
1

An Effective Approach to Controller Placement in
Software Defined Wide Area Networks

Guodong Wang∗, Yanxiao Zhao∗, Jun Huang†, Yulei Wu‡
∗Department of Electrical and Computer Engineering,

South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
†School of Computer Science and Technology,

Chongqing University of Posts and Telecom, Chongqing, 400065, China
‡College of Engineering, Mathematics and Physical Sciences,

University of Exeter, Exeter, EX4 4QF, UK

Abstract—One grand challenge in Software Defined
Networking (SDN) is to select appropriate locations for
controllers to shorten the latency between controllers and
switches in wide area networks. In the literature, the
majority of approaches are focused on the reduction of
packet propagation latency, but propagation latency is
only one of the contributors of the overall latency between
controllers and their associated switches. In this paper, we
explore and investigate more possible contributors of the
latency, including the end-to-end latency and the queuing
latency of controllers. In order to decrease the end-to-end
latency, the concept of network partition is introduced and
a Clustering-based Network Partition Algorithm (CNPA)
is then proposed to partition the network. The CNPA can
guarantee that each partition is able to shorten the maxi-
mum end-to-end latency between controllers and switches.
To further decrease the queuing latency of controllers,
appropriate multiple controllers are then placed in the
subnetworks. Extensive simulations are conducted under
two real network topologies from the Internet Topology
Zoo. The results verify that the proposed algorithm can
remarkably reduce the maximum latency between con-
trollers and their associated switches.

Index Terms—Controller Placement Problem, SDN, La-
tency, WAN

I. INTRODUCTION

The proliferation of new computing technologies such
as big data, Internet of Things (IoT) and cloud services
fundamentally change the way we store, acquire and
transfer information and data. Accompanied with these
new computing trends, challenges including network
upgrade and management, resource utilization, and high-

This paper is an extended version of our paper published in the
2016 IEEE International Conference on Communications (ICC) [1]
Please refer to Dr. Guodong Wang via wgdaaa@gmail.com for more
information. Dr. Jun Huang’s work was supported in part by NSFC
(Grant number 61309031 and 61671093)

speed transmission, are raised. To tackle these chal-
lenges, Software Defined Networking (SDN) is envi-
sioned as a promising paradigm for the next-generation
networking. Compared with conventional networking,
SDN decouples the control plane from data plane. That
is, the control plane is formed by a set of dedicated
controllers and each of them manages one or more
simplified packet-forwarding switches. As a result, the
control and management functions are implemented at
SDN controllers so that applications and network ser-
vices are abstracted from the underlying infrastructure.

(1) miss in flow table

packet

security

channel

(2
) flo

w
 tab

le req
u

est

(3
) flo

w
 tab

le in
stallatio

n

(4) forwarding

Control Plane

Data Plane

End-to-end latency

Queuing latency

Fig. 1. Demonstration of the packet process in OpenFlow

In SDN, the software based controller serves as
the network intelligence, and network switches become
simple packet forwarding devices, which can be pro-
grammed via an open interface, e.g., OpenFlow [2]. A
simplified model is illustrated in Fig. 1 to demonstrate
the packet delivery process in the OpenFlow: (1) if a
packet arrives at a switch but the flow table in this
switch does not match this packet, (2) the switch will
generate a request packet and send it to its associated
controller. After receiving this request, (3) the controller
will respond this switch with a new forwarding policy
and the switch will update its flow table accordingly.
Afterwards, (4) the packet is delivered based on the



2

updated flow table.
As illustrated in this model, all functions of SDN

are carried out through frequent message exchanges
between controllers and switches. Therefore, the lo-
cation of controller(s) dramatically influences message
exchanges, and hence affects the performance of SDN.
The problem of exploring appropriate locations for con-
trollers is termed as the controller placement problem.
This problem refers to how to place controllers in an
SDN-enabled network and allocate associated switches
to those controllers so as to achieve an objective. The
controller placement is more significant for wide area
networks, because of their irregular topology and large
packet propagation latency.

In the efforts to address the controller placement
problem in SDN, numerical metrics have been proposed
in the literature. Among those metrics, network latency
between controllers and switches plays the most critical
role, since it heavily affects the overall performance of
SDN [3] [4]. For example, if a packet does not match
the flow table in a switch, the switch needs to wait
for a period of time (processes (2) and (3) in Fig. 1)
to get new flow tables installed before processing the
packet. Apparently, a long period of waiting time will
degrade the overall performance of SDN, e.g., time-
insensitive applications may slow down, while real-time
tasks may become infeasible. Generally speaking, links
with limited bandwidth and heavy traffic are prone to
experience congestion, and thus lead to extra latency.
Due to the unique feature of SDN, the latency resulted
from congestion between controllers and switches is
quite limited in an SDN-enabled network. First, the
control plane is separated from the data plane in SDN,
so the control message between controllers and switches
is transmitted in a dedicated channel (out-of-band mode)
[5] [6]. In addition, the control messages are relatively
light flows in comparison to the loads in the data plane
[7].

Considering the significance of latency between con-
trollers and switches, methods have been proposed in
the literature to decrease the propagation latency. How-
ever, the propagation latency is only one component of
the overall latency. Other components include packet
transmission latency, switch processing latency and the
queuing latency of controllers. An in-depth and quan-
titative investigation of the overall latency, especially
the queuing latency in controllers, has received limited
investigation in the literature.

In this paper, we investigate the overall latency be-
tween controllers and switches, and seek solutions to
shorten the latency in wide area networks. Since the
overall latency includes the end-to-end latency (packet

transmission latency, packet propagation latency and
switch processing latency) and the controller’s queuing
latency, we address them separately. First, we propose
to partition a network into subnetworks to shorten the
end-to-end latency between controllers and switches. A
Clustering-based Network Partition Algorithm (CNPA)
is developed to conduct the network partition. The CNPA
can guarantee that each partition is able to shorten the
maximum end-to-end latency between controllers and
their associated switches. Second, we propose to place
multiple controllers in subnetworks that have a large
number of switches to further reduce the queuing latency.
In order to quantitatively measure the queuing latency,
queuing theory is adopted in this paper to formulate the
relationship between the number of controllers and the
queuing latency. Appropriate number of controllers is
calculated for each subnetwork and multiple controllers
are placed in subnetworks to shorten the queuing latency.

The main contributions of this paper are briefly high-
lighted as follows.

• The overall latency between controllers and switch-
es in an SDN-enabled network is well investigated
in this paper. Different from the existing work, we
explore more possible contributors to the overall
latency. Specifically, the overall latency consists of
the end-to-end latency and the controllers queuing
latency. The end-to-end latency further includes
the packet transmission latency, packet propagation
latency and switch processing latency.

• The concept of network partition is introduced in
this paper to tackle the controller placement prob-
lem. In order to shorten the end-to-end latency, we
propose to partition a network into subnetworks and
place appropriate controllers for each subnetwork.
A clustering-based network partition algorithm is
then proposed to address the network partition prob-
lem. This algorithm guarantees that each partition
is able to shorten the maximum end-to-end latency
between controllers and their associated switches.

