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France6

3 Centre National d’Etudes Spatiales (CNES), 2 Place Maurice Quentin, 75001 Paris, France7

Received: date / Revised version: date8

Abstract. We discuss the gravity effects on the dynamics of composition fluctuations in a ternary mixture9

around the non-equilibrium quiescent state induced by thermodiffusion when subjected to a stationary tem-10

perature gradient. We found that the autocorrelation matrix of concentration fluctuations can be expressed11

as the sum of two exponentially decaying concentration modes. Without accounting for confinement, we12

obtained exact analytical expressions for the two decay rates which, as a consequence of gravity, display13

a wave number dependent mixing. The stability of the quiescent solution is also examined, as a function14

of the two solutal Rayleigh numbers used to express the decay rates. After having discussed the dynam-15

ics of the two concentration modes, we calculate the corresponding amplitudes. Consequences for optical16

experiments are discussed.17

PACS. 05.40.-a Fluctuation phenomena, in statistical physics – 66.10.cd Thermal diffusion, in liquids –18

66.10.cg Mass diffusion, in liquids19

]20

1 Introduction21

The present paper represents one further step in the de-22

velopment of the theory of spontaneous thermodynamic23

fluctuations in a ternary liquid mixture subjected to a24

stationary temperature gradient in the terrestrial gravity25

field. Fluctuations in equilibrium ternary mixtures (ho-26

mogeneous temperature, concentrations and pressure) has27

been the topic of several investigations over the years.28

A first analysis was presented by Lekkerkerker and Laid-29

law [1] who considered the generic case of a compressible30

fluid in which fluctuations in five independent variables31

are coupled. This pioneering study was focused on the32

dynamics of the fluctuations, and an explicit discussion33

of the equal-time correlation functions was not consid-34

ered. Later, van der Elsken and Bot [2] considered the35

intensity of fluctuations in multicomponent mixtures in36

equilibrium, deriving an expression for the ratio of the in-37

tensities of Rayleigh and Brillouin lines of the scattering38

spectrum. More recently, Ivanov and Winkelmann [3] re-39

derived the expressions of Lekkerkerker and Laidlaw [1]40

for the Rayleigh peak of a ternary mixture, and studied41

the slowing-down of the concentration fluctuations close42

a Currently at: EPSRC Centre for Doctoral Training in
Metamaterials (XM2). College of Engineering, Mathematics
and Physical Sciences. University of Exeter. UK

to a critical consolute point but without including a dis-43

cussion of the statics of the fluctuations. Finally we should44

mention Bardow [4] who combined previous works, con-45

sidering both the statics and the dynamics of fluctuations46

in equilibrium ternary systems, while adopting some ap-47

proximations adequate for mixtures in the liquid state,48

in particular the fact that concentration fluctuations in49

liquids relax much slower than temperature fluctuations.50

This approach is equivalent to the large Lewis number51

approximation, introduced by Velarde and Schechter [5],52

to simplify the calculation of the convection threshold in53

binary fluids.54

All these works on equilibrium fluctuations in ternary55

mixtures [1–4] evaluated the correlation functions on the56

basis of the Mountain method of arbitrary initial condi-57

tions [6,7], an approach often adopted by books dealing58

with thermodynamic fluctuations [8–10]. There exists an59

alternative method, namely, fluctuating hydrodynamics60

(FHD) originally developed by Landau and Lifshitz [11]61

(with relevant subsequent contributions by Fox and Uh-62

lenbeck [12]) for one-component fluid systems. FHD has63

been later extended, among other developments, to equi-64

librium binary mixtures [13]. Both theoretical approaches65

are equivalent for systems in equilibrium, but FHD can be66

extended for dealing with fluctuations in non-equilibrium67

(NE) systems [14–17], while the Mountain method of ar-68
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bitrary initial conditions cannot. Indeed, it has been the1

systematic application of FHD that allowed the investi-2

gation of fluctuations in systems out of (global) equilib-3

rium. The validity of this non-equilibrium extension of4

FHD, in the case of binary liquid mixtures, has been con-5

firmed by a series of pioneering experiments [18–22]. One6

other notable example of FHD success is the prediction of7

the influence of gravity on the fluctuations [23], an effect8

initially considered to be not accessible to experiments,9

and later confirmed by novel optical techniques [24]. Sim-10

ilarly, detailed FHD predictions about finite size effects11

on non-equilibrium fluctuations [25–27] have been later12

experimentally verified, by Gradflex [28] in microgravity13

and by ground-based measurements [27,29] in the pres-14

ence of buoyancy force. Hence, as a preliminary step in15

developing the theory of thermodynamic fluctuations in16

NE ternary mixtures, it was necessary to re-derive [30]17

the equilibrium results for ternary mixtures on the basis18

of FHD, for which the simplifications of Bardow [4] were19

adopted.20

As a second step [31], we evaluated in the absence of21

gravity the spectrum of thermodynamic fluctuations when22

a ternary mixture is subjected to a stationary temperature23

gradient, so that a composition gradient is induced by24

the Soret effect. As previous investigations in binary mix-25

tures have shown [23], gravity has no influence in the spa-26

tial spectrum of NE fluctuations for large wave numbers27

q →∞ so that, in addition to microgravity conditions, the28

results of Ref. [31] are applicable to ground conditions as29

an asymptotic limit, as experimentally verified by Bataller30

et al. [32].31

In the present paper, we consider the effects of grav-32

ity (buoyancy) on the problem. This question is not only33

relevant on theoretical grounds. The experimental inves-34

tigation of the dynamics of NE concentration fluctuations35

has been used as a method to simultaneously measure dif-36

fusion and thermal diffusion coefficients in a binary mix-37

ture [33,34]. To extend such a method to multi-component38

mixtures, it is needed to understand the effects of buoy-39

ancy on NE fluctuations, starting with ternary mixtures.40

For these reasons, our current results are also part of the41

SCCO (Soret Coefficients for Crude Oil) project [35,36],42

currently being jointly developed by the European Space43

Agency (ESA) and the Chinese Space Agency (CSA), aimed44

at obtaining reference quantitative values of thermodiffu-45

sion coefficients in multi-component fluid mixtures, a goal46

of interest also for the oil industry.47

We shall proceed by first presenting in Sect. 2 the equa-48

tions of FHD for a ternary system subjected to a station-49

ary temperature gradient, in an approximation suitable50

for liquid mixtures, and accounting for buoyancy effects.51

In Sect. 3 we then explain how a solution to the fluctu-52

ating hydrodynamic equations can be obtained in ‘bulk’,53

without accounting for boundary conditions in the fluc-54

tuating fields. For this purpose we found highly advanta-55

geous to adopt linear combination of concentrations that56

diagonalize the diffusion matrix, as considered in detail in57

Sect. 3.1. Next, in Sect. 4, we obtain explicit expressions58

for the decay times of the NE composition fluctuations59

and analyze the related issue of the appearance of convec-60

tion in Sect. 4.2. Next, in Sect. 4.3, we turn our attention61

to the amplitudes of the two diffusion modes presented62

in the correlation matrix of the composition fluctuations.63

Finally, our main conclusions are summarized in Sect. 5.64

2 Fluctuating hydrodynamics65

In a ternary mixture, there are two independent concen-66

trations c1 and c2 that we take as mass fractions. Hence,67

there are two independent diffusion fluxes, J1 and J2,68

and Fick’s law in isotropic systems is expressed by a 2× 269

diffusion matrix D. Similarly, there exist two thermodiffu-70

sion coefficients, DT1 and DT2, so that in the simultane-71

ous presence of temperature and concentrations gradients,72

diffusion fluxes are expressed as:73

J1 = −ρ (D11∇c1 +D12∇c2 +DT1∇T ) ,

J2 = −ρ (D21∇c1 +D22∇c2 +DT2∇T ) ,
(1)

where Dnm are the components of the diffusion matrix74

D =

[
D11 D12

D21 D22

]
. (2)

