Gravity effects on Soret-induced nonequilibrium fluctuations in ternary mixtures

${ }_{3}$ Pablo Martínez Pancorbo ${ }^{1,2, a}$, José M. Ortiz de Zárate ${ }^{1}$, Henri Bataller ${ }^{2}$, and Fabrizio Croccolo ${ }^{2,3}$
4^{1} Departamento de Física Aplicada I. Universidad Complutense. Plaza de las Ciencias, 1. 28040 Madrid, Spain
5^{2} Laboratoire des Fluides Complexes et leurs Réservoirs - UMR5150, Université de Pau et des Pays de l'Adour, 64600 Anglet, France
7^{3} Centre National d'Etudes Spatiales (CNES), 2 Place Maurice Quentin, 75001 Paris, France

8 Received: date / Revised version: date
$9 \quad$ Abstract. We discuss the gravity effects on the dynamics of composition fluctuations in a ternary mixture around the non-equilibrium quiescent state induced by thermodiffusion when subjected to a stationary temperature gradient. We found that the autocorrelation matrix of concentration fluctuations can be expressed as the sum of two exponentially decaying concentration modes. Without accounting for confinement, we obtained exact analytical expressions for the two decay rates which, as a consequence of gravity, display a wave number dependent mixing. The stability of the quiescent solution is also examined, as a function of the two solutal Rayleigh numbers used to express the decay rates. After having discussed the dynamics of the two concentration modes, we calculate the corresponding amplitudes. Consequences for optical experiments are discussed.

PACS. 05.40.-a Fluctuation phenomena, in statistical physics - 66.10.cd Thermal diffusion, in liquids 66.10.cg Mass diffusion, in liquids

1 Introduction

${ }_{22}$ The present paper represents one further step in the de- 45 ${ }_{23}$ velopment of the theory of spontaneous thermodynamic ${ }^{46}$ ${ }_{26}$ field. Fluctuations in equilibrium ternary mixtures (ho- 49 in particular the fact that concentration fluctuations in ${ }_{27}$ mogeneous temperature, concentrations and pressure) has ${ }_{50}$ liquids relax much slower than temperature fluctuations. ${ }_{28}$ been the topic of several investigations over the years. ${ }^{51}$ This approach is equivalent to the large Lewis number ${ }_{29}$ A first analysis was presented by Lekkerkerker and Laid- ${ }_{52}$ approximation, introduced by Velarde and Schechter [5], ${ }_{30}$ law [1] who considered the generic case of a compressible ${ }_{53}$ to simplify the calculation of the convection threshold in ${ }_{31}$ fluid in which fluctuations in five independent variables 54 binary fluids.
${ }_{32}$ are coupled. This pioneering study was focused on the ${ }_{33}$ dynamics of the fluctuations, and an explicit discussion ${ }_{34}$ of the equal-time correlation functions was not consid${ }_{35}$ ered. Later, van der Elsken and Bot [2] considered the ${ }_{36}$ intensity of fluctuations in multicomponent mixtures in ${ }_{37}$ equilibrium, deriving an expression for the ratio of the in${ }_{38}$ tensities of Rayleigh and Brillouin lines of the scattering ${ }_{39}$ spectrum. More recently, Ivanov and Winkelmann [3] re${ }_{40}$ derived the expressions of Lekkerkerker and Laidlaw [1] ${ }_{41}$ for the Rayleigh peak of a ternary mixture, and studied ${ }_{42}$ the slowing-down of the concentration fluctuations close
${ }_{43}$ to a critical consolute point but without including a dis${ }_{44}$ cussion of the statics of the fluctuations. Finally we should ${ }_{5}$ mention Bardow [4] who combined previous works, con${ }_{6}$ sidering both the statics and the dynamics of fluctuations ${ }_{7}$ in equilibrium ternary systems, while adopting some ap${ }_{48}$ proximations adequate for mixtures in the liquid state, - All these works on equilibrium fluctuations in ternary ${ }_{56}$ mixtures $[1-4]$ evaluated the correlation functions on the ${ }_{57}$ basis of the Mountain method of arbitrary initial condi${ }_{58}$ tions [6,7], an approach often adopted by books dealing ${ }_{59}$ with thermodynamic fluctuations [8-10]. There exists an ${ }_{60}$ alternative method, namely, fluctuating hydrodynamics ${ }_{61}$ (FHD) originally developed by Landau and Lifshitz [11] ${ }_{62}$ (with relevant subsequent contributions by Fox and Uh${ }_{63}$ lenbeck [12]) for one-component fluid systems. FHD has ${ }_{64}$ been later extended, among other developments, to equi${ }_{65}$ librium binary mixtures [13]. Both theoretical approaches ${ }_{66}$ are equivalent for systems in equilibrium, but FHD can be ${ }_{67}$ extended for dealing with fluctuations in non-equilibrium
${ }_{68}$ (NE) systems [14-17], while the Mountain method of ar-
${ }^{\text {a }}$ Currently at: EPSRC Centre for Doctoral Training in Metamaterials (XM2). College of Engineering, Mathematics and Physical Sciences. University of Exeter. UK
${ }_{1}$ bitrary initial conditions cannot. Indeed, it has been the ${ }_{60}$ ${ }_{2}$ systematic application of FHD that allowed the investi${ }_{3}$ gation of fluctuations in systems out of (global) equilib- ${ }_{62}$ to the amplitudes of the two diffusion modes presented ${ }_{4}$ rium. The validity of this non-equilibrium extension of ${ }_{63}$ in the correlation matrix of the composition fluctuations. ${ }_{5}$ FHD, in the case of binary liquid mixtures, has been con- ${ }_{64}$ Finally, our main conclusions are summarized in Sect. 5. ${ }_{6}$ firmed by a series of pioneering experiments [18-22]. One ${ }_{7}$ other notable example of FHD success is the prediction of s the influence of gravity on the fluctuations [23], an effect ${ }_{9}$ initially considered to be not accessible to experiments, 10 and later confirmed by novel optical techniques [24]. Sim${ }_{11}$ ilarly, detailed FHD predictions about finite size effects ${ }_{12}$ on non-equilibrium fluctuations [25-27] have been later ${ }_{13}$ experimentally verified, by Gradflex [28] in microgravity 14 and by ground-based measurements $[27,29]$ in the pres${ }_{15}$ ence of buoyancy force. Hence, as a preliminary step in ${ }_{16}$ developing the theory of thermodynamic fluctuations in ${ }_{17} \mathrm{NE}$ ternary mixtures, it was necessary to re-derive [30] ${ }_{18}$ the equilibrium results for ternary mixtures on the basis ${ }_{19}$ of FHD, for which the simplifications of Bardow [4] were 20 adopted.
${ }_{21}$ As a second step [31], we evaluated in the absence of ${ }_{22}$ gravity the spectrum of thermodynamic fluctuations when ${ }_{23}$ a ternary mixture is subjected to a stationary temperature ${ }_{24}$ gradient, so that a composition gradient is induced by 25 the Soret effect. As previous investigations in binary mix${ }_{26}$ tures have shown [23], gravity has no influence in the spa${ }_{27}$ tial spectrum of NE fluctuations for large wave numbers ${ }_{28} q \rightarrow \infty$ so that, in addition to microgravity conditions, the ${ }_{29}$ results of Ref. [31] are applicable to ground conditions as ${ }_{30}$ an asymptotic limit, as experimentally verified by Bataller ${ }_{31}$ et al. [32].
${ }_{32}$ In the present paper, we consider the effects of grav${ }_{33}$ ity (buoyancy) on the problem. This question is not only ${ }_{34}$ relevant on theoretical grounds. The experimental inves${ }_{35}$ tigation of the dynamics of NE concentration fluctuations ${ }_{36}$ has been used as a method to simultaneously measure dif${ }_{37}$ fusion and thermal diffusion coefficients in a binary mix${ }_{38}$ ture [33, 34]. To extend such a method to multi-component ${ }_{39}$ mixtures, it is needed to understand the effects of buoy40 ancy on NE fluctuations, starting with ternary mixtures. ${ }_{41}$ For these reasons, our current results are also part of the ${ }_{42}$ SCCO (Soret Coefficients for Crude Oil) project [35,36], ${ }_{43}$ currently being jointly developed by the European Space ${ }_{44}$ Agency (ESA) and the Chinese Space Agency (CSA), aimed ${ }^{9}$ ${ }_{45}$ at obtaining reference quantitative values of thermodiffu${ }_{46}$ sion coefficients in multi-component fluid mixtures, a goal ${ }_{47}$ of interest also for the oil industry.
${ }_{48}$ We shall proceed by first presenting in Sect. 2 the equa${ }_{49}$ tions of FHD for a ternary system subjected to a stationBorrowing nomenclature from one-component fluids, we ${ }_{50}$ ary temperature gradient, in an approximation suitable 95 refer to this state as the "conductive" state. Buoyancy ${ }_{51}$ for liquid mixtures, and accounting for buoyancy effects. 96 effects may lead to convection, i.e., the conductive state ${ }_{52}$ In Sect. 3 we then explain how a solution to the fluctu- ${ }_{97}$ described by Eq. (3) may be unstable and non-existent in ${ }_{53}$ ating hydrodynamic equations can be obtained in 'bulk', 98 practice. For the time being we shall assume stability of ${ }_{54}$ without accounting for boundary conditions in the fluc- 99 the conductive solution leaving for later, in Sect. 4, a dis${ }_{55}$ tuating fields. For this purpose we found highly advanta- 100 cussion of convection in this system. We mention that to ${ }_{56}$ geous to adopt linear combination of concentrations that ${ }_{101}$ realize in practice the conductive state of Eq. (3) the sys${ }_{57}$ diagonalize the diffusion matrix, as considered in detail in ${ }_{102}$ tem must be confined between two plates, separated by ${ }_{58}$ Sect. 3.1. Next, in Sect. 4, we obtain explicit expressions ${ }_{103}$ a distance L and maintained at different temperatures. ${ }_{59}$ for the decay times of the NE composition fluctuations 104 However, for the rest of this paper we shall neglect the
${ }_{1}$ presence of boundaries. Previous studies show that con- ${ }_{47}$ with the only difference that we incorporate here the ef${ }_{2}$ finement affects both the amplitude $[25,26]$ and the dy- ${ }_{48}$ fects of buoyancy through the terms containing g and the ${ }_{3}$ namics [27] of NE fluctuations at lateral wave numbers 49 solutal expansion coefficients. In particular, and as a con${ }_{4} q \lesssim L^{-1}$. Hence, our current results are expected to be ${ }_{50}$ sequence of the large Lewis numbers approximation [5], ${ }_{5}$ valid only for fluctuations with q large enough, while we ${ }_{51}$ temperature fluctuations are neglected. Alternatively, at ${ }_{6}$ leave for future publications a thorough investigation of ${ }_{52}$ the time scale defined by the magnitude of the diffusion ${ }_{7}$ confinement effects on NE fluctuations in ternary mix- ${ }_{53}$ matrix and used in Eqs. (4), temperature (and velocity) ${ }_{8}$ tures.
${ }_{54}$ fluctuations are assumed to be fully decayed and only cou-
9 Hence, our purpose here is to study composition fluc- ${ }_{55}$ ple statically (the velocity) to composition fluctuations. ${ }_{10}$ tuations around the NE steady conductive state of Eq. (3), ${ }_{56}$ However, recent experiments with fast cameras [32] have ${ }_{11}$ including buoyancy but neglecting confinement effects. Ini- ${ }_{57}$ observed the decay of temperature fluctuations in shadow${ }_{12}$ tially, this is a complicated problem for which one has to ${ }_{58}$ graph signals; a complete analysis of these results would ${ }_{13}$ consider coupling between velocity, density, temperature ${ }_{59}$ require further development of the theory including the ${ }_{14}$ and two concentration fluctuations. To simplify the prob- 60 coupling with temperature fluctuations, even for binary ${ }_{15}$ lem, as elucidated by other researchers in the field $[4,37]{ }_{61}$ mixtures. Nevertheless, we note that temperature fluc16 and by us in previous publications [30,31], it is convenient 62 tuations are indeed observed [32] only for wave numbers ${ }_{17}$ to adopt a series of approximations, adequate for ternary ${ }_{63} a q^{2} t_{\mathrm{e}} \lesssim 1$ (where a is the thermal diffusivity of the mix${ }_{18}$ liquid mixtures, before attempting any detailed calcula- 64 ture and t_{e} the 'experimental' time delay, i.e., the time ${ }_{19}$ tion. Here, we shall consider the same approximations ${ }_{65}$ difference between consecutive images in a shadowgraph 20 used in our previous publications [30,31], to which we re- 66 machine) and that, in most cases, this limitation is not ${ }_{21}$ fer for a detailed discussion. In summary, they amount to ${ }_{67}$ more stringent than the condition $q \lesssim L^{-1}$ coming from ${ }_{22}$ incompressible (divergence-free) flow, large values of the 68 having neglected confinement.
${ }_{23}$ Lewis and the Schmidt numbers and use of average ther- 69 After discussing the limitations of the various approx${ }_{24}$ mophysical properties. In the case of multi-component sys- 70 imations adopted, to complete the setting of the problem, ${ }_{25}$ tems large Lewis and Schmidt numbers means that both ${ }_{71}$ one has to specify the statistical properties of the ran${ }_{26}$ thermal diffusivity a and kinematic viscosity ν of the mix- ${ }_{72}$ dom dissipative fluxes in Eqs. (4). They are: zero aver${ }_{27}$ ture are much larger than all eigenvalues of the diffusion ${ }_{73}$ age, $\left\langle\delta \Pi_{i j}(\boldsymbol{r}, t)\right\rangle=\left\langle\delta J_{1, i}(\boldsymbol{r}, t)\right\rangle=\left\langle\delta J_{2, i}(\boldsymbol{r}, t)\right\rangle=0$; and ${ }_{28}$ matrix [4]. Under these simplifications, fluctuations in the ${ }_{74}$ correlation functions given by the fluctuation-dissipation ${ }_{29}$ concentrations (δc_{1} and δc_{2} for a ternary mixture) are only ${ }_{75}$ theorem (FDT) [16, 30,11], which for incompressible flows ${ }_{30}$ coupled with fluctuations in the fluid velocity component 76 reads:
${ }_{31}$ parallel to the gradients $\left(\delta v_{z}\right)$, explicitly reading [31]:

$$
\begin{gather*}
0=\nu \nabla^{4} \delta v_{z}-\beta_{1} g \nabla_{\|}^{2} \delta c_{1}-\beta_{2} g \nabla_{\|}^{2} \delta c_{2} \tag{6}\\
-\frac{1}{\rho}[\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times(\boldsymbol{\nabla} \underline{\underline{\delta \Pi}})]_{z}, \tag{4}\\
\partial_{t} \delta c_{1}=D_{11} \nabla^{2} \delta c_{1}+D_{12} \nabla^{2} \delta c_{2}-\delta v_{z} \nabla c_{1}-\frac{1}{\rho} \boldsymbol{\nabla} \cdot \boldsymbol{\delta} \boldsymbol{J}_{1}, \\
\partial_{t} \delta c_{2}=D_{21} \nabla^{2} \delta c_{1}+D_{22} \nabla^{2} \delta c_{2}-\delta v_{z} \nabla c_{2}-\frac{1}{\rho} \boldsymbol{\nabla} \cdot \boldsymbol{\delta} \boldsymbol{J}_{2}, \tag{7}
\end{gather*}
$$

${ }_{32}$ where g is the gravity acceleration, ρ the average density ${ }_{33}$ and

$$
\begin{equation*}
\beta_{i}=\frac{1}{\rho}\left(\frac{\partial \rho}{\partial c_{i}}\right)_{p, T} \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
\left\langle\delta \Pi_{i j}(\boldsymbol{r}, t) \cdot \delta \Pi_{k l}\left(\boldsymbol{r}^{\prime}, t^{\prime}\right)\right\rangle=2 & k_{\mathrm{B}} T \eta\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \\
& \times \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \delta\left(t-t^{\prime}\right),
\end{aligned}
$$

${ }_{77}$ for the random stress tensor, and [30]

$$
\left\langle\delta J_{n, i}^{*}(\boldsymbol{r}, t) \delta J_{m, j}\left(\boldsymbol{r}^{\prime}, t^{\prime}\right)\right\rangle=2 k_{\mathrm{B}} L_{n m} \delta_{i j} \delta\left(t-t^{\prime}\right) \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right),
$$

${ }_{78}$ for the random diffusive fluxes, while in accordance with ${ }_{79}$ the Curie principle, the random stress is uncorrelated with ${ }_{80} \delta \boldsymbol{J}_{i}$. In Eqs. (6)-(7) k_{B} is Boltzmann constant, η the shear ${ }_{81}$ viscosity, $L_{n m}$ the elements of the Onsager matrix (with $\left.{ }_{82} L_{12}=L_{21}\right)$. Here and elsewhere in this paper, the in${ }_{83}$ dices n, m span the two independent mixture components ${ }_{84} n, m \in\{1,2\}$, while the indices i, j, k, l span the three ${ }_{34}$ the solutal expansion coefficients. In addition, and in ac- 85 spatial coordinates $i, j, k, l \in\{x, y, z\}$ (we are implicitly ${ }_{35}$ cordance with the rules of FHD, the linear phenomenolog- 86 assuming that the system is isotropic).
${ }_{36}$ ical laws for the dissipative fluxes have to be supplemented ${ }^{87}$ The Onsager matrix $\underline{\underline{L}}$ in Eq. (7) is related to the ex${ }_{37}$ with random contributions reflecting the stochastic na- ${ }_{88}$ perimentally accessible diffusion matrix $\underline{\underline{\mathrm{D}}}$ by $[1,4,38]$ ${ }_{38}$ ture of molecular motion [16, 11]. Hence, Eqs. (4) contain ${ }_{39}$ a stochastic stress tensor $\underline{\underline{\delta \Pi}}(\boldsymbol{r}, t)$, and two stochastic dif${ }_{40}$ fusive fluxes, $\boldsymbol{\delta} \boldsymbol{J}_{1}(\boldsymbol{r}, t)$ and $\boldsymbol{\delta} \boldsymbol{J}_{2}(\boldsymbol{r}, t)$. Subscript z in the ${ }_{41}$ first of Eqs. (4) refers to the z-component of the vector be${ }_{42}$ tween brackets. Similarly, symbol $\nabla_{\|}^{2}=\partial_{x}^{2}+\partial_{y}^{2}$ represents ${ }_{43}$ the component of the Laplacian perpendicular to gravity ${ }_{44}$ and the gradients, thus, parallel to the bounding surfaces. ${ }_{89}$ with $\hat{\mu}_{1}=\mu_{1}-\mu_{3}$ being the chemical potential difference
${ }_{45}$ We note that Eqs. (4) are exactly the same working 90 between component 1 of the mixture and component 3, ${ }_{46}$ equations of our most recent publication on the topic [31], ${ }_{91}$ and the same for $\hat{\mu}_{2}=\mu_{2}-\mu_{3}$. Component 3 is the one
${ }_{1}$ whose mass fraction concentration is taken as a dependent ${ }_{39}$ 3.1 Diagonal concentrations
${ }_{2}$ variable, i.e., $c_{3}=1-c_{1}-c_{2}$. Consistent with the use of
${ }_{3}$ concentrations in terms of mass fractions, the chemical ${ }_{40}$ The solution for the fluctuating fields in Eq. (9) is obtained ${ }_{4}$ potentials in Eq. (8) are specific (per unit mass), while ${ }^{41}$ by inverting the matrix $\underline{\underline{M}}(\omega, \boldsymbol{q})$ defined by Eq. (11). For ${ }_{5}$ in other works [4] chemical potentials per mole have been ${ }^{42}$ such a calculation we have found convenient, following pre6 used.

„ 3 Bulk solution

${ }_{8}$ The goal of FHD is to solve the system of stochastic dif${ }_{9}$ ferential equations (4) and, from Eqs. (6) and (7), obtain ${ }_{10}$ expressions for the correlation functions of the two fluctu${ }_{11}$ ating concentrations. In general, such a procedure must in${ }_{12}$ clude boundary conditions for the fluctuating fields which, ${ }_{13}$ as elucidated elsewhere [$16,25-27$], modify the spatial and ${ }_{14}$ dynamical spectrum of NE fluctuations at small q. These ${ }_{15}$ confinement effects are a direct consequence of the non${ }_{16}$ equilibrium fluctuations having, generically, long spatial ${ }_{17}$ range [39]. In any case, it is also known that a bulk cal${ }_{18}$ culation, that does not take into account boundary con${ }_{19}$ ditions, gives the correct behavior for $q \gtrsim L^{-1}$ of both 20 the decay rates and the intensity of the fluctuations [16]. ${ }_{21}$ Hence, we proceed next with such a bulk calculation, that ${ }_{22}$ will be highly useful as a comparison reference for future ${ }_{23}$ work incorporating boundary conditions and for compar${ }_{24}$ ing experimental data on ternary mixtures [32,40].
25 If one does not consider boundary conditions, fluctua${ }_{26}$ tions of any length or time scales are allowed in the system. ${ }_{27}$ Then, in order to solve Eqs. (4) we perform full spatiotem${ }_{28}$ poral Fourier transforms, so as to obtain:

$$
\underline{\underline{\mathrm{M}}}(\omega, \boldsymbol{q})\left[\begin{array}{l}
\delta v_{z}(\omega, \boldsymbol{q}) \tag{9}\\
\delta c_{1}(\omega, \boldsymbol{q}) \\
\delta c_{2}(\omega, \boldsymbol{q})
\end{array}\right]=\left[\begin{array}{l}
F_{z}(\omega, \boldsymbol{q}) \\
F_{1}(\omega, \boldsymbol{q}) \\
F_{2}(\omega, \boldsymbol{q})
\end{array}\right],
$$

${ }_{29}$ where ω is the frequency and \boldsymbol{q} the wave vector of the ${ }_{30}$ fluctuations, and $F_{\alpha}(\omega, \boldsymbol{q})$ represents the (Fourier trans${ }_{31}$ formed) random forcing terms in the right-hand side (RHS) ${ }_{32}$ of Eqs. (4), namely

$$
\begin{align*}
& F_{z}(\omega, \boldsymbol{q})=\mathrm{i} \epsilon_{z i k} \epsilon_{k j l} \frac{q_{i}}{\rho} q_{j} q_{p} \delta \Pi_{p l}(\omega, \boldsymbol{q}) \tag{16}\\
& F_{1}(\omega, \boldsymbol{q})=-\mathrm{i} \frac{q_{i}}{\rho} \delta J_{1, i}(\omega, \boldsymbol{q}) \tag{10}\\
& F_{2}(\omega, \boldsymbol{q})=-\mathrm{i} \frac{q_{i}}{\rho} \delta J_{2, i}(\omega, \boldsymbol{q})
\end{align*}
$$