• Multi-controller placement is proposed to shorten
the queuing latency of controllers. Leveraged by
queuing theory, appropriate number of controllers
is calculated for each subnetwork, and multiple
controllers are placed in subnetworks that have
dense switches to decrease the queuing latency
of controllers, and thus reduce the total latency
between controllers and switches.

• Extensive simulations are conducted under two re-
al network topologies from the Internet Topology
Zoo. The simulation results verify that the pro-
posed algorithm has greatly decreased the latency



3

between controllers and their associated switches in
comparison with the K-means and K-center, which
are adopted widely in the literature to address the
controller placement problem.

The rest of the paper is organized as follows. In
Section II, the related work is introduced. Section III
formulates the problem mathematically. In Section IV,
the proposed new solution is described in details. Section
V presents the performance analysis of the solution.
Concluding remarks are drawn in Section VI.

II. RELATED WORK

Controller placement in SDN is one of critical prob-
lems and has attracted extensive attention in the liter-
ature. The controller placement aims to find out the
best k locations in an SDN-enabled network to place
controllers in order to enhance the efficiency of net-
work management [8]. Due to the logic separation in
SDN, network management is achieved through effi-
cient communications between controllers and switches
(north/south), as well as the communications among
controllers (east/west). Neither of these two topics is a
trivial problem in the literature. In this paper, we mainly
focus on the controller placement aiming to optimize
the communication between controllers and switches, be-
cause: (1) the majority of controller placement methods
are proposed to enhance the communication between
controllers and switches, and (2) the communication
among controllers can be referred from multi-controller
approaches, e.g., the inter-domain component in DISCO
[9] and the Network Information Base in Onix [10]. In
this section, we briefly review the research on controller
placement in the literature. The existing research can
be classified into four categories with regard to their
objectives [8]: reducing network latency between con-
trollers and switches, increasing reliability and resilience,
reducing deployment cost and energy consumption, and
the multi-objective approach.

A. Reduce network latency between controllers and
switches

In an SDN-enabled network, the latency between
controllers and switches is especially critical, because the
control logic of the network is decoupled from simplified
switches and all of the functions of the network are car-
ried out through message exchanges between controllers
and switches. Heller et al. [11] initiate the study on
controller placement in SDN and propose that propaga-
tion latency (average propagation latency and worst-case
propagation latency) is the main consideration in their
study. This problem is formulated as a facility location

problem and K-center is adopted to address this problem.
Yao et al. [12] move forward by considering both the
propagation latency and the controller capacity. Thus the
placement is regarded as a variant of the capacitated
K-center problem [13]. Their simulation results show
that the proposed solution can reduce the number of
controllers and the load of the busiest controllers. The
tradeoff between propagation latency and traffic load is
investigated in [14]. The simulation results show that
the load in control plane can be balanced with a little
increment of the delay. [15] investigates the controller
placement problem from another point of view. Instead
of directly minimizing the latency between controllers
and switches, it aims to maximize the number of con-
trolled switches within a latency bound.

B. Increase reliability and resilience

Reliability and resilience are drawing attention of
researchers in the literature. In the efforts to increase
the reliability of SDN, Zhang et al. [16] propose a min-
cut based algorithm to minimize the likelihood of loss of
connectivity between the controller and switches. Hu et
al. further [17] study the controller placement problem
for reliability and propose a greedy algorithm to achieve
an efficient placement and reliability. The general goal
of Survivor [18] is to maximize connectivity between
forwarding devices and controllers instances. Their study
verifies that the path diversity can increase the surviv-
ability during fail over states. The similar researches also
include K-Critical [19]. Simulated annealing is adopted
in [20] to increase the reliability of SDN by placing
appropriate controllers in the network. Different from
the research which improves the resilience of the south-
bound connections, an approach is proposed in [21]
to endure controller failures in SDN-enabled wide area
networks.

C. Reduce deployment cost and energy consumption

The network cost and energy consumption have also
been investigated in the literature. The network cost
is composed of the deployment cost and energy con-
sumption. In order to formulate the deployment cost,
authors of [22] develop an optimal model and the over-
all energy consumption is reduced according to their
simulation. The main challenge of this model is its
big complexity, e.g., some of the calculations cannot
be achieved within 30 hours. In contrast, a dynamic
solution is then proposed in [23] to dynamically add
or delete controllers according to the change of loads.
One of the methods to minimize the energy consumption
is GreCo [24]. It proposes to shut down unnecessary



4

links while ensuring connectivity between switches and
controllers. According to the simulation, GreCo is able
to save up to 55% energy during off-peak hours. The
other approach is developed in [25], which proposes
to determine the number of controllers first and then
activate required controllers to save energy. Another
model [26] is developed to minimize the update cost
when new switches are added to an existing network.
Since the proposed model is not limited in SDN-enabled
networks, it can also be used to plan a new network or
update any existing networks.

D. Multi-objective approach

When multiple objectives are considered, it is neces-
sary to address the controller placement problem through
multiple-objective optimization. A representative work
was conducted in [27], which discussed the controller
placement problem by focusing on the resilience and fail-
ure of SDN-based core networks. A toolset named POCO
was proposed to provide network operators with Pareto-
optimal placements. Their findings further revealed that
for most of the topologies more than 20% of all nodes
should be controllers to guarantee a continuous connec-
tion of all nodes to one of the controllers in any arbitrary
double link or node failure scenario. The POCO toolset
is extended in [28] by adding a heuristic approach, which
is less accurate, but yields faster computation times to
cope with dynamics of large scale networks. Trade-
off between time and accuracy is analyzed in detail
via numerous real topologies. Authors of [29] propose
an SDN-based management and control framework for
fixed backbone networks. Algorithms were developed to
allocate managers and controllers in the control layer
to achieve adaptive load-balancing and energy manage-
ment. In [30], a density based controller placement is
developed to address the controller placement in terms
of latency, fault tolerance, and number of controllers.
Performance evaluations have verified that this approach
achieves a desirable performance and reduces the execut-
ing speed at the same time. Authors of [31] formulate the
controller placement problem to a multi-objective model,
which aims to increase network reliability, maximize
controller load balance and minimize latency between
controllers and switches. The simulation results indicate
that the proposed approach improves network perfor-
mance and achieves a desirable tradeoff among these
objectives.

According to our investigation, most of the above-
mentioned approaches only consider the packet propa-
gation latency between controllers and switches when
proposing solutions to minimize the latency. However,

the propagation latency is only one of the contribu-
tors for the overall latency. Other contributors include
packet transmission latency, switch processing latency,
and queuing latency of controllers. Therefore, it requires
a more extensive research which includes all of these
components. In this paper, we explore all of the possible
latencies between controllers and switches, and seek
solutions to shorten the latencies.

III. PROBLEM FORMULATION

The latency between controllers and their associated
switches is critical for SDN, because all of the functions
in an SDN-enabled network are achieved by frequent
message exchanges between controllers and switches.
In this section, we investigate the possible components
of the latency between controllers and switches and
formulate the controller placement problem.

