7700 

Series) monitoring isotopes 56 and 52, respectively. To minimise polyatomic interferences 

from 
40

ArO
+
 and 

40
ArC

+
, the instrument was operated with 5 mL/min He (99.9995% purity) 

in the collision-reaction octopole cell and tuned to about 0.1% CeO/Ce.  

 

Filtrate DFOB was quantified by the chelometric method, in which concentrations of the 

Fe(III)-DFOB complex are measured spectrophotometrically by absorption at 467 nm 
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(Cocozza et al., 2002; Cheah et al., 2003). Briefly, 2.5 mL portions of filtrates and standards, 

the latter containing predetermined quantities of DFOB to construct the calibration curve, 

were acidified to pH 1.5 to 1.7 with 8 µL 70% HClO4 (BDH ARISTAR). We then added 167 

µL of 15 mM Fe(ClO4)3 to each filtrate and standard solution to give an Fe concentration in 

excess of that needed to complex all DFOB. A DFOB-free blank solution containing only 

MOPS/NaNO3 and Fe(ClO4)3, likewise acidified to pH 1.5 to 1.7, served as a base correction 

during spectrophotometric measurements. Samples were placed in 1 mL disposable UV 

micro cuvettes (Plastibrand
®
) of 10 mm path length and absorbance readings were obtained 

on a Shimadzu UV-1800 spectrophotometer fitted with tungsten iodine (visible) and 

deuterium (UV) lamps. The DFOB surface excess (µmol m
-2

) was calculated by dividing the 

siderophore lost from solution by the surface area of goethite. Previous DFOB adsorption 

experiments show that there is an optimal reaction period during which adsorption is 

achieved, but where dissolution is minimal. This optimal time has been reported to vary from 

minutes (Cocozza et al., 2002) to hours (Simonova et al., 2010). On the basis of these earlier 

experiments we choose 30 min reaction time to ascertain maximum DFOB surface excess.  

 

The remaining supernatant solutions, filtered and unacidified, were retained to determine 

SRFA content by UV-Vis spectrophotometry (Qu et al., 2003; Tatár et al., 2004). Filtrate 

SRFA was quantified by first obtaining a UV-Vis scan (220-900 nm) of a standard aqueous 

SRFA solution (31.2 mg SRFA L
-1

) to derive the λmax (i.e. 254 nm). SRFA content in each 

filtrate solution was then determined by placing 1 mL filtrate into micro cuvettes of 10 mm 

path length and measuring UV absorption at 254 nm. These absorbance values were 

compared against those for a series of standard solutions of known SRFA concentration 

which were used to construct the calibration curve. A 1 mL aliquot of MOPS/NaNO3 served 

to base correct the UV-Vis spectrophotometer before analysis of filtrate solutions.  
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Initial dissolution rates were calculated by performing linear least-square regression analysis 

on the first 5 data points chosen based on the linearity of the initial dissolution curve. The 

same number of points were used for each dissolution, yielding regression coefficients (R
2
) 

greater than 0.92 for all least square fits. Dissolution rates were then calculated and tested at a 

95% confidence interval, which was used to estimate error. 

 

2.5. FTIR spectroscopy 

Chromium(III) nitrate nonahydrate was added to aqueous solutions of DFOB, SRFA, or 

DFOB-SRFA in the following mole ratios to produce a set of Cr(III)-ligand aqueous systems 

(0.1 g mL
-1

): Cr(III)-DFOB (2:1), Cr(III)-SRFA (5:1), Cr(III)-DFOB-SRFA (5:1:1) and 

DFOB-SRFA (1:1). These mole ratios were informed in part by the FTIR work of Cozar et 

al., (2006). Solid samples were obtained from the acidified aqueous solutions by 

concentrating the solutes through freeze drying (Labconco FreeZone
®
 Triad

TM
 Freeze Dry 

System 740030 equipped with a JAVAC JL-10 high vacuum pump) to minimise IR 

absorption by water and improve peak/band resolution. Samples for FTIR analysis were 

prepared using the KBr pellet technique (Prasad et al., 2006) and data were collected using 

parameters as outlined in Section 2.1.   

 

3. RESULTS 

 

3.1. Aqueous Fe and Cr  

 

The adsorption data for 5 µM Cr(III) show rapid metal uptake within the first 5 min, reaching 

a maximum sorbed Cr concentration of 0.16 µmol m
-2

 goethite by 10 min (Fig. 3). As these 
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adsorption values approximate our desired Cr(III) surface coverage of 3%, we therefore used 

5 µM Cr(III) for the preparation of all Cr(III)-treated goethite solids.  

 

Negligible amounts of Fe(III) were detected in systems 5 and 6, both lacking DFOB, 

throughout the 336 h reaction (Fig. 4). For all other systems containing both DFOB and 

Cr(III)-treated goethite (i.e. systems 1-4), dissolved Fe(III) increased with time throughout 

the dissolution. At the first sampling time, 0.5 h, the greatest amount of solubilised Fe(III) 

(7.56 µM) was recorded for system 4 (DFOB-SRFA added to Cr(III)-treated goethite), 

whereas the lowest Fe(III) concentration (1.04 µM) was observed for system 3 (SRFA added 

prior to DFOB). At the end of the reaction, dissolved Fe(III) was highest for system 3 (39.8 

µM) and lowest for system 1 (29.3 µM), in which DFOB was the only organic ligand present.  

