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Summary 48 

 49 

● Accurate representation of photosynthesis in terrestrial biosphere models (TBMs) is 50 

essential for robust projections of global change.  However, current representations 51 

vary markedly between TBMs, contributing uncertainty to projections of global carbon 52 

fluxes. 53 

● Here we compared the representation of photosynthesis in seven TBMs by examining 54 

leaf and canopy level responses of A to key environmental variables: light, temperature, 55 

carbon dioxide concentration, vapor pressure deficit and soil water content. 56 

● We identified research areas where limited process knowledge prevents inclusion of 57 

physiological phenomena in current TBMs and research areas where data are urgently 58 

needed for model parameterization or evaluation. 59 

● We provide a roadmap for new science needed to improve the representation of 60 

photosynthesis in the next generation of terrestrial biosphere and Earth System Models. 61 

 62 

Key Words: carbon dioxide, light, stomatal conductance, soil water content, temperature, 63 

terrestrial biosphere models, vapor pressure deficit.   64 
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Introduction  65 

Fossil energy use is the dominant driver of the increase in atmospheric CO2 concentration (Ca) 66 

and the principal cause of global climate change (IPCC, 2013).  Many of the observed and 67 

projected impacts of rising Ca portend increasing environmental and economic risk, yet the 68 

uncertainty surrounding the projection of our future climate by Earth System Models (ESMs) is 69 

unacceptably high (Friedlingstein et al., 2006, Friedlingstein et al., 2014). 70 

 71 

Although CO2 emissions associated with anthropogenic activity are notable (11 Pg C year-1), 72 

they represent less than 10% of the gross carbon fluxes between the land surface and the 73 

atmosphere (Beer et al., 2010, Boden et al., 2013, Le Quéré et al., 2015).  Terrestrial 74 

photosynthetic CO2 assimilation (A) is the largest of these CO2 fluxes (~120 Pg C year-1), 75 

subsidizing our use of fossil fuels through the net assimilation of about one-third of the CO2 76 

emissions associated with anthropogenic activities (Le Quéré et al., 2015). However, there is 77 

critical uncertainty about how the terrestrial carbon sink will be affected by changes in A with 78 

rising Ca, temperature and drought (Friedlingstein et al., 2014, Gregory et al., 2009, IPCC 2013). 79 

Therefore, reducing the uncertainty associated with model representation of A is an essential 80 

part of improving confidence in projections of global change (Ciais et al., 2013).   81 

 82 

In this study we have focused on photosynthesis, but recognize that improving the 83 

understanding and projection of the terrestrial biosphere’s response to global change also 84 

depends on realistically representing many additional processes that are down stream of 85 

carbon assimilation (e.g. carbon allocation, plant and soil respiration, and nutrient cycling). Of 86 
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particularly relevance to photosynthesis is the allocation of extra carbon to leaf area in trees 87 

grown at elevated Ca (Ainsworth & Long, 2005). Model representation and integration of these 88 

processes, and how the balance between them shifts in their individual and combined 89 

responses to environmental drivers, will also be critical in order to capture whole system 90 

responses, but such a comprehensive discussion is beyond the scope of this study. 91 

 92 

We examined model representations of A in seven Terrestrial Biosphere Models (TBMs). These 93 

models include four that represent the land component of ESMs which were part of the recent 94 

Coupled Model Intercomparison Project (CMIP5) - the main resource for the IPCC Fifth 95 

Assessment Report (Friedlingstein et al., 2014, IPCC, 2013).  Our approach focuses on how 96 

physiological responses are represented by TBMs.  We compared modeled responses of A to 97 

key environmental variables in order to identify areas of model divergence that reflect gaps in 98 

current understanding of the physiological and environmental controls of A.  In the second half 99 

of the paper, we turn to issues of scale - vertical, horizontal and temporal - and consider how 100 

representation and parameterization of leaf-level processes is scaled to the canopy within 101 

current model frameworks.   102 

 103 

We had three goals: (1) understand how models differ in their representation of A; (2) identify 104 

gaps in current understanding of A that contribute to uncertainty in model output; (3) identify 105 

areas where current process knowledge and emerging data sets can be used to improve model 106 

skill. This study provides recommendations for immediate improvements that can be made to 107 



6 

current model representation of A and also highlights the scientific activity needed to further 108 

advance representation of A in the next generation of TBMs. 109 

 110 

Representation of Leaf Photosynthesis in Terrestrial Biosphere Models 111 

 112 

Current model structure and parameterization  113 

 114 

The Farquhar, von Caemmerer and Berry  (FvCB) model of A (Farquhar et al., 1980, von 115 

Caemmerer, 2000, von Caemmerer & Farquhar, 1981) provides a robust mechanistic 116 

representation of A in C3 species, and is the foundation for model estimation of gross primary 117 

production (GPP) in many TBMs (Cramer et al., 2001, Rogers, 2014), including the seven models 118 

considered here (BETHY, CLM, ED2, G’DAY, JSBACH, JULES and O-CN; Table 1). The formulations 119 

of the FvCB model used in these TBMs include elements of; Collatz et al. (1991), in CLM, ED2 120 

and JULES; Foley et al (1996), in ED2; and Kull & Kruijt (1998), in O-CN (Table 1). The FvCB 121 

model represents photosynthetic CO2 assimilation as the most limiting of two biochemical 122 

processes: Rubisco carboxylation, and ribulose-1,5-bisphosphate (RuBP) regeneration driven by 123 

electron transport. These processes limit A in most environments; however, Sharkey (1985) 124 

subsequently described how limitations on triose phosphate utilization (TPU limitation) could 125 

also limit A under some conditions. Only two models in this study included TPU limitation (CLM 126 

and JULES, Table 1).  127 

 128 



7 

Similar biochemical models have been developed for the C4 photosynthetic pathway (von 129 

Caemmerer et al. 2000). For reasons of space, we limit our discussion to model treatment of C3 130 

photosynthesis. However we note that a similar exercise focused on C4 photosynthesis would 131 

be valuable.  132 

 133 

Models typically represent stomatal conductance (gs) using a coupled relationship with A that 134 

varies with atmospheric, or leaf-surface, CO2 concentration, and some measure of atmospheric 135 

humidity. This model approach was originally formulated by Ball et al. (1987), who used a direct 136 

dependence on relative humidity (RH) in their equation for gs. Ball et al.’s equation is still 137 

widely used in many TBMs, including CLM. Leuning (1995) suggested an alternative equation 138 

that depends on vapor pressure deficit (VPD) rather than RH. ED2 uses the Leuning (1995) 139 

equation, while JULES uses a very similar equation developed by Jacobs (1994). The approaches 140 

to represent gs implemented by the models considered here are quite diverse (Table 1) which 141 

has a wide-ranging impact on the model outputs we considered.  142 

 143 

The TBMs in this study represent vegetation using broad plant functional types (PFTs).  The 144 