SI units of m2 s−1, and ρ is the mass density of the mix-75

ture. Here, differently from [37], we consider a completely76

general diffusion matrix, the Dnm values being restricted77

only by generic symmetry properties [38]. Congruent with78

the appearance of the barycentric velocity v in the hy-79

drodynamic equations (see below), here we use diffusion80

fluxes and diffusion matrix defined in the center of mass81

frame of reference.82

In this paper we consider a ternary liquid mixture sub-83

jected to a uniform stationary temperature gradient ∇T ,84

of magnitude ∇T , in the direction of the z-axis, i.e., par-85

allel to gravity. If one assumes diffusion and thermodiffu-86

sion coefficients to be constants, the system may evolve87

to a stationary state characterized by vanishing diffusion88

fluxes. Hence, thermodiffusion induces the appearance of a89

steady composition gradient that for isotropic mixtures is90

in the same direction as gravity and the temperature gra-91

dient, and whose magnitude can be obtained from Eq. (1)92

as:93 [
∇c1
∇c2

]
= −D−1

[
DT1

DT2

]
∇T. (3)

Borrowing nomenclature from one-component fluids, we94

refer to this state as the “conductive” state. Buoyancy95

effects may lead to convection, i.e., the conductive state96

described by Eq. (3) may be unstable and non-existent in97

practice. For the time being we shall assume stability of98

the conductive solution leaving for later, in Sect. 4, a dis-99

cussion of convection in this system. We mention that to100

realize in practice the conductive state of Eq. (3) the sys-101

tem must be confined between two plates, separated by102

a distance L and maintained at different temperatures.103

However, for the rest of this paper we shall neglect the104
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presence of boundaries. Previous studies show that con-1

finement affects both the amplitude [25,26] and the dy-2

namics [27] of NE fluctuations at lateral wave numbers3

q . L−1. Hence, our current results are expected to be4

valid only for fluctuations with q large enough, while we5

leave for future publications a thorough investigation of6

confinement effects on NE fluctuations in ternary mix-7

tures.8

Hence, our purpose here is to study composition fluc-9

tuations around the NE steady conductive state of Eq. (3),10

including buoyancy but neglecting confinement effects. Ini-11

tially, this is a complicated problem for which one has to12

consider coupling between velocity, density, temperature13

and two concentration fluctuations. To simplify the prob-14

lem, as elucidated by other researchers in the field [4,37]15

and by us in previous publications [30,31], it is convenient16

to adopt a series of approximations, adequate for ternary17

liquid mixtures, before attempting any detailed calcula-18

tion. Here, we shall consider the same approximations19

used in our previous publications [30,31], to which we re-20

fer for a detailed discussion. In summary, they amount to21

incompressible (divergence-free) flow, large values of the22

Lewis and the Schmidt numbers and use of average ther-23

mophysical properties. In the case of multi-component sys-24

tems large Lewis and Schmidt numbers means that both25

thermal diffusivity a and kinematic viscosity ν of the mix-26

ture are much larger than all eigenvalues of the diffusion27

matrix [4]. Under these simplifications, fluctuations in the28

concentrations (δc1 and δc2 for a ternary mixture) are only29

coupled with fluctuations in the fluid velocity component30

parallel to the gradients (δvz), explicitly reading [31]:31

0 = ν∇4δvz − β1g∇2
‖δc1 − β2g∇

2
‖δc2

− 1

ρ

[
∇×∇× (∇δΠ)

]
z
, (4)

∂tδc1 = D11∇2δc1 +D12∇2δc2 − δvz ∇c1 −
1

ρ
∇ · δJ1,

∂tδc2 = D21∇2δc1 +D22∇2δc2 − δvz ∇c2 −
1

ρ
∇ · δJ2,

where g is the gravity acceleration, ρ the average density32

and33

βi =
1

ρ

(
∂ρ

∂ci

)
p,T

(5)

the solutal expansion coefficients. In addition, and in ac-34

cordance with the rules of FHD, the linear phenomenolog-35

ical laws for the dissipative fluxes have to be supplemented36

with random contributions reflecting the stochastic na-37

ture of molecular motion [16,11]. Hence, Eqs. (4) contain38

a stochastic stress tensor δΠ(r, t), and two stochastic dif-39

fusive fluxes, δJ1(r, t) and δJ2(r, t). Subscript z in the40

first of Eqs. (4) refers to the z-component of the vector be-41

tween brackets. Similarly, symbol ∇2
‖ = ∂2x+∂2y represents42

the component of the Laplacian perpendicular to gravity43

and the gradients, thus, parallel to the bounding surfaces.44

We note that Eqs. (4) are exactly the same working45

equations of our most recent publication on the topic [31],46

with the only difference that we incorporate here the ef-47

fects of buoyancy through the terms containing g and the48

solutal expansion coefficients. In particular, and as a con-49

sequence of the large Lewis numbers approximation [5],50

temperature fluctuations are neglected. Alternatively, at51

the time scale defined by the magnitude of the diffusion52

matrix and used in Eqs. (4), temperature (and velocity)53

fluctuations are assumed to be fully decayed and only cou-54

ple statically (the velocity) to composition fluctuations.55

However, recent experiments with fast cameras [32] have56

observed the decay of temperature fluctuations in shadow-57

graph signals; a complete analysis of these results would58

require further development of the theory including the59

coupling with temperature fluctuations, even for binary60

mixtures. Nevertheless, we note that temperature fluc-61

tuations are indeed observed [32] only for wave numbers62

aq2te . 1 (where a is the thermal diffusivity of the mix-63

ture and te the ’experimental’ time delay, i.e., the time64

difference between consecutive images in a shadowgraph65

machine) and that, in most cases, this limitation is not66

more stringent than the condition q . L−1 coming from67

having neglected confinement.68

After discussing the limitations of the various approx-69

imations adopted, to complete the setting of the problem,70

one has to specify the statistical properties of the ran-71

dom dissipative fluxes in Eqs. (4). They are: zero aver-72

age, 〈δΠij(r, t)〉 = 〈δJ1,i(r, t)〉 = 〈δJ2,i(r, t)〉 = 0; and73

correlation functions given by the fluctuation-dissipation74

theorem (FDT) [16,30,11], which for incompressible flows75

reads:76

〈δΠij(r, t) · δΠkl(r
′, t′)〉 = 2kBTη (δikδjl + δilδjk)