${ }_{33}$ where $\epsilon_{i j k}$ is the Levi-Civita permutation tensor, subscript ${ }_{34} p \in\{x, y, z\}$ and sum over repeated indices is understood. ${ }_{35}$ Finally, in Eq. (9), the linear response matrix $\underline{\underline{\mathrm{M}}}(\omega, \boldsymbol{q})$ is ${ }_{36}$ given by:

$$
\underline{\underline{\mathrm{M}}}(\omega, \boldsymbol{q})=\left[\begin{array}{ccc}
\nu q^{4} & \beta_{1} g q_{\|}^{2} & \beta_{2} g q_{\|}^{2} \tag{11}\\
\nabla c_{1} & \mathrm{i} \omega+D_{11} q^{2} & D_{12} q^{2} \\
\nabla c_{2} & D_{21} q^{2} & \mathrm{i} \omega+D_{22} q^{2}
\end{array}\right],
$$

${ }_{37}$ where $q_{\|}^{2}=q_{x}^{2}+q_{y}^{2}$ is the component of the wave vector ${ }_{38}$ in the plane parallel to the system boundaries.
${ }_{43}$ vious authors [4,41-43], to use as independent variables ${ }_{44}$ the concentrations δc_{1}^{\prime} and δc_{2}^{\prime} making diagonal the diffu${ }_{45}$ sion matrix. Then, we switch to diagonal variables by

$$
\left[\begin{array}{l}
\delta v_{z}(\omega, \boldsymbol{q}) \tag{12}\\
\delta c_{1}^{\prime}(\omega, \boldsymbol{q}) \\
\delta c_{2}^{\prime}(\omega, \boldsymbol{q})
\end{array}\right]=\underline{\underline{\mathrm{U}}} \cdot\left[\begin{array}{l}
\delta v_{z}(\omega, \boldsymbol{q}) \\
\delta c_{1}(\omega, \boldsymbol{q}) \\
\delta c_{2}(\omega, \boldsymbol{q})
\end{array}\right]
$$

46 with the transformation matrix [4]

$$
\underline{\underline{\mathrm{U}}}=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{13}\\
0 & 1 & \frac{D_{22}-\hat{D}_{2}}{D_{21}} \\
0 \frac{D_{11}-\hat{D}_{1}}{D_{12}} & 1
\end{array}\right]
$$

${ }_{47}$ where we introduce the eigenvalues of the diffusion ma${ }^{48}$ trix $[30,4,44-46]$
$\hat{D}_{1,2}=\frac{1}{2}\left[D_{11}+D_{22} \mp \sqrt{\left(D_{11}-D_{22}\right)^{2}-4 D_{12} D_{21}}\right]$.
${ }_{49}$ Of course, since $\underline{\underline{D}}$ is a diffusion matrix, it will always ${ }_{50}$ have two real and positive eigenvalues. Here, and in the ${ }_{51}$ rest of this paper, the plus and the minus sign are applied ${ }_{52}$ in Eq. (14) in such a way that $\hat{D}_{1}<\hat{D}_{2}$. Hence, \hat{D}_{1} will ${ }_{53}$ always represent the slowest diffusion mode and \hat{D}_{2} the ${ }_{54}$ fastest one. It is also implicitly assumed, here and in the ${ }_{55}$ rest of this paper, that $\hat{D}_{1} \neq \hat{D}_{2}$. The particular case ${ }_{56} \hat{D}_{1}=\hat{D}_{2}$ will be considered in the Appendix A. With these ${ }_{57}$ definitions, the equations in the new 'diagonal' variables ${ }_{58}$ will be expressed as:

$$
\underline{\underline{\mathrm{U}}} \cdot \underline{\underline{\mathrm{M}}}(\omega, \boldsymbol{q}) \cdot \underline{\underline{\mathrm{U}}}^{-1}\left[\begin{array}{l}
\delta v_{z}(\omega, \boldsymbol{q}) \tag{15}\\
\delta c_{1}^{\prime}(\omega, \boldsymbol{q}) \\
\delta c_{2}^{\prime}(\omega, \boldsymbol{q})
\end{array}\right]=\underline{\underline{\mathrm{U}}} \cdot\left[\begin{array}{l}
F_{z}(\omega, \boldsymbol{q}) \\
F_{1}(\omega, \boldsymbol{q}) \\
F_{2}(\omega, \boldsymbol{q})
\end{array}\right]
$$

${ }_{59}$ where it is convenient to make a linear combination of the ${ }_{60}$ two last equations, equivalent to multiply by the matrix ${ }_{61} \underline{\underline{U}}$. Indeed, the matrix

$$
\underline{\underline{\mathrm{M}}}^{\prime}(\omega, \boldsymbol{q})=\underline{\underline{\mathrm{U}}} \cdot \underline{\underline{\mathrm{M}}}(\omega, \boldsymbol{q}) \cdot \underline{\underline{\mathrm{U}}}^{-1}
$$

${ }_{62}$ is semi-diagonal. Simple algebra from Eqs. (11) and (13) ${ }_{63}$ gives

$$
\underline{\underline{\mathrm{M}}}^{\prime}(\omega, \boldsymbol{q})=\left[\begin{array}{ccc}
\nu q^{4} & \beta_{1}^{\prime} g q_{\|}^{2} & \beta_{2}^{\prime} g q_{\|}^{2} \tag{17}\\
\nabla c_{1}^{\prime} \mathrm{i} \omega+\hat{D}_{1} q^{2} & 0 \\
\nabla c_{2}^{\prime} & 0 & \mathrm{i} \omega+\hat{D}_{2} q^{2}
\end{array}\right],
$$

${ }_{64}$ where, to express the various quantities it is useful to in${ }_{65}$ troduce the minor $\underline{\underline{U_{\mathrm{m}}}}$ of the matrix $\underline{\underline{\mathrm{U}}}$ representing the ${ }_{66}$ concentrations change, namely

$$
\underline{\underline{\mathrm{U}_{\mathrm{m}}}}=\left[\begin{array}{cc}
1 & \frac{D_{22}-\hat{D}_{2}}{D_{21}} \tag{18}\\
\frac{D_{11}-\hat{D}_{1}}{D_{12}} & 1
\end{array}\right]
$$

${ }_{1}$ Then, as expected, one has

$$
\left[\begin{array}{l}
\nabla c_{1}^{\prime} \tag{19}\\
\nabla c_{2}^{\prime}
\end{array}\right]=\underline{\underline{\mathrm{U}_{\mathrm{m}}}} \cdot\left[\begin{array}{l}
\nabla c_{1} \\
\nabla c_{2}
\end{array}\right]
$$

2 and

$$
\left[\begin{array}{l}
\beta_{1} \tag{20}\\
\beta_{2}
\end{array}\right]=\underline{\underline{\mathrm{U}_{\mathrm{m}}}}{ }^{\mathrm{T}} \cdot\left[\begin{array}{l}
\beta_{1}^{\prime} \\
\beta_{2}^{\prime}
\end{array}\right]
$$

${ }_{3}$ The latter equation means that the β_{i}^{\prime} are the derivatives ${ }_{4}$ of the density with respect to the 'diagonal' concentra${ }_{5}$ tions c_{i}^{\prime}. The rows of $\mathrm{U}_{\mathrm{m}}^{-1}$ contain the components of the ${ }_{6}$ eigenvectors of the diffusion matrix $\underline{\underline{D}}$, which are speci${ }_{7}$ fied except by a normalization factor. This freedom in the ${ }_{8}$ choice of $\underline{\underline{U_{\mathrm{m}}}}$ has been used by some authors [41-43] to ${ }_{9}$ slightly simplify the problem making $\beta_{i}^{\prime}=\beta_{i}$, at the cost ${ }_{10}$ of introducing explicitly the solutal expansion coefficients ${ }_{11}$ in $\underline{\underline{\mathrm{U}_{\mathrm{m}}}}$. We have preferred not to do so here, and only the ${ }_{12}$ components of the diffusion matrix appear in Eq. (18). ${ }_{13}$ Obviously, the physics of the problem does not depend on ${ }_{14}$ the normalization selected for the eigenvectors of $\underline{\underline{D}}$.
15 As a conclusion of this section, to solve the problem ${ }_{16}$ in the new 'diagonal' variables, one has to invert the ma- ${ }_{5}$ ${ }_{17}$ trix $\underline{\underline{M}}^{\prime}(\omega, \boldsymbol{q})$ defined by Eq. (16). Due to the presence of ${ }_{18}$ two zeros in Eq. (17) it results simpler than the origi${ }_{19}$ nal problem of inverting the matrix $\underline{\underline{\mathrm{M}}}(\omega, \boldsymbol{q})$ of Eq. (11). ${ }_{20}$ In addition, the new problem also results physically more ${ }_{21}$ transparent and the role of the eigenvalues of the mass ${ }_{22}$ diffusion matrix is highlighted.

${ }_{23}$ 3.2 Random forcing terms

${ }_{24}$ Next, to obtain from Eq. (15) the correlation functions ${ }^{64}$ ${ }_{25}$ among the fluctuating concentrations, we need the correla- ${ }^{6}$ ${ }_{26}$ tion function among the random forcing terms at its RHS. ${ }_{27}$ The first of these forcing terms coincides with $F_{z}(\omega, \boldsymbol{q})$ in ${ }^{67}$ ${ }_{28}$ Eq. (10). Its autocorrelation $\left\langle F^{*}(\omega, \boldsymbol{q}) F_{z}\left(\omega^{\prime}, \boldsymbol{q}^{\prime}\right)\right\rangle$ can be 68 forcing terms, see Eq. (23). In this section we proceed with ${ }_{29}$ computed from Eq. (10) itself and the corresponding FDT ${ }^{28}$ the solution, discussing first the decay rates of the fluctu${ }_{30}$ in real space, Eq. (6). Such a calculation has been pre- 70 ations.
${ }_{31}$ sented several times in the literature $[16,47,23]$ and here ${ }_{32}$ we display only the final result:

$$
\begin{align*}
\left\langle F_{z}^{*}(\omega, \boldsymbol{q}) F_{z}\left(\omega^{\prime}, \boldsymbol{q}^{\prime}\right)\right\rangle & =2 k_{\mathrm{B}} T \frac{\nu}{\rho} q_{\|}^{2} q^{4} \\
& \times(2 \pi)^{4} \delta\left(\omega-\omega^{\prime}\right) \delta\left(\boldsymbol{q}-\boldsymbol{q}^{\prime}\right) \tag{21}
\end{align*}
$$

${ }_{33}$ The random force $F_{z}(\omega, \boldsymbol{q})$ is uncorrelated with the other ${ }_{34}$ two random forcing terms at the RHS of Eq. (15). Indeed, ${ }_{35}$ if one defines 'diagonal' random forces by

$$
\left[\begin{array}{l}
F_{1}^{\prime}(\omega, \boldsymbol{q}) \tag{22}\\
F_{2}^{\prime}(\omega, \boldsymbol{q})
\end{array}\right]=\underline{\underline{\mathrm{U}_{\mathrm{m}}}} \cdot\left[\begin{array}{l}
F_{1}(\omega, \boldsymbol{q}) \\
F_{2}(\omega, \boldsymbol{q})
\end{array}\right]
$$