FvCB model is parameterized with a number of important constants that are typically the same 145 

for all PFTs.  PFTs are distinguished with respect to photosynthesis through differences in the 146 

estimates of the maximum carboxylation rate of Rubisco (Vc,max), the maximum rate of electron 147 

transport (Jmax) and the slope of the stomatal conductance response. Several groups are now 148 

working towards next-generation vegetation models in which PFTs are replaced by “trait-based 149 

approaches” (Wullschleger et al. 2014). This catchall phrase includes leveraging trait-150 
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environment linkages (Ali et al. 2015, Reich 2014, van Bodegom et al. 2014), optimality 151 

approaches (Xu et al. 2012, Meir et al. 2015), trait filtering (Fisher et al. 2012) and adaptive 152 

global vegetation models (Scheiter et al. 2013). However, our review is relevant to these 153 

approaches as well, as they still employ similar representations of photosynthesis. The key 154 

difference lies in parameterization, which we discuss when considering scaling to landscapes. 155 

 156 

Mesophyll conductance 157 

 158 

In C3 species, mesophyll conductance (gm) describes the conductance to CO2 diffusion from the 159 

intercellular airspace within a leaf to the sites of carboxylation within chloroplasts (Flexas et al., 160 

2012, von Caemmerer & Evans, 1991). It is one of the four main physiological processes limiting 161 

CO2 uptake and fixation, the others being gs and the biochemical activity of Rubisco and RuBP 162 

regeneration. To our knowledge, there are no land models that currently contribute to the IPCC 163 

assessments that consider gm. This absence reflects the challenge of adding further complexity 164 

to the models, but also the uncertainty and technical difficulty of the measurements required 165 

to estimate gm. 166 

 167 

Response curves of A to intercellular [CO2] (Ci) are routinely used to infer the maximum 168 

biochemical activity of Rubisco and RuBP regeneration, i.e. Vc,max and Jmax.  When the FvCB 169 

model was conceived, the assumption was made that the difference between Ci and the [CO2] 170 

within the chloroplast (Cc) was sufficiently small that it could be ignored. Subsequently, 171 

improved measurement techniques for gm have shown that it can impose a significant 172 
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limitation on A which varies with temperature, and there are significant species differences in 173 

these responses (von Caemmerer & Evans, 2015).  If gm is not taken into account in the analysis 174 

of A-Ci curves, the true Vc,max will be underestimated (Niinemets et al., 2009, Sun et al., 2014, 175 

von Caemmerer, 2000).  Furthermore, temperature responses of Vc,max and Jmax derived from 176 

gas exchange measurements will not necessarily reflect the temperature dependence of the 177 

underlying biochemistry alone, but will also reflect the temperature response of gm (Medlyn et 178 

al., 2002a). The use of apparent parameters is problematic if modelers wish to incorporate new 179 

data on the underlying biochemistry of photosynthesis. For example, a recent biochemical 180 

survey of the catalytic diversity in Rubisco revealed significant and marked variation in key 181 

parameters across 75 species (Orr et al. 2016).  These data cannot be used directly in models 182 

without including gm in model structures, highlighting the need for improved understanding 183 

and model representation of gm.  184 

 185 

Several TBMs currently use linear relationships between apparent Vc,max (obtained from A-Ci 186 

curves) and leaf nitrogen to derive Vc,max prognostically.  If gm were to be incorporated into 187 

future TBMs, new algorithms linking Vc,max to leaf N content would be required as the Vc,max 188 

used in the relationship would need to be derived as a function of Cc not Ci.  Currently a 189 

reliance on apparent Vcmax - leaf N relationships means that models underestimate the amount 190 

of N partitioned to Rubisco, or put another way, overestimate the nitrogen use efficiency of 191 

CO2 carboxylation by Rubisco.  192 

 193 
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It is clear that an improved understanding of gm remains a critical research area. Despite recent 194 

important progress that may simplify prediction of gm (Tholen et al. 2012), we feel that 195 

immediate inclusion of gm in TBMs is premature.  “Apparent” parameters derived from A-Ci 196 

response curves, which implicitly account for gm, have been used successfully to model A in 197 

many ecosystems at the leaf and canopy level (e.g. Bernacchi et al. 2003; Medlyn et al. 2005; 198 

Thum et al. 2007).  Until understanding and measurement of gm matures, its inclusion in TBMs 199 

will likely drive additional uncertainty.  Furthermore, the modeling community currently has 200 

access to a substantial dataset (albeit heavily biased to the mid-latitudes) of “apparent” 201 

parameters but almost no data for Vc,max and Jmax derived from A-Cc curves.  Including gm now 202 

would dramatically shrink the amount of data available for model parameterization. However, 203 

it is important to note that inclusion of gm in models is essential if carbon isotope 204 

discrimination is to be inferred (Ethier & Livingston, 2004; Suits et al. 2005). 205 

Recommendation: (1) Greater process knowledge of gm will be required before it can be 206 

included in TBMs. Specific needs include improved understanding of variation in gm across PFTs 207 

and how it is affected by environmental drivers such as light and temperature. 208 

 209 

Short-term leaf level responses to environmental variables in current model structures  210 

 211 

Our goal was to understand and compare the physiological responses inside these seven TBMs 212 

(Table 1). We focused on one particular PFT - a broad leaved deciduous tree - and defined 213 

several environmental and physiological variables which provided standard conditions for 214 

model intercomparison: instantaneous quantum flux density (Q) = 1500 µmol mol-1, upper 215 
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canopy sunlit leaf temperature = 25°C, Ca = 380 µmol mol-1, [O2] = 210 mmol mol-1, VPD = 1 216 

kPa, soil moisture content at field capacity and Vc,max = 60 µmol m-2 s-1.  In the following sections 217 

we present and discuss leaf level responses to light, temperature, Ca, VPD and soil water 218 

content. 219 

 220 

Short-term response to light  221 

 222 

The initial slope of the photosynthetic light response curve is determined by the maximum 223 

quantum yield of CO2 assimilation. For clarity, here we distinguish between the intrinsic 224 

quantum yield (Φ int), which is the initial slope of the relationship between A and absorbed Q 225 

under non-photorespiratory conditions and the realized quantum yield (Φreal), which we define 226 

as the photosynthetic rate per unit incident light at Q = 100 µmol m-2 s-1 in our standard 227 

conditions (Table 2 and the initial slope of the A-Q response in Fig. 1a). The Φ int is generally an 228 

input parameter to the models (Table 2) whereas the realized quantum yield is calculated by 229 

the models using the FvCB equations, and depends not only on the Φ int but also on the 230 

assumed values for the Rubisco kinetic constant Γ* (the CO2 compensation point in the absence 231 

of mitochondrial respiration), the low light Ci, the leaf absorptance (a), and the convexity of the 232 

light response curve (Θ). Model variation in the choice of kinetic constants, low light Ci, a and Θ 233 

are summarized in Table 2.  The CLM model assumes that Φ int is equal to the theoretical 234 

maximum of (1-f)/8, where f=0.15 and is used to correct for the spectral quality of light (von 235 

Caemmerer, 2000). As a result, CLM has the highest Φreal (0.053 mol mol-1, Table 2, Fig. 1a).  236 