 

Less Fe(III) is released from Cr(III)-treated goethite than from the pure mineral. To illustrate, 

in systems 1 to 4 of the current study, the maximum Fe in solution (Table 1) normalised to 

surface area varies from 0.97 – 1.32 µmol Fe m
-2

 at a reaction time of 336 h. This compares 

with 2.2 – 4.2 µmol Fe m
-2

 observed by Stewart et al. (2013) for the pure mineral across all 

their treatments at a reaction time of 336 h. This observation corroborates the work of others 

(e.g. Dubbin and Ander, 2003; Wolff-Boenisch and Traina, 2007), in which sorbed metals 

were shown to reduce the rate of siderophore promoted goethite dissolution. 

  

The presence of SRFA, in combination with DFOB, enhances Fe(III) release from Cr(III)-

treated goethite. For example, compare system 1, which contains only DFOB, with system 3, 

containing both DFOB and SRFA (Fig. S2). During the first 192 h reaction the combined 

DFOB-SRFA system yields significantly more soluble Fe(III) than the DFOB-only system. 

However, the effect of ligand addition sequence has little influence on Fe(III) solubilisation 
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and shows significance only at t = 0.5 h, where system 4 (addition of DFOB-SRFA) yields 

greater Fe(III), and at t = 192 h, where system 3 (SRFA introduced before DFOB) dissolves 

the most Fe(III) (Fig. S3).  

 

Aqueous Cr(III) concentrations are, like those for Fe(III), extremely low in the absence of 

DFOB (i.e. systems 5 and 6) (Fig. 5). Where DFOB is present (i.e. systems 1-4) significant 

soluble Cr(III) occurs at all reaction times to 336 h. Furthermore, systems in which both 

DFOB and SRFA are present generally yield higher soluble Cr(III) than system 1, containing 

only DFOB. Of the three systems with both organic ligands (systems 2–4), the highest Cr(III) 

concentration was observed for system 4 (0.211 µM) (DFOB-SRFA), which is significantly 

greater at the 95% confidence interval than that for system 2 (0.171 µM) (DFOB added 

before SRFA) (Table 2). The DFOB-SRFA synergism is therefore most apparent when 

comparing system 1 with system 4 (Fig. S4). At all reaction times to 192 h system 4 yields 

more soluble Cr(III) than the DFOB-only system, although this effect shows statistical 

significance only at t = 48 h and at t = 120 h.  

 

The effect of ligand addition sequence on Cr(III) solubilisation to 192 h is shown in Fig. S5. 

As indicated above, it is system 4 which gives rise to the greatest soluble Cr(III), yielding 

significantly more Cr(III) than system 3 at all reaction times except t = 192 h, and more 

Cr(III) than system 2 except at the earliest reaction times (i.e. t = 0.5 h and t = 24 h). 

Comparing the release of Fe(III) with that for Cr(III) (Figs. S2 and S4), it is noteworthy that 

the observed synergism is more apparent for the release of Fe(III) than for the release of 

Cr(III). 

 

3.2. DFOB and SRFA quantification 
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The DFOB surface excess for systems 1-4 is given in Table 1, column 6. These data show 

that DFOB sorption is greatest where SRFA is present (systems 2–4) with, on average, twice 

as much DFOB sorbed as when there is no SRFA. These surface excess values were derived 

after accounting for a minor amount (~0.3%) of DFOB sorption to container walls and filters. 

The SRFA surface excess was 0.21 mg C m
-2

 across systems 2-4, rising slightly to 0.25 mg C 

m
-2

 in the absence of DFOB (system 5). There was only a small loss of SRFA (2%) to filters 

and vessel walls. Importantly, whereas the surface excess of DFOB increased significantly in 

the presence of SRFA and varied with addition sequence, SRFA adsorption to the solid was 

unchanged by addition sequence and showed only a modest increase when DFOB was 

present.  

 

Initial dissolution rates (i.e. slope of the regression-line equation) for the release of Fe(III) are 

shown in column 4 of Table 1. System 1 (DFOB only) gives a dissolution rate of (3.59 x 10
-3

 

µmol m
-2

 h
-1

). This rate is slower than that reported by Stewart et al. (2013) for pure goethite 

(5.98 x 10
-3

 µmol m
-2

 h
-1

) but it is more than six times faster than that reported by Kraemer et 

al. (1999) (i.e. 5.71 x 10
-4

 µmol m
-2

 h
-1

) for a goethite suspension incorporating 0.19 µmol m
-

2
 Pb(II) and 240 µM DFOB at pH 6.5. Our data therefore reveal an Fe(III) release rate from 

Cr(III)-treated goethite that is intermediate that from pure goethite and Pb(II)-treated 

goethite. Both the initial dissolution rate for Fe(III) release (Table 1, column 4) and the 

surface-normalised dissolution rate (column 5) show that the fastest dissolution occurred 

when SRFA was added prior to DFOB (system 3) and that this rate is statistically different 

from the others at the 95% confidence interval. Of the three systems where both SRFA and 