× δ(r − r′) δ(t− t′), (6)

for the random stress tensor, and [30]77

〈δJ∗n,i(r, t) δJm,j(r′, t′)〉 = 2kBLnm δij δ(t− t′) δ(r− r′),
(7)

for the random diffusive fluxes, while in accordance with78

the Curie principle, the random stress is uncorrelated with79

δJ i. In Eqs. (6)-(7) kB is Boltzmann constant, η the shear80

viscosity, Lnm the elements of the Onsager matrix (with81

L12 = L21). Here and elsewhere in this paper, the in-82

dices n,m span the two independent mixture components83

n,m ∈ {1, 2}, while the indices i, j, k, l span the three84

spatial coordinates i, j, k, l ∈ {x, y, z} (we are implicitly85

assuming that the system is isotropic).86

The Onsager matrix L in Eq. (7) is related to the ex-87

perimentally accessible diffusion matrix D by [1,4,38]88

[
D11 D12

D21 D22

]
=

1

ρT

[
L11 L12

L21 L22

]
(
∂µ̂1

∂c1

)
T

(
∂µ̂1

∂c2

)
T(

∂µ̂2

∂c1

)
T

(
∂µ̂2

∂c2

)
T

 , (8)

with µ̂1 = µ1 − µ3 being the chemical potential difference89

between component 1 of the mixture and component 3,90

and the same for µ̂2 = µ2 − µ3. Component 3 is the one91
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whose mass fraction concentration is taken as a dependent1

variable, i.e., c3 = 1− c1 − c2. Consistent with the use of2

concentrations in terms of mass fractions, the chemical3

potentials in Eq. (8) are specific (per unit mass), while4

in other works [4] chemical potentials per mole have been5

used.6

3 Bulk solution7

The goal of FHD is to solve the system of stochastic dif-8

ferential equations (4) and, from Eqs. (6) and (7), obtain9

expressions for the correlation functions of the two fluctu-10

ating concentrations. In general, such a procedure must in-11

clude boundary conditions for the fluctuating fields which,12

as elucidated elsewhere [16,25–27], modify the spatial and13

dynamical spectrum of NE fluctuations at small q. These14

confinement effects are a direct consequence of the non-15

equilibrium fluctuations having, generically, long spatial16

range [39]. In any case, it is also known that a bulk cal-17

culation, that does not take into account boundary con-18

ditions, gives the correct behavior for q & L−1 of both19

the decay rates and the intensity of the fluctuations [16].20

Hence, we proceed next with such a bulk calculation, that21

will be highly useful as a comparison reference for future22

work incorporating boundary conditions and for compar-23

ing experimental data on ternary mixtures [32,40].24

If one does not consider boundary conditions, fluctua-25

tions of any length or time scales are allowed in the system.26

Then, in order to solve Eqs. (4) we perform full spatiotem-27

poral Fourier transforms, so as to obtain:28

M(ω, q)

δvz(ω, q)
δc1(ω, q)
δc2(ω, q)

 =

Fz(ω, q)
F1(ω, q)
F2(ω, q)

 , (9)

where ω is the frequency and q the wave vector of the29

fluctuations, and Fα(ω, q) represents the (Fourier trans-30

formed) random forcing terms in the right-hand side (RHS)31

of Eqs. (4), namely32

Fz(ω, q) = i εzikεkjl
qi
ρ
qjqp δΠpl(ω, q)

F1(ω, q) = −i
qi
ρ
δJ1,i(ω, q)

F2(ω, q) = −i
qi
ρ
δJ2,i(ω, q),

(10)

where εijk is the Levi-Civita permutation tensor, subscript33

p ∈ {x, y, z} and sum over repeated indices is understood.34

Finally, in Eq. (9), the linear response matrix M(ω, q) is35

given by:36

M(ω, q) =

νq4 β1gq
2
‖ β2gq

2
‖

∇c1 iω +D11q
2 D12q

2

∇c2 D21q
2 iω +D22q

2

 , (11)

where q2‖ = q2x + q2y is the component of the wave vector37

in the plane parallel to the system boundaries.38

3.1 Diagonal concentrations39

The solution for the fluctuating fields in Eq. (9) is obtained40

by inverting the matrix M(ω, q) defined by Eq. (11). For41

such a calculation we have found convenient, following pre-42

vious authors [4,41–43], to use as independent variables43

the concentrations δc′1 and δc′2 making diagonal the diffu-44

sion matrix. Then, we switch to diagonal variables by45 δvz(ω, q)
δc′1(ω, q)
δc′2(ω, q)

 = U ·

δvz(ω, q)
δc1(ω, q)
δc2(ω, q)

 , (12)

with the transformation matrix [4]46

U =


1 0 0

0 1
D22 − D̂2

D21

0
D11 − D̂1

D12
1

 , (13)

where we introduce the eigenvalues of the diffusion ma-47

trix [30,4,44–46]48

D̂1,2 = 1
2

[
D11 +D22 ∓

√
(D11 −D22)2 − 4D12D21

]
. (14)

Of course, since D is a diffusion matrix, it will always49

have two real and positive eigenvalues. Here, and in the50

rest of this paper, the plus and the minus sign are applied51

in Eq. (14) in such a way that D̂1 < D̂2. Hence, D̂1 will52

always represent the slowest diffusion mode and D̂2 the53

fastest one. It is also implicitly assumed, here and in the54

rest of this paper, that D̂1 6= D̂2. The particular case55

D̂1 = D̂2 will be considered in the Appendix A. With these56

definitions, the equations in the new ‘diagonal’ variables57

will be expressed as:58

U ·M(ω, q) ·U−1
δvz(ω, q)
δc′1(ω, q)
δc′2(ω, q)

 = U ·

Fz(ω, q)
F1(ω, q)
F2(ω, q)

 , (15)

where it is convenient to make a linear combination of the59

two last equations, equivalent to multiply by the matrix60

U. Indeed, the matrix61

M′(ω, q) = U ·M(ω, q) ·U−1 (16)

is semi-diagonal. Simple algebra from Eqs. (11) and (13)62

gives63

M′(ω, q) =

νq4 β′1gq
2
‖ β′2gq

2
‖

∇c′1 iω + D̂1q
2 0

∇c′2 0 iω + D̂2q
2

 , (17)

where, to express the various quantities it is useful to in-64

troduce the minor Um of the matrix U representing the65

concentrations change, namely66

Um =

 1
D22 − D̂2

D21

D11 − D̂1

D12
1

 . (18)
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Then, as expected, one has1 [
∇c′1
∇c′2

]
= Um ·

[
∇c1
∇c2

]
, (19)

and2 [
β1
β2

]
= Um

T ·
[
β′1
β′2

]
. (20)