The other models are parameterized with quantum yield inputs that result in a calculated Φ int 237 
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that is below the theoretical maximum and the resulting values for Φreal are lower than those 238 

for CLM (Table 2). Despite a parameterization that is broadly consistent with other models, the 239 

initial slope of the A-Q response of O-CN is strikingly low and results from a limitation of A by 240 

light harvesting at low Q (Kull & Kruijt, 1998; Table 1).   241 

  242 

Experimental studies focused on understanding natural variation in quantum yield have shown 243 

that there is little variation in Φ int under unstressed conditions across a wide range of species, 244 

with an average value of 0.092 mol mol-1 (Long et al. 1993; Singsaas, Ort & DeLucia, 2001), 245 

comparable with the range of Φ int used in the models considered here (0.07 – 0.106, Table 2). 246 

However, Φ int can be substantially lower in the field, particularly in stressed conditions (Medlyn 247 

et al 2007; Niinemets et al. 2004, 2014; Singsaas, Ort & DeLucia, 2001). As discussed above, the 248 

Φreal in models depends on several assumptions, not just the Φ int, highlighting the need to 249 

better parameterize and test modelled light responses with data from field conditions. For 250 

example, most existing measurements have been made within a narrow temperature range (20 251 

– 30°C) and the scarcity of data collected at low temperature has been highlighted as an 252 

important driver of model uncertainty at high latitudes (Dietze et al., 2014). 253 

  254 

Leaf level light-saturated CO2 uptake (Asat) varies considerably between models (Fig 1a).  The 255 

variation in modelled Asat is driven by differences in prescribed Rubisco kinetic constants and 256 

their temperature dependencies (see below and Table 2), as well as the Ci, which is dependent 257 

on the choice of stomatal model.  The inflection point of the light response curve marks the 258 

transition between light limitation and light saturation of A.  There is a wide range in the Q at 259 
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which A becomes light saturated and therefore the greatest model divergence in A occurs when 260 

some models have light saturated A and others do not (i.e. Q = 400-800 µmol m-2 s-1, Fig. 1). In 261 

addition to differences in the model representation of light limited and light saturated A, 262 

variation in the transition phase is attributable to model structure (Table 1), and when present, 263 

parameterization of the convexity term (Θ, Table 2), which determines the relative influence of 264 

Φreal or Asat on A at a given Q. 265 

  266 

Moving from the leaf to the canopy level, responses to irradiance (Fig 1, b-d) are not only 267 

dependent on the factors discussed above but also on the method used to scale physiology 268 

from the leaf to the canopy level, the representation of the light environment within the 269 

canopy, and the partitioning of foliage between sunlit and shaded leaves (Gu et al. 2002, 270 

Mercado et al. 2009).  As a result, canopy scaling exacerbates existing differences between the 271 

TBMs and introduces new structural variation that further diversifies model output (Fig. 1 b-d). 272 

Canopy scaling is discussed in detail below. 273 

Recommendation: (2) Modeled responses of photosynthesis to light need to be parameterized 274 

and evaluated against data from field conditions, particularly at low temperature.   275 

 276 

Don’t mix & match 277 

One issue that emerged here, but is relevant throughout this paper, is the need to avoid 278 

piecemeal approaches to model parameterization. For example, we need to carefully and 279 

consistently use kinetic constants and temperature response functions because the models are 280 

highly sensitive to them. Any constants and functions used when deriving photosynthetic 281 
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parameters from data have to be the same ones used in the model. For example, if a value of 282 

Vc,max at 25oC is used in a model, that model must use the same Michaelis-Menten constants (Kc 283 

and Ko) and Γ* (e.g. see Table 2), and the associated temperature dependencies, that were 284 

used to estimate Vc,max from the original A-Ci response curve as well as the same temperature 285 

response function (e.g. see Table 1) used to scale Vc,max from the measurement temperature to 286 

25oC. This problem, that derived parameters depend on the equations used to derive them, 287 

introduces error when trying use the parameters to perform meta-analyses or calibrate models 288 

(Medlyn et al. 2002, Dietze 2014).  As we make progress to provide models with richer data sets 289 

for use in model parameterization and evaluation, we need to archive our raw gas exchange 290 

data so that, for example, new kinetic constants and temperature response functions can be 291 

applied to old data, maintaining its value as understanding advances. The estimation of 292 

quantum yield provides another example where the assembly of parameters (e.g. Φ int, a, Γ*, Θ) 293 

and approaches (e.g. estimation of low light Ci) is not coordinated and where archived data 294 

would be useful.  295 

 Recommendations: (3) Models need to make careful and consistent use of kinetic constants and 296 

temperature response functions. (4) Physiologists should archive their raw data to enable 297 

coordinated parameterization and the preservation of their data for future analysis.   298 

  299 

Short-term response to temperature  300 

 301 

The temperature response of A is complex and dependent on additional variables such as Q and 302 

Ci (Fig 2). The Ci in turn depends on gs and hence VPD, such that the temperature and VPD 303 



15 

response of gs also impacts the shape of the temperature response of A (Medlyn et al., 2002a; 304 

Lin et al., 2012).  The model by Farquhar et al. (1980) suggests that A is Rubisco-limited at low 305 

temperature - but note that TPU limitation can limit A in some species at low temperature 306 

(Sage & Sharkey, 1987).  The decline in A at high temperature (Fig. 2) can be brought about by 307 

the temperature dependence of Jmax and the strong increase in photorespiration and 308 

mitochondrial respiration with increasing temperature (Farquhar et al., 1980; von Caemmerer, 309 

2000).  High temperature limitations on Rubisco activase could also cause decline in A but this 310 

mechanism is currently absent from all these models (Salvucci & Crafts-Brandner 2004a; 311 

Salvucci & Crafts-Brandner 2004b, Sage & Kubien 2007). The steep decline of A at temperatures 312 

above 30°C in the Farquhar et al. (1980) model is largely driven by the temperature 313 

dependence of Jmax. This effect needs to be treated with some caution as it may be due to 314 

irreversible inhibition in the in vitro system, from which the function was derived.  June et al. 315 

(2004) provided a simpler empirical equation for fitting the temperature dependence of Jmax.  316 

The temperature dependence of A is also driven by the choice of kinetic parameters and their 317 

temperature dependencies as discussed above. Some TBMs use spinach (Jordan and Ogren 318 

1984) or tobacco (Bernacchi et al. 2001) temperature response functions for Vc,max for all 319 

species. However, as there are important differences in the response of Vc,max to temperature 320 

among warm and cool climate plant species (Kattge & Knorr 2007; Galmes et al. 2015), 321 

continued acquisition of temperature response functions from different biomes is critically 322 

important.  The temperature optimum of A (Topt) depends on environmental conditions such as 323 

Q and Ca, with Topt being more pronounced at high Q and Ca (e.g. compare Figs 2a & c with 2b 324 

& dd). Here, two models stand out for their temperature responses; unlike the majority of 325 
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models that show an optimum ~24.5oC, ED2 has an emergent temperature optimum at 16oC, 326 

despite a Vc,max optimum at 39oC, and JSBACH shows no high temperature limitation on A 327 

(Table 1, Fig 2).  It is usual for Topt to shift to a slightly higher temperature as Ca rises (Long, 328 

