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ABSTRACT

Large uncertainty remains in future projections of tropical precipitation change under global warming. A

simplified method for diagnosing tropical precipitation change is tested here on present-day El Niño–
Southern Oscillation (ENSO) precipitation shifts. This method, based on the weak temperature gradient

approximation, assumes precipitation is associated with local surface relative humidity (RH) and surface air

temperature (SAT), relative to the tropical mean. Observed and simulated changes in RH and SAT are

subsequently used to diagnose changes in precipitation. Present-day ENSO precipitation shifts are success-

fully diagnosed using observations (correlation r5 0.69) and an ensemble of atmosphere-only (0.51# r# 0.8)

and coupled (0.5 # r # 0.87) climate model simulations. RH (r 5 0.56) is much more influential than SAT

(r5 0.27) in determining ENSOprecipitation shifts for observations and climate model simulations over both

land and ocean. Using intermodel differences, a significant relationship is demonstrated between method

performance over ocean for present-day ENSO and projected global warming (r 5 0.68). As a caveat, the

authors note that mechanisms leading to ENSO-related precipitation changes are not a direct analog for

global warming–related precipitation changes. The diagnosis method presented here demonstrates plausible

mechanisms that relate changes in precipitation, RH, and SAT under different climate perturbations.

Therefore, uncertainty in future tropical precipitation changes may be linked with uncertainty in future RH

and SAT changes.

1. Introduction

TheFifthAssessmentReport of the Intergovernmental

Panel on Climate Change (IPCC) outlines current pro-

jections of tropical precipitation change under anthro-

pogenic global warming (Collins et al. 2013; Christensen

et al. 2013). These projections are based on general cir-

culation model (GCM) climate simulations from phase

5 of the Coupled Model Intercomparison Project

(CMIP5). Despite modeling improvements since ear-

lier phases of CMIP, persistent intermodel disagree-

ment contributes to uncertainty in patterns of policy-relevant

regional and local precipitation change (Knutti and

Sedlá�cek 2013).

Tropical precipitation change under global warming is

typically partitioned into thermodynamic and dynamic

contributions (Vecchi and Soden 2007; Seager et al.

2010). Thermodynamic changes comprise Clausius–

Clapeyron-related increases in moisture at 7%K21 of

global mean warming. Dynamic changes are related to

changes in atmospheric circulation, such as spatial shifts

in convection (Chadwick et al. 2013), enhancement and

narrowing of the intertropical convergence zone (ITCZ)

(Lau and Kim 2015; Byrne and Schneider 2016), and

Hadley cell expansion (Seidel et al. 2008). A tropical

mean circulation weakening, largely due to restricted

increases in tropospheric radiative cooling in descent

regions, is a robust feature of global warming simula-

tions (Vecchi and Soden 2007). Thermodynamic in-

creases, modulated by circulation weakening, lead to a

large-scale wet-get-wetter pattern of precipitation

change (Held and Soden 2006). On smaller scales, spa-

tial shifts dominate tropical precipitation changes

(Chadwick et al. 2013). These precipitation shifts can be

linked with a number of mechanisms, such as sea surface

temperature (SST) pattern change (Xie et al. 2010),Corresponding author: Alexander Todd, adt205@exeter.ac.uk
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land–sea temperature contrast changes, plant physio-

logical changes, and direct responses to carbon dioxide

(Chadwick et al. 2017). However, a simplified theory for

understanding the mechanisms contributing to these

shifts, and linking precipitation changes over land and

ocean, is currently lacking in the literature.

In equatorial regions, horizontal temperature and

density gradients are very weak above the boundary

layer because of a small Coriolis parameter and, there-

fore, small rotational effects (Charney 1963). Conse-

quently, the primary energy balance on local scales is

between vertical advection and diabatic heating. To first

order, the free-tropospheric temperature profile can be

assumed to be uniform across the tropics. Sobel et al.

(2001) term this assumption the weak temperature

gradient (WTG) approximation and present a simplified

theory for the tropical circulation. Sobel and Bretherton

(2000) demonstrated how uncoupled single-column

models, prescribed with varying surface temperatures

and identical free-tropospheric temperature profiles,

simulate a climatological precipitation pattern similar

to that of a full GCM. Further theoretical andmodeling

studies demonstrated the suitability of the WTG

approximation for representing idealized Walker-

(Bretherton and Sobel 2002) and Gill–Matsuno-

type (Bretherton and Sobel 2003) circulations.

Lambert et al. (2017) present a simplified method for

diagnosing tropical precipitation change following the

WTG approximation. Assuming relatively uniform free-

tropospheric temperature profiles, convective initiation

is strongly linked with surface conditions (Sobel et al.

2001). This forms the basis of the Lambert et al. (2017)

method: local precipitation depends only on the local

relative humidity (RH) and surface air temperature

(SAT), relative to the tropical mean RH and SAT, re-

spectively. Therefore, precipitation shifts can be char-

acterized by surface changes in RH and SAT, relative to

their tropical means. A physical justification for this

simplification is presented by Xie et al. (2010) in the

form of an idealized two-layer model of tropical moist

stability. Moist static energy (MSE) is largely uniform in

the tropical free troposphere because of weak horizontal

temperature gradients and relatively low moisture

above the boundary layer. Hence, the difference be-

tween MSE at the surface and in the free troposphere,

which influences convection and therefore precipitation,

is mainly controlled by MSE variations at the surface.

SAT or surface RH increases would decrease moist

stability, enhancing or initiating convection. Surface RH

changes could also affect convective initiation by chang-

ing the height of the lifting condensation level. Free-

tropospheric increases in environmental RH would

enhance convection via entrainment into convective

plumes (Sobel et al. 2001). Although not explicitly in-

cluded in the Lambert et al. (2017) method, lower-

tropospheric RH is likely to be spatially and temporally

correlated with surface RH, so the method may im-

plicitly include information about the humidity of en-

trained environmental air.

In this study, we analyze the performance of the

Lambert et al. (2017) method at diagnosing observed

present-day shifts in tropical rainfall associated with El

Niño–Southern Oscillation (ENSO). ENSO is the

leading mode of interannual climate variability, with

atmosphere–ocean feedbacks linking SST anomalies

and precipitation in the tropical Pacific and tele-

connections leading to tropical and extratropical

weather impacts (McPhaden et al. 2006). ENSO-related

precipitation anomalies are evident in recent observa-

tions, reanalyses, and a variety of present-day CMIP5

climate model simulations (Bellenger et al. 2014).

Therefore, we consider predicting ENSO precipitation

shifts for a range of data sources to be a necessary test

of the Lambert et al. (2017) method.