DFOB were present (i.e. systems 2, 3, and 4), the lowest rate occurred for system 4, in which 

the two ligands were added to the Cr(III)-treated goethite suspension as a DFOB-SRFA ion 

pair.  
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Ligand-promoted dissolution kinetics far from equilibrium are characterised by a pseudo-

first-order rate coefficient obtained as a ratio by dividing the surface-normalised initial 

dissolution rate by the surface excess of the ligand promoting the dissolution (Cocozza et al., 

2002) (Table 1). Interestingly, of all four DFOB containing systems, system 1 (DFOB only) 

had the largest pseudo-first-order rate coefficient (Table 1, column 7) due in part to its lower 

DFOB surface excess. The rate coefficient for this system (1) is more than twice that of 

system 2 (DFOB added prior to SRFA) and system 4 (DFOB-SRFA). However, of the three 

systems containing both DFOB and SRFA, system 3 (SFRA addition prior to DFOB) 

produced the highest pseudo-first-order rate coefficient, whilst the lowest occurs for system 

2. Surprisingly, although the pseudo-first-order rate coefficients for systems 1 and 3 are 

broadly similar, the DFOB surface excess for system 3 is nearly twice that of system 1.  

Where DFOB is added prior to SRFA (system 2) or at the same time as SRFA (system 4) the 

pseudo-first-order rate coefficients are similarly small relative to their surface excess values. 

Therefore, these data show that surface excess is not the sole variable determining the rate of 

Fe(III) dissolution from Cr(III)-treated goethite. A shift in surface area-normalised 

dissolution rate could also arise from, for example, changes in the surface speciation of 

DFOB as a result of SRFA adsorption (Carrasco et al., 2007). 

 

As the rate of Cr(III) release from goethite is highly linear to 192 h (Fig. S5), we derive 

surface normalised initial dissolution rates for each of the four systems, 1 – 4 (Table 2, 

column 5). System 3 gives both the highest rate for Cr(III) release (Table 2, column 5) and 

also the highest initial rate for goethite dissolution (Table 1, column 5). The initial rates for 

Cr(III) release in systems 1, 3 and 4 are higher than that for system 2, although the rates for 

systems 1 and 4 are within error of each other. Thus, introduction of SRFA before DFOB 
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(system 3) is particularly effective increasing the rate of Cr(III) release, and this increase is 

significant at the 95% interval. In a related study, Mustafa et al. (2004) similarly observed 

enhanced Cd(II) desorption from Cd(II)-treated goethite when oxalic acid was introduced 

together with DFOB. This previous work, alongside the data presented here, provide further 

evidence for the synergistic effect of ancillary organic ligands during the DFOB mediated 

desorption of metals from goethite. Furthermore, our data show the effect of ligand addition 

sequence on the release of Cr(III) from Cr(III)-treated goethite.  

 

3.3. FTIR spectra 

The principal FTIR vibrations and corresponding assignments for all solids and metal 

complexes are shown in Fig. 6 and Table 3. The presence of α-FeOOH is corroborated by 

FTIR analysis as absorption peaks produced by the synthetic oxide relate to the structure of 

goethite. A broad absorption band at 3132 cm
-1

 represents the hydroxyl stretch of the surface 

O-H (Cornell and Schwertmann, 2003). Absorption peaks at 795 cm
-1 

(out-of-plane bending) 

and 891 cm
-1 

(in-plane bending) are distinctive of the O-H bending doublet associated with 

goethite as well as the well-defined peaks corresponding to Fe-O lattice vibration at 640 cm
-1

 

(Amonette and Rai, 1990; Prasad et al., 2006). The absence of discernible extraneous peaks, 

including those from adsorbed water, indicated that no other phases were present at 

detectable levels. The presence of sorbed Cr(III) increased the stretching frequency of the 

surface hydroxyls, which now occur as a broad band centered at 3400 cm
-1

. We also note a 

small decrease in frequency of the out-of-plane OH bending, from 795 to 790 cm
-1

.   

 

Metal-DFOB complexes show a number of intense and diagnostic absorption bands in the 

1300–1650 cm
-1 

region, representing the most responsive metal-ligand interactions (Kruft et 

al., 2013). The main bands are assigned to (i) amide I and amide II vibrations of the two 



18 

 

amide groups; (ii) bending deformations of the terminal NH3
+ 

group; (iii) combinations of C-

N and C=O stretches (Fig. 1, Table 3). Within this region of the Cr(III)-DFOB FTIR 

spectrum, the highest frequency band is assigned to C=O of amide I at 1625 cm
-1

. This 

spectrum also shows a weak peak at 1538 cm
-1

 representing absorption by the C-N of amide 

II (observed at 1525–1540 cm
-1

 by Kruft et al., 2013). The umbrella-like bending of the NH3
+
 

moiety gives rise to a further band at 1490 cm
-1

. The sensitivity of these terminal NH3
+
 

vibrations could well reflect the formation of hydrogen bonds between N of the terminal 

amine (NH3
+
) and O of the amide groups as proposed by Kruft et al. (2013). Another amide 

bending vibration occurs at 1575 cm
-1

 in the Cr(III)-DFOB spectrum but this is not visible in 

the spectrum for Fe(III)-DFOB, most likely due to the masking of this peak by the more 

intense amide I band at 1626 cm
-1

. Stretching vibrations for hydroxamate C-N (1445–1460 

cm
-1

) and C=O (1580–1590 cm
-1

) are not readily apparent in our spectra, an observation we 

attribute to overlap with broad, nearby peaks arising from amide II-like asymmetric 

stretching and amide I-like symmetric stretching, respectively, as described in Kruft et al. 