1991) because at high Ca the rate of photorespiration is reduced, thereby extending the 329 

temperature range where positive CO2 assimilation occurs. The CO2 effect on Topt is evident in 330 

Fig. 2 in a number of the models at both the leaf and canopy level. Here, elevating Ca from 380 331 

to 550 µmol mol-1 shifts the Topt up by ~2oC (Fig 2 b,d).  Two models do not show this shift in 332 

Topt: JSBACH has no Topt, and the Topt for ED2 remains at 16oC despite the increase in Ca from 333 

380 to 550 µmol mol-1. 334 

 335 

Current empirical models predict the response of gs to temperature based on a relationship 336 

between gs and A that is modified by VPD. This approach is successful in many cases (e.g. 337 

Duursma et al. 2014) although the mechanisms underlying the response remain poorly 338 

understood (Mott, 2009; Busch, 2013). In addition, there is evidence that the correlation 339 

between gs and A breaks down at high temperatures (> 35°C) in some species, with stomata 340 

remaining open while A goes to zero (e.g. Lu et al. 2000; Scafaro et al. 2012; Slot et al. 2016; 341 

Teskey et al. 2015; von Caemmerer and Evans 2015). Presumably this response allows the plant 342 

to maintain leaf temperatures at non-damaging levels via transpirational cooling. It is not 343 

known how widespread this response is (Teskey et al. 2015) nor to what extent it occurs in the 344 

field. Slot et al. (2016), for example, find this response in glasshouse-based measurements but 345 

not in field trees.  346 
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Recommendations: (5) Physiologists need to continue measuring temperature response 347 

functions for Vc,max and Jmax. (6) More field-based research into the independent temperature 348 

response of gs is required to better understand the mechanism underlying the response of A to 349 

high temperatures. 350 

 351 

Short-term response to CO2  352 

 353 

At low Ca, when A is limited by the amount of active Rubisco available for carboxylation (Vc,max), 354 

A increases with rising Ca for two reasons: (1) the affinity of Rubisco for CO2 is low, and 355 

therefore increasing the substrate concentration increases carboxylation rates; (2) CO2 356 

competitively inhibits the oxygenation reaction, reducing CO2 losses associated with 357 

photorespiration (Fig. 3). At higher Ca - i.e. above the inflection point of the A-Ca curve (most 358 

notable in the leaf level responses shown in Figs 3a & b) - A becomes limited by the supply of 359 

ATP and NADPH to regenerate the CO2 acceptor RuBP. At this point A will still rise with 360 

increasing Ca, but the CO2 responsiveness (the increase in A for a given increase in Ca) is 361 

reduced as further increases in A are attributable solely to the inhibition of the oxygenation 362 

reaction, which increases the availability of ATP and NADPH for RuBP regeneration (Long 1991, 363 

Long et al. 2004).  364 

 365 

The shape of the A- Ca response curve is a critical model feature that determines the ability of 366 

the terrestrial carbon sink to respond to rising Ca and it is affected by model structure and 367 

parameterization (Fig. 3, Tables 1 & 2). Variation in the initial slope of the A-Ca response is 368 
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attributable to Ci and the choice of kinetic constants. For this example of a broad leafed 369 

deciduous tree PFT in our standard conditions, all models show that light-saturated A appears 370 

to be Rubisco limited (RuBP saturated) below a Ca of 500 µmol mol-1 (Fig. 3). As a result the CO2 371 

responsiveness of A below a Ca of 500 µmol mol-1 is similar for all models. However, as Ca rises 372 

above 500 µmol mol-1 differences in model structure and parameterization lead to substantial 373 

variation in CO2 responsiveness. Three models (CLM, ED2 and JULES) stand out for smooth 374 

response curves that lack a clear inflection point (most noticeable in Fig 3a).  All three models 375 

adopt the co-limitation approach described by Collatz et al. (1991) which smooths transitions 376 

between Rubisco limited and RuBP limited A (Collatz et al. 1991; Foley et al. 1996; Clark et al. 377 

2011; Oleson et al. 2013, Table 1).  This approach contributes to the greater CO2 378 

responsiveness at higher Ca observed in CLM and JULES (Fig 3a).  In addition, the four models 379 

that lack this smoothing function (BETHY, G’DAY, JSBACH and O-CN) have a marked inflection 380 

point between Rubisco limited and RuBP limited A, but the Ca at which this inflection occurs 381 

spans a large range (~300 µmol mol-1, Fig. 3) contributing to the variation in CO2 responsiveness 382 

above 500 µmol mol-1.  The variation in Ca at which the inflection point occurs has several 383 

causes, but the main drivers of this variation are the choice of kinetic constants (~60 µmol mol-384 

1, Table 2), the JVratio, which for a fixed Vc,max sets the inflection point Ci (~125 µmol mol-1, Table 385 

2) and the stomatal model, which determines the Ca at which the inflection point Ci is reached 386 

(~175 µmol mol-1, Table 1). 387 

 388 

As Vc,max is reduced (Fig. 3b, 3d), the responses of A to changes in Ca are qualitatively similar 389 

but model divergence is constrained. Model variation in canopy level responses to rising Ca (Fig 390 
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3c & d) is also attributable to different approaches to canopy scaling as discussed below.  The 391 

differences seen here in CO2 responsiveness are substantial - highlighting the impact of 392 

different model representations of the FvCB equations, stomatal model choices and the need to 393 

better understand controls on the inflection point of the A-Ca response. The Ca at which the 394 

inflection point occurs drives uncertainty in the CO2 stimulation of A at the Ca that will be 395 

experienced in the second half of the century, and it is at this higher Ca where model 396 

uncertainty is greatest.  This effect probably contributes to the model differences in GPP 397 

reported in the recent FACE model-intercomparison project (Zaehle et al. 2014).  398 

Recommendation: (7) We need improved understanding and model evaluation of the controls 399 

on the inflection point of CO2 response curves. 400 

 401 

Short-term response to VPD  402 

Increasing VPD causes stomatal closure, which decreases Ci . The magnitude of the decrease in 403 

A resulting from lower Ci is determined by the shape of the A-Ci response as described above 404 

and shown in Fig. 3.  Figure 4 shows the response of A to VPD; model divergence increases with 405 

rising VPD, largely due to differences in the parameterization of VPD sensitivity among models . 406 

The strong sensitivity of the CLM model seen in Figure 4 is due to the use of RH in the model 407 

formulation, and the fact that RH must drop dramatically to obtain increasing VPD with 408 

constant temperature, as shown in this plot. There are some models, of which JSBACH in this 409 

study is an example, that do not incorporate a stomatal response to RH or VPD (Table 1, Figure 410 

4). Such formulations were necessary when driving data sets for atmospheric humidity were 411 

not available.  Given advances in the understanding of stomatal responses and the availability 412 
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of appropriate driver datasets, stomatal response to RH or VPD should be adopted. However, 413 

we believe that formulations involving VPD, such as those adopted by ED2, G’DAY and JULES 414 