The first question to guide our analysis is this: Does

the Lambert et al. (2017) method adequately diagnose

present-day ENSO precipitation shifts? A key finding of

Lambert et al. (2017) is the substantial intermodel var-

iability in the diagnosis method performance for global

warming–driven precipitation changes in an ensemble of

CMIP5 model simulations. This motivates a second

question: What factors influence the performance of the

diagnosis method for ENSO and global warming pre-

cipitation shifts? The remainder of this paper is struc-

tured as follows. In section 2, we describe the data

sources used, and in section 3, we explain our im-

plementation of the Lambert et al. (2017) method.

ENSO representation and diagnosed shifts for obser-

vations and climate model simulations are discussed in

sections 4 and 5. In section 6, we examine relationships

between ENSO and global warming–diagnosed pre-

cipitation changes, and finally, section 7 presents our

conclusions.

2. Data

a. Observations—Precipitation

The source for monthly mean precipitation observa-

tions is the Global Precipitation Climatology Project

(GPCP) version 2.3 dataset (Adler et al. 2003). The

GPCP dataset combines both satellite and in situ pre-

cipitation gauge measurements and has spatially com-

plete coverage at 2.58 3 2.58 resolution. Present-day

observations between January 1979 and December 2008

are used in this study because this coincides with the
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range of the atmosphere-only amip experiment for the

CMIP5 ensemble.

b. Reanalysis—Temperature and relative humidity

For reanalysis data, the European Centre for Medium-

Range Weather Forecasts (ECMWF) interim reanalysis

(ERA-Interim) (Dee et al. 2011) is used. ERA-Interim is

constructed by prescribing observed SST and land surface

conditions and assimilating observations into an atmo-

sphere GCM. Monthly mean SAT is available directly.

Monthly mean RH cannot be estimated directly from

monthly means of temperature and dewpoint tempera-

ture because of the nonlinear relationship between tem-

perature and specific humidity. Therefore, daily RH is

estimated using daily reanalysis of surface air tempera-

ture and dewpoint temperature and Eq. (7.5) pre-

sented in ECMWF (2016). The mean of these daily

values for each month provides the monthly mean

RH. All ERA-Interim data are interpolated onto the

GPCP 2.58 grid. In this analysis, we term ERA-Interim

SAT and RH and GPCP observed precipitation as

ERA-Interim–GPCP.

c. CMIP5 model simulations

Monthly mean simulated surface air temperature, RH,

and precipitation from the first ensemble member

(r1i1p1) of 18CMIP5models are used, as listed inTable 1.

We examine the multimodel ensemble (MME) present-

day simulations between 1979 and 2008 from the amip

experiment, where the observed monthly mean SST

conditions are prescribed. Additionally, we use the cou-

pled piControl experiment, where greenhouse gas forcing

and aerosol concentrations are fixed at preindustrial

levels, and the temporal evolution of the atmosphere and

ocean are simulated. To explore idealized global warming

changes, we compare piControl with the abrupt4xCO2

simulations, following Lambert et al. (2017). The

abrupt4xCO2 experiment involves instantaneously qua-

drupling the concentration of atmospheric carbon di-

oxide. For each model, we limit our analysis to the last 30

years of the long-running piControl and abrupt4xCO2

(years 121–150) simulations to remove any transient ef-

fects during spinup. Hereafter, we refer to abrupt4xCO2

minus piControl as global warming, for brevity. All

model-simulated data are interpolated onto the GPCP

2.58 grid to enable intercomparison. Further details of the

amip, piControl, and abrupt4xCO2 experiment designs

are described by Taylor et al. (2012).

3. Methods

a. Constructing El Niño composites

We focus on the tropical region in the latitude band

between 308N and 308S in this analysis. In each ENSO

data source, we examine the 12-month periods be-

tween each July and the following June. This period is

chosen because it represents the typical El Niño growth

and decay stages and a variety of teleconnections

TABLE 1. El Niño and neutral composite descriptions for piControl and spatial correlations for the 18 CMIP5 models used in this study.

For amip, the CanAM4 and HadGEM2-A configurations were used in place of CanESM2 and HadGEM2-ES, respectively. (Expansions

of acronyms are available online at http://www.ametsoc.org/PubsAcronymList. In addition, GCESS is the College of Global Change and

Earth System Science at BNU, MOHC is the Met Office Hadley Centre, and NCC is the Norwegian Climate Centre.)

piControl periods Diagnosed vs simulated spatial correlation

Model (amip configuration) Institution El Niño Neutral amip El Niño piControl El Niño Global warming

ACCESS1.0 CSIRO–BoM 7 14 0.63 0.70 0.46

ACCESS1.3 CSIRO–BoM 7 18 0.62 0.63 0.71

BNU-ESM GCESS 12 5 0.78 0.71 0.59

CanESM2 (CanAM4) CCCma 10 9 0.79 0.69 0.61

CCSM4 NCAR 10 7 0.66 0.72 0.30

CNRM-CM5 CNRM–CERFACS 8 12 0.67 0.72 0.47

CSIRO Mk3.6.0 CSIRO–QCCCE 3 19 0.68 0.67 0.81

FGOALS-s2 LASG/IAP 10 8 0.71 0.66 0.41

GFDL CM3 NOAA/GFDL 7 13 0.70 0.74 0.47

GISS-E2-R NASA GISS 6 18 0.68 0.61 0.61

HadGEM2-ES (HadGEM2-A) MOHC 7 15 0.62 0.71 0.47

INM-CM4.0 INM 4 20 0.51 0.51 0.38

IPSL-CM5A-LR ISPL 7 16 0.71 0.75 0.35

IPSL-CM5A-MR ISPL 7 12 0.71 0.75 0.42

IPSL-CM5B-LR ISPL 9 11 0.70 0.82 0.48

MIROC5 MIROC 8 10 0.74 0.87 0.65

MRI-CGCM3 MRI 4 17 0.80 0.76 0.66

NorESM1-M NCC 11 10 0.77 0.77 0.38

MME mean — — — 0.78 0.82 0.64
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(Ropelewski and Halpert 1987). Each 12-month period

is classified as either El Niño or neutral via the oceanic

Niño index (ONI) (NOAA 2015). The ONI is based on

spatial mean SST anomalies in the Niño-3.4 (58N–58S,
1208–1708W) region. The amplitude of anomalies in this

region is commonly used to represent the magnitude of

the oceanic component of an ENSO event (Trenberth

and Stepaniak 2001). The ONI identifies an El Niño
event if five consecutive and overlapping 3-month pe-

riods have a Niño-3.4 SST anomaly greater than 1
0.5K, a La Niña event if the SST anomaly is less

than20.5K, and neutral conditions otherwise. In ERA-

Interim–GPCP and the amip MME, eight El Niño and

nine neutral events are identified from the prescribed

SST conditions. In the piControl MME, there is a broad

variety in the frequency of ENSO events, as detailed in

Table 1. El Niño and neutral SAT, RH, and pre-

cipitation composites are constructed by calculating the

mean of each of the El Niño and neutral periods,

respectively.

b. Implementing the Lambert et al. method

A detailed description of the precipitation change

diagnosis method is presented in Lambert et al. (2017).