The latter equation means that the β′i are the derivatives3

of the density with respect to the ‘diagonal’ concentra-4

tions c′i. The rows of Um
−1 contain the components of the5

eigenvectors of the diffusion matrix D, which are speci-6

fied except by a normalization factor. This freedom in the7

choice of Um has been used by some authors [41–43] to8

slightly simplify the problem making β′i = βi, at the cost9

of introducing explicitly the solutal expansion coefficients10

in Um. We have preferred not to do so here, and only the11

components of the diffusion matrix appear in Eq. (18).12

Obviously, the physics of the problem does not depend on13

the normalization selected for the eigenvectors of D.14

As a conclusion of this section, to solve the problem15

in the new ‘diagonal’ variables, one has to invert the ma-16

trix M′(ω, q) defined by Eq. (16). Due to the presence of17

two zeros in Eq. (17) it results simpler than the origi-18

nal problem of inverting the matrix M(ω, q) of Eq. (11).19

In addition, the new problem also results physically more20

transparent and the role of the eigenvalues of the mass21

diffusion matrix is highlighted.22

3.2 Random forcing terms23

Next, to obtain from Eq. (15) the correlation functions24

among the fluctuating concentrations, we need the correla-25

tion function among the random forcing terms at its RHS.26

The first of these forcing terms coincides with Fz(ω, q) in27

Eq. (10). Its autocorrelation 〈F ∗z (ω, q) Fz(ω
′, q′)〉 can be28

computed from Eq. (10) itself and the corresponding FDT29

in real space, Eq. (6). Such a calculation has been pre-30

sented several times in the literature [16,47,23] and here31

we display only the final result:32

〈F ∗z (ω, q) Fz(ω
′, q′)〉 = 2kBT

ν

ρ
q2‖q

4

× (2π)4δ(ω − ω′) δ(q − q′). (21)

The random force Fz(ω, q) is uncorrelated with the other33

two random forcing terms at the RHS of Eq. (15). Indeed,34

if one defines ‘diagonal’ random forces by35 [
F ′1(ω, q)
F ′2(ω, q)

]
= Um ·

[
F1(ω, q)
F2(ω, q)

]
, (22)

one sees that the forcing terms, F ′i (ω, q), appearing in36

the diagonal concentration equations of Eq. (15) are lin-37

ear combinations of the random forces Fi(ω, q) in Eq. (10).38

Since the latter are uncorrelated with Fz(ω, q), the F ′i (ω, q)39

will be uncorrelated with Fz(ω, q) too.40

The final ingredient one needs for the calculation of the41

autocorrelation of NE composition fluctuations (cNEFs),42

is the correlation matrix 〈F ′∗i (ω, q) F ′j(ω
′, q′)〉 of random43

forcing terms for the diagonal concentrations. This can44

be obtained combining Eq. (22) with Eq. (10) and the45

Fourier-transformed version of the FDT for the diffusion46

fluxes, Eq. (7). Such a calculation is long but straight-47

forward and one important result, already anticipated by48

Bardow [4], is the vanishing of the cross correlation49

〈F ′∗1 (ω, q) F ′2(ω′, q′)〉 = 0, (23)

while the autocorrelation of these random forces results50

proportional to delta function in frequency and wave num-51

ber, namely52

〈F ′∗i (ω, q) F ′i (ω
′, q′)〉 = 2Ŝi D̂iq

2

× (2π)4δ(ω − ω′) δ(q − q′). (24)

By following the procedure described above, we have com-53

puted the elements Ŝi. The corresponding expressions are54

rather long, and we are not displaying it here since, as55

further discussed below in Sect. 4.3, they will be actually56

used only for the computation of the equilibrium correla-57

tion matrix, resulting in expressions that have been pre-58

viously presented in the literature [4,30]. As discussed in59

more detail by Bardow [4], the coefficients Ŝi are, essen-60

tially, the derivatives of the entropy with respect to the61

‘diagonal’ concentrations c′i.62

4 Nonequilibrium concentration fluctuations63

In the previous section, we set the problem in a mathemat-64

ically convenient way to be solved by adopting diagonal65

concentrations that somehow simplify the linear response66

matrix and, most importantly, have uncorrelated random67

forcing terms, see Eq. (23). In this section we proceed with68

the solution, discussing first the decay rates of the fluctu-69

ations.70

4.1 Decay rates71

The bulk solution for the fluctuating concentrations re-72

quires the inversion of the linear response matrix M′(ω, q)73

in Eq. (15), that depends critically on its determinant.74

As it will become clear below, the ω-roots of the determi-75

nant are the decay rates of the fluctuations. Here, as we76

neglected the temporal derivative of the velocity fluctua-77

tions in the LHS of Eq. (4), there are only two decay rates78

that, for convenience, we express in terms of wave vector79

dependent mass transport coefficients, Γi(q) = γi(q) q2 in80

such a way that:81

|M′(ω, q)| = −νq4 [iω + γ1(q) q2] [iω + γ2(q) q2], (25)

with |M′(ω, q)| representing the determinant of the linear82

response matrix. Some algebra shows that the γi associ-83

ated to the linear response matrix of Eq. (17) are conve-84

niently expressed as:85
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γ1,2(q) =
1

2

(
D̂2 + D̂1 −

q̃2‖

q̃6
RaiD̂i

)
1∓

√√√√√√√√√√1−

4D̂1D̂2

(D̂1 + D̂2)2

[
1−

q̃2‖

q̃6
Ras

]
[

1−
q̃2‖

q̃6
RaiD̂i

D̂1 + D̂2

]2
 , (26)

where q̃ = qL is a dimensionless wave number, and we1

introduce two solutal Rayleigh numbers [43] defined by:2

Ra1 =
gL4

ν D̂1

β′1∇c′1,

Ra2 =
gL4

ν D̂2

β′2∇c′2.
(27)

In Eq. (26) the minus sign applies to γ1 and the plus3

sign to γ2. Furthermore, to simplify notation, we adopt4

in Eq. (26) the repeated subscript summation convention,5

RaiD̂i = Ra1D̂1 +Ra2D̂2, (28)

while Ras = Ra1 +Ra2.6

It is important to note that the decay rates of the ‘diag-7

onal’ prime concentrations, δc′i are the same as the decay8

rates of the actual concentrations, δci; since the transfor-9

mation among them, matrices U or Um in Eqs. (12)-(13),10

does not involve the frequency or wave number of the fluc-11

tuations. It is also interesting to note that the decay rates12

of the fluctuations depend only on the eigenvalues D̂i and13

not on the whole diffusion matrix. Further notice that the14

density gradient associated to the composition gradients15

results invariant under the concentrations transformation:16

∇sρ

ρ
= β1∇c1 + β2∇c2 = β′1∇c′1 + β′2∇c′2, (29)

as readily deduced from Eqs. (19) and (20). The quantity17

RaiD̂i is proportional to this mass density gradient. We18

shall turn back to these issues in Sect. 4.5, particularly at19

Eq. (46).20

Equation (26) is one of the current main results, it rep-21

resents the two mass diffusivities for a generic wave vector22

q, and includes the effects of buoyancy through the two23

solutal Rayleigh numbers. For a discussion of its conse-24

quences, we note that in most practical situations, like in25

shadowgraphy or small-angle light-scattering experiments,26

probed wave vectors are restricted to a plane parallel to27

the bounding walls, so that the approximation q‖ ' q ap-28

plies [16,48]. In what follows, we continue our discussion29

adopting such an assumption.30

In this paper we order the diffusion eigenvalues in such31

a way that D̂1 < D̂2, hence, in the absence of gravity32

(Ra1 = Ra2 = 0), it can be readily verified from Eq. (26)33

that the two γi(q) reduce to the two eigenvalues of the34

diffusion matrix, γi = D̂i independent of the wave number,35

a result already obtained in a previous publication [31]. We36

note that the same (γi = D̂i) is true in the limit q → ∞37

even in the presence of buoyancy, as also anticipated in38

the same publication [31]. Hence, we associate γ1 with the39

slowest concentration mode and γ2 with the fastest one.40

However, in the limit of extremely small wave numbers,41

q → 0, the two γi(q) given by Eq. (26) exhibit qualitatively42

different behaviors as a function of the wave number. A43

simple series expansion gives:44

γ1(q)
q→0−−−→ D̂1D̂2Ras

RaiD̂i

+O(q4),

γ2(q)
q→0−−−→ −RaiD̂i

q4
+
RaiD̂

2
i

RaiD̂i

+O(q4).