(Table 1) are theoretically preferable because, unlike RH, VPD is directly proportional to water 415 

loss, more closely reflects stomatal mechanics (e.g. Aphalo & Jarvis 1991; de Beeck, 2010), and 416 

is strongly linked to productivity (Lobell et al. 2014; Ort & Long, 2014). In addition, formulations 417 

involving VPD, rather than RH, will likely be better able to project the response of vegetation to 418 

future climate scenarios, because RH is predicted to change little in the future whereas VPD will 419 

increase with warming (Sato et al. 2015). 420 

 421 

Similar coupled gs-A models can also be developed from optimization principles. Cowan & 422 

Farquhar (1977) proposed that stomatal behavior is optimal when A less the cost of 423 

transpiration is maximized, and a number of authors have shown that this theory leads to a 424 

relationship between gs and A that is similar in behavior to empirical formulations (e.g. Hari et 425 

al. 1986; Katul et al. 2010; Medlyn et al. 2011). Optimization approaches have the advantage of 426 

being based in theory, yielding meaningful parameter values, and providing gs responses to 427 

future environmental conditions where we lack robust measurements, and we encourage their 428 

use. However, we also caution that optimization can lead to physiologically incorrect behavior 429 

in some circumstances – such as incorrect CO2 responses, and instability near the transition 430 

between Rubisco-limited and RuBP regeneration-limited A – implying that simple, empirically 431 

verified equations based on optimization may be more reliable than direct application of 432 

numerical optimizations that are also dependent on the careful application of model 433 

constraints within TBMs and the optimization approach used. 434 
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  435 

Large-scale parameterization of stomatal models has been data-limited, with models typically 436 

using one nominal set of parameter values for all C3 vegetation. A major advance in this area 437 

was made by Lin et al. (2015), who collated a substantial new stomatal conductance database 438 

and demonstrated a predicted response of the stomatal slope parameter (g1) to temperature 439 

and consistent differences in g1 among broadly defined PFTs. This dataset provides a valuable 440 

foundation for stomatal model parameterization. However, the coverage of this database is still 441 

limited.  There is still relatively little information about how g1 varies among species or 442 

genotype, and almost no information on acclimation or plasticity in these parameters in 443 

response to abiotic or biotic factors (Way et al. 2011). Models are also sensitive to the 444 

minimum stomatal conductance parameter, g0, particularly under low light and high VPD 445 

conditions (Bauerle et al. 2014), but this parameter is poorly quantified. 446 

Recommendation: (8) Models should adopt approaches that include formulations where gs 447 

responds to VPD. (9) We need more information about how g1 and g0 (or their equivalents) vary 448 

among PFTs and in response to environmental drivers.  449 

 450 

Short-term response to Soil Moisture Content 451 

 452 

Soil moisture availability is a key constraint on A. As soil moisture availability decreases, 453 

stomates close, decreasing Ci, and eventually preventing A and transpiration (Fig. 5). Drought 454 

can also reduce the biochemical capacity for A, expressed as lower Vc,max and Jmax in models, 455 

but the relative balance of these stomatal and biochemical limitations is subject to significant 456 
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debate (Chaves et al 2009). Current approaches to modelling the effects of soil moisture on A 457 

can be classified into several types: empirical reduction factors; hydraulic limitations; 458 

physiological approaches; and a simple supply constraint approach (BETHY).  The latter assumes 459 

that plant transpiration cannot exceed the potential supply of soil water and that plants can 460 

photosynthesize provided there is a sufficient water supply (Table 1). 461 

 462 

The empirical reduction factor approach involves multiplying parameters by a soil water stress 463 

factor (typically denoted β, ranging from 0 to 1) when soil moisture falls below a given model 464 

model-dependent threshold. Three of the models in our sample used this approach (CLM, 465 

G’DAY and O-CN, Table 1 & Fig. 5). However, there is disagreement among models as to 466 

whether the β factor should be applied to the stomatal slope parameter, apparent Vc,max, or 467 

both (De Kauwe et al. 2013).  Here, all three models applied the β factor to stomatal model 468 

parameters, either the slope (G’DAY and O-CN) or the intercept (CLM), and also to the 469 

photosynthetic parameters Vc,max (CLM) or Vc,max and Jmax (G’DAY and O-CN, Table 1). Increasing 470 

evidence suggests that both stomatal slope and Vc,max are affected by low soil moisture, with 471 

the reduction in apparent Vc,max possibly in part due to lower gm (Keenan et al. 2010; Egea et al. 472 

2011; Zhou et al. 2013). Several TBMs do include both limitations, but the β factor is tied to the 473 

soil water content and therefore models cannot capture the impact of potentially different 474 

trajectories of drying and rewetting episodes (Williams et al. 2009).  475 

 476 

The hydraulic approach offers a number of theoretical advantages over the β-factor approach. 477 

Stomatal conductance is modelled as a function of leaf water potential (ψ leaf), which is 478 
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calculated from soil moisture potential ψsoil and plant and soil hydraulic conductances. There 479 

may be a threshold minimum ψ leaf (Williams et al. 1996) or a sigmoidal functional dependence 480 

(Tuzet et al. 2003). Implementations also differ on whether responses to VPD are captured by 481 

the responses to ψ leaf (Williams et al. 1996, Tuzet et al. 2003) or whether an additional VPD 482 

response is also needed (Bonan et al. 2014). The hydraulic approach is appealing to plant 483 

physiologists because it reflects some of the key mechanisms thought to influence plant 484 

response to drought (Leuning et al. 2004). Because soil hydraulic conductance is assumed to 485 

vary with ψsoil this approach also incorporates a dynamic weighting of soil layers whereby lower 486 

soil layers become more important as drought progresses (De Kauwe et al. 2015). Furthermore, 487 

there is evidence that the photosynthetic response to soil moisture can depend on plant leaf 488 

area (e.g. Kelly et al. 2015), an effect that is captured by the hydraulic approach but not the β-489 

factor approach. The chief disadvantage of the hydraulic approach is that it requires additional 490 

parameters to represent plant hydraulic conductance and stomatal dependence on leaf water 491 

potential. These parameters are not well quantified and can lead to additional uncertainty.  492 

 493 

The physiological approaches are based on an understanding of stomatal function and suggest 494 

that both metabolic and hydraulic stomatal regulation involves the hormone abscisic acid 495 

(ABA), known to promote tolerance against abiotic stress (Jones et al., 2015). Wilkinson and 496 

Davies (2002) proposed a coordinated model of plant responses to stress whereby water stress 497 

sensed by the root system stimulates ABA biosynthesis. This signal is then communicated to the 498 

guard cells which subsequently induce stomatal closure and reduce water loss. Both roots and 499 
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leaves synthesize ABA and increasing concentrations of xylem ABA correlate with stomatal 500 

closure (Sauter et al., 2001; Wilkinson and Davies, 2002, Christmann et al. 2007).  501 

  502 

There are few mathematical descriptions of stomatal control including xylem ABA signaling 503 

(Tardieu and Davies, 1993; Dewar, 2002; Huntingford et al., 2015).  Tardieu and Davies (1993), 504 

combined hydraulic and chemical signaling control of stomatal functioning. The approach of 505 