Consider onemonth in a control scenario: for instance, a

neutral ENSO or piControl composite. The method

proceeds by producing an ordered vector of gridpoint

control RH and partitioning it into n equally sized bins

(n5 10 is fixed in this study). Subsequently, within each

RH bin, the ordered vector of gridpoint control SAT is

partitioned into n equally sized bins, resulting in an n3 n

space of RH and SAT values. Figures 1a and 1b dem-

onstrate themeanRHand SAT, respectively, within each

bin for the ERA-Interim July–June composite means.

We note that absolute RH increases with RH bin number

from 60% to 82%, and this is relatively uniform within

each SAT bin. This absolute RH increase with RH bin

number is nonlinear, with the steepest gradient in low

RH bins. In contrast, absolute SAT increases more

linearly with SAT bin number but varies greatly

across RH bins. For instance, mean SAT increases

from 290 to 298K and from 296 to 300K in RH bins

2 and 9, respectively.

Subsequently, the mean control precipitation Pij for

grid points in RH bin i and SAT bin j is calculated

(Fig. 1c provides an example for GPCP precipitation in

ERA-Interim RH and SAT bins). Next, for one month

in a perturbation scenario, such as an El Niño or

abrupt4xCO2 composite, gridpoint RH and SAT is

binned following the same procedure as the control

scenario. Each tropical grid point is then a member of

RH bins i and i0 and SAT bins j and j0 in the control and

perturbation scenarios, respectively. The diagnosed

precipitation change DP at each grid point is then DP5
sPi0j0 2 Pij, where s is the fractional change in tropical

mean precipitation. Hence, s largely represents the

thermodynamic precipitation change, and spatial shifts

in convection are diagnosed through changes in RH or

SAT bins. Under global warming on a tropics-wide

scale, the thermodynamic precipitation increase is op-

posed by a mean circulation weakening (Vecchi and

Soden 2007), as discussed in the introduction. We note

that other factors controlling tropical mean pre-

cipitation changes, such as poleward energy transport

(Held and Soden 2006), are implicitly incorporated in

this framework. The scaling factor s is expected to

modulate the magnitude of precipitation changes

under global warming (Chadwick et al. 2013) but to be

less important during El Niño events, where tropical

mean temperature and circulation changes are much

smaller, compared to spatial variations (Neelin et al.

1998; McPhaden et al. 2006).

To remove the seasonal cycle, we calculate the tem-

poral means of the observed or simulated and diagnosed

precipitation anomaly composites. For ERA-Interim–

GPCP and the amip and piControl simulations, the

temporal means represent July–June, and for the global

warming simulations, the temporal means represent

January–December. To quantify the performance of the

diagnosis method, we calculate the area-weighted grid-

point (spatial) correlation between the temporal means

of the simulated and diagnosed anomalies. Spatial cor-

relation is a commonly used performance metric in the

assessment of climate models (Flato et al. 2013) and

forecasts of spatial fields (Jolliffe and Stephenson 2012).

A primary assumption of the diagnosis method is that

the precipitation pattern in RH–SAT space Pij is rela-

tively invariant between the control and perturbation

scenarios, except for a scaling by the tropical mean

precipitation change. In GPCP observations, the tropi-

cal mean precipitation decreases by 0.43% from neutral

to El Niño composites. Figure 1c displays neutral and El

Niño composite mean GPCP precipitation as a function

of ERA-Interim RH–SAT bin number. The pre-

cipitation patterns appear similar for both composites,

with a small decrease in the relatively warmest and most

humid bins from neutral to El Niño, consistent with the

tropical mean change. Therefore, there is evidence in

observations to support the assumption that pre-

cipitation as a function of local RH and SAT, relative to

the tropical mean, is largely invariant under present-

day shifts.

For ERA-Interim–GPCP, Fig. 1c demonstrates that

precipitation increases more rapidly with RH bin num-

ber, in comparison with SAT bin number. This high-

lights the nonlinear relationship between precipitation,
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RH, and SAT. Under the WTG assumption, SAT bin

number changes could alter the difference between the

boundary layer and free-tropospheric temperature and,

therefore, affect dry static stability. Similarly, RH bin

number changes may affect vertical gradients in equiv-

alent potential temperature and, hence, moist static

stability. Consequently, changes in either SAT or RH

bin numbers can be linked with precipitation changes.

An implicit assumption of the Lambert et al. (2017)

method is a spatial and temporal relationship between

surface and lower-tropospheric RH. This is evident in

ERA-Interim because there is a moderate spatial cor-

relation between surface and 700-hPa El Niño RH

anomalies over both land (0.57) and ocean (0.62).

Consequently, surface RH bin number changes may

reflect free-tropospheric RH changes, leading to large

changes in column water vapor (CWV) (Bretherton

et al. 2004; Holloway and Neelin 2009). In observations

(Schiro et al. 2016) and climate model simulations (Kuo

et al. 2017), precipitation sharply increases above a

CWV threshold over both land and ocean. Relatively

high CWV increases entrainment of environmental

moisture, deepening convection and leading to heavier

precipitation. This mechanism may explain why pre-

cipitation increases more rapidly with RH bin number

than with SAT bin number.

Comparing Fig. 1c with supplementary Fig. 1 of

Lambert et al. (2017), we note that these results for

ERA-Interim–GPCP are consistent with the majority of

CMIP5 model piControl simulations, with the exception

FIG. 1. Color shading shows the July–June neutral composite mean ERA-Interim (a) surface RH, (b) SAT,

(c) GPCP precipitation, and (d) land fraction in each ERA-Interim RH–SAT bin. Black contours show the July–

June El Niño composite means.
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of FGOALS-s2. In FGOALS-s2, the heaviest pre-

cipitation occurs in the highest SATbin ofmiddle-ranking

RH bins. Figure 1d demonstrates that the majority of

tropical land areas are classified either in the highest RH

bin or the two lowest RH bins for both the El Niño and

neutral ERA-Interim–GPCP composites. The presence

of tropical land in the highest RH bin indicates that RH

decreases could plausibly lead to a lowering of RH bin

number for land grid points. This result is consistent with

a number of the CMIP5 model piControl simulations.

However, as discussed by Lambert et al. (2017), the

FGOALS-s2, IPSL-CM5A-LR, and IPSL-CM5A-MR

piControl experiments do not simulate significant areas

of tropical land in the highest RH bin. This highlights an

inconsistency between these model simulations and

present-day conditions in ERA-Interim.