${ }_{36}$ one sees that the forcing terms, $F_{i}^{\prime}(\omega, \boldsymbol{q})$, appearing in ${ }_{37}$ the diagonal concentration equations of Eq. (15) are lin- ${ }^{82}$ with $\left|\underline{\underline{\mathrm{M}}}^{\prime}(\omega, \boldsymbol{q})\right|$ representing the determinant of the linear ${ }_{38}$ ear combinations of the random forces $F_{i}(\omega, \boldsymbol{q})$ in Eq. (10). ${ }_{83}$ response matrix. Some algebra shows that the γ_{i} associ${ }_{39}$ Since the latter are uncorrelated with $F_{z}(\omega, \boldsymbol{q})$, the $F_{i}^{\prime}(\omega, \boldsymbol{q}){ }_{84}$ ated to the linear response matrix of Eq. (17) are conve${ }_{40}$ will be uncorrelated with $F_{z}(\omega, \boldsymbol{q})$ too.
${ }_{41}$ The final ingredient one needs for the calculation of the ${ }_{42}$ autocorrelation of NE composition fluctuations (cNEFs), ${ }^{43}$ is the correlation matrix $\left\langle F_{i}^{\prime *}(\omega, \boldsymbol{q}) F_{j}^{\prime}\left(\omega^{\prime}, \boldsymbol{q}^{\prime}\right)\right\rangle$ of random ${ }_{44}$ forcing terms for the diagonal concentrations. This can ${ }_{45}$ be obtained combining Eq. (22) with Eq. (10) and the ${ }_{46}$ Fourier-transformed version of the FDT for the diffusion ${ }_{47}$ fluxes, Eq. (7). Such a calculation is long but straight${ }_{48}$ forward and one important result, already anticipated by ${ }_{49}$ Bardow [4], is the vanishing of the cross correlation

$$
\begin{equation*}
\left\langle F_{1}^{\prime *}(\omega, \boldsymbol{q}) F_{2}^{\prime}\left(\omega^{\prime}, \boldsymbol{q}^{\prime}\right)\right\rangle=0 \tag{23}
\end{equation*}
$$

${ }^{50}$ while the autocorrelation of these random forces results ${ }_{51}$ proportional to delta function in frequency and wave num52 ber, namely

$$
\begin{align*}
\left\langle F_{i}^{\prime *}(\omega, \boldsymbol{q}) F_{i}^{\prime}\left(\omega^{\prime}, \boldsymbol{q}^{\prime}\right)\right\rangle & =2 \hat{S}_{i} \hat{D}_{i} q^{2} \\
& \times(2 \pi)^{4} \delta\left(\omega-\omega^{\prime}\right) \delta\left(\boldsymbol{q}-\boldsymbol{q}^{\prime}\right) \tag{24}
\end{align*}
$$

${ }_{53}$ By following the procedure described above, we have com${ }_{54}$ puted the elements \hat{S}_{i}. The corresponding expressions are ${ }_{55}$ rather long, and we are not displaying it here since, as ${ }_{6}$ further discussed below in Sect. 4.3, they will be actually ${ }_{57}$ used only for the computation of the equilibrium correla${ }_{58}$ tion matrix, resulting in expressions that have been pre${ }_{59}$ viously presented in the literature $[4,30]$. As discussed in ${ }_{60}$ more detail by Bardow [4], the coefficients \hat{S}_{i} are, essen${ }_{61}$ tially, the derivatives of the entropy with respect to the ${ }_{62}$ 'diagonal' concentrations c_{i}^{\prime}.

${ }_{63} 4$ Nonequilibrium concentration fluctuations

${ }_{4}$ In the previous section, we set the problem in a mathematically convenient way to be solved by adopting diagonal ${ }_{6}$ concentrations that somehow simplify the linear response ${ }_{7}$ matrix and, most importantly, have uncorrelated random

${ }_{71} 4.1$ Decay rates

${ }_{72}$ The bulk solution for the fluctuating concentrations re${ }_{73}$ quires the inversion of the linear response matrix $\underline{\underline{\mathrm{M}}}^{\prime}(\omega, \boldsymbol{q})$ ${ }_{74}$ in Eq. (15), that depends critically on its determinant.
${ }_{75}$ As it will become clear below, the ω-roots of the determi${ }_{76}$ nant are the decay rates of the fluctuations. Here, as we ${ }_{77}$ neglected the temporal derivative of the velocity fluctua${ }_{78}$ tions in the LHS of Eq. (4), there are only two decay rates ${ }_{79}$ that, for convenience, we express in terms of wave vector ${ }_{80}$ dependent mass transport coefficients, $\Gamma_{i}(\boldsymbol{q})=\gamma_{i}(\boldsymbol{q}) q^{2}$ in ${ }^{81}$ such a way that:

$$
\begin{equation*}
\left|\underline{\underline{\mathrm{M}}}^{\prime}(\omega, \boldsymbol{q})\right|=-\nu q^{4}\left[\mathrm{i} \omega+\gamma_{1}(\boldsymbol{q}) q^{2}\right]\left[\mathrm{i} \omega+\gamma_{2}(\boldsymbol{q}) q^{2}\right], \tag{25}
\end{equation*}
$$ ${ }_{85}$ niently expressed as:

$$
\begin{equation*}
\gamma_{1,2}(\boldsymbol{q})=\frac{1}{2}\left(\hat{D}_{2}+\hat{D}_{1}-\frac{\tilde{q}_{\|}^{2}}{\tilde{q}^{6}} R a_{i} \hat{D}_{i}\right)\left[1 \mp \sqrt{1-\frac{4 \hat{D}_{1} \hat{D}_{2}}{\frac{\left(\hat{D}_{1}+\hat{D}_{2}\right)^{2}}{}\left[1-\frac{\tilde{q}_{\|}^{2}}{\tilde{q}^{6}} R a_{\mathrm{s}}\right]}} \underset{\left[1-\frac{\tilde{q}_{\|}^{2}}{\tilde{q}^{6}} \frac{R a_{i} \hat{D}_{i}}{\hat{D}_{1}+\hat{D}_{2}}\right]^{2}}{ }\right] \tag{26}
\end{equation*}
$$

${ }_{1}$ where $\tilde{q}=q L$ is a dimensionless wave number, and we ${ }_{39}$ the same publication [31]. Hence, we associate γ_{1} with the ${ }_{2}$ introduce two solutal Rayleigh numbers [43] defined by:

$$
\begin{align*}
R a_{1} & =\frac{g L^{4}}{\nu \hat{D}_{1}} \beta_{1}^{\prime} \nabla c_{1}^{\prime}, \\
R a_{2} & =\frac{g L^{4}}{\nu \hat{D}_{2}} \beta_{2}^{\prime} \nabla c_{2}^{\prime} . \tag{27}
\end{align*}
$$ ${ }_{40}$ slowest concentration mode and γ_{2} with the fastest one. ${ }_{41}$ However, in the limit of extremely small wave numbers, ${ }_{42} q \rightarrow 0$, the two $\gamma_{i}(q)$ given by Eq. (26) exhibit qualitatively ${ }_{43}$ different behaviors as a function of the wave number. A ${ }_{44}$ simple series expansion gives:

$$
\begin{align*}
& \gamma_{1}(q) \xrightarrow{q \rightarrow 0} \frac{\hat{D}_{1} \hat{D}_{2} R a_{\mathrm{s}}}{R a_{i} \hat{D}_{i}}+\mathcal{O}\left(q^{4}\right), \tag{30}\\
& \gamma_{2}(q) \xrightarrow{q \rightarrow 0}-\frac{R a_{i} \hat{D}_{i}}{q^{4}}+\frac{R a_{i} \hat{D}_{i}^{2}}{R a_{i} \hat{D}_{i}}+\mathcal{O}\left(q^{4}\right) .
\end{align*}
$$

${ }_{3}$ In Eq. (26) the minus sign applies to γ_{1} and the plus ${ }_{4}$ sign to γ_{2}. Furthermore, to simplify notation, we adopt ${ }_{5}$ in Eq. (26) the repeated subscript summation convention,

$$
\begin{equation*}
R a_{i} \hat{D}_{i}=R a_{1} \hat{D}_{1}+R a_{2} \hat{D}_{2} \tag{28}
\end{equation*}
$$

${ }_{6}$ while $R a_{\mathrm{s}}=R a_{1}+R a_{2}$.
${ }_{7}$ It is important to note that the decay rates of the 'diag${ }_{8}$ onal' prime concentrations, δc_{i}^{\prime} are the same as the decay ${ }_{9}$ rates of the actual concentrations, δc_{i}; since the transfor${ }_{10}$ mation among them, matrices $\underline{\underline{\mathrm{U}}}$ or $\underline{\mathrm{U}}_{\mathrm{m}}$ in Eqs. (12)-(13), ${ }_{11}$ does not involve the frequency or wave number of the fluc${ }_{12}$ tuations. It is also interesting to note that the decay rates ${ }_{13}$ of the fluctuations depend only on the eigenvalues \hat{D}_{i} and ${ }_{14}$ not on the whole diffusion matrix. Further notice that the ${ }_{15}$ density gradient associated to the composition gradients ${ }_{16}$ results invariant under the concentrations transformation:

$$
\begin{equation*}
\frac{\nabla_{\mathrm{s}} \rho}{\rho}=\beta_{1} \nabla c_{1}+\beta_{2} \nabla c_{2}=\beta_{1}^{\prime} \nabla c_{1}^{\prime}+\beta_{2}^{\prime} \nabla c_{2}^{\prime} \tag{29}
\end{equation*}
$$

${ }_{17}$ as readily deduced from Eqs. (19) and (20). The quantity ${ }_{18} R a_{i} \hat{D}_{i}$ is proportional to this mass density gradient. We ${ }_{19}$ shall turn back to these issues in Sect. 4.5, particularly at ${ }_{20}$ Eq. (46).

Equation (26) is one of the current main results, it rep${ }_{22}$ resents the two mass diffusivities for a generic wave vector ${ }_{23} \boldsymbol{q}$, and includes the effects of buoyancy through the two ${ }_{24}$ solutal Rayleigh numbers. For a discussion of its conse${ }_{25}$ quences, we note that in most practical situations, like in ${ }_{26}$ shadowgraphy or small-angle light-scattering experiments, ${ }^{27}$ probed wave vectors are restricted to a plane parallel to ${ }_{28}$ the bounding walls, so that the approximation $q_{\|} \simeq q$ ap${ }_{29}$ plies $[16,48]$. In what follows, we continue our discussion ${ }_{30}$ adopting such an assumption.
${ }_{31}$ In this paper we order the diffusion eigenvalues in such ${ }_{32}$ a way that $\hat{D}_{1}<\hat{D}_{2}$, hence, in the absence of gravity ${ }_{33}\left(R a_{1}=R a_{2}=0\right)$, it can be readily verified from Eq. (26) ${ }_{34}$ that the two $\gamma_{i}(q)$ reduce to the two eigenvalues of the ${ }_{35}$ diffusion matrix, $\gamma_{i}=\hat{D}_{i}$ independent of the wave number, ${ }_{36}$ a result already obtained in a previous publication [31]. We ${ }_{37}$ note that the same $\left(\gamma_{i}=\hat{D}_{i}\right)$ is true in the limit $q \rightarrow \infty$ ${ }_{38}$ even in the presence of buoyancy, as also anticipated in