Dewar (2002) is an extension of this approach that also considers xylem embolism and the 506 

possible role of combined leaf hydraulic and chemical signaling in addition - or as a possible 507 

alternative - to existing root signals. Huntingford et al. (2015) revisited the work by Dewar 508 

(2002) and provided a gs formulation which depends on only four variables: soil water content, 509 

Ca, evapotranspiration and net A. This is an exciting approach, however there is an acute need 510 

for more empirical data to be able to parameterize and evaluate approaches of estimating gs 511 

that include ABA. 512 

 513 

The TBMs presented here showed dramatic divergence in the response of A to drought (Fig. 5), 514 

with the canopy level responses mostly mirroring the responses seen at the leaf level. Whilst 515 

much of this divergence could be explained by the different approaches taken by each model 516 

(Table 1), the method used to estimate soil water availability also varies between models. Some 517 

models estimate soil water availability using soil moisture content (e.g. O-CN) and others using 518 

ψsoil (e.g. CLM).  Since soil water retention curves are highly nonlinear and dependent on soil 519 

type, this can be a major source of model divergence (Medlyn et al. 2016). From a physiological 520 

perspective, ψsoil is thought to be more relevant to plant function than soil moisture content. 521 
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However, the use of ψsoil can result in unrealistically steep responses to the onset of drought 522 

unless it is dynamically averaged over the soil profile (De Kauwe et al., 2016). 523 

 524 

Uncertainties in root and stomatal responses are major drivers of TBM uncertainty in predicted 525 

NPP across a wide latitudinal gradient (Dietze et al. 2014; De Kauwe et al. 2013).  Improved 526 

model representation of drought responses will require evaluation of underlying mechanisms 527 

as well as comparison of high level model outputs to ecosystem fluxes during drought periods. 528 

Evaluation of the response of key variables associated with alternative stomatal models against 529 

field data is needed.  This is challenging as evaluation of alternative mechanisms (e.g. the 530 

hydraulic and physiological approaches) requires field level manipulation or exploitation of 531 

natural gradients and weather events coupled with substantial campaigns that include parallel 532 

measurement of many leaf parameters (e.g. ψ leaf, in situ gas exchange and Vc,max) in 533 

coordination with plant hydraulic parameters (e.g. soil moisture content, ψsoil, sap flux, 534 

hydraulic conductivity and cavitation vulnerability). 535 

Recommendations: (10) Models should respond to soil water availability through ψsoil, but 536 

variation in ψsoil with soil depth needs to be incorporated (11) We need rich data sets of 537 

coordinated physiological and environmental measurements to enable evaluation of alternative 538 

modeling approaches for the representation of the response of A to drought. 539 

 540 

Scaling physiology 541 

 542 
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Above, we focused primarily on leaf level responses to environmental and climate change 543 

drivers, but a major challenge for model representation is how to scale process knowledge of 544 

physiology and leaf level parameterization through time (seasonal change), vertically through 545 

the canopy, spatially across the landscape, and also to represent photosynthetic acclimation to 546 

rising temperature and Ca.  These issues are discussed below. 547 

 548 

Effects of day length and season  549 

 550 

Photosynthesis responds to short-term environmental changes, but it also shows broad, regular 551 

seasonal changes, especially in higher latitudes. In these regions, A halts in the autumn as 552 

leaves senesce in deciduous species and decreases as Vc,max is down-regulated during the cold 553 

winter months in evergreens. Much of this temporal scaling of A is captured in TBMs through 554 

phenology models and the direct temperature effects on Vc,max.  555 

  556 

While temperature may be a major factor in driving seasonal patterns of A, other 557 

environmental cues may be as, or even more, important. Photoperiod is known to have strong 558 

effects on leaf phenology, which has indirect effects on A, but has not generally been 559 

considered to affect A directly (Way & Montgomery, 2015). However, Bauerle et al. (2012) 560 

found that photoperiod was a stronger predictor of seasonal changes in both Vc,max and Jmax 561 

than air temperature. In that data set, Vc,max peaked immediately after the summer solstice, 562 

and declined steadily into the autumn, although air temperatures did not peak until a month or 563 

more after the solstice. When this effect was accounted for with a photoperiod correction of 564 
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Vc,max in CLM, the model’s ability to capture seasonal patterns of atmospheric Ca was improved 565 

(Bonan et al. 2011; Bauerle et al. 2012). Other papers have noted that incorporating a 566 

photoperiod scalar with direct effects on Vc,max improves estimates of seasonal carbon fluxes in 567 

eddy flux studies, supporting a role for photoperiod in modulating Vc,max (Medvigy et al. 2013; 568 

Stoy et al. 2014). In controlled environments, photoperiod is tightly correlated with total leaf 569 

protein content, suggesting a tradeoff between the value of protein and the cost of its 570 

maintenance and provides a possible mechanistic explanation for the impact of photoperiod on 571 

Vc,max (Hannemann et al. 2009). However, not all PFTs show the same response to changes in 572 

day length and it is possible that photoperiod corrections may be capturing leaf age effects 573 

(Medlyn et al. 2002b; Medlyn et al. 2007; Busch et al. 2007; Lin et al. 2013; Stinziano et al. 574 

2015). In the tropics, day-length is essentially constant and therefore photoperiod scalars will 575 

fail to capture the well documented photosynthetic seasonality associated with tropical 576 

evergreen forests (Doughty & Goulden, 2008).  In dry season Amazonian evergreen forests 577 

recent work has shown that a higher canopy level photosynthetic capacity associated with new 578 

leaf flushing explains seasonal dynamics of photosynthetic rate (Wu et al. 2016a).   579 

Recommendations: (12) We need to elucidate the mechanism underlying the use of photoperiod 580 

scalars to modify photosynthetic parameterization. (13) In order to capture photosynthetic 581 

seasonality in tropical evergreen forests, we need to develop new approaches that are capable 582 

of coupling prognostic leaf phenology to photosynthetic capacity. 583 

 584 

Acclimation to temperature 585 

 586 
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The short-term photosynthetic responses to temperature covered above are themselves 587 

sensitive to the temperatures experienced over longer time scales (days to weeks).  This longer-588 

term adjustment, known as temperature acclimation, has been widely reported and recently 589 

reviewed (Smith and Dukes 2013, Way & Yamori 2014).  The phenomenon is commonly 590 

observed as a shift in the optimum temperature for A (Topt), which can maximize the A at the 591 

growth temperature (Berry & Björkman, 1980; Yamori et al., 2014; Kattge & Knorr, 2007).  The 592 

mechanistic process of acclimation and its timescale have not been well described, either 593 

within or across species.  At the slowest and broadest scales, the process of acclimation is 594 

constrained by leaf structure and rates of leaf development and turnover.  Leaves that develop 595 

under one set of conditions are constrained by their existing anatomy from adjusting fully to a 596 

new set of conditions (Campbell et al. 2007).  Within a leaf, acclimation rates are driven by the 597 

rates at which biochemical and physiological processes can adjust.  598 

 599 

At the leaf scale, acclimation results from temperature-driven changes in enzyme abundances 600 

and isoforms, and of membrane composition (Yamori et al. 2014).  At low growth 601 

temperatures, the abundance of Rubisco and other photosynthetic enzymes increases, and 602 

some plants produce enzymes with different isoforms, which have different kinetic constants.  603 