4. ENSO in observations and reanalysis

In present-day observations, ENSO events are char-

acterized by anomalous warming in the eastern or cen-

tral equatorial Pacific, leading to both tropical and

extratropical precipitation shifts (McPhaden et al. 2006).

Figures 2a and 2b demonstrate the ERA-Interim com-

posite mean RH and SAT El Niño anomalies, re-

spectively. The magnitude of RH changes is typically

larger over land, in comparison to over ocean. A de-

crease in RH is observed over a majority of tropical land

(62%) and ocean (53%) areas, including South Amer-

ica, southern Africa, the Sahel, Southeast Asia, Aus-

tralia, and the subtropical Pacific. Furthermore, an

increase in SAT is observed over a high proportion of

tropical land (83%) and ocean (75%) areas. GPCP ob-

served precipitation anomalies are displayed in Fig. 2c.

Precipitation increases are evident over the western

Indian Ocean, central and eastern equatorial Pacific,

and eastern Asia. In addition, there are precipitation

decreases over the tropical Maritime Continent, the

western Pacific, South America, and the subtropical

central Pacific.

There is amoderate spatial correlation between the El

Niño precipitation and RH anomalies over ocean (0.51)

and land (0.59), as well as an anticorrelation between El

Niño RH and SAT anomalies over land (20.56). The

magnitude of spatial correlations between anomalous

precipitation and SAT are weaker over both land

(20.43) and ocean (0.41). These spatial correlations are

qualitatively consistent with temporal correlations for

in situ observation sites (Pfhal and Neidermann 2011).

Over both land and ocean, ENSO circulation and pre-

cipitation changes lead to surface RH changes through

changes in moisture advection and re-evaporation in the

boundary layer. Additionally, RH changes over land can

be linked with soil moisture changes that feedback on

evaporation and precipitation and with moisture ad-

vection from neighboring ocean regions (Chadwick

et al. 2016; Byrne and O’Gorman 2016).

Applying the Lambert et al. (2017) method using

ERA-Interim El Niño changes in RH and SAT bin

numbers and GPCP precipitation, the El Niño pre-

cipitation change is diagnosed. Figure 2d shows the

spatial pattern of the diagnosed precipitation change (cf.

Fig. 2c showing the observed precipitation change). The

spatial correlation between the observed and diagnosed

tropical changes is 0.69 (0.71 over ocean, 0.46 over land),

suggesting moderately good performance, especially

over ocean grid points. In addition, we note that the

signs of the large-scale features are correctly diagnosed:

increased precipitation in the western Indian Ocean and

the central and eastern Pacific Ocean, and decreased

precipitation over the eastern Indian Ocean, the Mari-

time Continent, and equatorial South America. How-

ever, there is a general underestimation of the magnitude

of the precipitation anomalies. Regressing the diagnosed

changes on the observed precipitation changes, the slope

estimate is 0.41, with a 95% confidence interval of [0.40,

0.43]. This is consistent with the weaker magnitudes of

diagnosed, compared to simulated, global warming shifts,

as presented in Lambert et al. (2017). A reason for the

weaker diagnosed magnitudes is the aggregation process

in the diagnosis method because bin averaging smooths

precipitation as a function of RH and SAT relative to

their tropical means.

Differences in diagnosis performance over land and

ocean are related to how closely the tropical tropo-

sphere satisfies the assumptions of the Lambert et al.

(2017) method. The ocean surface is essentially flat and

homogeneous, in contrast to orographic, vegetation, and

soil moisture variations over land. These surface attri-

bute differences lead to spatial variability in latent and

sensible heating over land, affecting boundary layer

dynamics. For example, there is a significantly stronger

diurnal cycle of convective intensity over land, in com-

parison to over ocean, linked with enhanced boundary

layer destabilization following daytime surface heating

(Nesbitt and Zipser 2003). Differences in aerosol con-

stituents over land and ocean may also affect convection

via microphysical processes and their effects on buoy-

ancy (Rosenfeld et al. 2008). Consequently, several

competing processes modulate conditional instability

and, hence, deep convection over land and ocean

(Schiro et al. 2016). Furthermore, over the Amazon and

Congo basins, sparse observational coverage may in-

crease uncertainty in ERA-Interim (Cowtan and Way

2014). This observational uncertainty may contribute to

weaker diagnosis performance over these areas.
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Boundary layer variations over land may lead to

horizontal temperature gradients in the lower tropo-

sphere, compromising the WTG approximation. This

suggestion is supported by Fig. 3, showing the seasonal

magnitude of the ERA-Interim zonal mean horizontal

temperature gradient at 500 hPa j=Tj. Between 158 and
308N, j=Tj is larger over land in both neutral andEl Niño
composites. The difference between land and ocean j=Tj
is especially large during Northern Hemisphere autumn

and winter, as shown by Figs. 3a and 3b. Generally, in all

seasons, the magnitude of horizontal temperature gra-

dients, which are largely meridional, increases poleward

from the equator. Because there is more land than ocean

between 208 and 308N, there is a larger fraction of land

grid points where the WTG approximation is only

weakly satisfied, and variations in free-tropospheric mois-

ture may be relatively large.

As discussed in section 3b, an implicit assumption of

the diagnosis method is a link between surface and

lower-tropospheric RH. There is evidence of this link in

ERA-Interim, where 63% and 66% of tropical land and

ocean areas, respectively, have a correlation in temporal

variability between surface and 700-hPa RH greater

than 0.5. Areas with low or anticorrelation are sub-

tropical Africa, Australia, and South America. These

regions are typically climatological descent regions, with

weak vertical mixing and relatively high stratification

(Sherwood et al. 2010). Examining Fig. 2a, there is evidence

FIG. 2. Color shading shows the July–June composite mean (El Niño minus neutral) anomalies: ERA-Interim

(a) surface RH, (b) SAT, (c) GPCP precipitation, and (d) diagnosed precipitation from the Lambert et al. (2017)

method. Black contours in (a) indicate the21% (dashed) and11% (solid) 700-hPa relative humidity anomaly, and

in (c) and (d) indicate the 20.5 (dashed) and 0.5 (solid) mmday21 GPCP precipitation anomaly. Spatial correla-

tions between the observed and diagnosed precipitation anomalies for tropical, oceanic, and land grid points are

denoted by rt, ro, and rl, respectively.
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of spatial variability in the link between surface and 700-hPa

RH El Niño anomalies. There is large-scale sign agreement

over much of tropical Africa, the equatorial Indian Ocean,

the western and central Pacific Ocean, and tropical South

America. However, there is weaker sign agreement, or dis-

agreement, over the equatorial eastern Pacific and western

Atlantic Oceans. These areas demonstrate relatively weak

diagnosis performance in Fig. 2d, with the magnitude of the

precipitation changes generally underestimated.