(30)

Hence, in the q → 0 limit, the fastest decay rate (the one45

approaching at q →∞ the product of the larger diffusion46

eigenvalue by q2) diverges as q−2, as it is the case for the47

single composition decay rate of a binary mixture [23].48

Thus, the fastest decay rate Γ2(q) = γ2(q) q2 exhibits a49

minimum for a certain q, a feature that (for binary mix-50

tures) has been proposed to measure the Soret effect [33,51

34]. However, one important consequence of Eq. (30), is52

that the slowest decay rate, Γ1(q) = γ1(q) q2, even under53

the influence of gravity, continues to decrease diffusively54

proportional to q2 when q → 0. Note that this decay rate55

corresponds to the one identifying, at large q, with the56

smallest diffusion eigenvalue, D̂1q
2.57

The two different behaviors at small wave numbers58

implied by Eq. (30) are graphically illustrated in Fig. 1,59

where the two decay times of cNEFs, i.e., the inverse de-60

cay rates Γi(q)
−1 = γi(q)

−1 q−2, are plotted as a func-61

tion of the wave number q̃. Data shown in the figure are62

conveniently normalized by the smaller diffusion eigen-63

value, and are intended to represent a small amount of64

a polymer dissolved in a mixture of two hydrocarbons at65

50% weight fraction [40]. In that case, cross diffusion is66

almost negligible and one can use for estimations the so-67

lutal expansions, diffusion and Soret coefficients typical of68

a binary hydrocarbon mixture (for Ra2) and of a small69

amount of polymer in a liquid hydrocarbon (for Ra1).70

Combining this information with a temperature gradient71

of 50 Kcm−1 we obtain the numbers used to plot Fig. 1,72

namely D̂2 = 10D̂1, Ra1 = −3×106 and Ra2 = −3×105.73

The two qualitatively different asymptotic behaviors of74

Eq. (30) are evident in Fig. 1, in particular the local max-75

imum in Γ1(q). It is worth mentioning here that prelimi-76

nary experiments [40] seem to confirm this qualitative dif-77

ferent behavior at small q of the two diffusion decay rates78

of the composition fluctuations in a ternary mixture.79

We wish to finalize this section by noting that the con-80

clusion of the two decay rates of cNEFs having different81

qualitative behaviors at small q must be taken with cau-82

tion. The experience with binary mixtures [27] shows that83
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Fig. 1. The two mass diffusion decay times of cNEFs, as
given by Eq. (26), normalized by the smaller diffusion eigen-
value, as a function of q̃ the (dimensionless) wave number,

D̂1/[γi(q̃) q̃
2] = D̂1/Γi(q̃). At large q →∞ both decay propor-

tionally to q−2. At small q → 0 the two qualitatively different
asymptotic behaviors of Eq. (26) are evident. Data are calcu-

lated for D̂2 = 10D̂1, Ra1 = −3 × 106 and Ra2 = −3 × 105,
which are reasonable numbers (see main text and [40]).

confinement effects, neglected in the current publication,1

may affect the dynamics of the fluctuations at very small2

wave numbers. One initially expects that, when bound-3

ary conditions are considered, the two decay rates recover4

diffusive behavior at q → 0, although with renormalized5

diffusion coefficient.6

4.2 Stability of the quiescent state7

Equation (26) for the decay rates allows us to perform a8

study of the stability of the quiescent solution of Sect. 2,9

about which fluctuations are studied. Indeed, for the qui-10

escent state to be stable, the real part of the decay rates11

of fluctuations around it must be positive. Some analysis12

with Eq. (26) shows that the most dangerous situation13

(i.e., when the decay rates become lower) is for q → 0,14

meaning that within the approximations adopted in this15

work, the appearance of convection is a long-wavelength16

instability. It is known that when temperature fluctua-17

tions are incorporated, and for realistic perfectly conduct-18

ing walls, the instability can be short-wavelength (at finite19

q) [42], depending on the parameter values. The fact that20

we obtain here always a long-wavelength instability is a21

shortcoming of the large Lewis numbers approximation22

adopted in this paper, that neglects temperature fluctua-23

tions, and of not having considered boundary conditions.24

In any case, within the several approximations adopted25

in this paper, convection is at q = 0 and the key to the26

stability analysis is given by the small q expansions of27

Eqs. (30). Consequently, one readily concludes28

if RaiD̂i > 0⇒ always unstable

if RaiD̂i < 0⇒

Ras > 0, unstable

Ras < 0, stable.

(31)

It is also interesting to note that, when the system is sta-29

ble, the diffusion modes may be propagating, i.e., their30

imaginary parts may be non-zero. We have found that31

propagating modes only exists for Ra1 < 0 and posi-32

tive Ra2 or, accounting for the stability, for Ra1 < 0 and33

−(D̂1/D̂2)Ra1 > Ra2 > 0. Adopting the Cross and Ho-34

henberg [49] classification of instabilities, under the ap-35

proximations adopted in this paper, we conclude that the36

convection transition in a ternary mixture is a station-37

ary Is-instability for positive Ra1 and an oscillatory Io-38

instability for negative Ra1.39

As a summary of these findings we represent in Fig. 240

a stability diagram for convection in a ternary mixture,41

where the stable region in the space of solutal Rayleigh42

numbers is shadowed, while the region where propagating43

modes do exist is also indicated. As stressed above, all the44

calculations presented in this paper are only valid when45

the quiescent state is stable, i.e., inside the shadowed re-46

gion of Fig. 2.47

It is worth noticing that the instability condition (31)48

depends only on the eigenvalues D̂i, and not on the com-49

plete diffusion matrix D, which is an expected result. On50

physical grounds, the appearance of convection should be51

independent of the frame of reference used to describe dif-52

fusion and, hence, it is unsurprising that Eq. (31) contains53

only frame-invariant quantities, such as the eigenvalues of54

D [38].55

We finalize this section by stressing that Fig. 2 and56

the associated stability conditions are obtained here with-57

out accounting for boundary conditions in the fluctuat-58

ing fields (concentrations and vertical velocity). Inclusion59

of confinement effects is expected to modify the stabil-60

ity diagram. However, experience with convection in one-61

component fluids or binary mixtures suggests that consid-62

eration of boundary conditions leads to an increase of the63

stability region in plots equivalent to Fig. 2. Hence, we64

can safely assume that the shadowed region in Fig. 2 rep-65

resents a minimum region of stability. Current literature66

on convection thresholds in ternary mixtures [43] seems67

to support this conclusion.68

4.3 Correlation matrix69

After having discussed the decay rates of the two con-70

centration modes, we proceed now with the calculation of71

the corresponding amplitudes. They will be determined72

by the product of the matrix M′−1(ω, q) by the vector of73

random forces in Eq. (15). First of all, we note that, as74

in previous publications [30,31], and in view of Eqs. (21)75

and (24) for the random forcing terms, the correlation76
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Fig. 2. Stability diagram for convection in a ternary mixture,
represented on the basis of Eq. (31) in the plane {Ra1, Ra2} of