Under high growth temperatures, plants are thought to increase the stability of the thylakoid 604 

membrane, and their capacity for increased electron transport.  Also, some plants can produce 605 

a more heat-stable form of Rubisco (Crafts-Brandner et al. 1997), and increase expression of 606 

heat-shock proteins.  Growth temperature also affects the temperature response of respiration, 607 

with consequences for net A (e.g., Atkin & Tjoelker 2003, Way & Yamori 2014); although the 608 
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acclimation of respiration may affect plant growth more strongly than that of A for some 609 

species (Way & Oren 2010), this topic lies beyond the scope of this paper and has recently been 610 

considered elsewhere (Atkin et al. 2015).  611 

 612 

While long-term acclimation of A to temperature has been observed in many species and 613 

studies, fewer studies have quantified acclimation at the process level i.e. Vc,max and Jmax.  From 614 

observed responses, one may expect seasonal variation in the temperature dependence of Jmax 615 

and changes in the JVratio.  Some confirmation of this was provided by Kattge & Knorr (2007) 616 

who reanalysed data from 36 (primarily temperate) plants and showed that the optimum 617 

temperature of Vc,max and Jmax increased by 0.44oC and 0.33oC per 1oC increase of growth 618 

temperature, and that the JVratio at 25oC significantly decreased with increasing growth 619 

temperature. However, temperature acclimation may result from different processes in 620 

different species: Vc,max and Jmax measured at 25oC were, on average, unaffected by growth 621 

temperature across tree species (Way & Oren, 2010) and showed a wide variation in responses 622 

across a broad range of plant growth forms (Way & Yamori 2014). 623 

 624 

The representation of Vc,max and Jmax acclimation based on Kattge & Knorr (2007) has been 625 

included in some models (e.g., Raddatz et al. 2007, Ziehn et al. 2011, Arneth et al. 2012, 626 

Lombardozzi et al. 2015), and recent work suggests that incorporation of both photosynthetic 627 

and respiratory acclimation can alter projections of land carbon storage by 10-40 Pg by the end 628 

of the century (Lombardozzi et al. 2015, Smith et al. 2016).  However, there is clear indication 629 

that species differ in the degree to which they acclimate to temperature (e.g., Yamori et al. 630 
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2014), and no formulations have yet been developed that capture this variation across a broad 631 

range of PFTs.  632 

  633 

Researchers have recorded acclimation of different species occurring over periods lasting from 634 

two days to nearly two weeks (e.g., Björkman & Badger 1979, Gunderson et al. 2010, Slatyer & 635 

Ferrar 1977). Very limited evidence suggests that the exact timescale of acclimation may not be 636 

critical for modeled estimates of GPP as long as it is in a range of approximately 3-45 days 637 

(Dietze 2014) but the issue needs to be evaluated more thoroughly before that assumption is 638 

widely adopted. A specific timescale does need to be specified in models to calculate growth 639 

temperature, and is straightforward to identify experimentally. Kattge & Knorr (2007) assumed 640 

an acclimation period of 30 days, using an average of day and night temperatures, but it is clear 641 

that the bulk of biochemical and physiological adjustments happen over a shorter time period.  642 

Recommendations: (14) Physiologists need to measure thermal acclimation of the 643 

photosynthetic traits (e.g. Vc,max and Jmax) that drive model outputs rather than thermal 644 

acclimation of A. (15) We need a better understanding and model representation of thermal 645 

acclimation across biomes, specifically the capacity and degree to which species can acclimate, 646 

the time scales over which acclimation occurs, and the degree to which temperature acclimation 647 

is affected by other environmental variables.   648 

 649 

Acclimation to rising [CO2]  650 

 651 
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Photosynthetic acclimation to elevated Ca is the reduced stimulation of A that often occurs 652 

following long-term growth at elevated Ca (Ainsworth & Rogers, 2007).  It is the result of a 653 

reduction in Vc,max relative to Jmax (Ainsworth &  Long, 2005, Ainsworth &  Rogers, 2007, Leakey 654 

et al., 2009, Long et al., 2004, Rogers &  Humphries, 2000). Notably, the reduction in 655 

photosynthetic capacity typically reduces the magnitude of the stimulation of A without 656 

completely eliminating it (Leakey et al. 2009).  The acclimation response reduces allocation of N 657 

to Rubisco, thereby allowing N resources to be combined with the greater C supply from 658 

stimulated A at elevated Ca (Drake et al. 1997, Long et al. 2004). In fact, a meta-analysis of 659 

Ainsworth & Long (2005) found that the decrease in leaf N content observed at elevated Ca was 660 

largely attributable to the decrease in Rubisco. Consequently, the magnitude of any 661 

photosynthetic acclimation is tightly coupled to the C and N status, and the source-sink 662 

balance, of the plant (Medlyn, 1998; Ainsworth & Rogers, 2007, Ainsworth et al., 2004, Leakey 663 

et al., 2009, Rogers et al., 2009, Rogers et al., 1998). For example, in severely N limited systems, 664 

acclimation is strong and can be attributed to a nonspecific reduction in leaf N content (Warren 665 

et al., 2015), a mechanism that is currently accounted for by some TBMs in this study (Table 1). 666 

Acclimation is also strong when the capacity of sinks to use photoassimilate is low, leading to 667 

accumulation of leaf carbohydrates and induction of sugar signaling pathways that reduce 668 

expression of Rubisco (Moore et al. 1999). There is evidence for variation in the acclimation 669 

response among functional groups that differ in the processes limiting A at ambient Ca 670 

(Ainsworth & Rogers, 2007). Acclimation is rarely observed in plants that have Rubisco-limited A 671 

at current Ca and elevated Ca.  As Ci rises above the inflection point on an A-Ci response curve, 672 

A will become RuBP regeneration-limited, and carboxylation capacity will exceed requirements.  673 
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In this situation, plants grown at elevated Ca typically exhibit photosynthetic acclimation and 674 

reduce their investment in Rubisco (Ainsworth & Rogers, 2007). 675 

 676 

The TBMs in this review either do not include photosynthetic acclimation to elevated Ca or link 677 

it to a non-specific reduction in leaf N content that is focused on reduced N availability and 678 

constrained C:N stoichiometry (Luo et al., 2004).  No models currently include representation of 679 

the physiological acclimation to elevated Ca described above and widely reported in Free Air 680 