To assess the relative influence of RH and SAT

changes in diagnosis performances, we examine four

new configurations of the Lambert et al. (2017) method.

First, we bin (ENSO) neutral precipitation using neutral

RH and use the El Niño change in RH bin numbers to

diagnose the El Niño change in precipitation. This

configuration is termed ‘‘RH 1D’’ because it uses only

one surface variable (RH). A second, corresponding

configuration, ‘‘SAT 1D,’’ uses El Niño SAT bin num-

ber changes to diagnose the precipitation change. A

third configuration involves binning neutral precipitation

using both RH and SAT (as described in section 3b) and

using theElNiño change inRHbin number, as well as the

neutral SAT bin number, to diagnose the El Niño pre-

cipitation change. This configuration is termed ‘‘RH

partial 2D’’ because it considers El Niño changes in only

one of two surface variables (RH). The fourth configu-

ration, ‘‘SAT partial 2D,’’ uses El Niño SAT bin number

changes and neutral precipitation binned onRHand SAT

to diagnose precipitation changes. For completeness, we

refer to the original configuration as 2D for the remainder

of this study.

Diagnosed precipitation changes for the four new

configurations are presented in Fig. 4. Both the RH 1D

and partial 2D configurations diagnose a precipitation

pattern similar to the 2D configuration, as displayed in

Fig. 2d. In contrast, the SAT1Dandpartial 2Dconfigurations

diagnose a markedly different precipitation change pattern.

The SAT 1D and partial 2D methods diagnose increases in

theeasternequatorialPacific as a result of the relatively strong

surface warming associated with El Niño SST changes. The

RH1Ddiagnosismethod performs considerably better (0.56)

than the SAT 1D method (0.27) over both land and ocean

grid points. In particular, the SAT1Ddiagnosed precipitation

changes are weakly anticorrelated (20.28) with the observed

changes, while the RH 1D changes are positively correlated

(0.51). Comparable differences in the performance of theRH

(0.62) and SAT (0.39) partial 2D configurations are also

demonstrated. These results suggest that observed pre-

cipitation changes are more strongly linked with RH bin

number changes, in comparison with SAT bin number

changes. In particular, both the RH 1D and RH partial 2D

configurations over land perform equivalently well (0.51) and

better than the 2Dmethod (0.46), which uses changes in RH

and SAT bin numbers. We note that the relative importance

of RH changes, in comparison with SAT changes, is only

weakly linked with relative contributions to low-level MSE

changes, as discussed in appendix A.

The sum of the partial 2D changes, RH partial 2D plus

SAT partial 2D, represents the diagnosed precipitation

change due to independent changes in RH and SAT bin

numbers. This sum is strongly correlated (0.96) and

linearly related with the 2D diagnosed change, as shown

by Fig. 5a. Similarly, the sum of the 1D changes, RH 1D

plus SAT 1D, is well correlated (0.75) with the 2D di-

agnosed changes. This indicates that for the majority of

grid points, precipitation changes are linked with either

RHor SATbin number changes. Additionally, given the

base state SAT or RH bin in each case, the diagnosis

performance improves. The magnitudes of the differ-

ences between the 2D changes and the sum of the partial

2D changes, as displayed in Fig. 5b, are typically small

(,0.5mmday21) across the tropics. In a small area of the

FIG. 3. Zonal mean magnitude of the ERA-Interim horizontal temperature gradient at 500 hPa j=Tj vs latitude for each season. Blue

lines indicate the neutral (solid) andElNiño (dashed) compositemeans over ocean grid points. Green lines indicate the neutral (solid) and

El Niño (dashed) composite means over land grid points.
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central equatorial Pacific, both RH and SAT bin numbers

increase, leading to a large increase in precipitation, which

is underestimated by independent changes inRHand SAT

bin numbers. This demonstrates how the 2Dandpartial 2D

methods capture the nonlinear relationship between pre-

cipitation, RH, and SAT bin changes.

5. ENSO in climate model simulations

In section 4, we demonstrated that the Lambert et al.

(2017) method performs fairly well at diagnosing ENSO

precipitation shifts in present-day observations and re-

analysis. In this section, we examine whether consistent

performance is evident for climate model ENSO simu-

lations. Specifically, we test atmosphere-only (amip) and

coupled (piControl) experiments for a multimodel en-

semble of 18 climate models contributing to CMIP5.

The spatial correlation between simulated and di-

agnosed amip El Niño precipitation anomalies is 0.78 for

the MME mean and ranges between 0.51 and 0.8 for

individual models. For piControl El Niño precipitation

anomalies, the MME mean spatial correlation is 0.82,

and for individual models, correlations range between

0.5 and 0.87. Hence, for both experiments in all models,

the method performs relatively well at diagnosing El

Niño precipitation shifts. The MME mean patterns of

SAT, RH, and precipitation are smoother than those of

individual models. This is likely to contribute to the high

performance of the MME mean for both experiments,

relative to the individual models. For comparison, the

FIG. 4. Color shading shows the July–June mean diagnosed precipitation anomaly for four configurations of the

Lambert et al. (2017) method: (a) 1D using RH changes, (b) 1D using SAT changes, (c) partial 2D using RH

changes, and (d) partial 2D using SAT changes. Black contours indicate the20.5 (dashed) and 0.5 (solid)mmday21

GPCP precipitation anomaly, and rt, ro, and rl are as in Fig. 2.
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spatial correlation between observed and predicted

ERA-Interim–GPCP El Niño precipitation anomalies is

0.69. Therefore, the diagnosis performance of ERA-

Interim–GPCP lies within both the amip and piControl

MME variability.

Consistent with ERA-Interim–GPCP observations,

the diagnosis method performs better over ocean than

land in each model and the MME mean for both the

amip and piControl El Niño simulations. The majority

of models, in both experiments, simulate a decrease in

precipitation over the eastern Amazon basin, which

agrees well with GPCP observations. In these climate

model simulations and observations, the diagnosis

method typically underestimates the magnitude and

spatial extent of this precipitation decrease, diminishing

the overall land performance. The observed El Niño
precipitation decreases over southern Africa, and in-

creases over eastern China and equatorial Africa are

only weakly simulated by the MME, especially in the

piControl experiment. Hence, the simulated pre-

cipitation change signal over the majority of tropical

land areas is relatively weak. As discussed in section 4, a

number of factors affect boundary layer dynamics,

modulating deep convection differently over land and

ocean and influencing diagnosis performance. Differ-

ences in the suitability of the Lambert et al. (2017)

method assumptions contribute to the varying disparity

in land and ocean diagnosis performance for each model.