Fig. 1. The two mass diffusion decay times of cNEFs, as given by Eq. (26), normalized by the smaller diffusion eigenvalue, as a function of \tilde{q} the (dimensionless) wave number, $\hat{D}_{1} /\left[\gamma_{i}(\tilde{q}) \tilde{q}^{2}\right]=\hat{D}_{1} / \Gamma_{i}(\tilde{q})$. At large $q \rightarrow \infty$ both decay proportionally to q^{-2}. At small $q \rightarrow 0$ the two qualitatively different asymptotic behaviors of Eq. (26) are evident. Data are calculated for $\hat{D}_{2}=10 \hat{D}_{1}, R a_{1}=-3 \times 10^{6}$ and $R a_{2}=-3 \times 10^{5}$, which are reasonable numbers (see main text and [40]).
${ }_{28}$ Eqs. (30). Consequently, one readily concludes

$$
\begin{align*}
& \text { if } R a_{i} \hat{D}_{i}>0 \Rightarrow \text { always unstable } \\
& \text { if } R a_{i} \hat{D}_{i}<0 \Rightarrow\left\{\begin{array}{l}
R a_{\mathrm{s}}>0, \text { unstable } \\
R a_{\mathrm{s}}<0, \text { stable }
\end{array}\right. \tag{31}
\end{align*}
$$

${ }_{29}$ It is also interesting to note that, when the system is sta${ }_{30}$ ble, the diffusion modes may be propagating, i.e., their ${ }_{31}$ imaginary parts may be non-zero. We have found that ${ }_{32}$ propagating modes only exists for $R a_{1}<0$ and posi${ }_{33}$ tive $R a_{2}$ or, accounting for the stability, for $R a_{1}<0$ and ${ }_{34}-\left(\hat{D}_{1} / \hat{D}_{2}\right) R a_{1}>R a_{2}>0$. Adopting the Cross and Ho${ }_{35}$ henberg [49] classification of instabilities, under the ap${ }_{36}$ proximations adopted in this paper, we conclude that the ${ }_{37}$ convection transition in a ternary mixture is a station${ }_{38}$ ary I_{S}-instability for positive $R a_{1}$ and an oscillatory $\mathrm{I}_{\mathrm{o}}{ }^{-}$ ${ }_{39}$ instability for negative $R a_{1}$.

As a summary of these findings we represent in Fig. 2 ${ }_{41}$ a stability diagram for convection in a ternary mixture, ${ }_{42}$ where the stable region in the space of solutal Rayleigh ${ }_{43}$ numbers is shadowed, while the region where propagating ${ }_{44}$ modes do exist is also indicated. As stressed above, all the ${ }_{45}$ calculations presented in this paper are only valid when ${ }_{46}$ the quiescent state is stable, i.e., inside the shadowed re${ }_{47}$ gion of Fig. 2.
${ }_{48}$ It is worth noticing that the instability condition (31)
${ }_{49}$ depends only on the eigenvalues \hat{D}_{i}, and not on the com${ }_{1}$ confinement effects, neglected in the current publication, ${ }_{50}$ plete diffusion matrix $\underline{\underline{D}}$, which is an expected result. On ${ }_{2}$ may affect the dynamics of the fluctuations at very small ${ }_{51}$ physical grounds, the appearance of convection should be ${ }_{3}$ wave numbers. One initially expects that, when bound- ${ }_{52}$ independent of the frame of reference used to describe dif${ }_{4}$ ary conditions are considered, the two decay rates recover ${ }_{53}$ fusion and, hence, it is unsurprising that Eq. (31) contains ${ }_{5}$ diffusive behavior at $q \rightarrow 0$, although with renormalized ${ }_{54}$ only frame-invariant quantities, such as the eigenvalues of 6 diffusion coefficient.

7.2 Stability of the quiescent state

${ }_{8}$ Equation (26) for the decay rates allows us to perform a ${ }_{9}$ study of the stability of the quiescent solution of Sect. 2, ${ }_{10}$ about which fluctuations are studied. Indeed, for the qui${ }_{11}$ escent state to be stable, the real part of the decay rates ${ }_{12}$ of fluctuations around it must be positive. Some analysis ${ }^{6}$ ${ }_{13}$ with Eq. (26) shows that the most dangerous situation ${ }_{14}$ (i.e., when the decay rates become lower) is for $q \rightarrow 0$, ${ }_{66}$ resents ${ }_{15}$ meaning that within the approximations adopted in this ${ }^{67}$ on convection thresholds in ternary mixtures [43] seems ${ }_{16}$ work, the appearance of convection is a long-wavelength 68 to support this conclusion.
${ }_{17}$ instability. It is known that when temperature fluctua${ }_{18}$ tions are incorporated, and for realistic perfectly conduct19 ing walls, the instability can be short-wavelength (at finite ${ }_{20} q$) [42], depending on the parameter values. The fact that ${ }_{21}$ we obtain here always a long-wavelength instability is a 70 After having discussed the decay rates of the two con${ }_{22}$ shortcoming of the large Lewis numbers approximation ${ }_{71}$ centration modes, we proceed now with the calculation of ${ }_{23}$ adopted in this paper, that neglects temperature fluctua- ${ }_{72}$ the corresponding amplitudes. They will be determined 24 tions, and of not having considered boundary conditions. 73 by the product of the matrix $\underline{\underline{M}}^{\prime-1}(\omega, \boldsymbol{q})$ by the vector of ${ }_{25}$ In any case, within the several approximations adopted ${ }_{74}$ random forces in Eq. (15). First of all, we note that, as ${ }_{26}$ in this paper, convection is at $q=0$ and the key to the ${ }_{75}$ in previous publications [30,31], and in view of Eqs. (21) ${ }_{27}$ stability analysis is given by the small q expansions of ${ }_{76}$ and (24) for the random forcing terms, the correlation

Fig. 2. Stability diagram for convection in a ternary mixture, represented on the basis of Eq. (31) in the plane $\left\{R a_{1}, R a_{2}\right\}$ of solutal Rayleigh numbers. The data are, as in Fig. 1, for $\hat{D}_{2}=$ $10 \hat{D}_{1}$. The convective instability is stationary for positive $R a_{1}$ and oscillatory for negative $R a_{1}$. Recall that $R a_{1}$ is associated to the slowest concentration mode by Eq. (27). The current diagram corresponds to absence of boundary conditions, its incorporation is expected to modify the limits of the stability regions [43].
${ }_{1}$ functions among fluctuations in the diagonal concentra${ }_{2}$ tions are conveniently expressed in terms of a correla${ }_{3}$ tion matrix $\underline{\underline{\mathrm{C}}}^{\prime}(\omega, q)$, with components $C_{n m}^{\prime}(\omega, q)$ defined 4 by $[30,31]$:

$$
\begin{align*}
\left\langle\delta c _ { n } ^ { \prime * } (\omega , \boldsymbol { q }) \delta c _ { m } ^ { \prime } \left(\omega^{\prime},\right.\right. & \left.\left.\boldsymbol{q}^{\prime}\right)\right\rangle \\
& =C_{n m}^{\prime}(\omega, q) \tag{32}\\
& \times(2 \pi)^{4} \delta\left(\omega-\omega^{\prime}\right) \delta\left(\boldsymbol{q}-\boldsymbol{q}^{\prime}\right)
\end{align*}
$$ ${ }_{5}$ Combining the explicit expression of $\underline{\underline{\mathrm{M}}}^{-1}(\omega, \boldsymbol{q})$ with ${ }_{6}$ Eqs. (21) and (24) for the correlation of the random forces, \rightarrow it is relatively straightforward to obtain the complete cor${ }_{8}$ relation matrix $\underline{\underline{\mathrm{C}}}^{\prime}(\omega, q)$. As already anticipated, the re${ }_{9}$ sulting expression for $\underline{\underline{\mathrm{C}^{\prime}}}(\omega, q)$ can be written as the sum ${ }_{10}$ of two lorentzians, meaning that (when Fourier anti-trans${ }_{11}$ formed in the frequency ω) the time correlation function ${ }_{12}$ will be the sum of two exponential decays ${ }^{1}$, with the two ${ }_{13}$ decay rates discussed in Sect. 4.1. However, in the most ${ }_{14}$ general case, the corresponding amplitudes have a quite ${ }_{15}$ long and complicated expression, not easy for physical in${ }_{16}$ terpretation. For these reasons we have preferred here to ${ }_{17}$ perform one further approximation before proceeding with ${ }_{18}$ the calculation of the amplitudes, and we shall only con${ }_{19}$ sider the effect of the random force $F_{z}(\omega, \boldsymbol{q})$ coming from 56 where, similar to the case of binary mixtures, we introduce ${ }_{20}$ the random stress tensor, this means to approximate the ${ }_{57}$ a 'roll-off' wave number:

[^0]${ }_{21}$ RHS of Eq. (15) as
\[

\mathrm{U} \cdot\left[$$
\begin{array}{l}
F_{z}(\omega, \boldsymbol{q}) \tag{33}\\
F_{1}(\omega, \boldsymbol{q}) \\
F_{2}(\omega, \boldsymbol{q})
\end{array}
$$\right] \simeq\left[$$
\begin{array}{c}
F_{z}(\omega, \boldsymbol{q}) \\
0 \\
0
\end{array}
$$\right] .
\]

${ }_{22}$ As further elucidated below, the random force $F_{z}(\omega, \boldsymbol{q})$ ${ }_{23}$ gives terms in the amplitudes of cNEFs proportional to ${ }_{24}$ the square of the gradients, $\left(\nabla c_{i}^{\prime}\right)^{2}$, while the terms asso${ }_{25}$ ciated to the $F_{i}^{\prime}(\omega, \boldsymbol{q})$ are linear in the gradients. In prac${ }_{26}$ tice, for realistic experimental situations, the contribution ${ }_{27}$ of $F_{i}^{\prime}(\omega, \boldsymbol{q})$ associated to the random diffusion fluxes is ${ }_{28}$ unobservable, except for situations so close to $\nabla c_{i}^{\prime} \simeq 0$ ${ }_{29}$ that the correlation matrix ${\underline{\underline{\mathrm{C}^{\prime}}}(\omega, q) \text { can be actually sub- }}^{2}$ ${ }_{30}$ stituted by its equilibrium value. The same approxima${ }_{31}$ tion of Eq. (33) was adopted by some of us in a previous ${ }_{32}$ publication [31] where gravity effects on cNEFs were not ${ }_{33}$ considered. It is also worth noting that a similar situa${ }_{34}$ tion occurs for cNEFs in binary mixtures [23], where the ${ }_{35}$ contribution from the random diffusion flux gives a linear ${ }_{36}$ (in the gradient) correction to the quadratic term arising ${ }_{37}$ from the random stress tensor. We shall return to this is${ }_{38}$ sue later, in Sect. 4.5. In summary, we shall express here ${ }_{39}$ the correlation matrix of Eq. (33) as:

$$
\begin{equation*}
\underline{\underline{\mathrm{C}}}^{\prime}(\omega, q)=\underline{\underline{\mathrm{C}}}_{\mathrm{E}}^{\prime}(\omega, q)+\underline{\underline{\mathrm{C}}}_{\mathrm{NE}}^{\prime}(\omega, q) \tag{34}
\end{equation*}
$$

40 where, on the one hand, the amplitude of $\underline{\mathrm{C}}^{\prime}(\omega, q)$ is eval${ }_{41}$ uated at $\nabla T=0$ and, consequently, with both $\nabla c_{1}^{\prime}=$ ${ }_{42} \nabla c_{2}^{\prime}=0$. On the other hand, the amplitude of $\underline{\underline{\mathrm{C}}}_{\mathrm{NE}}^{\prime}(\omega, q)$ ${ }_{43}$ will be explicitly presented here under the approximation ${ }_{44}$ of Eq. (33), accounting only for the effect of the random ${ }_{45}$ stress tensor and neglecting the contribution from the ran${ }_{46}$ dom diffusion fluxes represented by $F_{i}^{\prime}(\omega, \boldsymbol{q})$. The equilib${ }_{47}$ rium matrix is easily calculated and it is diagonal:

$$
\begin{equation*}
C_{n m}^{\prime \mathrm{E}}(\omega, q)=\delta_{n m} \hat{S}_{n} \frac{2 \hat{D}_{n} q^{2}}{\omega^{2}+\hat{D}_{n}^{2} q^{4}} \tag{35}
\end{equation*}
$$

48 as already obtained by Bardow [4,30]. Since the equilib${ }_{49}$ rium contribution has been already the subject of several ${ }_{50}$ publications, we shall not further extend here on it.