A. End-to-end latency

For an SDN-enabled network with given nodes and
links, let S = {s1, s2, · · · , sm} denote the switches
in the network, and C = {c1, c2, · · · , cn} denote the
controllers. Assume the hop number from switch sm
to controller cn is denoted by h(sm, cn). Fig. 2 depicts
the end-to-end latency when transmitting a packet from
switch s1 to controller c1.

Fig. 2. The end-to-end latency of packet transmission in SDN

The end-to-end latency of transmitting a packet from
switch s1 to controller c1 is composed of three compo-
nents: packet transmission latency (DTi), packet prop-
agation latency (DPi) and switch processing latency
(DSPi). The transmission latency refers to the time taken
to push the bits of a packet onto the link. It is given by
DTi = Pi/Bi, where Pi is the amount of bits of a packet
in link i and Bi is the bandwidth of the link. Note that
the bandwidth of a specific link is determined by the
minimum transmission rate of the network interfaces,
e.g., B1 = min(S1out, S2in) as depicted in Fig. 2. The
packet propagation latency refers to the time taken for
a packet to reach the destination. The propagation delay
is given by DPi = di/s, where di is the distance of
link i and s is the signal speed at which data travels



5

through the medium. The switch processing latency is
denoted to Dspi, which is affected by the load of switch
i. Therefore, the end-to-end latency for a packet traveling
from switch sm to controller cn is formulated by

De2e(sm, cn) =

h(sm,cn)∑
i=1

(
Pi

Bi
+

di
S

+DSPi−1
) (1)

Note that those three components of the end-to-end
latency do not weigh equally in different networks. For
instance, for a Local Area Network (LAN) with low
speed bandwidth and limited transmission range, the
packet transmission latency (DT ) is dominant in the end-
to-end latency, while the propagation latency (DP ) can
be ignored. In contrast, for a backbone network which is
equipped with 10 Gbps or even 100 Gbps switches [32]
[33] and crosses thousands of miles, the packet transmis-
sion latency is negligible, while the packet propagation
latency dominates. The switch processing delay (DSP )
is mainly determined by the performance of switches.
High performance switches with wire-speed switching,
low latency and small jitter are usually adopted in back-
bone networks. Recently, great developments have been
achieved in SDN switches. For example, as reported in
[34], Corsa DP2100 [33] can achieve 100 Gbps line-rate
throughput, which means the switch processing delay
(DSP ) can be ignored if those switches are adopted in
an SDN-enabled back bone network.

B. Queuing latency in controllers

In an SDN-enabled network, if a packet arrives at
a switch with unmatched flow table to this packet, the
switch will generate a request packet to controllers. To
fully understand how a request is sent to controllers,
the service model between controllers and switches is
depicted in Fig. 3. This model is based on a working
principle of the cluster-based multiple controller ap-
proach: ONOS [35]. As one of the most famous SDN
control plane architectures, ONOS is attracting more and
more attention in the academia and industry [36] [37],
and has been deployed in both production and research
networks [38], including GEANT pan European Net-
work, FIU/AMLight network, Internet2 AL2S network,
etc. In ONOS, switches are connected to multiple ONOS
controllers for load-balancing and high availability. The
scheduler adopted in the model is referred from the
ONOS application management subsystem, which is
responsible for distributing load among multiple con-
trollers.

Assume there are j switches which are connected to
m controllers, and both the switches and controllers are

Fig. 3. The service model between controllers and switches in SDN

independent of each other. The consecutive requests may
be randomly sent from any switches and the arrival time
is exponentially distributed. Therefore, those requests
follow a Poisson Process and the arrival rate is assumed
to λi. The total requests’ arrival rate in the system is
λ =

∑j
i=1 λi. Those requests are stored in the ‘Queue’

before sending to the ‘Scheduler’, which is utilized to
distribute requests to controllers in the system. Suppose
there are m controllers in the system and their service
rate is µi, so the total service rate is

∑m
i=1 µj . Since both

the arrival and service times are exponentially distributed
and m controllers exist in the system, the SDN system
can be regarded as a M/M/m queuing model [39] [40].
Here m stands for the number of servers in the system.
To simplify the analysis, all controllers are assumed to
have the same service rate µ. Then the traffic intensity
is termed as ρ = λ/mµ. The steady-state limiting
probability pk is formulated by

pk = p0(
λ
µ)

k 1
m!mk−m for k ≤ m (2)

Because
∞∑
k=0

Pk = 1, we can derive p0 from Eq. (2)
as

p0 = [
m−1∑
k=0

(mρ)k

k! + (mρ)m

m!(1−ρ) ]
−1 (3)

The queuing latency, denoted by Dque, can be for-
mulated by Eq. (4) to depict the time a request packet
remains in the queue before being processed. More
details of the M/M/m model and the related derivations
can be referred to [39] [40].

Dque =
Lq

λ = (mρ)mρp0

m!(1−ρ)2λ (4)

The queuing latency analysed above also applies to the
situation that requests do not send to the controller. Due
to the memoryless property of underlying exponential
distribution of Poisson process, the splitting of Poisson
process gives rise to a Poisson process. That is to say,
given that the packet arriving at a switch follows Poisson
process with mean arrival rate λ, if a packet is dropped
with the probability p, the packet arrival process from



6

switch to controller is the splitting of the Poisson process
with the splitting probability (1 − p), i.e., the Poisson
process with the mean arrival rate (1−p)×λ. Therefore,
the service model between switches and controllers still
follows the Poisson process. The only difference is the
reduced mean arrival rate: (1− p)× λ.

C. Problem formulation

In this subsection, we formulate the network partition
problem in SDN. For an SDN-enabled network with
given nodes and links, the physical topology of the
network is denoted by an undirected graph G = (V,E),
where V is the set of nodes, representing both of the
switches and controllers in the network. This is based on
the assumption that controllers are placed to the locations
where switches exist so that controllers and switches can
be connected conveniently [11] [12] [28]. E is the set of
physical links among those nodes. Assume the number
of subgraphs is given by K, denoting the number of
subnetworks that the network will be partitioned. When
SDN is considered, the network partition can be defined
by SDNi(Vi, Ei), which subjects to:∪k

i=1 Vi = V ;
∪k

i=1Ei = E (5)

SDNi ∩ SDNj = ϕ, ∀ i ̸= j, i, j ∈ k (6)

Similarity(SDNi) = TRUE, ∀ i ∈ k (7)

Similarity(SDNi ∩ SDNj) = FALSE,

∀ i ̸= j, i, j ∈ k
(8)

SDNi is a connected region ∀ i ∈ k (9)

A successful network partition should divide a net-
work, including all of the nodes and links in the network,
into subnetworks without introducing over-allocation
(one element is allocated to more than one subnetworks)
and miss-allocation (elements are not allocated to any
subnetwork). Therefore, Eq. (5) is introduced to indicate
that the total subnetworks need to cover all the network
elements: nodes and links. In Eq. (6), ϕ stands for an
empty set, which means that a node or link can be only
allocated to one subnetwork. Eq. (7) implies that the
elements in one sub-network have the same similarity.
Eq. (8) suggests that the elements allocated to different
subnetworks have different similarity. Here the similarity
is defined as latency in this paper. Specifically, the
network is expected to be divided in a way that the nodes
in one cluster have a smaller latency (Eq. (7)), while the
nodes in different clusters have a larger latency (Eq. (8)).
Eq. (9) indicates that all the vertexes in one subnetwork
are connected by links.