Examining Fig. 6, the amip simulated El Niño pre-

cipitation anomalies are similar to the GPCP observed

precipitation anomaly (see Fig. 2c). There is moderate

intermodel variability in the simulated precipitation

anomalies, especially over tropical Africa and South

America. This variability is likely to be linked with dif-

ferences in atmospheric simulation. However, the key

observed features and good diagnosis performance are

evident in all models. For example, eachmodel simulates a

precipitation increase (.0.5mmday21) in the central and

eastern equatorial Pacific and a precipitation decrease

(,20.5mmday21) in the western and off-equatorial Pa-

cific. TheLambert et al. (2017)method adequately predicts

this shift in precipitation for each model, given the simu-

lated El Niño changes in RH and SAT.

The coupled model piControl simulated and di-

agnosed El Niño precipitation anomalies are displayed

in Fig. 7. There is greater intermodel variability in these

patterns, in comparison with the amip simulations and

diagnoses. This increased variability is due to model

differences in simulated El Niño SST anomalies and

ocean–atmosphere feedbacks (Guilyardi et al. 2009).

Despite this variability, the Lambert et al. (2017) di-

agnosismethod performs relatively well at diagnosing El

Niño precipitation changes across the tropics in each

model. Moreover, the MME range of spatial correla-

tions between simulated and diagnosed precipitation

changes is similar for both prescribed SST (atmosphere

only) and coupled (atmosphere–ocean) experiments.

This suggests that the Lambert et al. (2017) method is

flexible and capable of diagnosing shifts linked with a

variety of El Niño SST anomalies.

Intermodel variability in the diagnosis performance is

linked with how well each model satisfies the method

assumptions, as outlined in section 3b. There is a sig-

nificant correlation in intermodel variability between

amip and piControl El Niño diagnosis performance

across the tropics (0.63) and over tropical ocean grid

points (0.64). To support these correlations, Fig. 8 dis-

plays scatterplots of amip versus piControl diagnosis

performance. There is evidence of a positive linear as-

sociation in performance between the atmosphere-only

and the coupled experiments over ocean. This indicates

that the performance of the Lambert et al. (2017)

method over ocean grid points is relatively independent

of how the model simulates SST, so atmospheric pro-

cesses are the main source of model differences in di-

agnosis performance over ocean.

FIG. 5. (a) ERA-Interim–GPCP July–Junemean 2Ddiagnosed precipitation changes vs the

sum of the RH partial 2D and SAT partial 2D diagnosed precipitation changes, with the blue

dashed line indicating the regression slope. (b) 2D diagnosed precipitation changes minus the

sum of the RH partial 2D and SAT partial 2D diagnosed precipitation changes. Note the

smaller range of the color scale, in comparison to Fig. 4.
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FIG. 6. Color shading shows amip El Niño diagnosed precipitation anomalies for 18 models and the MME mean. Dashed and solid

contours indicate the simulated20.5mmday21 and 0.5mmday21 precipitation, respectively. The triplet in parentheses (rt, ro, rl) indicates

the spatial correlation over the tropical, oceanic, and land grid points, respectively.
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FIG. 7. As in Fig. 6, but for piControl El Niño diagnosed precipitation anomalies.
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Comparing amip and piControl diagnosis performance

over land, the correlation in intermodel variability is

much weaker (0.16), and Fig. 8c suggests there is little

evidence of a linear relationship. Several factors may

contribute to this inconsistency, in comparison with amip

and piControl performance over ocean. Diagnosis per-

formance over land is uniformly weaker than perfor-

mance over ocean in observations, as discussed in section

4. Therefore, the smaller magnitude of the spatial corre-

lations may inhibit any clear relationship in performance

between the amip and piControl diagnoses. In addition,

there is larger intermodel variability of El Niño telecon-

nection patterns over land in piControl simulations, in

comparison with amip simulations, as displayed in Figs. 6

and 7. Consequently, amip and piControl El Niño pre-

cipitation shifts may be located over areas where the

suitability of the WTG approximation changes.

6. Relating ENSO and global warming
precipitation change diagnoses

In this section, we extend our analysis of the Lambert

et al. (2017) method to examine the diagnosis perfor-

mance for simulated global warming precipitation

changes. We note that the tropical mean precipitation

changes under global warming (6.0% for theMMEmean)

are substantially larger than El Niño–related changes

(0.1% for the amip MME mean). This highlights the

importance of the thermodynamic scaling when ap-

plying the diagnosis method to simulated global

warming precipitation changes.

Spatial correlations between simulated and diagnosed

global warming precipitation anomalies range between

0.30 and 0.81 for individual models, and theMMEmean

spatial correlation is 0.64. Hence, there is a broader

intermodel range of performance for global warming, in

comparison with amip and piControl El Niño diagnosed

precipitation changes. Figure 9 displays the simulated

and diagnosed global warming precipitation anomalies

for each model in the MME. We note large intermodel

variability in the sign of precipitation changes, especially

over tropical Africa and the Maritime Continent.

However, the majority of models indicate precipitation

increases over the equatorial Pacific and decreases over

tropical South America. Model differences in SST pat-

tern change and convergence zone shifts contribute to

this intermodel variability in simulated precipitation

change (Xie et al. 2010; Chadwick et al. 2013), as dis-

cussed in the introduction.

Similar to El Niño observations and climate model

simulations, diagnosis performance is weaker over land,

in comparison to over ocean, for the majority of the

MME for global warming simulations. A number of

models, such as CNRM-CM5 and CSIRO Mk3.6.0,

simulate small precipitation changes over tropical land.

Other models, such as GFDL CM3, GISS-E2-R,

FIG. 8. Spatial correlations between simulated and diagnosed precipitation anomalies for July–June mean amip El Niño vs piControl El

Niño, over the (a) tropics, (b) tropical oceans, and (c) tropical land. The dashed black line indicates the 1:1 diagonal.
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FIG. 9. As in Fig. 6, but for the abrupt4xCO2 minus piControl January–December mean diagnosed precipitation anomalies.
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MIROC5, and IPSL-CM5A-LR, simulate small-scale,

local precipitation changeswith large spatial heterogeneity.

Subsequently, the diagnosis method fails to detect these

weak signals. Regionally, diagnosis performance is quite

model dependent. Examining larger-scale simulated pre-

cipitation changes over tropical Africa, the correct sign is

diagnosed for ACCESS1.3 and BNU-ESM. However,

CCSM4, HadGEM2-ES, CanESM2, and NorESM1-M

simulate increases in precipitation that are falsely di-

agnosed as decreases. Diagnosis performance for the

MME is stronger over tropical South America, where the

simulated precipitation decreases are correctly diagnosed

for ACCESS1.0, ACCESS1.3, CanESM2, CCSM4, and

NorESM1-M. Diagnosis performance over land is related

to the satisfaction of the method assumptions for each

model simulation, as discussed in section 5.