Regarding the nonequilibrium contribution in Eq. (34), ${ }_{52}$ with the approximation (33) and for the most common ${ }_{53}$ case of non-propagating modes, some algebra allows to ${ }_{54}$ conveniently display it as the sum of two purely diffusive ${ }_{55}$ modes, namely:

$$
\begin{align*}
\underline{\underline{\mathrm{C}}}_{\mathrm{NE}}^{\prime}(\omega, q) & =\frac{k_{\mathrm{B}} T}{\rho \nu\left(\hat{D}_{1}+\hat{D}_{2}\right)} \frac{q_{\|}^{2}}{q^{6}\left[1+\frac{q_{\mathrm{RO}}^{4} q_{\|}^{2}}{q^{6}}\right]} \tag{36}\\
& \times\left[\underline{\underline{\mathrm{A}}}^{(1)} \frac{2 \gamma_{1} q^{2}}{\omega^{2}+\gamma_{1}^{2} q^{4}}+\underline{\underline{\mathrm{A}}}^{(2)} \frac{2 \gamma_{2} q^{2}}{\omega^{2}+\gamma_{2}^{2} q^{4}}\right]
\end{align*}
$$

$$
\begin{equation*}
q_{\mathrm{RO}}^{4}=\frac{-R a_{i} \hat{D}_{i}}{L^{4}\left(\hat{D}_{1}+\hat{D}_{2}\right)}=\frac{-g\left(\beta_{1} \nabla c_{1}+\beta_{2} \nabla c_{2}\right)}{\nu\left(\hat{D}_{1}+\hat{D}_{2}\right)} \tag{37}
\end{equation*}
$$

${ }_{1}$ Since we assume to be inside the region where the qui- ${ }_{37}$ with the wave vector dependence explicitly shown in the ${ }_{2}$ escent solution is stable (see Fig. 2) $q_{\text {RO }}$ is indeed a real ${ }_{38}$ second line. As it was the case for the decay rates inves${ }_{3}$ number. Further note that, to simplify Eq. (37), we have ${ }_{39}$ tigated in Sect. 4.1, Eqs. (40) and (41) for the amplitude ${ }_{4}$ also used that: $\beta_{1} \nabla c_{1}+\beta_{2} \nabla c_{2}=\beta_{1}^{\prime} \nabla c_{1}^{\prime}+\beta_{2}^{\prime} \nabla c_{2}^{\prime}$, so that ${ }_{40}$ of cNEFs will be used for vectors \boldsymbol{q} parallel to the bound${ }_{5} q_{\text {RO }}$ can be computed from the real concentrations. The ${ }_{41}$ ing plates, in which case $q_{\|} \simeq q$. In that case the matrix ${ }_{6}$ time correlation matrix corresponding to Eq. (36) will thus ${ }_{42} \underline{\underline{\mathrm{C}}}_{\mathrm{NE}}^{\prime}(q)$ is isotropic and depends only on the wave number 7 be expressed as the sum of two exponentials, with the de- ${ }_{43} \underline{\bar{q}}$. Some simple analysis shows that, essentially, $\underline{\underline{C}}^{\prime}{ }_{\mathrm{NE}}(q)$ as ${ }_{8}$ cay rates $\Gamma_{i}=\gamma_{i} q^{2}$ discussed in Sect. 4.1. The amplitude 44 a function of q displays a crossover from a $\propto q^{=4}$ depen${ }_{9}$ matrices $\underline{\underline{A}}^{(k)}$ of Eq. (36) are proportional to the square of ${ }_{45}$ dence at large q to a constant limit at $q \rightarrow 0$. Indeed, some ${ }_{10}$ the concentration gradients and depend on the wave num- ${ }_{46}$ straightforward series expansions show that: ${ }_{11}$ ber q through $\gamma_{i}(q)$. Their components are conveniently ${ }_{12}$ expressed as:

$$
\begin{equation*}
A_{n m}^{(k)}(q)=\frac{(-1)^{k} \gamma_{k}}{\gamma_{1}-\gamma_{2}} \nabla c_{n}^{\prime} \nabla c_{m}^{\prime}-\frac{(-1)^{k} \hat{D}_{1}^{2} \hat{D}_{2}^{2}}{\gamma_{k}\left(\gamma_{1}-\gamma_{2}\right)} \frac{\nabla c_{n}^{\prime} \nabla c_{m}^{\prime}}{\hat{D}_{n} \hat{D}_{m}} \tag{38}
\end{equation*}
$$ ${ }_{13}$ As noted by some of us in the absence of gravity [31], in ${ }_{14}$ general, one also obtains a nonzero imaginary part for the ${ }_{15}$ cross-correlation in the matrix $\underline{\underline{\mathrm{C}}}_{\mathrm{NE}}^{\prime}(\omega, q)$. As discussed in ${ }_{16}$ detail elsewhere [31], such imaginary contribution for the ${ }_{17}$ cross correlation is physically unobservable, and we do not ${ }_{18}$ report it here.

${ }_{19}$ 4.4 Statics

20 Application of inverse Fourier transforms in the temporal ${ }_{21}$ frequencies to Eq. (32) defines an equal-time nonequilibrium ${ }_{22}$ correlation matrix, that gives the intensity (statics) of the ${ }_{23}$ fluctuations. Namely,

$$
\begin{equation*}
\left\langle\delta c_{n}^{* *}(\boldsymbol{q}, t) \delta c_{m}^{\prime}\left(\boldsymbol{q}^{\prime}, t\right)\right\rangle_{\mathrm{NE}}=C_{n m}^{\prime}(q)(2 \pi)^{3} \delta\left(\boldsymbol{q}-\boldsymbol{q}^{\prime}\right) \tag{39}
\end{equation*}
$$

with

$$
\underline{\underline{\mathrm{C}}}^{\prime}(q)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \underline{\underline{\mathrm{C}^{\prime}}}(\omega, q) d \omega=\underline{\underline{\mathrm{C}^{\prime}}}(q, t=0)
$$

${ }_{24}$ Integration of Eq. (34) allows to express the correlation ${ }_{25}$ matrix ${\underline{\underline{\mathrm{C}^{\prime}}}(q) \text { as the sum of an equilibrium and a non- }}^{2}$ ${ }_{26}$ equilibrium part. For the equilibrium part, making use of ${ }_{27}$ Eq. (35), we reproduce the isotropic result of Bardow [4, $\left.{ }_{28} 30\right]$, i.e., $C_{i j}^{\prime \mathrm{E}}=\delta_{i j} \hat{S}_{i}$ independent of the wave number.
${ }_{29}$ The new results of this paper refer to the nonequilibrium ${ }_{68}$ Before concluding, we wish to add a couple of comments. ${ }_{30}$ part and include the effects of gravity. Simple integration ${ }_{69}$ First is about the approximation of Eq. (33) that, for sim${ }_{31}$ of Eq. (36) gives

$$
\begin{equation*}
\underline{\underline{\mathrm{C}}}_{\mathrm{NE}}^{\prime}(q)=\frac{k_{\mathrm{B}} T}{\rho \nu\left(\hat{D}_{1}+\hat{D}_{2}\right)} \frac{\underline{\underline{\mathrm{A}}}(q)}{q^{4}+q_{\mathrm{RO}}^{4}} \tag{40}
\end{equation*}
$$

${ }_{32}$ where we use the approximation $q_{\|} \simeq q$, mandatory for ex${ }_{33}$ periments, and the matrix $\underline{\underline{\mathrm{A}}}(q)=\underline{\underline{\mathrm{A}}}^{(1)}(q)+\underline{\underline{\mathrm{A}}}^{(2)}(q)$. In the ${ }_{34}$ case of a ternary mixture the amplitude matrix $\underline{\underline{\mathrm{A}}}(q)$ de${ }_{35}$ pends on the wave number. From Eq. (38), their elements ${ }_{36}$ are readily expressed as:

$$
\begin{align*}
A_{n m}(q) & =\nabla c_{n}^{\prime} \nabla c_{m}^{\prime}+\frac{\hat{D}_{1}^{2} \hat{D}_{2}^{2}}{\gamma_{1} \gamma_{2}} \frac{\nabla c_{n}^{\prime} \nabla c_{m}^{\prime}}{\hat{D}_{n} \hat{D}_{m}} \tag{44}\\
& =\nabla c_{n}^{\prime} \nabla c_{m}^{\prime}+\frac{\hat{D}_{1} \hat{D}_{2}}{\hat{D}_{n} \hat{D}_{m}} \frac{\tilde{q}^{4} \nabla c_{n}^{\prime} \nabla c_{m}^{\prime}}{\tilde{q}^{4}-R a_{\mathrm{s}}} \tag{41}
\end{align*}
$$ ${ }_{70}$ plicity, neglected the contribution of the random diffusion ${ }_{71}$ fluxes to the amplitude of cNEFs. We have also performed ${ }_{72}$ the full calculation, retaining all the terms in the ran${ }_{73}$ dom force of Eq. (33). The results are quite involved and ${ }_{74}$ not easily expressed as compact expressions, like those in ${ }_{75}$ Sect. 4.3 where only the contribution of the random stress ${ }_{76}$ is considered. Anyway, to give a quantitative idea of the ${ }_{77}$ approximation involved in Eq. (33), we quote here the ex${ }_{78}$ pression replacing Eq. (42) in the limit of large q when all 79 random forces are considered, namely

$$
C_{11}^{\mathrm{NE}}(q) \simeq \frac{k_{\mathrm{B}} T}{\rho \nu q^{4}}\left[\frac{\left(\nabla c_{1}^{\prime}\right)^{2}}{\hat{D}_{1}}+\hat{S}_{1} \frac{g \beta_{1}^{\prime} \nabla c_{1}^{\prime}}{\hat{D}_{1}}\right]
$$