The objective of this paper is to place controllers
in an SDN-enabled wide area network to minimize the
maximum latency between controllers and switches. The
latency is denoted to Dtotal = De2e(sm, cn) + Dque,
which includes both the end-to-end latency and queuing
latency of controllers. Therefore, the objective is formu-
lated below.

min{max{De2e(sm, cn) +Dque}}

such that

sm, cn ∈ SDNi (∀i ∈ k)

Note that the ultimate goal of this objective is to
reduce the total latency so that a latency requirement
can be satisfied for a specific application. Assuming the
requirement of latency is denoted by Tth, the maximum
total latency is expected to be less than Tth.

IV. NETWORK PARTITION AND MULTI-CONTROLLER

PLACEMENT ALGORITHM

In this section, a Clustering-based Network Partition
Algorithm (CNPA) is proposed to address the controller
placement problem for an SDN-enabled wide area net-
work. The objective of CNPA is to shorten the maximum
total latency between controllers and their associated
switches. The total latency is composed of the end-to-
end latency and the queuing latency of controllers. The
end-to-end latency is relatively stable, while the queuing
latency varies. In addition, for a wide area network,
the end-to-end latency is the majority contributor of
the overall latency (e.g., the biggest round end-to-end
latency is 50 milliseconds in OS3E), while the queuing
latency is in the order of several milliseconds or fewer.
Therefore, it is necessary to tackle these two latencies
separately. Specifically, the first step of our solution is
to explore methods to partition a network into subnet-
works to shorten the end-to-end latency. Due to distinct
geographic distributions, the density of switches in each
subnetwork varies significantly. The subnetworks with
a large number of switches may experience excessive
queuing latency. Therefore, in the second step, multiple
controllers are placed inside subnetworks with a large
number of switches.

A. A clustering-based network partition algorithm

In this subsection, we propose a clustering-based net-
work partition algorithm and elaborate how to partition a
network into subnetworks to shorten the maximum end-
to-end latency.



7

Essentially, the network partition problem resembles
the clustering problem, and solutions can be borrowed
from contexts of clustering algorithms. However, the
standard clustering algorithms, e.g., K-means and K-
center, cannot be directly adopted to partition a network
into subnetworks. To facilitate understanding, we first
introduce the standard K-means method and point out
its shortcomings in partitioning a network topology.
Note that there are two critical parameters in clustering
algorithms: ‘center’ and ‘centroid’. For clarification, the
initial nodes which are selected to perform clustering
algorithms are termed as ‘center’. The actual center of
each cluster which is eventually found by clustering
algorithms is termed as ‘centroid’. The standard K-
means clustering algorithm includes four main steps:

1) initialize k clusters and allocate one center for each
cluster using random sampling;

2) allocate nodes into one of the clusters based on
Euclidean distance;

3) recalculate centroid for each cluster;
4) repeat step 2 and 3 until there is no change in each

cluster.

The standard K-means algorithm cannot be directly
applied to partition network topologies due to the fol-
lowing reasons. First, randomly choosing initial centers
will not guarantee that each partition can shorten the
maximum latency between centroid and its associate
nodes in the subnetwork. Second, the Euclidean distance
cannot be used in calculating the distance between two
nodes, as physical links may not exist in the path of the
Euclidean distance. Third, the centroid, where controller
is placed, should be chosen from V (centroid ∈ V )
to guarantee there are physical connections between the
centroid and its associate nodes. Those shortcomings
also exist in the K-center algorithm. To overcome those
shortcomings, CNPA is proposed to address the network
partition problem and is summarized in Algorithm 1.

The preparatory work of CNPA is to calculate the end-
to-end latency (le2e(u, v)) between any two nodes. The
shortest path distance is adopted in CNPA to calculate
the end-to-end latency. Specifically, given a network
topology with numerous links and nodes, the adjacent
matrix of this topology is firstly calculated. Coordinates
of those nodes are obtained from Google Map and
distances of those links are calculated by using the
‘haversine’ formula [41] [42]. The shortest path as well
as the shortest path distance between any two nodes is
calculated based on the coordinates and the adjacent
matrix by using the Dijkstra’s algorithm [43]. Note
that the Euclidean distance is usually adopted in the
standard clustering algorithms, such as K-center and K-

Algorithm 1: Clustering-based Network Partition
Algorithm

Input:
(1) A network topology G = (V,E).
(2) The number of subnetworks (k).
Output:
(1) Centroids of k clusters.
(2) Allocation of v switches to one of the k clusters.
Preparatory work: Calculate the end-to-end

latency between any two nodes le2e(u, v).
step 1: Randomly select one node from V as the
first initial center of G.

step 2: Calculate the actual center (centroid) of the
network. The node which has the smallest sum
end-to-end latency to other nodes is selected as
the centroid (c1).

step 3: Find out the second initial center of the
network. The node which has the biggest
end-to-end latency to the centroid is selected as
the second initial center (c2).

step 4: Distribute vertex v (v ∈ V ) to one of the
clusters using the below relation:

v ∈ clusteri, if le2e(v, ci) < le2e(v, cj),
∀i, j ∈ {1, 2, · · · , k}

step 5: Update centroids C ′ = {c′1, c′2, · · · c′k} such
that the sum end-to-end latency from all nodes in
clusteri to the new centroid c′i is minimized.

c′i = vm, if le2e(vm, v) = minimum,
∀ m ∈ size(clusteri), v ∈ clusteri,
i = {1, 2, · · · , k}

step 6: Repeat steps 3, 4 and 5 until the network is
partition into K subnetworks.

means. However, the Euclidean distance is not applicable
for partitioning a network topology, as the nodes in
a network topology are only connected by physical
links. Therefore, the shortest path distance rather than
Euclidean distance is adopted in CNPA to calculate the
propagation latency as well as the end-to-end latency.
Accordingly, this method is also adopted in associated
clustering algorithms, including K-means and K-center,
which are introduced to compare with the CNPA.

The processes of CNPA are summarized as follows.
The first step of CNPA is to randomly select one node
as the center of the network. As the center is randomly
selected, CNPA will further find out the actual center
(centroid) of the network in the second step. Specifically,
CNPA calculates each node’s sum end-to-end latency to



8

other nodes and selects the one that has the minimum
sum latency as the centroid. In the third step, CNPA will
find out the second center of the network. The second
center is selected as the node which has the biggest
end-to-end latency to the centroid. In the fourth step,
CNPA treats the centroid (c1) and the second center (c2)
as two initial centers and allocate associated nodes to
those centers. Specifically, for each node ni, calculate
its latency to those two centers and get two latencies,
l1 = le2e(ni, c1) and l2 = le2e(ni, c2). Compare those
two latencies and allocate the node to the center which
is closer to it. For example, if l1 < l2, node ni will be
assigned to c1. Once the node is assigned to one center,
the centroid of this cluster will be recalculated based on
the minimum sum end-to-end latency described in the
second step. The process is continuing until the network
is eventually divided into K subnetworks. It is worthy
to mention that unlike regular clustering algorithms,
which randomly select all K centers at once and then
optimize all of them during the following iterations, the
proposed CNPA first divides the entire network into two
subnetworks, then three till K subnetworks. During each
partition, it is able to shorten the maximum end-to-end
latency between centroids their associated nodes and
hence the maximum latency is significantly decreased
compared with the regular clustering algorithms such as
K-center and K-means. The essence of the CNPA is to
use the node that is most different from existing nodes
as the new center. The effectiveness of this idea has been
proved in [44]–[46].