(2013). 

 

The FTIR spectra for Fe(III)-SRFA and Cr(III)-SRFA are broadly similar (Fig. 6). Among 

the features common to both are a broad peak at ~3400 cm
-1

 alongside a shoulder near 3250 

cm
-1

, attributed to H-bonding of the O-H stretch. Previous studies report this shoulder at 

2400–3000 cm
-1

 (Krajnc et al., 1995; Ohta et al., 2011) while aliphatic C-H stretching, 

previously observed at ~2920 cm
-1

, is overshadowed in our spectra by the H-bonding of the 

O-H stretch. We also identify a band at 1627 cm
-1

 in the Cr(III)-SRFA spectrum, assigned to 

asymmetric COO
-
, that appears with a small shoulder at ~1700 cm

-1
, representing the C=O 

stretch of COOH. A sharp peak at ~1390 cm
-1

 represents the symmetric COO
-
 stretch while 

the minor peak at 1260 cm
-1

 is assigned to O-H deformation (in-plane bending) (Ohta et al., 
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2011). This minor peak has been reported by others to occur at 1263–1287 cm
-1

 coupled with 

stretching of C=O of COOH (Krajnc et al., 1995). As carboxylic groups of humic acid (HA) 

complex with Cr(III) in the 1800–1200 cm
-1

 region where symmetric and asymmetric COO
-
 

stretches are clearly visible (Ohta et al., 2011), we attribute the bands near 1625 and 1390 cm
-

1
 to the presence of Cr(III) and Fe(III) complexes. We identify two additional peaks at lower 

wavenumbers: a peak at ~1065 cm
-1

 attributed to phenolic C-O stretching, and a second, 

weak band at 520 cm
-1

 representing out-plane bending of COO
-
 (Krajnc et al., 1995).  

 

FTIR spectra for the Fe(III)-DFOB-SRFA and Cr(III)-DFOB-SRFA systems show distinct 

bands in the 2900-3000 cm
-1

 region, representing the terminal N-H vibrations of DFOB. 

These bands are largely masked in spectra for the binary complexes by broad peaks at ~3400 

cm
-1

. The spectrum for the Cr(III)-DFOB-SRFA system additionally shows a prominent C=O 

vibration at 1390 cm
-1

 which we attribute to Cr(III) complexation to SRFA as observed in our 

binary Cr(III)-SRFA complex. Spectra for the three-component systems also indicate that 

both Fe(III) and Cr(III) complex the hydroxamate groups of DFOB. For example, the 1042 

and 1040 cm
-1

 peaks in Fe(III)-DFOB-SRFA and Cr(III)-DFOB-SRFA represent, 

respectively, the complexation of Fe(III) and Cr(III) by the hydroxamate N-O of DFOB as 

demonstrated by Cozar et al. (2006). It is unclear from the FTIR spectra whether Fe(III) or 

Cr(III) occur in ternary complexes with DFOB and SRFA.    

 

4. DISCUSSION 

4.1. Surface properties of goethite 

Goethite is composed of FeO3(OH)3 octahedra sharing edges to form double chains that are 

connected to each other via corners of the octahedra as depicted in Fig. 7. The characteristic 

needle-shaped morphology of goethite crystals is achieved through elongation of the double-

chain layers in the [010] direction. These needles are dominated by the {110} 
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crystallographic plane which contributes the majority of the goethite surface area. This plane 

also hosts triply-, doubly-, and singly-coordinated oxygen atoms, which we designate as 

≡Fe3OH
0.5-

, ≡Fe2OH, and ≡FeOH
0.5-

, respectively. Doubly-coordinated oxygens do not 

contribute to surface charge and are therefore thought to be largely inert, playing only a 

minor role in adsorption-dissolution reactions (Hiemstra et al., 1996). Rather, it is the singly- 

and triply-coordinated oxygens that are responsible for surface charging and the acid-base 

properties of goethite over the pH range 1-11, with the singly-coordinated oxygens primarily 

responsible for the ligand exchange reactions (Venema et al., 1998). Although the average 

population of singly-coordinated oxygens across the goethite surface is about 3.0 sites nm
-2

 

(Zhong et al., 2007), their distribution is not uniform, with the greatest density occurring at 

the termination of the needles, described by the {021} plane (Barrón et al., 1996). 