solutal Rayleigh numbers. The data are, as in Fig. 1, for D̂2 =
10D̂1. The convective instability is stationary for positive Ra1
and oscillatory for negative Ra1. Recall that Ra1 is associated
to the slowest concentration mode by Eq. (27). The current
diagram corresponds to absence of boundary conditions, its
incorporation is expected to modify the limits of the stability
regions [43].

functions among fluctuations in the diagonal concentra-1

tions are conveniently expressed in terms of a correla-2

tion matrix C′(ω, q), with components C ′nm(ω, q) defined3

by [30,31]:4

〈δc′∗n (ω, q) δc′m(ω′, q′)〉 = C ′nm(ω, q)

× (2π)4 δ(ω − ω′) δ(q − q′). (32)

Combining the explicit expression of M′−1(ω, q) with5

Eqs. (21) and (24) for the correlation of the random forces,6

it is relatively straightforward to obtain the complete cor-7

relation matrix C′(ω, q). As already anticipated, the re-8

sulting expression for C′(ω, q) can be written as the sum9

of two lorentzians, meaning that (when Fourier anti-trans-10

formed in the frequency ω) the time correlation function11

will be the sum of two exponential decays1, with the two12

decay rates discussed in Sect. 4.1. However, in the most13

general case, the corresponding amplitudes have a quite14

long and complicated expression, not easy for physical in-15

terpretation. For these reasons we have preferred here to16

perform one further approximation before proceeding with17

the calculation of the amplitudes, and we shall only con-18

sider the effect of the random force Fz(ω, q) coming from19

the random stress tensor, this means to approximate the20

1 Or two exponentially damped oscillations in the region of propaga-
tive modes

RHS of Eq. (15) as21

U ·

Fz(ω, q)
F1(ω, q)
F2(ω, q)

 '
Fz(ω, q)

0
0

 . (33)

As further elucidated below, the random force Fz(ω, q)22

gives terms in the amplitudes of cNEFs proportional to23

the square of the gradients, (∇c′i)2, while the terms asso-24

ciated to the F ′i (ω, q) are linear in the gradients. In prac-25

tice, for realistic experimental situations, the contribution26

of F ′i (ω, q) associated to the random diffusion fluxes is27

unobservable, except for situations so close to ∇c′i ' 028

that the correlation matrix C′(ω, q) can be actually sub-29

stituted by its equilibrium value. The same approxima-30

tion of Eq. (33) was adopted by some of us in a previous31

publication [31] where gravity effects on cNEFs were not32

considered. It is also worth noting that a similar situa-33

tion occurs for cNEFs in binary mixtures [23], where the34

contribution from the random diffusion flux gives a linear35

(in the gradient) correction to the quadratic term arising36

from the random stress tensor. We shall return to this is-37

sue later, in Sect. 4.5. In summary, we shall express here38

the correlation matrix of Eq. (33) as:39

C′(ω, q) = C′E(ω, q) + C′NE(ω, q), (34)

where, on the one hand, the amplitude of C′E(ω, q) is eval-40

uated at ∇T = 0 and, consequently, with both ∇c′1 =41

∇c′2 = 0. On the other hand, the amplitude of C′NE(ω, q)42

will be explicitly presented here under the approximation43

of Eq. (33), accounting only for the effect of the random44

stress tensor and neglecting the contribution from the ran-45

dom diffusion fluxes represented by F ′i (ω, q). The equilib-46

rium matrix is easily calculated and it is diagonal:47

C ′Enm(ω, q) = δnmŜn
2D̂nq

2

ω2 + D̂2
nq

4
(35)

as already obtained by Bardow [4,30]. Since the equilib-48

rium contribution has been already the subject of several49

publications, we shall not further extend here on it.50

Regarding the nonequilibrium contribution in Eq. (34),51

with the approximation (33) and for the most common52

case of non-propagating modes, some algebra allows to53

conveniently display it as the sum of two purely diffusive54

modes, namely:55

C′NE(ω, q) =
kBT

ρν(D̂1 + D̂2)

q2‖

q6

[
1 +

q4ROq
2
‖

q6

]

×
[
A(1) 2γ1q

2

ω2 + γ21q
4

+ A(2) 2γ2q
2

ω2 + γ22q
4

]
,

(36)

where, similar to the case of binary mixtures, we introduce56

a ‘roll-off’ wave number:57

q4RO =
−RaiD̂i

L4(D̂1 + D̂2)
=
−g(β1∇c1 + β2∇c2)

ν(D̂1 + D̂2)
. (37)
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Since we assume to be inside the region where the qui-1

escent solution is stable (see Fig. 2) qRO is indeed a real2

number. Further note that, to simplify Eq. (37), we have3

also used that: β1∇c1 + β2∇c2 = β′1∇c′1 + β′2∇c′2, so that4

qRO can be computed from the real concentrations. The5

time correlation matrix corresponding to Eq. (36) will thus6

be expressed as the sum of two exponentials, with the de-7

cay rates Γi = γiq
2 discussed in Sect. 4.1. The amplitude8

matrices A(k) of Eq. (36) are proportional to the square of9

the concentration gradients and depend on the wave num-10

ber q through γi(q). Their components are conveniently11

expressed as:12

A(k)
nm(q) =

(−1)kγk
γ1 − γ2

∇c′n∇c′m −
(−1)kD̂2

1D̂
2
2

γk(γ1 − γ2)

∇c′n∇c′m
D̂nD̂m

,

(38)
As noted by some of us in the absence of gravity [31], in13

general, one also obtains a nonzero imaginary part for the14

cross-correlation in the matrix C′NE(ω, q). As discussed in15

detail elsewhere [31], such imaginary contribution for the16

cross correlation is physically unobservable, and we do not17

report it here.18

4.4 Statics19

Application of inverse Fourier transforms in the temporal20

frequencies to Eq. (32) defines an equal-time nonequilibrium21

correlation matrix, that gives the intensity (statics) of the22

fluctuations. Namely,23

〈δc′∗n (q, t) δc′m(q′, t)〉NE = C ′nm(q) (2π)3 δ(q − q′). (39)

with

C′(q) =
1

2π

∫ ∞
−∞

C′(ω, q) dω = C′(q, t = 0)