B. Multi-controller placement algorithm

As analyzed in Section III, the latency between con-
trollers and their associated switches is primarily com-
posed of the end-to-end latency and the queuing latency
in controllers. In Section IV-A, a network partition strat-
egy is proposed to partition a network into subnetworks
and minimize the maximum end-to-end latency between
controllers and switches. In this subsection, we will
propose solutions to address the queuing latency of
controllers.

Since the density of switches in different subnetworks
varies due to their geographic distributions, controllers in
subnetworks which have dense switches may experience
heavier traffic load and hence result in longer queuing
latency. This will negatively affect the quality of service
and even destroy some delay-sensitive applications, e.g.,
live streaming video and voice over IP. Therefore, we
propose to assign multiple controllers to balance their
loads so that the queueing latency will be reduced.
Specifically, we first calculate the appropriate number

of controllers for each subnetwork and then place them
in those subnetworks. A multi-controller selection and
placement algorithm is summarized in Algorithm 2.

Algorithm 2: Multi-controller selection and place-
ment algorithm
step 1: Select a subnetwork and calculate all the

concurrent packets requesting rate λ =
n∑

i=1
λi.

step 2: Set m = 1 and calculate Dque by using Eq.
3 and Eq. 4.

step 3: Calculate the maximum total latency
max{Dtotal} = max{De2e}+Dque.

step 4: Increase m until max{Dtotal} is smaller
than Tth.

step 5: set K = m and execute CNPA to partition
the associated subnetwork into m subnetworks and
find their centroids.

step 6: Place m controllers into these centroids.
step 7: Repeat step 1 to 6 until all the subnetworks
are placed with appropriate controllers.

The essence of this algorithm is to calculate the
required number of controllers by monitoring the max-
imum total delay (max{Dtotal}), and place appropri-
ate controllers to the centroids of those subnetworks.
Specifically, the Algorithm 2 first selects a subnetwork
and calculates the overall packets arrival rate aggregated
by its switches. Afterwards, the number of controllers
for a subnetwork, m, is continually increased until the
maximum total latency is smaller than the delay thresh-
old Tth. Once the appropriate number of controllers is
obtained, the CNPA is adopted to further partition and
find m clusters for one specific subnetwork. The required
controllers are finally placed to the location of those m
centroids, and associated switches are allocated to those
m clusters. The above steps are repeated until all the
subnetworks are placed with appropriate controllers.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CNPA
and compare it with solutions in the literature under two
real topologies from the Internet Topology Zoo [47] that
constitutes hundreds of network topologies from network
providers. The first topology is the Internet2 OS3E [48],
which is widely adopted in the literature to evaluate the
controller placement problem. The second one is the
ChinaNet, which is the largest network in China [49].

The proposed algorithms are implemented in MAT-
LAB, a powerful multi-paradigm numerical computing
environment, which has been widely used in the research



9

of controller placement of SDN [27] [28]. The simulation
includes the following steps. First, the topologies of
these two networks are referred from the Topology Zoo,
where we can get coordinates of nodes and links among
them. Second, distances between any two nodes are
calculated by using the Haversine formula [41] [42] and
the shortest path distance is calculated by using the
Dijkstras algorithm [43]. Third, the end-to-end latency
and queuing latency are calculated by Eq. 1 and Eq.
4, respectively. Fourth, the controller placement demon-
strations are plotted in the MATLAB and the specific
latencies are calculated, processed and stored in *.txt
files accordingly.

In order to evaluate the performance of the proposed
approach, we compare the proposed approach with two
representative solutions in the literature: K-center and
K-means. K-center is adopted widely in the literature
to reduce the latency between controllers and switches
[11] [12]. K-means is the most well-known partition-
based clustering algorithm, which aims to minimize the
deviations of points in the same cluster [50]. We first
evaluate the CNPA in comparison with the current ex-
isting solutions and demonstrate how the overall latency
is decreased after deploying multiple controllers in each
subnetwork.

A. Demonstration of the network partition conducted by
standard clustering algorithms

In this subsection, we demonstrate the network parti-
tion that is conducted by standard clustering algorithms,
e.g., K-means, to illustrate the shortcomings of those
algorithms. The initial centers of those two algorithms
are randomly selected, so the result of network partition
varies for each execution. Therefore, it is quite possible
that the maximum end-to-end latency between con-
trollers and their associated switches in the subnetworks
increases even when the network is partitioned into
more subnetworks, which is not desirable in the network
partition of SDN. For example, as depicted in Fig. 4 (a),
the OS3E network is partitioned into 5 subnetworks by
the K-means. The maximum end-to-end latency appears
in the path from node 5 to 2 and the value is 7.459
ms. In contrast, when the network is partitioned into 6
subnetworks, the maximum latency does not decrease but
increases to 9.254 ms from node 25 to 19 as depicted
in Fig. 4 (b). To reflect the real performance of the K-
means, we have conducted 100 times of the K-means
algorithm to partition both the OS3E and the ChinaNet
topology. Associated results are presented in Fig. 5.

Fig. 5 depicts the maximum end-to-end latency of the
Internet2 OS3E which is partitioned by the K-means.

2
5

(a) K = 5

19

25

(b) K = 6

Fig. 4. Demonstration of the K-means network partition of the
Internet2 OS3E

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

Test times (n)

M
ax

im
um

 e
2e

 la
te

nc
y 

(m
s)

(a) K = 5

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

Test times (n)

M
ax

im
um

 e
2e

 la
te

nc
y 

(m
s)

(b) K = 6

Fig. 5. The maximum latency of the Internet2 OS3E which is
partitioned by the K-means (100 times of partition)

The K-means is executed by 100 times so that we obtain
different partitions as well as different maximum end-to-
end latencies. When K = 5, the maximum end-to-end
latency of the subnetwork varies from 6 ms to 10 ms as
depicted in Fig. 5 (a). Intuitively, the maximum latency
of the subnetwork should be decreased if the network is
partitioned into more subnetworks. However, as depicted
in Fig. 5 (b), when the network is partitioned into 6
subnetworks, K-means fails to meet this objective, as
the maximum latency still fluctuates from 6 ms to 10
ms. The difference between the 5 subnetworks partition
and the 6 subnetworks partition is that the probability
of maximum end-to-end latency in the 6 subnetworks
partition occurs more frequently than the one in the 5
subnetworks partition, while the maximum end-to-end
latency remains the same. The same phenomenon are
also observed in the ChinaNet network partition which
is adopted by the K-means.