Consequently, the needle termini are the most reactive surfaces of goethite with respect to 

dissolution and ligand exchange. Other surface sites characterised by a high density of singly-

coordinated oxygens include the various dislocations and defects at the goethite surface and 

these, too, are sites of high reactivity. As the PZC for goethite is 9.3 at I = 0.1 M (Boily et al., 

2001), the goethite surface will possess a net positive charge at pH < 9.3 in the absence of 

adsorbed ligands.  

 

4.2. Effect of sorbed Cr(III) on Fe(III) release 

The release of Fe(III) from goethite is significantly reduced in the presence of sorbed Cr(III). 

Only about one-half as much Fe(III) was released from systems 1, 2 and 3, and one-quarter as 

much Fe(III) was released from system 4, as compared to the pure goethite systems studied 

by Stewart et al. (2013). These striking reductions in solubilised Fe(III) were achieved with a 

goethite surface coverage of only 3% Cr(III). This observation lends support to a surface 

complexation model in which Cr(III) is preferentially bound, via inner-sphere surface 
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complexes (Charlet and Manceau, 1992), to the singly-coordinated oxygens of goethite (Fig. 

7), thus reducing significantly the population of these reactive groups through which DFOB 

may solubilise Fe(III). Attachment of hydroxamate groups from the DFOB-SRFA of system 

4 via the remaining uncomplexed singly-coordinated oxygens of the {021} plane may give 

rise to the considerable reduction in soluble Fe(III), due in part to the steric hindrance 

imposed on sorptive DFOB molecules by the SRFA. Alternatively, adsorbed SRFA may 

itself directly block access to the surface sites. These data indicate that the potential 

bioavailability of Fe(III) from goethite may be significantly reduced in environments 

contaminated by metals such as Cr(III).   

 

4.3. Effect of single ligands on Fe(III) and Cr(III) solubilisation 

The presence of SRFA alone (system 5) gives a maximum dissolved Fe(III) concentration of 

0.042 µM, only marginally greater than that of system 6 (0.027 µM), which lacks both SRFA 

and DFOB (Table 1). Similarly, dissolved Cr(III) concentration (0.005 µM) in the presence 

of only SRFA is not significantly different from that in the absence of both organic ligands 

(Table 2). As the SRFA surface excess for system 5 was 0.25 mg C m
-2

, approximately 35% 

of the total SRFA remained in solution. Despite the considerable size of this aqueous SRFA 

pool, soluble Fe(III) and Cr(III) concentrations remain only marginally greater than for 

system 6 (no ligand). Therefore, on its own, SRFA only weakly solubilizes Fe(III) and Cr(III) 

from Cr(III)-goethite over timescales observed in this study (i.e. 336 h).  

 

In the presence of DFOB alone (system 1) dissolved Fe(III) rises to 29.3 µM, a concentration 

more than 1000-fold greater than that for the ligand-free system 6. For Cr(III), in contrast, 

DFOB alone induces a more modest rise in the dissolved metal, to 0.185 µM, a 16-fold 

increase as compared to the ligand-free system. Throughout the 336 h reaction we maintain a 
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large excess of uncomplexed DFOB in bulk solution, ensuring the steady-state concentration 

of readsorbed Fe(III) or Cr(III) is small (Loring et al., 2008). We propose that the lower 

concentration of dissolved Cr(III) in the presence of DFOB derives from the slow rate of 

water exchange of Cr(III). To illustrate, the water of the hexahydrate Cr(III) ion, Cr(H2O)6
3+

, 

is kinetically inert with a water exchange rate constant, kwex, of 2.36 x 10
-6

 s
-1

 and a half-life, 

t½, of 81.6 h at 298.15 K (Xu et al., 1985; Crimp et al., 1994). The coordinated waters 

become more labile with increasing number of coordinated hydroxo groups, such that the kwex 

of the Cr(OH)(H2O)5
2+

 complex [kwex = 1.78 x 10
-4

 s
-1

, t½ = 1.08 h] is about 75 times faster 

than that for the hexahydrate complex. As complexation of Cr(III) to natural organic matter 

(e.g. hydroxamate siderophores) and subsequent detachment of the Cr(III)-DFOB complex 

from the goethite surface may require long reaction times to reach equilibrium, particularly at 

high Cr(III) concentration and low pH (Gustafsson et al., 2014), we propose that the low 

dissolved Cr(III) concentration is due primarily to the slow rate of water exchange of Cr(III).  

 

4.4. Synergistic effect of DFOB and SRFA 

The presence of SRFA in the two-ligand systems (i.e. systems 2 – 4) increases DFOB surface 

excess, giving rise to an increase in dissolved Fe(III). However, the increase in this surface 

excess is not proportional to the increase in solubilised Fe(III). To illustrate, if one compares 

systems 1 and 4 (Table 1), a doubling of DFOB surface excess from 0.386 to 0.802 µmol m
-2