Comparing RH partial 2D diagnoses for amip El Niño
and global warming precipitation changes, there is a

significant correlation in intermodel variability in per-

formance over ocean (0.68). This contributes to a posi-

tive correlation in performance across the tropics (0.5),

despite a very weak correlation in performance over

land (0.15). In addition, Fig. 10b demonstrates evidence

of a linear association between amip El Niño and global

warming RH partial 2D performance over ocean. Sim-

ilarly, the intermodel correlation between piControl El

Niño and global warming performance over ocean is

larger (0.53) than for performance over land (0.15).

Therefore, in models where the RH partial 2D method

performs well over ocean at diagnosing El Niño shifts,

typically the method also performs well at diagnosing

global warming shifts, and vice versa.

Notably, correlations in intermodel variability be-

tween the 2D diagnosis method performance for amip

El Niño and global warming precipitation changes are

weaker across the tropics (0.25) and over tropical ocean

(0.40) (Fig. 11). Similar weaker relationships between

piControl El Niño performance and global warming

performance over the tropics (20.03) and tropical

oceans (0.1) are also present. This suggests that the in-

clusion of SAT bin number changes affects the method

performance differently for El Niño and global warming

FIG. 10. RH partial 2D diagnosis performance (spatial correlation) for amip El Niño vs abrupt4xCO2minus piControl global warming for

the (a) tropics, (b) tropical ocean, and (c) land grid points. The dashed black line indicates the diagonal, and markers are as in Fig. 8.

FIG. 11. As in Fig. 10, but for 2D diagnosis performance.
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precipitation changes, mainly over tropical oceans. For

amipElNiño diagnoses, the inclusion of SATbin number

changes in the 2D configuration improves weaker per-

formance greatly and stronger performancemoreweakly.

For example, the INM-CM4.0 spatial correlations in-

crease from 20.15 to 0.51, whereas the MRI-CGCM3

spatial correlations increase from 0.65 to 0.8. In contrast,

using SAT bin number changes in the 2D configuration

improves performance more uniformly for diagnosed

global warming precipitation changes. These results in-

dicate that the precipitation–RH bin link over ocean is

consistent within models for both El Niño and global

warming precipitation changes. The relationship between

RH partial 2D and 2D performance in the MME is dis-

cussed further in appendix B.

A more consistent result linking El Niño and global

warming diagnoses is presented by assessing spatial

variations in the performance of the Lambert et al.

(2017) method. We define the zonal correlation as the

gridpoint correlation between simulated and diagnosed

precipitation changes along each 2.58 latitude band.

These zonal correlations are calculated for each model

in the MME for the amip and piControl El Niño and

global warming precipitation changes. The MME me-

dian and interquartile range of these zonal correlations

for each case are displayed in Fig. 12. The interquartile

ranges are relatively narrow, especially for the El Niño
cases, suggesting that the MME median is representa-

tive of each model. Zonal correlation is largest near the

equator for the amip (0.8) and piControl (0.7) El Niño
and for the global warming–diagnosed precipitation

changes (0.65). In each case, the MME median zonal

correlation decreases rapidly poleward. Correspondingly,

the magnitude of simulated free-tropospheric temperature

gradients is weakest near the equator and increases pole-

ward, similar to ERA-Interim, as discussed in section 4.

Additionally, the link between surface and lower-

tropospheric RH is weakest in subtropical regions. This

suggests that the Lambert et al. (2017) method performs

best in the deep tropics and isweaker in subtropical regions

for both El Niño and global warming precipitation changes.

Furthermore, this variation in performance is consistently

linked in each model with the suitability of the method

assumptions.

7. Summary and conclusions

Returning to the introduction, the first question to

address is this: Does the Lambert et al. (2017) method

adequately diagnose present-day ENSO precipitation

shifts? The results presented in sections 4 and 5 dem-

onstrate moderately good performance of the diagnosis

method for observations and reanalysis (ERA-Interim–

GPCP), and climate model simulations. Furthermore, in

ERA-Interim–GPCP, the method performs successfully,

as the main assumptions are well justified. Precipitation

as a function of local RH and SAT is similar for both El

Niño and neutral conditions, supported by Fig. 1a. This is

perhaps a necessary result to suggest that precipitation as a

function of relative RH and SAT may remain invariant

under future climate perturbations. In addition, the dis-

parity in performance over tropical land and oceanmay be

linked with the applicability of the WTG approximation

over these domains. This demonstrates an important factor

that influences the performance of the prediction method.

Considering predictions of ENSO simulated pre-

cipitation shifts in climate models, performance disparity

over land and ocean is a consistent feature with the ob-

servations and reanalysis. Overall performance across the

tropics is quite good in a variety of model simulations in

both atmosphere-only and coupled experiments. This

demonstrates that the method is flexible because it

FIG. 12. Zonal correlation vs latitude for simulated and diagnosed precipitation anomalies for (a) amip El Niño, (b) piControl El Niño,
and (c) abrupt4xCO2minus piControl global warming. Black lines show the median (solid) and upper and lower quartiles (dashed) of the

CMIP5 multimodel ensemble variability.
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performs well for a variety of simulated El Niño SST

patterns. Moreover, there is evidence of a linear re-

lationship (0.64) in performance over ocean between the

two experiments. This suggests that the ability of the

method to diagnose precipitation shifts over ocean is

relatively independent of how SST conditions are simu-

lated. Therefore, model differences in atmospheric pro-

cesses are a likely source of method performance

variability. Analyzing 1D and partial 2D configurations of

the Lambert et al. (2017) method, surface RH is a more

important predictor than SAT for ENSO precipitation

diagnosis. In particular, including SAT changes in the

method does not improve the performance over land.

A second question was presented in the introduction:

What factors influence the performance of the diagnosis

method for ENSO and global warming precipitation

shifts? Section 6 presents moderate evidence of a linear

relationship (0.68) in prediction performance over

ocean between amip ENSO and abrupt4xCO2 minus

piControl global warming simulations for the RHpartial

2D method. We suggest that this link in performance is

associated with a common RH and precipitation change

process over ocean for both simulated ENSO and global

warming. An interesting question for future work is why

SAT affects diagnosis performance differently for

ENSO and global warming precipitation changes. A

robust relationship between the spatial performance of

the diagnosis method and the suitability of the WTG

approximation is present for both simulated El Niño and
global warming precipitation changes, with the method

performing better in the equatorial regions in both ca-

ses. Furthermore, method performance weakens as

horizontal temperature gradients increase poleward of

the deep tropics for both ENSO and global warming.