[^1]1 and similar to the other components. One observes that ${ }_{42}$ expressed as a combination of the diffusion matrix $\underline{\underline{D}}$ and ${ }_{2}$ the effect of the random diffusive fluxes, when gravity ${ }_{43}$ the thermal diffusion coefficients $D_{T i}$.
${ }_{3}$ is present, is to add a contribution to the amplitude of 44 In this work we neglect temperature fluctuations, while ${ }_{4}$ cNEFs that is linear in the gradients, while the contribu- ${ }_{45}$ researchers in convection typically do not [41-43]. This is ${ }_{5}$ tion of the random stress is quadratic in the gradients. As ${ }_{46}$ the reason why these other investigators [41-43] need three ${ }_{6}$ already anticipated, for real experimental conditions [32] ${ }_{47}$ dimensionless parameter to define the problem, while here 7 the effect of random diffusion fluxes is unobservable. ${ }_{48}$ two is enough. It is easy to obtain the relation between the 8 Throughout this Section the correlation matrix be- ${ }^{49}$ solutal Rayleigh numbers used here and the parameters 9 tween composition fluctuations has been expressed in terms 50 used elsewhere, namely
10 of 'diagonal' concentrations δc_{i}^{\prime}. For the benefit of the ${ }_{11}$ reader, we finalize now by explicitly quoting the transfor${ }_{12}$ mation to fluctuations in real concentrations, that is quite ${ }_{13}$ direct since the transformation matrix $\underline{\mathrm{U}}_{\mathrm{m}}$ of ${ }^{51}$ where $L e_{n}=a_{T} / \hat{D}_{n}$ are the two Lewis numbers of the ${ }_{14}$ Eq. (18) does not involve either frequency ω or wave vector 52 ternary mixture. Since the theory presented in this work ${ }_{15} \boldsymbol{q}$. Hence, for fluctuations δc_{i}, as a consequence of Eq. (32), ${ }_{53}$ is developed under the approximation of very large Lewis ${ }_{16}$ one can define a correlation matrix without primes ${ }_{54}$ numbers, the present results will be valid only for large ${ }_{55}$ (absolute) values of $R a_{n}$ inside the stability zone of Fig. 2.

$$
\begin{align*}
\left\langle\delta c_{n}^{*}(\omega, \boldsymbol{q}) \delta c_{m}\left(\omega^{\prime}, \boldsymbol{q}^{\prime}\right)\right\rangle & =C_{n m}(\omega, q) \\
\times & (2 \pi)^{4} \delta\left(\omega-\omega^{\prime}\right) \delta\left(\boldsymbol{q}-\boldsymbol{q}^{\prime}\right) \tag{45}
\end{align*}
$$

${ }_{17}$ Such that

$$
\begin{equation*}
\underline{\underline{\mathrm{C}^{\prime}}}(\omega, q)=\underline{\underline{\mathrm{U}_{\mathrm{m}}}} \cdot \underline{\underline{\mathrm{C}}}(\omega, q) \cdot\left(\underline{\underline{\mathrm{U}_{\mathrm{m}}}}\right)^{\mathrm{T}} \tag{46}
\end{equation*}
$$

${ }_{18}$ It is worth noting that the decay rates and amplitudes for ${ }_{19}$ the fluctuations in the 'diagonal' concentrations used in ${ }_{20}$ this paper depend only on the eigenvalues \hat{D}_{i} and, hence, ${ }_{21}$ not in all the components of the diffusion matrix. However, ${ }_{22}$ Eq. (46) shows that when converting to real concentra${ }_{23}$ tions one has to use the matrix $\underline{\underline{U_{\mathrm{m}}}}$, and hence, one needs 24 to know the complete diffusion matrix $\underline{\underline{\mathrm{D}}}$, as it is clear from 25 the definition (18) of the transformation matrix. In opti${ }_{26} \mathrm{cal}$ experiments one actually measures fluctuations of the Our final result is Eq. (36) showing that the composi${ }_{27}$ refractive index, which are related to fluctuations in con- ${ }_{71}$ tion autocorrelation matrix can be expressed as the sum ${ }_{28}$ centrations through the corresponding matrix of contrast ${ }_{72}$ of two diffusion modes with decay rates $\Gamma_{i}(q)=\gamma_{i}(q) q^{2}$ ${ }_{29}$ factors [32]. Contrast factors can only be measured for real ${ }_{73}$ given by Eq. (26), the first main result of this work. For ${ }_{30}$ concentrations, but can be converted to 'diagonal' concen- ${ }_{74}$ fluctuations of large wave number q, these modes are purely ${ }_{31}$ trations by an algebra similar to Eq. (46). Again, for this ${ }_{75}$ diffusive and the associated diffusivities can de identified ${ }_{32}$ conversion it is required the knowledge of the whole diffu- ${ }_{76}$ with the two eigenvalues $\gamma_{i}=\hat{D}_{i}$ of the diffusion matrix, ${ }_{33}$ sion matrix $\underline{\underline{D}}$.
${ }_{77}$ independent of the fluctuation wave number, as earlier
Authors researching on convection in ternary mixtures ${ }_{78}$ discussed in a previous publication [31]. However, as a [41-43], instead of the two solutal Rayleigh numbers $R a_{n}{ }_{79}$ consequence of buoyancy, there is a mixing between these of Eq. (27), use a single Rayleigh number $R a$ and two 80 two modes for fluctuations of larger size, as described by
'diagonal' separation ratios ψ_{n}^{\prime}, defined by:

$$
\begin{align*}
R a & =-\frac{g L^{4} \alpha \nabla T}{\nu a_{T}}, \tag{47}\\
\psi_{n}^{\prime} & =-\frac{\beta_{n}^{\prime} \nabla c_{n}^{\prime}}{\alpha \nabla T}
\end{align*}
$$

${ }_{81}$ Eq. (26). This mixing of modes may even lead to the ap${ }_{82}$ pearance of propagating modes, as further discussed in ${ }_{83}$ Sect. 4.2. It is interesting to note the different behavior at ${ }_{84} q \rightarrow 0$ of the two modes, discussed in detail in Sect. 4.1.
${ }_{85}$ The amplitudes of the two modes in Eq. (36) is given
(48) ${ }_{86}$ by Eq. (38), while the total amplitude of equal-time fluc${ }_{87}$ tuations is given Eq. (40). The calculation of these ampli${ }_{34}$ where a_{T} and α are the thermal diffusivity and the ther- ${ }_{88}$ tudes, which represents a second main result of the present ${ }_{35} \mathrm{mal}$ expansion coefficient of the mixture, respectively. Sep- ${ }^{9}$ paper, has been done from the random stress only. In${ }_{36}$ aration ratios in real concentrations ψ_{n}, defined like in 90 deed, in Sect. 4.5 it is discussed that this contribution is ${ }_{37}$ Eq. (48) but without the primes, are also sometimes used. ${ }_{91}$ dominant over the contribution from the random diffusion ${ }_{38}$ Also, the so-called net separation ratio $\Psi=\psi_{1}^{\prime}+\psi_{2}^{\prime}={ }_{92}$ flows.
${ }_{39} \psi_{1}+\psi_{2}$, is utilized. From Eq. (29) follows that Ψ is invari- ${ }_{93}$ Our present calculations are of high relevance for shad40 ant under the transformation to diagonal concentrations. 94 owgraph experiments in ternary mixtures currently un${ }_{41}$ Note that, from Eq. (3), the separation ratios ψ_{i} can be ${ }_{95}$ der development, whose preliminary results are already
${ }_{1}$ available [32], including a contribution in this same Top- ${ }_{43}$ Dimensionless parameter \tilde{U} in Eq. (A.2) is given by: ${ }_{2}$ ical Issue [40]. It will also undoubtedly contribute to the ${ }_{3}$ current DCMIX [50] and SCCO [35] and the upcoming ${ }_{4}$ NEUF-DIX [51] space experiments, whose goals are a bet${ }_{5}$ ter understanding of diffusion and thermal diffusion in ${ }_{6}$ multi-component liquid mixtures, starting from ternaries. ${ }_{7}$ In addition, the results presented here also contribute to s the effort of better understanding the appearance of con9 vection in ternary mixtures that is presently under devel10 opment [43].

${ }_{11}$ Acknowledgements

${ }_{12}$ We kindly thank support from the SCCO Space Project (a ${ }^{51}$ ${ }_{13}$ joint venture of ESA and the Chinese Space Agency). The ${ }_{52}$ ${ }_{14}$ research at UCM was partly funded by the Spanish State
${ }_{15}$ Secretary of Research under Grant No. FIS2014-58950-C2${ }_{16}$ 2-P. FC acknowledges financial support from the Centre ${ }_{17}$ National d'Etudes Spatiales of France.

${ }_{18}$ Appendix A. The particular case $\hat{D}_{1}=\hat{D}_{2}$

${ }_{19}$ In the main text of this article it was assumed everywhere ${ }_{20}$ that the two eigenvalues of the diffusion matrix are differ${ }_{21}$ ent. Next, we consider the particular case $\hat{D}_{1}=\hat{D}_{2}=\hat{D}$, ${ }_{22}$ so that the diffusion matrix cannot be diagonalized so that ${ }_{23}$ this case is not covered by the theoretical developments in ${ }_{24}$ the paper. This situation might be of relevance when two ${ }_{25}$ decay rates cannot be distinguished experimentally [32]. ${ }_{26}$ If the two eigenvalues of the diffusion matrix are equal, ${ }_{27}$ then $\underline{\underline{D}}$ is most conveniently expressed as:

$$
\underline{\underline{\mathrm{D}}}=\left[\begin{array}{cc}
\hat{D}-\sqrt{-D_{12} D_{21}} & D_{21} \tag{A.1}\\
D_{12} & \hat{D}+\sqrt{-D_{12} D_{21}}
\end{array}\right]
$$ ${ }_{28}$ where we ordered the components in such a way that ${ }_{29} D_{11}<D_{22}$ and, since $\underline{\underline{D}}$ still is a diffusion matrix, one must 30 have in this case that $D_{12} D_{21}<0$. Since now one cannot ${ }_{31}$ perform the transformation to diagonal concentrations of ${ }_{32}$ Sect. 3.1, to solve for the fluctuating concentrations one ${ }_{33}$ has to invert directly the linear response matrix $\underline{\underline{\mathrm{M}}}(\omega, \boldsymbol{q})$ ${ }_{34}$ of Eq. (11), before transformation to $\underline{\underline{\mathrm{M}}}^{\prime}(\omega, \boldsymbol{q})$. However, 35 the calculation is not more complicated $\overline{\overline{\bar{d}}}$ han the one with ${ }_{36}$ diagonal concentrations, because Eq. (A.1) can now be ${ }_{37}$ used to simplify the expressions. For instance, due to the ${ }_{38}$ mixing of modes caused by gravity, there are still two dif${ }_{39}$ ferent decay times $\Gamma_{i}(\boldsymbol{q})=\gamma_{i}(\boldsymbol{q}) q^{2}$ that depend on the ${ }_{40}$ fluctuations wave vector. Some algebra leads to:

$$
\begin{equation*}
\gamma_{1,2}(\boldsymbol{q})=\hat{D}\left(1+\frac{q_{\mathrm{RO}}^{4} q_{\|}^{2}}{q^{6}}\right)\left[1 \mp \sqrt{1+\frac{\tilde{U}}{\frac{q_{\mathrm{RO}}^{4} q_{\|}^{2}}{q^{6}}}}\right] \tag{A.2}
\end{equation*}
$$

${ }_{41}$ where $q_{\text {RO }}$ here is still given by Eq. (37) that, for the case ${ }^{76}$ ${ }_{42}$ of equal eigenvalues, simplifies to:

$$
\begin{equation*}
q_{\mathrm{RO}}^{4}=\frac{-g\left(\beta_{1} \nabla c_{1}+\beta_{2} \nabla c_{2}\right)}{2 \nu \hat{D}} . \tag{A.3}
\end{equation*}
$$

$$
\tilde{U}=\frac{-g\left[\begin{array}{c}
\left(\beta_{2} D_{21}-\beta_{1} \sqrt{-D_{12} D_{21}}\right) \nabla c_{1} \tag{A.4}\\
+\left(\beta_{1} D_{12}-\beta_{2} \sqrt{-D_{12} D_{21}}\right) \nabla c_{2}
\end{array}\right]}{\nu \hat{D}^{2} q_{\mathrm{RO}}^{4}}
$$

${ }_{44}$ Similar to the case of two distinct eigenvalues, examined ${ }_{45}$ in the main text, one can observe from Eq. (A.2) that ${ }_{46}$ in the limit of large wave number $\left(q^{6} \gg q_{\mathrm{RO}}^{4} q_{\|}^{2}\right)$ the two ${ }_{47}$ mass diffusivities $\gamma_{i}(q)$ converge to \hat{D}, independent of q. ${ }_{48}$ However, in the limit of small q, one of the decay times ${ }_{49}$ is diffusive $\propto q^{-2}$ while the other presents an accelera${ }_{50}$ tion due to buoyancy. Also, a study of the stability of the ${ }_{1}$ quiescent solution can be performed. In this case of equal ${ }_{52}$ eigenvalues, stability means $q_{\text {RO }}$ to be real (as was for ${ }_{53}$ distinct eigenvalues) and $2-\tilde{U}>0$.