 

yields only a 20% increase in dissolved Fe(III), from 0.97 to 1.18 µmol m
-2

. These data 

indicate that much of the additional sorbed DFOB does not contribute directly to 

solubilisation of Fe(III), an observation consistent with the complexation of DFOB to either 

the less reactive but more abundant {110} plane, or to surface-bound SRFA. With respect to 

the goethite examined in this study, where Cr(III) is presumed to occupy the most reactive 

sites, a greater proportion of the added SRFA, whether introduced alone or complexed with 
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DFOB, is by necessity sorbed via the available but less reactive triply-coordinated oxygens. It 

is therefore plausible that any SRFA-associated DFOB is similarly distant from the most 

reactive, singly-coordinated oxygens. Furthermore, in these two-ligand systems, there is 

potential for readsorption of Fe(III)-DFOB or Cr(III)-DFOB to the adsorbed SRFA. As 

reported in a related study (Carrasco et al. 2009), Fe(III)-DFOB adsorption to goethite 

increased in the presence of a surfactant, sodium dodecyl sulfate, presumably via a 

hydrophobic interaction. Likewise, the hydrophobic moieties of SRFA may serve as 

attachment points for Fe(III)-DFOB and Cr(III)-DFOB. 

 

Despite the constraints on Fe(III) solubilisation imposed by the adsorbed Cr(III), the 

synergistic effect of SRFA presence in the two-ligand systems is nevertheless clear and 

significant. We propose a model in which SRFA enhances the release of Fe(III) from Cr(III)-

treated goethite via three pathways that operate simultaneously. First, adsorbed SRFA 

reduces the goethite surface charge leading to increased HDFOB
+
 surface excess and Fe(III) 

chelation by means of a mechanism described by Stewart et al. (2013). Second, surficial 

Fe(III) is complexed by adsorbed SRFA which subsequently detaches to form aqueous 

Fe(III)-SRFA species whose presence is evidenced by FTIR data (i.e. C=O stretches at 1384, 

1631 and 1687 cm
-1

, Table 3) and whose conditional stability constant has been reported to 

be KFe
(III)

SRFA = 10
10.4

 (Rose and Waite, 2003). The contribution of this second pathway to the 

total dissolved Fe(III) pool is likely small (i.e. we observe 0.042 µM Fe in the SRFA-only 

system after 336 h) but arguably important in Fe
(III)

(aq) deficient oxic environments. Third, 

complexation of Fe(III) by surface-bound SRFA and its subsequent removal from SRFA by 

DFOB to yield aqueous Fe(III)-DFOB complexes. In support of this third mechanism, the 

DFOB-mediated removal of Fe(III) from several natural humic materials, including a 

Suwannee River fulvic acid, has been observed recently in laboratory studies (Kuhn et al., 
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2012; Kuhn et al., 2014). The DFOB removed a majority (~ 75%) of the Fe(III) from SRFA 

and steady state was achieved quickly, within about an hour. The latter two mechanisms may 

become increasingly important for the supply of Fe(III) to microbial populations where 

kinetically inert metals such as Cr(III) occupy the most reactive sites on goethite. 

 

4.5. Effect of ligand addition sequence  

The effect of varying the sequence of DFOB and SRFA addition on the maximum aqueous 

Fe(III) concentration is less clear than the effect of introducing a second ligand, either DFOB 

or SRFA, to the Cr(III)-treated goethite suspension (Table 1, column 2). Importantly, for the 

first 192 h of reaction, we observe little significant difference in Fe release among the three 

routes of preparation (Fig. S3), although system 3 does give rise to a statistically significant 

increase in dissolution rate (Table 1, column 5).   

 

With respect to the release of Cr(III), in contrast, the DFOB-SRFA of system 4 consistently 

yields the greatest aqueous Cr(III) concentration over all reaction times (Fig. 5). As we 

propose in section 4.3, a significant constraint to Cr(III) mobility in aqueous environments is 

the slow reaction kinetics of the hexahydrated Cr(III) ion. Therefore, any change in the 

coordination sphere of Cr(III), such as hydrolysis, that increases the Cr(III) reaction kinetics 

will enhance ligand-promoted movement of Cr(III) to aqueous solution. Our FTIR data are 

consistent with the occurrence of Cr(III)-SRFA complexes via prominent C=O vibrations at 

1390 cm
-1

 (Table 3, Fig. 6). Furthermore, recent EXAFS data show that at pH >5 SRFA 

supports the formation of a dimeric complex, (RO)3Cr2(OH)2
+
, in which Cr(III) is 

coordinated to three phenolic or carboxylic acid groups (Gustafsson et al., 2014). 

Importantly, the two Cr(III) atoms are bridged via two hydroxyls whose presence within the 

coordination shell of Cr(III) significantly increases the kinetic lability of this cation. 
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Consequently, formation of these hydrolysed Cr(III) dimers gives rise to a quantitatively 

significant increase in aqueous Cr(III) but these dimers are evidently not sufficiently 

abundant to be detected by FTIR. Increasing pH above 5 also facilitates greater aqueous 

Cr(III) as a consequence of desorption of SRFA from the goethite surface as observed more 

generally for multivalent cations in SRFA-goethite systems (Tinnacher et al., 2015).  