B. Demonstration of the CNPA network partition

In this subsection, we demonstrate the network parti-
tion which is conducted by the CNPA. Fig. 6 depicts
the Internet2 OS3E network which is partitioned by
the CNPA step by step. We go over the process and
demonstrate how the network is partitioned. The first
step is to find the centroid of the entire network. The
centroid of the network can be found easily, because no
matter where the initial center is selected, the CNPA can
ultimately find the unique centroid of the network. As



10

4

1

(a) K = 1

4
29

1

2

(b) K = 2

19

12

25

33

4
29

1

2

(c) K = 3

19

12

25

30

33

4
29

1

2

6

16

(d) K = 4

19

12

25

30

33

4
29

1

2

6

16

5

(e) K = 5

19

12

25

30

33

4
29

1

2

6

16

5

15

(f) K = 6

• centroid of the subnetwork + location of the furthest node from the centroid

Fig. 6. Demonstration of the CNPA network partition of the Internet2 OS3E

depicted in Fig. 6 (a), the centroid of the network is
found at node 4 and the node which has the biggest
latency to the centroid is node 1. Therefore, node 1
is selected as the second initial center to perform next
partition. Fig. 6 (b) shows the result that the network is
partitioned into two subnetworks with the initial centers
4 and 1. Note that although one of the initial centers is
selected to node 1, the final centroid found by CNPA is
at node 29, because it is the closest node to all of other
nodes in the subnetwork. The biggest latency in the two
subnetworks is from node 4 to node 2, so the subnetwork
depicted by ‘⃝’ needs to be further partitioned and the
initial centers of the CNPA are selected to node 4, 29
and 2. The rest partitions are depicted in Fig. 6 (c), (d),
(e) and (f). The nodes which have the biggest latency to
their centroids are found at node 19, 6, 1, respectively,
so they are selected as initial centers of the CNPA. The
final result of the network partition is depicted in Fig. 6
(f) where the network is partitioned into 6 subnetworks
which are distinguished by ‘◦’, ‘∗’, ‘⋄’, ‘⋆’, etc.

C. Comparison of the end-to-end latency

In this subsection, we evaluate the performance of
CNPA in terms of end-to-end latency and compare it
with K-means and K-center.

Fig. 7 depicts the maximum end-to-end latency Cu-
mulative Distribution Functions (CDFs) from all possible
partitions of the OS3E network. Both the K-means and
K-center are executed by 100 times while CNPA is only
executed once, as CNPA will always obtain the same
result for each execution. The reason is that appropriate
initial centers have been calculated and selected in the

5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum end−to−end latency (ms)

P
er

ce
nt

ag
e

 

 

(K−means) K = 5
(K−means) K = 6
(K−center) K = 5
(K−center) K = 6
(CNPA) K = 5
(CNPA) K = 6

Fig. 7. Maximum end-to-end latency CDFs of the Internet2 OS3E

CNPA and the fixed initial centers will lead to the fixed
partition.

The maximum end-to-end latency CDFs of the K-
means, K-center and CNPA are depicted in colors of
green, red, and blue, respectively. The dashed curve
represents the maximum end-to-end latency CDFs where
the OS3E is partitioned into 5 subnetworks, and the
solid curve represents the results where the network
is partitioned into 6 subnetworks. It can be observed
that among the 100 times of partitions, there is a slim
chance for both K-means and K-center to reach the
smallest maximum end-to-end latency, while the CNPA
can constantly obtain the smallest one. As depicted by
the dashed red curve, when the OS3E is partitioned into 5
subnetworks, K-center even results in over 12 ms latency



11

between the controllers and their associated switches,
which is over 2 times larger than the results achieved
by the CNPA. When the OS3E is partitioned into 6
subnetworks, the maximum end-to-end latency achieved
by the CNPA is even smaller than the smallest one
achieved by both the K-means and K-center, although
they are executed by 100 times.

K=5 K=6
0

1

2

3

4

5

6

7

8

9

10

Partition of networks (k)

A
ve

ra
ge

 m
ax

im
um

 e
2e

 la
te

nc
y 

(m
s)

 

 

K−means
K−center
CNPA

Fig. 8. Average maximum end-to-end latency of the Internet2 OS3E

The average end-to-end latencies of the 100 runs of
both the K-means and K-center are further calculated
and depicted in Fig. 8. The average maximum end-to-end
latencies depicted in Fig. 8 further verify that the CNPA
is able to remarkably decrease the latency between
controllers and their associated switches in comparison
with both the K-means and K-center.

6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum end−to−end latency (ms)

P
er

ce
nt

ag
e

 

 

(K−means) K = 5
(K−means) K = 6
(K−center) K = 5
(K−center) K = 6
(CNPA) K = 5
(CNPA) K = 6

Fig. 9. Maximum end-to-end latency CDFs of the ChinaNet

The performance of CNPA is also evaluated under
the ChinaNet topology. Fig. 9 depicts the maximum
end-to-end latency CDFs from all possible partitions of
the ChinaNet topology. It can be observed that CNPA

achieves smaller end-to-end latency between controllers
and their associated switches than K-means and K-
center, which are executed by 100 times.

K=5 K=6
0

2

4

6

8

10

12

14

16

18

Partition of networks (k)

A
ve

ra
ge

 m
ax

im
um

 e
2e

 la
te

nc
y 

(m
s)

 

 
K−means
K−center
CNPA

Fig. 10. Average maximum end-to-end latency of the ChinaNet

Fig. 10 further depicts that the CNPA has consid-
erably decreased the average maximum end-to-end la-
tency between controllers and their associated switches
in comparison with both the K-means and K-center.
Specifically, the average maximum end-to-end latency
achieved by the CNPA is 2.312 times and 2.437 times
smaller than that achieved by K-means when the network
is partitioned into 5 and 6 subnetworks, respectively.

D. Comparison of the total latency

In this subsection, we evaluate how the total latency
is decreased when multiple controllers are deployed by
CNPA. Note that after deploying multiple controllers by
CNPA, the total number of controllers in the network
increases accordingly. In order to fairly compare the
performance of CNPA, we let K-means and K-center
partition the targeting network into more subnetworks,
and each subnetwork deploys one controller, so that all
the algorithms deploy the same number of controllers in
the network. In the following simulations, the service
rate of each controller is set to 1Kpps (packets per
second) to guarantee that a request can be processed
within 1ms [51]. The maximum request rate of switches
is set to 0.1Kpps. Considering each switch may generate
different requests, a random factor varied from 0.5 to 1
is adopted to indicate the load degree of those switches.