Following equivalent steps to those in the main text, ${ }_{55}$ the correlation matrix of concentration fluctuations can ${ }_{56}$ also be computed for this particular case of equal eigenval${ }_{57}$ ues. Here, we shall only present the results for the statics, ${ }_{58}$ equivalent to those of Sect. 4.4, and under the approx${ }_{59}$ imation of Eq. (33) that amounts to evaluate only the ${ }_{60}$ nonequilibrium part. Since in the case of equal eigenvalues ${ }_{61}$ the concentrations cannot be diagonalized, the only cor${ }_{62}$ relation matrix discussed here is that defined by Eq. (45) ${ }_{63}$ in terms of real concentrations. Some algebra allows to ${ }_{64}$ express it as:

$$
\begin{equation*}
\underline{\underline{\mathrm{C}}}_{\mathrm{NE}}(q)=\frac{k_{\mathrm{B}} T}{2 \rho \nu \hat{D}} \frac{\underline{\underline{\mathrm{~A}}}(q)}{q^{4}+q_{\mathrm{RO}}^{4}} \tag{A.5}
\end{equation*}
$$

${ }_{65}$ where, again, we adopt the approximation $q_{\|} \simeq q$. The ${ }_{66}$ amplitude matrix $\underline{\underline{\mathrm{A}}}(q)$ in the case of a ternary mixture ${ }_{67}$ with equal eigenvalues continues to depend on the wave ${ }_{68}$ number. Its elements can be expressed in this case as:

$$
\begin{equation*}
A_{n m}(q)=\nabla c_{n} \nabla c_{m}+\frac{q^{4} \nabla c_{n}^{\prime} \nabla c_{m}^{\prime}}{q^{4}-(2-\tilde{U}) q_{\mathrm{RO}}^{4}} \tag{A.6}
\end{equation*}
$$

${ }^{9}$ where here primes are used to simplify notation, as:

$$
\begin{align*}
& \nabla c_{1}^{\prime}=\frac{D_{22}}{\hat{D}} \nabla c_{1}-\frac{D_{12}}{\hat{D}} \nabla c_{2} \tag{A.7}\\
& \nabla c_{2}^{\prime}=-\frac{D_{21}}{\hat{D}} \nabla c_{1}+\frac{D_{11}}{\hat{D}} \nabla c_{2}
\end{align*}
$$

${ }_{70}$ The structure of the correlation matrix, Eqs. (A.5)-(A.7), ${ }_{71}$ is similar to the case of distinct eigenvalues analyzed in ${ }_{72}$ Sect. 4.4. The main difference being that, since the two ${ }_{73}$ density gradients $\beta_{1} \nabla c_{1}$ and $\beta_{2} \nabla c_{2}$ are expected to be of ${ }_{74}$ the same order of magnitude, the local maximum men${ }_{75}$ tioned after Eq. (43) seldom appears.

References

1. H.N.W. Lekkerkerker, W.G. Laidlaw, J. Chem. Soc., Faraday Trans. 2 70, 1088 (1974). doi:10.1039/F29747001088
2. J. van der Elsken, A. Bot, J. Appl. Phys. 66, 2118 (1989)
3. D.A. Ivanov, J. Winkelmann, J. Chem. Phys. 125, $104507{ }_{62}$ (2006)
4. A. Bardow, Fluid Phase Equilib. 251, 121 (2007) ${ }_{64}^{64}$
5. M.G. Velarde, R.S. Schechter, Phys. Fluids 15, 170765 (1972). doi:10.1063/1.1693766
6. R.D. Mountain, Rev. Mod. Phys. 38, 205 (1966)
7. R D. M
J. Chem. Phys. 50, 1103 (1969). doi:10.1063/1.1671163
8. B.J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976). Dover edition, 2000
9. J.P. Boon, S. Yip, Molecular Hydrodynamics (McGrawHill, New York, 1980). Dover edition, 1991
10. J.P. Hansen, I.R. McDonald, Theory of Simple liquids, 2nd edn. (Academic Press, London, 1986)
11. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959). 2nd revised English version, 1987
12. R.F. Fox, G.E. Uhlenbeck, Phys. Fluids 13, 1893 (1970)
13. J. Foch, Phys. Fluids 14, 893 (1971)
14. D. Ronis, I. Procaccia, Phys. Rev. A 26, 1812 (1982)
15. R. Schmitz, E.G.D. Cohen, J. Stat. Phys. 39, 285 (1985)
16. J.M. Ortiz de Zárate, J.V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006)
17. F. Croccolo, J.M. Ortiz de Zárate, J.V. Sengers, Eur. Phys. J. E 39, 125 (2016). doi:10.1140/epje/i2016-16125-3
18. B.M. Law, R.W. Gammon, J.V. Sengers, Phys. Rev. Lett. 60, 1554 (1988)
${ }_{28}$ 19. P.N. Segrè, R.W. Gammon, J.V. Sengers, Phys. Rev. E 90 47, 1026 (1993)
${ }_{30}$ 20. W.B. Li, P.N. Segrè, R.W. Gammon, J.V. Sengers, Physica 92 A 204, 399 (1994)
${ }_{32}$ 21. W.B. Li, K.J. Zhang, J.V. Sengers, R.W. Gammon, J.M. Ortiz de Zárate, Phys. Rev. Lett. 81, 5580 (1998) 95
19. W.B. Li, K.J. Zhang, J.V. Sengers, R.W. Gammon, J.M. 9 Ortiz de Zárate, J. Chem. Phys. 112, 9139 (2000)
${ }_{36}$ 23. P.N. Segrè, J.V. Sengers, Physica A 198, 46 (1993)
20. A. Vailati, M. Giglio, Phys. Rev. Lett. 77, 1484 (1996)
${ }^{8}$ 25. J.M. Ortiz de Zárate, R. Pérez Cordón, J.V. Sengers, Phys- ${ }^{100}$ ica A 291, 113 (2001)
21. J.M. Ortiz de Zárate, J.V. Sengers, Physica A 300, 25^{102} (2001)
22. C. Giraudet, H. Bataller, Y. Sun, A. Donev, J.M. Ortiz de Zárate, F. Croccolo, Europhys. Lett. 111, 60013 (2015)
44 28. A. Vailati, R. Cerbino, S. Mazzoni, C.J. Takacs, D.S. Cannell, M. Giglio, Nature Communications 2, 290 (2011). doi: 10.1038/ncomms1290
23. C. Giraudet, H. Bataller, Y. Sun, A. Donev, J.M. Ortiz de Zárate, F. Croccolo, Eur. Phys. J. E 39, 120 (2016). doi:10.1140/epje/i2016-16120-8
24. J.M. Ortiz de Zárate, J.L. Hita, J.V. Sengers, C. R. Mecanique 341, 399 (2013)
52 31. J.M. Ortiz de Zárate, C. Giraudet, H. Bataller, F. Croccolo, Eur. Phys. J. E 37, 77 (2014). doi: 10.1140/epje/i2014-14077-2
${ }_{55}$ 32. H. Bataller, C. Giraudet, F. Croccolo, J.M. Ortiz de Zárate, Microgravity Sci. Technol. 28, 611 (2016). doi: 10.1007/s12217-016-9517-6
25. F. Croccolo, H. Bataller, F. Scheffold, J. Chem. Phys. 137, 234202 (2012)
60 34. F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Appl. Opt. 45, 2166 (2006)
26. G. Galliero, H. Bataller, F. Croccolo, R. Vermorel, P. Artola, B. Rousseau, V. Vesovic, M. Bou-Ali, J.M. Ortiz de
${ }_{64}$ Zárate, K. Zhang, F. Montel, Microgravity Sci. Technol. 28, 79 (2016)
${ }_{66}$ 36. I. Lizarraga, C. Giraudet, F. Croccolo, M.M. Bou-Ali,
${ }_{67}$ H. Bataller, Microgravity Sci. Technol. 28, 267 (2016)
27. K. Balakrishnan, A.L. Garcia, A. Donev, J.B. Bell, Phys. Rev. E 89, 013017 (2014)
28. R. Taylor, R. Krishna, Multicomponent Mass Transfer (Wiley, New York, 1993)
29. J.M. Ortiz de Zárate, J.V. Sengers, J. Stat. Phys. 115, 1341 (2004)
30. H. Bataller, T. Triller, B. Pur, W. Köhler, J.M. Ortiz de Zárate, F. Croccolo, Eur. J. Phys. E p. Submitted (2016)
6 41. I. Ryzhkov, V. Shevtsova, Phys. Fluids 21, 014102 (2009). doi:10.1063/1.2435619
31. I. Ryzhkov, Fluid Dyn. 48, 477 (2013). doi: 10.1134/S0015462813040078
\%43. T. Lyubimova, N. Zubova, Eur. J. Phys. E 38, 19 (2015).
${ }_{81}$ doi:10.1140/epje/i2015-15019-2
32. T. Grossmann, J. Winkelmann, J. Chem. Eng. Data 54, 405 (2009)
${ }^{4}$ 45. T. Grossmann, J. Winkelmann, J. Chem. Eng. Data 54, 485 (2009)
33. A. Mialdun, V. Sechenyh, J.C. Legros, J.M. Ortiz de Zárate, V. Shevtsova, J. Chem. Phys. 139, 104903 (2013)
${ }^{9} 9$ 47. J.V. Sengers, J.M. Ortiz de Zárate, in Thermal Nonequilibrium Phenomena in Fluid Mixtures, Lecture Notes in Physics, vol. 584, ed. by W. Köhler, S. Wiegand (Springer, Berlin, 2002), Lecture Notes in Physics, vol. 584, pp. 121145
34. S.P. Trainoff, D.S. Cannell, Phys. Fluids 14, 1340 (2002)

5 49. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)
750. A. Mialdun, C. Minetti, Y. Gaponenko, V. Shevtsova,
${ }_{98} \quad$ F. Dubois, Microgravity Sci. Technol. 25, 83 (2013)
51. P. Baaske, H. Bataller, M. Braibanti, M. Carpineti, R. Cerbino, F. Croccolo, A. Donev, W. Köhler, J.M. Ortiz de Zárate, A. Vailati, Eur. Phys. J. E 39, 119 (2016). doi:10.1140/epje/i2016-16119-1

[^0]: ${ }^{1}$ Or two exponentially damped oscillations in the region of propagative modes

[^1]: ${ }^{2}$ Note that there is a misprint in Eq. (20) of ref. [31], and the mass density ρ appearing in the numerator should be in the denominator, as it is obvious from dimensional considerations