 

 Furthermore, preferential attachment of hydroxamate groups from the DFOB-SRFA ion pair 

of system 4 to the reactive {021} plane of goethite as proposed in section 4.2 places both the 

DFOB and SRFA near the greatest density of sorbed Cr(III), thus facilitating SRFA-mediated 

Cr(III) olation and subsequent chelation by DFOB. Conversely, in system 2, where the SRFA 

is introduced 30 min after DFOB, the proximate sorption of both ligands is not favoured as it 

is in system 4, thus constraining the potential synergism. However, it is not immediately clear 

why, at reaction times ≥ 192 h, system 2 yields less aqueous Cr(III) than even system 1, 

which lacks SRFA. The application of molecular-level spectroscopies, such as EXAFS, to 

probe the coordination environment of Cr(III) in each of these systems may well provide the 

molecular-level detail needed to corroborate and refine our proposed models.   

 

5. CONCLUSIONS 

 

Fulvic acid, hydroxamate siderophores and goethite are common constituents of soils and 

sediments. In this work we investigated the synergistic effect of SRFA and DFOB, at 

environmentally relevant concentrations, on the solubilisation of Fe(III) and Cr(III) from 

goethite at pH 6.5. We propose that SRFA enhances the efficacy of DFOB by (i) increasing 

DFOB surface excess and (ii) through formation of aqueous Fe(III)-SRFA species whose 

Fe(III) is subsequently made bioavailable by chelation with DFOB. We observe for the first 

time the increasingly important role of SRFA in Fe(III) solubilisation when Cr(III), and by 
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extension other kinetically inert cations, occupy the most reactive surface sites on goethite 

(i.e. singly- and triply-bound oxygens). These observations shed new light on the 

mechanisms of Fe(III) acquisition available to plants and micro-organisms in Cr(III) 

contaminated environments.  
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Table 1. Linear regression equations, surface area normalised initial dissolution rates, surface excess values for DFOB, and pseudo-first-order rate coefficients for dissolution 

of Fe(III) from Cr(III)-treated goethite at pH 6.5 and 25 °C.  

 

Initial DFOB 

concentration = 

270 µM. 

Goethite 

concentration = 

0.7 g L
-1

. 

y = soluble Fe 

(µM). 

x = time (h). 

Errors represent 

95% confidence interval. 

 

  

System 

 

 

 

   Maximum Fe in solution 

 

 

      (µM)                (µmol m
-2

) 

Regression 

equation 

 

 

Initial dissolution 

rate 

(µmol m
-2

 h
-1

) 

DFOB 

surface 

excess (µmol 

m
-2

) 

Pseudo-first-

order rate 

coefficient 

× 10
-3

 (h
-1

) 

1 29.3 ± 2.9 0.97 ± 0.10 y = (0.108 ± 0.004)x + 4.78 ± 0.43 3.59 ± 0.13 × 10
-3

 0.386 ± 0.032 9.3 ± 0.3 

2 37.0 ± 3.1 1.23 ± 0.10 y = (0.112 ± 0.006)x + 2.35 ± 3.22  3.72 ± 0.20 × 10
-3

 0.942 ± 0.059 3.9 ± 0.2 

3 39.8 ± 2.4 1.32 ± 0.08 y = (0.144 ± 0.012)x + 5.51 ± 2.24  4.78 ± 0.40 × 10
-3

 0.663 ± 0.060 7.2 ± 0.6 

4 35.4 ± 2.2 1.18 ± 0.07 y = (0.104 ± 0.005)x + 9.33 ± 1.31 3.46 ± 0.17 × 10
-3

 0.802 ± 0.023 4.3 ± 0.2 

5 0.042 ± 0.009  - - - - - 

6 0.027 ± 0.007 - - - - - 
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Table 2. Linear regression equations and surface area normalised initial dissolution rates for the release of Cr(III) from Cr(III)-treated goethite at 

pH 6.5 and 25 °C.  

System 

 

 

 

Maximum Cr in solution 

 

 

        (µM)             (µmol m
-2

) 

Regression 

equation 

 

 

Initial dissolution 

rate  

(µmol m
-2

 h
-1

) 

Cr sorbed 

(µmol m
-2

) 

 

 

1 0.185 ± 0.023 6.15 ± 0.76 × 

10
-3

 

y = (5.95 ± 0.23 × 10
-4

)x + 3.3 ± 1.0 × 

10
-2

 

1.98 ± 0.08 × 10
-5

 0.160 ± 0.004 

2 0.171 ± 0.015 5.68 ± 0.50 × 

10
-3

 

y = (4.99 ± 0.31 × 10
-4

)x + 3.5 ± 0.9 × 

10
-2

 

1.66 ± 0.10 × 10
-5

 0.160 ± 0.005 

3 0.200 ± 0.026 6.64 ± 0.86 × 

10
-3

 

y = (6.91 ± 0.26 × 10
-4

)x + 1.3 ± 0.4 × 

10
-2

 

2.30 ± 0.09 × 10
-5

 0.159 ± 0.005 

4 0.211 ± 0.020 7.01 ± 0.66 × 

10
-3

 

y = (6.33 ± 0.31 × 10
-4

)x + 4.3 ± 1.1 × 

10
-2

 

2.10 ± 0.10 × 10
-5

 0.159 ± 0.002 

5 0.005 ± 0.003 - - - 0.166 ± 0.011 

6 0.011 ± 0.005 - - - 0.166 ± 0.003 

 

Initial DFOB concentration = 270 µM. 