Linking to Lambert et al. (2017), an important finding

of this work is that areas of relatively high RH are ob-

served over land in the present day. Therefore, simulated

decreases in RH under global warming could plausibly

lead to reduced precipitation via the diagnosis method

presented here. In addition, some CMIP5 model pi-

Control simulations have a large negative RH bias over

land and, hence, are inconsistent with present-day ob-

servations. These models simulate an increase in trop-

ical precipitation over some tropical land areas under

global warming, which may be unrealistic due to this

RH bias.

A few caveats and important areas of future work are

associated with this study. There are large differences in

the magnitude of observed ENSO and simulated global

warming RH and SAT changes. Performance of the

diagnosis method over land for observed El Niño shifts

is quite weak (0.46), and there is broad intermodel

variability for both amip (0.19–0.58) and piControl

(0.21–0.52) simulations. It is also important to note that

the majority of large observed ENSO precipitation

changes are over ocean, so the ENSO signal is relatively

weaker over tropical land. Additionally, various con-

flicting factors may contribute to this poor performance

over land, as discussed in section 4. One method to

quantify the effect of these factors on diagnosis performance

would be tousemultiple regression; this could form thebasis

for a future study. Another area of future work is to im-

plement the Lambert et al. (2017)method in an appropriate

statistical modeling framework, such as a generalized addi-

tive model (Wood 2006), in order to calculate uncertainty

estimates for the diagnosed precipitation shifts. This could

lead to a more robust assessment of the diagnosis method

performance.

The Lambert et al. (2017) diagnosis method postu-

lates that precipitation changes can be characterized by

relative changes in SAT and RH. From the results pre-

sented in this study, we suggest that the performance of

this diagnosis method is related to the satisfaction of

three main assumptions: 1) tropical precipitation as a

function of SAT and RH bin number is structurally

similar under climate perturbations; 2) free-tropospheric

horizontal temperature gradients are small, so relative

surface conditions influence convection; and 3) surface

and lower-tropospheric RH changes are linked. This

study and the Lambert et al. (2017) method improve our

understanding of the problems surrounding prediction

of future precipitation shifts. Markedly different mech-

anisms contribute to simulated precipitation change for

ENSO and global warming. However, a consistent fea-

ture across observations, reanalysis, and atmosphere-

only and coupled climate model simulations is that

the heaviest tropical precipitation is typically anchored

above the relatively warmest and most humid locations.

We have illustrated how under climate perturbations

such as ENSO or global warming, shifts in tropical pre-

cipitation can be largely determined by changes in surface

relative humidity and air temperature.
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APPENDIX A

Relative Contributions of RH and SAT to Low-Level
MSE

To examine the relative effects of RH and SAT

changes to precipitation changes, we decompose

low-level moist static energy (MSE) changes. Low-

level MSE is defined as Lyq 1 cpT, where q and T are

surface specific humidity and air temperature, re-

spectively, Ly ’ 2.5 3 106 J kg21 is the latent heat of

vaporization of water, and cp ’ 1005 J kg21K21 is the

specific heat capacity of air at constant pressure.

Specific humidity is a function of relative humidity and

temperature. A component of specific humidity change

linking the Clausius–Clapeyron relation DqCC is due to

a fractional change in saturated vapor pressure with-

temperature change. The residual component of specific

humidity change DqRH 5 Dq 2 DqCC is therefore linked

with relative humidity changes (Chadwick et al. 2013).

Changes in low-level MSE can thus be decomposed into

FIG. A1. Color shading shows the July–June El Niño minus neutral mean surface (a) MSE change and its de-

composition, (b)MSEchanges directly due to temperature changes, (c)MSE changes due to the effect of temperature

change on specific humidity change, and (d) MSE changes due to relative humidity changes. Black contours indicate

the 20.5 (dashed) and 0.5 (solid) mmday21 GPCP precipitation change, and rt, ro, and rl indicate the spatial cor-

relation with the precipitation change over the tropical, oceanic, and land grid points, respectively.

1430 JOURNAL OF CL IMATE VOLUME 31

http://www.esrl.noaa.gov/psd/


three terms: DMSE 5 LyDqRH 1 LyDqCC 1 cpDT. Here,

LyDqRH and LyDqCC 1 cpDT represent MSE changes as-

sociated with RH and SAT changes, respectively.

ERA-Interim El Niño changes in low-level MSE are

moderately correlated withGPCP precipitation changes

over ocean (0.58) but are uncorrelated over land (0.07),

as demonstrated by Fig. A1a. This suggests that different

mechanisms may control precipitation changes over

land and ocean. The decomposition of the low-level

MSE change is shown in Figs. A1b–d. The RH-related

component LyDqRH is correlated with precipitation

changes over both land (0.57) and ocean (0.57). In

contrast, the SAT-related components, cpDT and Ly

DqCC, are anticorrelated with precipitation change over

land. These results indicate that the dominance of RH

changes over SAT changes for diagnosing ENSO pre-

cipitation changes is not simply explained by their rel-

ative contributions to low-level MSE changes. Other

mechanisms, such as changes in lifting condensation

level or entrainment, may be important for determining

changes in convection.

APPENDIX B

Comparing RH Partial 2D and 2D Configurations of
the Lambert et al. (2017) Method

Intermodel variability demonstrates that RH partial

2D and 2D performance over land and ocean is well

correlated for amip (0.9 over land, 0.88 over ocean) and

piControl (0.86 over land, 0.79 over ocean) El Niño
precipitation changes, as well as global warming pre-

cipitation changes (0.84 over land, 0.55 over ocean).

Additionally, Fig. B1 indicates that RH partial 2D and

2D performance over land is linearly related and ap-

proximately equivalent in each model for the three ca-

ses. This suggests that including SAT bin number

changes in the 2D diagnosis method does not sub-

stantially affect performance over land. However,

Fig. B2 demonstrates that the 2D configuration consis-

tently outperforms theRHpartial 2D configuration over

ocean. This highlights the influence of SAT bin number

changes in contributing to El Niño and global warming

FIG. B2. As in Fig B1, but over ocean grid points.

FIG. B1. RH partial 2D vs 2D diagnosis performance (spatial correlation) over land grid points for (a) amip El Niño, (b) piControl El
Niño, and (c) abrupt4xCO2 minus piControl. The dashed black line indicates the 1:1 diagonal, markers are as in Fig. 8, and the black star

indicates ERA-Interim–GPCP for reference.
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precipitation changes over ocean. This supports results

in the literature suggesting that tropical SST and pre-

cipitation pattern changes under global warming are

likely to be strongly linked (Xie et al. 2010).
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