Fig. 11 depicts the total latency CDFs in the OS3E
network. As depicted in Fig. 11, there is a slim chance
for both K-means and K-center to reach the smallest
total latency, while the CNPA can constantly obtain the
smallest one. When 8 controllers are deployed in the



12

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum total latency (ms)

P
er

ce
nt

ag
e

 

 

(K−means) number of controllers = 7
(K−means) number of controllers = 8
(K−center) number of controllers = 7
(K−center) number of controllers = 8
(CNPA) number of controllers = 7
(CNPA) number of controllers = 8

Fig. 11. Total latency CDFs of the Internet2 OS3E

OS3E network, the maximum total latency achieved by
the CNPA is still shorter than the smallest one of 100
results from the K-means and K-center.

number of controllers = 7 number of controllers = 8
0

2

4

6

8

10

12

Number of controllers (n)

A
ve

ra
ge

 to
ta

l l
at

en
cy

 (
m

s)

 

 

K−means
K−center
CNPA

Fig. 12. Average total latency of the Internet2 OS3E

The average total latencies of the 100 runs of K-
means and K-center are further calculated and depicted
in Fig. 12. When 7 controllers are deployed in the OS3E
network, the average total latency achieved by the CNPA
is 2.31 and 2.26 times smaller than those achieved by
K-means and K-center, respectively. When 8 controllers
are deployed in the OS3E network, the average total
latency achieved by the CNPA is 2.86 and 2.40 times
smaller than those achieved by K-means and K-center,
respectively. Those results again verify that the CNPA
can significantly decrease the total latency between con-
trollers and their associated switches compared with both
of the K-means and K-center.

The performance of CNPA is also evaluated under
the ChinaNet topology. Fig. 13 depicts the total latency

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum total latency (ms)

P
er

ce
nt

ag
e

 

 

(K−means) number of controllers = 7
(K−means) number of controllers = 8
(K−center) number of controllers = 7
(K−center) number of controllers = 8
(CNPA) number of controllers = 7
(CNPA) number of controllers = 8

Fig. 13. Total latency CDFs of the ChinaNet

CDFs from all possible partitions of the ChinaNet topol-
ogy. It can be observed that CNPA can achieve smaller
latency between controllers and their associated switches
than K-means and K-center.

number of controllers = 7 number of controllers = 8
0

5

10

15

20

25

30

35

40

45

Number of controllers (n)

A
ve

ra
ge

 to
ta

l l
at

en
cy

 (
m

s)

 

 

K−means
K−center
CNPA

Fig. 14. Average total latency of the ChinaNet

The average total latencies of the 100 runs of the K-
means and K-center are further calculated and depicted
in Fig. 14. This figure demonstrates that the CNPA
outperforms both K-means and K-center in terms of
total latency between controllers and their associated
switches.

E. Comparison of the switch and controller ratio

It is known that the density of switch distribution
in a network is determined by the network topology.
In order to shorten the latency between controllers and
switches, switches which are closer to each other should
be divided into one subnetwork, even if this subnetwork



13

has a larger number of switches. This may lead to
imbalanced switches to controllers. Since we allocate
multiple controllers to each subnetwork, the imbalance
can be well addressed. In this subsection, we evaluate
whether the number of switches and controller in each
subnetwork is balanced.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Subnetworks of the OS3E

C
on

tr
ol

le
r 

an
d 

sw
itc

h 
ra

tio

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Subnetworks of the ChinaNet

C
on

tr
ol

le
r 

an
d 

sw
itc

h 
ra

tio

Fig. 15. The controller and switch ratio in each subnetwork

Fig. 15 depicts the controller and switch ratio in each
subnetwork of both the OS3E and the ChinaNet. We can
find that although the objective of this paper is to shorten
the latency between controllers and switches in SDN-
enabled wide area networks, the proposed solution can
also achieve an acceptable controller and switch ratio.

VI. CONCLUSION

In this paper, we have investigated new methods to
shorten the latency between controllers and their asso-
ciated switches. First of all, the overall latency between
controllers and switches is investigated and formulated
qualitatively. Then, a clustering-based network partition
algorithm is proposed to partition a network into subnet-
works to shorten the end-to-end latency. Since the densi-
ty of switches in each subnetwork may vary differently
due to geographic distributions, we propose to deploy
multiple controllers into each subnetwork to decrease the
queuing latency resulted by excessive packet requests
from switches. In order to evaluate the performance
of the proposed algorithm, extensive simulations are
conducted under two real topologies from the Internet
Topology Zoo. Simulation results verify that CNPA can
effectively decrease the maximum end-to-end latency
between controllers and their associated switches. When
multiple controllers are deployed in subnetworks, the
overall latency has also been greatly decreased by CNPA
in comparison with K-means and K-center.

REFERENCES

[1] G. Wang, Y. Zhao, J. Huang, Q. Duan, and J. Li, “A K-means-
based Network Partition Algorithm for Controller Placement
in Software Defined Network,” International Conference on
Communications, 2016.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:
enabling innovation in campus networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, pp. 69–74,
2008.

[3] W. Miao, G. Min, Y. Wu, H. Wang, and J. Hu, “Performance
Modelling and Analysis of Software-Defined Networking under
Bursty Multimedia Traffic,” ACM Transactions on Multime-
dia Computing, Communications, and Applications (TOMM),
vol. 12, no. 5s, p. 77, 2016.

[4] H. Huang, H. Yin, G. Min, H. Jiang, J. Zhang, and Y. Wu,
“Data-Driven Information Plane in Software-Defined Network-
ing,” IEEE Communications Magazine, 2017.

[5] D. Levin, M. Canini, S. Schmid, F. Schaffert, A. Feldmann
et al., “Panopticon: Reaping the Benefits of Incremental SDN
Deployment in Enterprise Networks,” USENIX Annual Techni-
cal Conference, pp. 333–345, 2014.

[6] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN:
an intellectual history of programmable networks,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 2, pp.
87–98, 2014.

[7] OpenFlow Switch Specification Version 1.5.1. [Online].
Available: https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/openflow/
openflow-switch-v1.5.1.pdf

[8] G. Wang, Y. Zhao, J. Huang, and W. Wang, “The Controller
Placement Problem in Software Defined Networking: A Sur-
vey,” IEEE Network, vol. 31, no. 5, pp. 21–27, 2017.

[9] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distribut-
ed Multi-domain SDN Controllers,” arXiv preprint arX-
iv:1308.6138, 2013.

[10] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al.,
“Onix: A Distributed Control Platform for Large-scale Produc-
tion Networks.” OSDI, vol. 10, pp. 1–6, 2010.

[11] B. Heller, R. Sherwood, and N. McKeown, “The controller
placement problem,” The first workshop on Hot topics in
software defined networks, pp. 7–12, 2012.

[12] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated con-
troller placement problem in software defined networks,” IEEE
Communications Letters, vol. 18, no. 8, pp. 1339–1342, 2014.

[13] S. Khuller and Y. J. Sussmann, “The capacitated k-center
problem,” SIAM Journal on Discrete Mathematics, vol. 13,
no. 3, pp. 403–418, 2000.

[14] Y. Hu, T. Luo, W. Wang, and C. Deng, “On the load balanced
controller placement problem in Software defined networks,”
2016 2nd IEEE International Conference on Computer and
Communications (ICCC), pp. 2430–2434, 2016.

[15] L. Han, Z. Li, W. Liu, K. Dai, and W. Qu, “Mini-
mum Control Latency of SDN Controller Placement,” Trust-
com/BigDataSE/ISPA, 2016 IEEE, pp. 2175–2180, 2016.

[16] Y. Zhang, N. Beheshti, and M. Tatipamula, “On resilience of
split-architecture networks,” IEEE Global Telecommunications
Conference (GLOBECOM), pp. 1–6, 2011.