Goethite concentration = 0.7 g L
-1

. 

y = soluble Cr (µM).  

x = time (h). 

Errors represent 95% confidence interval. 
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Table 3. FTIR absorption bands (cm
-1

) and their assignments for synthetic goethite, Cr(III)–treated 

goethite, Fe(III)–DFOB, Cr(III)–DFOB, Fe(III)–SRFA, Cr(III)–SRFA, Fe(III)–DFOB–SRFA and Cr(III)–

DFOB–SRFA. Assignments are based on Krajnc et al. (1995), Cornell and Schwertmann (2003), Edwards 

et al. (2005), Cozar et al. (2006), Prasad et al. (2006), Borer et al. (2009), Ohta et al. (2011) and Kruft et al. 

(2013). Vibration modes are designated as follows: v, stretching; δ, deformation; s, symmetrical; as, 

asymmetric. 

 

  

Assignment Goethite Cr-treated 

goethite 

Fe-

DFOB 

Cr-

DFOB 

Fe-

SRFA 

Cr-

SRFA 

Fe-DFOB-

SRFA 

Cr-DFOB-

SRFA 

vC=O  

amide I 

  1626 

 

1625    1625 

vC=O  

hydroxamate 

   1600     

vC=N  

hydroxamate  

(resonance) 

  1568 

 

1440     

vC-N  

amide II 

   1538     

vFe-O  

hydroxamate-iron  

  1459 

 

     

δN-H  

terminal N 

hydroxamate 

overlap 

   1490 

1575 
    

vN-O  

hydroxamate  

(resonance) 

  1045 

 

   1042 

 

1040 

vFe-O  

hydroxamate-iron  

  561 

 

            542  

vN-H 

(terminal N) 

  3368    3010 

2954 

2900 

vOH  

(phenolic) 

       3410 3400 3437 3400 

vC=O  

carboxylic acid 

    1687 

 

1700 1723  

vas C=O 

carboxylic acid  

    1631 1627 1642  

vs C=O 

carboxylic acid 

    1384 

  

1390  1390 

vOH  

phenolic 

      1216  

δC-O  

phenolic 

     1065   

δOH  

phenolic 

     1260   

v (OH) 

hydroxyl stretch 

3132 

 

3400       

δOH  

in-plane-hydroxyl 

891 

 

890       

δOH  

out-plane hydroxyl 

795 

 

790       

vFeO6 

lattice mode 

640 

 

630       

δCOO
-
 

in-plane carbonate 

 1400       

δCOO
-
 

out-plane carbonate 

     520  520 
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Figure 1. Structural representation of desferrioxamine B (DFOB) where the three hydroxyl groups (a,b,c) 

have pKa values of 9.8, 9.2 and 8.6, respectively (Colnaghi Simionato et al., 2006). 
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Figure 2. Schematic representation showing reaction times and reagent addition sequences for each of the 

eight batch dissolution experimental systems.   
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Figure 3. Plot of Cr(III) sorbed to goethite as a function of time at pH 6.5 and an initial Cr(III) 

concentration of 5 µM.   
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Figure 4. Release of Fe(III) from Cr(III)-treated goethite for all systems to 336 h. System 5 is a Cr(III)-

treated goethite-SRFA suspension and system 6 is a Cr(III)-treated goethite suspension lacking any organic 

ligand. Icons for systems 5 and 6 are superimposed. Initial siderophore concentration: 270 µM; solid 

concentration: 0.7 g L
-1

. pH 6.5; 25°C.   
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Figure 5. Release of Cr(III) from Cr(III)-treated goethite for all systems to 336 h. System 5 is a Cr(III)-

treated goethite-SRFA suspension and system 6 is a Cr(III)-treated goethite suspension lacking any organic 

ligand. Initial siderophore concentration: 270 µM; solid concentration: 0.7 g L
-1

. pH 6.5; 25°C.   
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Figure 6. FTIR spectra for pure synthetic goethite, Cr(III)-treated synthetic goethite, Fe(III)-DFOB, 

Cr(III)-DFOB, Fe(III)-SRFA, Cr(III)-SRFA, Fe(III)-DFOB-SRFA and Cr(III)-DFOB-SRFA. Reference 

compounds were prepared from aqueous solutions with the following molar ratios: Fe:DFOB and 

Cr:DFOB (2:1), Fe:SRFA and Cr:SRFA (5:1), and Fe:DFOB:SRFA and Cr:DFOB:SRFA (5:1:1). See 

Table 3 for peak assignments. 
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Figure 7. Schematic representation of the structure of goethite showing the triply-, doubly-, and singly-

coordinated oxygen atoms, which we designate as ≡Fe3OH
0.5-

, ≡Fe2OH, and ≡FeOH
0.5-

, respectively.   
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Supplementary Information 

Figure S1. The fraction of aqueous DFOB species as a function of pH in the presence (a) and absence (b) 

of Fe(III). 

 

 