Integration of Eq. (34) allows to express the correlation24

matrix C′(q) as the sum of an equilibrium and a non-25

equilibrium part. For the equilibrium part, making use of26

Eq. (35), we reproduce the isotropic result of Bardow [4,27

30], i.e., C ′Eij = δijŜi independent of the wave number.28

The new results of this paper refer to the nonequilibrium29

part and include the effects of gravity. Simple integration30

of Eq. (36) gives31

C′NE(q) =
kBT

ρν(D̂1 + D̂2)

A(q)

q4 + q4RO

, (40)

where we use the approximation q‖ ' q, mandatory for ex-32

periments, and the matrix A(q) =A(1)(q)+ A(2)(q). In the33

case of a ternary mixture the amplitude matrix A(q) de-34

pends on the wave number. From Eq. (38), their elements35

are readily expressed as:36

Anm(q) = ∇c′n∇c′m +
D̂2

1D̂
2
2

γ1γ2

∇c′n∇c′m
D̂nD̂m

,

= ∇c′n∇c′m +
D̂1D̂2

D̂nD̂m

q̃4 ∇c′n∇c′m
q̃4 −Ras

,

(41)

with the wave vector dependence explicitly shown in the37

second line. As it was the case for the decay rates inves-38

tigated in Sect. 4.1, Eqs. (40) and (41) for the amplitude39

of cNEFs will be used for vectors q parallel to the bound-40

ing plates, in which case q‖ ' q. In that case the matrix41

C′NE(q) is isotropic and depends only on the wave number42

q. Some simple analysis shows that, essentially, C′NE(q) as43

a function of q displays a crossover from a ∝ q−4 depen-44

dence at large q to a constant limit at q → 0. Indeed, some45

straightforward series expansions show that:46

C ′NE
nm (q)

q→∞−−−→ kBT

ρν

[
1 +

D̂1D̂2

D̂nD̂m

]
∇c′n∇c′m

(D̂1 + D̂2) q4
, (42)

while47

C ′NE
nm (q)

q→0−−−→ kBT

ρν

∇c′n∇c′m
(D̂1 + D̂2) q4RO

(43)

independent of q. Equation (42) does not depend on grav-48

ity g, and it reproduces exactly for the amplitude of cNEFs49

the results of a previous publication [31] where gravity was50

not considered2. Equation (43) shows that buoyancy has a51

damping effect on the intensity of cNEFs. Indeed, the typ-52

ical q−4 dependence of cNEFs given by Eq. (42) crosses53

over as q → 0 to the constant limit of Eq. (43), quite54

similar to the behavior of binary mixtures. One difference55

though is the presence of the wave-number-dependent part56

in the amplitude A(q) as given by Eq. (41), while in binary57

mixture the equivalent amplitude is wave number indepen-58

dent. Its effect amounts to a change of a global prefactor59

from unity to 1+(D̂1D̂2/D̂nD̂m) at wave numbers around60

' (−Ras)(1/4). Furthermore, depending on other param-61

eter values (particularly if the two Rayleigh numbers are62

quite different) it may appear a local maximum in the cor-63

relation functions around this same wave number. We left64

for Sect. 5 further comments about Eq. (43), that is one65

of the main new results of the present publication.66

4.5 Further considerations67

Before concluding, we wish to add a couple of comments.68

First is about the approximation of Eq. (33) that, for sim-69

plicity, neglected the contribution of the random diffusion70

fluxes to the amplitude of cNEFs. We have also performed71

the full calculation, retaining all the terms in the ran-72

dom force of Eq. (33). The results are quite involved and73

not easily expressed as compact expressions, like those in74

Sect. 4.3 where only the contribution of the random stress75

is considered. Anyway, to give a quantitative idea of the76

approximation involved in Eq. (33), we quote here the ex-77

pression replacing Eq. (42) in the limit of large q when all78

random forces are considered, namely79

C ′NE
11 (q) ' kBT

ρν q4

[
(∇c′1)2

D̂1

+ Ŝ1
gβ′1∇c′1
D̂1

]
, (44)

2 Note that there is a misprint in Eq. (20) of ref. [31], and the mass
density ρ appearing in the numerator should be in the denominator, as
it is obvious from dimensional considerations
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and similar to the other components. One observes that1

the effect of the random diffusive fluxes, when gravity2

is present, is to add a contribution to the amplitude of3

cNEFs that is linear in the gradients, while the contribu-4

tion of the random stress is quadratic in the gradients. As5

already anticipated, for real experimental conditions [32]6

the effect of random diffusion fluxes is unobservable.7

Throughout this Section the correlation matrix be-8

tween composition fluctuations has been expressed in terms9

of ‘diagonal’ concentrations δc′i. For the benefit of the10

reader, we finalize now by explicitly quoting the transfor-11

mation to fluctuations in real concentrations, that is quite12

direct since the transformation matrix Um of13

Eq. (18) does not involve either frequency ω or wave vector14

q. Hence, for fluctuations δci, as a consequence of Eq. (32),15

one can define a correlation matrix without primes16

〈δc∗n(ω, q) δcm(ω′, q′)〉 = Cnm(ω, q)

× (2π)4 δ(ω − ω′) δ(q − q′). (45)

such that17

C′(ω, q) = Um · C(ω, q) · (Um)T. (46)

It is worth noting that the decay rates and amplitudes for18

the fluctuations in the ‘diagonal’ concentrations used in19

this paper depend only on the eigenvalues D̂i and, hence,20

not in all the components of the diffusion matrix. However,21

Eq. (46) shows that when converting to real concentra-22

tions one has to use the matrix Um, and hence, one needs23

to know the complete diffusion matrix D, as it is clear from24

the definition (18) of the transformation matrix. In opti-25

cal experiments one actually measures fluctuations of the26

refractive index, which are related to fluctuations in con-27

centrations through the corresponding matrix of contrast28

factors [32]. Contrast factors can only be measured for real29

concentrations, but can be converted to ‘diagonal’ concen-30

trations by an algebra similar to Eq. (46). Again, for this31

conversion it is required the knowledge of the whole diffu-32

sion matrix D.33

Authors researching on convection in ternary mixtures
[41–43], instead of the two solutal Rayleigh numbers Ran
of Eq. (27), use a single Rayleigh number Ra and two
’diagonal’ separation ratios ψ′n, defined by:

Ra = −gL
4α ∇T
νaT

, (47)