[17] Y.-n. HU, W.-d. WANG, X.-y. GONG, X.-r. QUE, and S.-d.
CHENG, “On the placement of controllers in software-defined
networks,” The Journal of China Universities of Posts and
Telecommunications, vol. 19, pp. 92–171, 2012.

[18] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and
M. P. Barcellos, “Survivor: an Enhanced Controller Placement



14

Strategy for Improving SDN Survivability,” IEEE Global Com-
munications Conference (GLOBECOM), 2014.

[19] Y. Jimenez, C. Cervello-Pastor, and A. J. Garcia, “On the
controller placement for designing a distributed SDN control
layer,” IFIP Networking Conference, pp. 1–9, 2014.

[20] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On
reliability-optimized controller placement for Software-Defined
Networks,” Communications, China, vol. 11, no. 2, pp. 38–54,
2014.

[21] M. Tanha, D. Sajjadi, and J. Pan, “Enduring Node Failures
through Resilient Controller Placement for Software Defined
Networks,” 2016 IEEE Global Communications Conference
(GLOBECOM), pp. 1–7, 2016.

[22] A. Sallahi and M. St-Hilaire, “Optimal Model for the Controller
Placement Problem in Software Defined Networks,” IEEE Com-
munications Letters, vol. 19, no. 1, pp. 30–33, 2015.

[23] H. K. Rath, V. Revoori, S. Nadaf, and A. Simha, “Optimal
controller placement in Software Defined Networks (SDN) us-
ing a non-zero-sum game,” IEEE 15th International Symposium
on A World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2014, pp. 1–6, 2014.

[24] A. Ruiz-Rivera, K.-W. Chin, and S. Soh, “GreCo: An Energy
Aware Controller Association Algorithm for Software Defined
Networks,” IEEE Communications Letters, vol. 19, no. 4, pp.
541–544, 2015.

[25] M. T. I. ul Huque, G. Jourjon, and V. Gramoli, “Revisiting the
Controller Placement Problem,” NICTA, Australia. Tech. Rep.,
2015.

[26] A. Sallahi and M. St-Hilaire, “Expansion Model for the Con-
troller Placement Problem in Software Defined Networks,”
IEEE Communications Letters, vol. 21, no. 2, pp. 274–277,
2017.

[27] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner,
and P. Tran-Gia, “Pareto-optimal resilient controller placement
in SDN-based core networks,” 25th International Teletraffic
Congress (ITC), pp. 1–9, 2013.

[28] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock,
M. Jarschel, and M. Hoffmann, “Heuristic Approaches to the
Controller Placement Problem in Large Scale SDN Networks,”
IEEE Transactions on Network and Service Management,
vol. 12, no. 1, pp. 4–17, 2015.

[29] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou,
“Adaptive resource management and control in software defined
networks,” Network and Service Management, IEEE Transac-
tions on, vol. 12, no. 1, pp. 18–33, 2015.

[30] J. Liao, H. Sun, J. Wang, Q. Qi, K. Li, and T. Li, “Density
cluster based approach for controller placement problem in
large-scale software defined networkings,” Computer Networks,
vol. 112, pp. 24–35, 2017.

[31] B. Zhang, X. Wang, L. Ma, and M. Huang, “Optimal Controller
Placement Problem in Internet-Oriented Software Defined Net-
work,” 2016 International Conference on Cyber-Enabled Dis-
tributed Computing and Knowledge Discovery (CyberC), pp.
481–488, 2016.

[32] SDN-Enabled Programmatic Control of the Network. [Online].
Available: http://www.brocade.com/en/backend-content/
pdf-page.html?/content/dam/common/documents/
content-types/solution-brief/brocade-mlx-service-provider-sb.
pdf

[33] “Corsa’s DP2100 SDN switching and routing platform.”
[Online]. Available: http://www.corsa.com/products/dp2100/

[34] R. Daniels and D. Whittaker, “Benchmarking the SDN Switch,”
in Open Networking Foundation’s SDN Solution Showcase,
2015. [Online]. Available: https://www.opennetworking.org/
images/stories/sdn-solution-showcase/germany2015/Spirent%
20-%20Benchmarking%20the%20SDN%20Switch.pdf

[35] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi,
T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow
et al., “ONOS: towards an open, distributed SDN OS,” The
third workshop on Hot topics in software defined networking,
pp. 1–6, 2014.

[36] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, “Control plane of soft-
ware defined networks: A survey,” Computer communications,
vol. 67, pp. 1–10, 2015.

[37] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking:
A comprehensive survey,” proceedings of the IEEE, vol. 103,
no. 1, pp. 14–76, 2015.

[38] Global ONOS and SDN-IP deployment. [Online].
Available: http://onosproject.org/wp-content/uploads/2015/06/
PoC\ global-deploy.pdf

[39] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll,
and P. Tran-Gia, “Modeling and performance evaluation of
an OpenFlow architecture,” The 23rd International Teletraffic
Congress, pp. 1–7, 2011.

[40] V. V. Kalashnikov, Mathematical methods in queuing theory.
Springer Science & Business Media, 2013, vol. 271.

[41] C. Veness, “Calculate distance and bearing between two Lati-
tude/Longitude points using Haversine formula in JavaScript,”
Movable Type Scripts, 2011.

[42] G. Wang, Y. Zhao, J. Huang, and R. M. Winter, “On the
Data Aggregation Point Placement in Smart Meter Networks,”
26th International Conference on Computer Communication
and Networks (ICCCN), pp. 1–6, 2017.

[43] S. Skiena, “Dijkstras algorithm,” Implementing Discrete Math-
ematics: Combinatorics and Graph Theory with Mathematica,
Reading, MA: Addison-Wesley, pp. 225–227, 1990.

[44] I. Katsavounidis, C.-C. J. Kuo, and Z. Zhang, “A new initial-
ization technique for generalized Lloyd iteration,” IEEE Signal
processing letters, vol. 1, no. 10, pp. 144–146, 1994.

[45] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative
study of efficient initialization methods for the k-means clus-
tering algorithm,” Expert Systems with Applications, vol. 40,
no. 1, pp. 200–210, 2013.

[46] I. Palomares, L. Martinez, and F. Herrera, “A consensus model
to detect and manage noncooperative behaviors in large-scale
group decision making,” IEEE Transactions on Fuzzy Systems,
vol. 22, no. 3, pp. 516–530, 2014.

[47] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and
M. Roughan, “The internet topology zoo,” IEEE Journal on
Selected Areas in Communications, vol. 29, no. 9, pp. 1765–
1775, 2011.

[48] Internet2 Open science, scholarship and services exchange.
[Online]. Available: http://www.internet2.edu/network/ose/

[49] Chinanet, http://en.chinatelecom.com.cn/products/t20060116
48406.html.

[50] T. Su and J. G. Dy, “In search of deterministic methods for ini-
tializing K-means and Gaussian mixture clustering,” Intelligent
Data Analysis, vol. 11, no. 4, pp. 319–338, 2007.

[51] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood, “On controller performance in software-defined
networks,” USENIX Workshop on Hot Topics in Management
of Internet, Cloud, and Enterprise Networks and Services (Hot-
ICE), 2012.