ψ′n = −β
′
n ∇c′n
α ∇T

(48)

where aT and α are the thermal diffusivity and the ther-34

mal expansion coefficient of the mixture, respectively. Sep-35

aration ratios in real concentrations ψn, defined like in36

Eq. (48) but without the primes, are also sometimes used.37

Also, the so-called net separation ratio Ψ = ψ′1 + ψ′2 =38

ψ1 +ψ2, is utilized. From Eq. (29) follows that Ψ is invari-39

ant under the transformation to diagonal concentrations.40

Note that, from Eq. (3), the separation ratios ψi can be41

expressed as a combination of the diffusion matrix D and42

the thermal diffusion coefficients DTi.43

In this work we neglect temperature fluctuations, while44

researchers in convection typically do not [41–43]. This is45

the reason why these other investigators [41–43] need three46

dimensionless parameter to define the problem, while here47

two is enough. It is easy to obtain the relation between the48

solutal Rayleigh numbers used here and the parameters49

used elsewhere, namely50

Ran = LenRa ψ
′
n, (49)

where Len = aT /D̂n are the two Lewis numbers of the51

ternary mixture. Since the theory presented in this work52

is developed under the approximation of very large Lewis53

numbers, the present results will be valid only for large54

(absolute) values of Ran inside the stability zone of Fig. 2.55

5 Conclusions56

In this paper we have analyzed, on the basis of fluctuat-57

ing hydrodynamics, the spatiotemporal spectrum of com-58

position fluctuations in a ternary mixture that is driven59

out of equilibrium by the imposition of an external steady60

temperature gradient. As is well-know, in these condi-61

tions steady concentrations gradients appear in the system62

due to the Soret effect. To simplify the problem we have63

adopted a series of approximations, adequate for liquid64

mixtures and for the experimental conditions under which65

these NE fluctuations are observed. Following Bardow [4]66

we found advantageous to use as independent variables67

the linear combination of concentrations diagonalizing the68

diffusion matrix, as further explained in Sect. 3.1.69

Our final result is Eq. (36) showing that the composi-70

tion autocorrelation matrix can be expressed as the sum71

of two diffusion modes with decay rates Γi(q) = γi(q) q
2

72

given by Eq. (26), the first main result of this work. For73

fluctuations of large wave number q, these modes are purely74

diffusive and the associated diffusivities can de identified75

with the two eigenvalues γi = D̂i of the diffusion matrix,76

independent of the fluctuation wave number, as earlier77

discussed in a previous publication [31]. However, as a78

consequence of buoyancy, there is a mixing between these79

two modes for fluctuations of larger size, as described by80

Eq. (26). This mixing of modes may even lead to the ap-81

pearance of propagating modes, as further discussed in82

Sect. 4.2. It is interesting to note the different behavior at83

q → 0 of the two modes, discussed in detail in Sect. 4.1.84

The amplitudes of the two modes in Eq. (36) is given85

by Eq. (38), while the total amplitude of equal-time fluc-86

tuations is given Eq. (40). The calculation of these ampli-87

tudes, which represents a second main result of the present88

paper, has been done from the random stress only. In-89

deed, in Sect. 4.5 it is discussed that this contribution is90

dominant over the contribution from the random diffusion91

flows.92

Our present calculations are of high relevance for shad-93

owgraph experiments in ternary mixtures currently un-94

der development, whose preliminary results are already95
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available [32], including a contribution in this same Top-1

ical Issue [40]. It will also undoubtedly contribute to the2

current DCMIX [50] and SCCO [35] and the upcoming3

NEUF-DIX [51] space experiments, whose goals are a bet-4

ter understanding of diffusion and thermal diffusion in5

multi-component liquid mixtures, starting from ternaries.6

In addition, the results presented here also contribute to7

the effort of better understanding the appearance of con-8

vection in ternary mixtures that is presently under devel-9

opment [43].10
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Appendix A. The particular case D̂1 = D̂218

In the main text of this article it was assumed everywhere19

that the two eigenvalues of the diffusion matrix are differ-20

ent. Next, we consider the particular case D̂1 = D̂2 = D̂,21

so that the diffusion matrix cannot be diagonalized so that22

this case is not covered by the theoretical developments in23

the paper. This situation might be of relevance when two24

decay rates cannot be distinguished experimentally [32].25

If the two eigenvalues of the diffusion matrix are equal,26

then D is most conveniently expressed as:27

D =

[
D̂ −

√
−D12D21 D21

D12 D̂ +
√
−D12D21

]
, (A.1)

where we ordered the components in such a way that28

D11 < D22 and, since D still is a diffusion matrix, one must29

have in this case that D12D21 < 0. Since now one cannot30

perform the transformation to diagonal concentrations of31

Sect. 3.1, to solve for the fluctuating concentrations one32

has to invert directly the linear response matrix M(ω, q)33

of Eq. (11), before transformation to M′(ω, q). However,34

the calculation is not more complicated than the one with35

diagonal concentrations, because Eq. (A.1) can now be36

used to simplify the expressions. For instance, due to the37

mixing of modes caused by gravity, there are still two dif-38

ferent decay times Γi(q) = γi(q) q2 that depend on the39

fluctuations wave vector. Some algebra leads to:40

γ1,2(q) = D̂

(
1 +

q4ROq
2
‖

q6

)1∓

√√√√√√1 +
Ũ

q4ROq
2
‖

q6

 , (A.2)

where qRO here is still given by Eq. (37) that, for the case41

of equal eigenvalues, simplifies to:42

q4RO =
−g(β1∇c1 + β2∇c2)

2νD̂
. (A.3)

Dimensionless parameter Ũ in Eq. (A.2) is given by:43

Ũ =

−g
[

(β2D21 −β1
√
−D12D21)∇c1

+(β1D12 − β2
√
−D12D21)∇c2

]
νD̂2q4RO

(A.4)

Similar to the case of two distinct eigenvalues, examined44

in the main text, one can observe from Eq. (A.2) that45

in the limit of large wave number (q6 � q4ROq
2
‖) the two46

mass diffusivities γi(q) converge to D̂, independent of q.47

However, in the limit of small q, one of the decay times48

is diffusive ∝ q−2 while the other presents an accelera-49

tion due to buoyancy. Also, a study of the stability of the50

quiescent solution can be performed. In this case of equal51

eigenvalues, stability means qRO to be real (as was for52

distinct eigenvalues) and 2− Ũ > 0.53

Following equivalent steps to those in the main text,54

the correlation matrix of concentration fluctuations can55

also be computed for this particular case of equal eigenval-56

ues. Here, we shall only present the results for the statics,57

equivalent to those of Sect. 4.4, and under the approx-58

imation of Eq. (33) that amounts to evaluate only the59

nonequilibrium part. Since in the case of equal eigenvalues60

the concentrations cannot be diagonalized, the only cor-61

relation matrix discussed here is that defined by Eq. (45)62

in terms of real concentrations. Some algebra allows to63

express it as:64

CNE(q) =
kBT

2ρνD̂

A(q)

q4 + q4RO

, (A.5)

where, again, we adopt the approximation q‖ ' q. The65

amplitude matrix A(q) in the case of a ternary mixture66

with equal eigenvalues continues to depend on the wave67

number. Its elements can be expressed in this case as:68

Anm(q) = ∇cn∇cm +
q4 ∇c′n∇c′m

q4 − (2− Ũ)q4RO

, (A.6)

where here primes are used to simplify notation, as:69

∇c′1 =
D22

D̂
∇c1 −

D12

D̂
∇c2

∇c′2 = −D21

D̂
∇c1 +

D11

D̂
∇c2

(A.7)

The structure of the correlation matrix, Eqs. (A.5)-(A.7),70

is similar to the case of distinct eigenvalues analyzed in71

Sect. 4.4. The main difference being that, since the two72

density gradients β1∇c1 and β2∇c2 are expected to be of73

the same order of magnitude, the local maximum men-74

tioned after Eq. (43) seldom appears.75
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