CO2 Enrichment (FACE) studies (Long et al. 2004, Ainsworth & Rogers 2007, Leakey et al. 2009), 681 

where the meta-analysis of Ainsworth & Long (2005) found that the decrease in leaf N content 682 

observed at elevated Ca was largely attributable to the decrease in Rubisco.  2009). Recent 683 

analysis has shown that failing to account for photosynthetic acclimation at elevated Ca leads to 684 

an overestimation of yield in soybean (Twine et al., 2013) - a legume where reductions in leaf N 685 

content at elevated Ca are theoretically minimal (Rogers et al., 2009). Therefore, the potential 686 

for model representation of photosynthetic acclimation to elevated Ca to reduce errors of this 687 

type when modeling other more N limited systems is likely substantial. In future TBMs we 688 

believe it will be important to capture the mechanisms that control physiological acclimation to 689 

rising Ca and not just acclimation resulting from reduced N availability. An approach that 690 

reduces N allocation to Rubisco when Ca rises beyond the inflection point of PFT-specific CO2 691 

response curves would be a good first step.  However, unlike thermal acclimation, no 692 

algorithms have been developed to facilitate inclusion of this concept in TBMs despite the 693 

substantial research from FACE experiments.  Published data from FACE experiments could 694 

potentially be used for development and validation of new algorithms. 695 
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Recommendation (16) We need to develop a new model representation of the physiological 696 

acclimation of photosynthesis to elevated Ca. 697 

 698 

Leaf to canopy scaling  699 

 700 

Due to high non-linearity of photosynthetic responses to light, temperature and VPD, scaling A 701 

from leaves to canopy remains an important challenge for models (Jarvis, 1995). Central to this 702 

challenge is TBM representation of light penetration and utilization within the canopy’s vertical 703 

profile and the vertical scaling of physiology within the canopy.  Analogous effects arise from 704 

within-canopy variations in temperature and VPD, although to a lower degree (Niinemets & 705 

Anten, 2009). 706 

 707 

Although the average light intensity typically decreases exponentially with increasing 708 

cumulative leaf area index through the canopy, the extent of this decline is affected by the 709 

optical properties of individual leaves (including albedo) and how these change with canopy 710 

depth, season and leaf age, leaf inclination angle distribution and foliage and canopy spatial 711 

clumping (Cescatti & Niinemets, 2004; Kobayashi et al., 2007; Chen et al., 2012; Disney, 2015; 712 

Drewry et al. 2014; Wu et al. 2016a,b). Furthermore, due to gaps in the canopy, leaves at a 713 

given value of cumulative leaf area index can be sunlit or shaded, further complicating the 714 

estimation of light at the leaf surface, leaf absorption, and the subsequent numeric integration 715 

of canopy-scale photosynthetic, water, and energy fluxes (de Pury & Farquhar, 1997; Wang & 716 

Leuning, 1998; de Pury & Farquhar, 1999; Kobayashi et al., 2012). Here, the models differ in 717 
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how these scaling issues are addressed (Table 1) and based on how the canopy is considered, 718 

they can be broadly divided between multi-layer models and big-leaf models.  719 

 720 

Several TBMs have used the “big leaf” approach where a canopy approximately represents a 721 

single big leaf with a single set of traits describing the photosynthetic capacity together with 722 

characteristic light and temperature response functions (generally by PFT), typically scaled to 723 

the canopy as a function of leaf area index (e.g., Amthor, 1994; Sands, 1996). Although 724 

sometimes still used (e.g. G’DAY, Table 1), the big leaf model approach consisting of a single 725 

“leaf” has been demonstrated to be prone to major integration errors due to lack of 726 

consideration of sunlit and shaded leaf area classes (de Pury & Farquhar, 1997; Friend, 2001). 727 

These errors were somewhat reduced by developing the “two big-leaf” model approach, which 728 

consists of separate handling of a representative sunlit and a shaded big leaf (de Pury & 729 

Farquhar, 1997; Chen et al., 1999; Dai et al., 2004). Indeed, separate integration of A for sunlit 730 

and shaded leaf fractions provides a much more accurate integration of carbon and water 731 

fluxes (de Pury & Farquhar, 1997; Dai et al., 2004), and this is the approach used in several 732 

contemporary TBMs (Table 1). 733 

 734 

Big leaf models differ in how whole-canopy Vc,max and Jmax values are derived (or sunlit and 735 

shaded big leaf values are derived), but typically, proportionality of photosynthetic capacity and 736 

average light (deemed optimal) is assumed (Table 1, Amthor, 1994; Sands, 1995a; Sands, 737 

1995b). Yet, such optimality is not present in nature (Niinemets, 2012). In fact, the decline of 738 

photosynthetic capacity through the canopy is much shallower than that for light (Lloyd et al., 739 
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2010; Dewar et al. 2012; Niinemets et al., 2015). Such departures from optimality have been 740 

considered in some multi-layer models (Table 1), but nevertheless, only a few datasets have 741 

been used to develop global parameterizations for multi-layer models (e.g., Carswell et al., 742 

2000; Lloyd et al., 2010). PFT and biome-dependent within-canopy acclimation patterns have 743 

recently been highlighted (Niinemets et al., 2015) and could be used in future model 744 

development. 745 

 746 

Depending on the distribution of foliage inclination angles and spatial clumping, the probability 747 

for light penetration varies at a given cumulative LAI (Cescatti & Niinemets, 2004; Disney, 748 

2015). Importantly, characteristic canopy features differ among PFTs given fundamental 749 

differences in leaf habit and growth forms (Cescatti & Niinemets, 2004), as a result of land-use, 750 

landscape legacies and past disturbance, but few TBMs take this into account. While the multi-751 

layer models can be easily modified to incorporate different clumping and foliage inclination 752 

angles, this is much less straightforward for the big leaf models. In fact, differences in canopy 753 

architecture are part of the whole-canopy Vc,max and Jmax values in current big leaf models, i.e. 754 

the input values get converted to canopy-scale sunlit and shaded values blurring the definition 755 

of Vc,max and Jmax and making comparison with measured leaf level values impossible. 756 

Moreover, leaf optical properties and foliar traits change markedly within the vertical canopy 757 

profile (Serbin et al., 2014; Wu et al., 2016b; Yang et al., 2016), but are often assumed static, 758 

which will generally lead to improper representation of light interception and utilization. This 759 

improper representation will feed forward to the integration of leaf energy balance and carbon 760 

uptake. We argue that traits like Vc,max and Jmax should retain their original physiological 761 
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definition and that more effort is needed to improve  the  representation of canopy 762 

architecture and subsequent scaling of foliar properties in TBMs. Modifications to the 763 

underlying radiative transfer model (RTM) structure and scaling can help to improve the 764 

representation of the canopy light environment and modeling of carbon, water, and energy 765 

fluxes (Kobayashi et al., 2012), however increasing RTM complexity or vertical layering should 766 

not come at the cost of the ability to parameterize the model. A promising means to constrain 767 

these approaches is through model-data integration whereby remote sensing observations (e.g. 768 

optical, LiDAR) from the leaf to landscape are used to inform the RTM structure and to 769 

parameterize across spatial and temporal scales (e.g. Shiklomanov et al. 2016). 770 

Recommendations: (17) TBMs should not use single layer big leaf models. (18) We need better 771 

model representation of canopy architecture and vertical scaling of foliar properties, and data to 772 

evaluate alternative radiative transfer models and scaling approaches. 773 

 774 

Canopy to landscape scaling 775 

 776 

There is considerable variability in plant physiological traits across space and time (Serbin et al., 777 

2015; Singh et al., 2015), even within an individual species or PFT (Kattge et al. 2011; Serbin et 778 

al., 2014). This variability is driven by differences across vegetation types, photosynthetic 779 

pathways, plant successional status, as well as a result of nutrient availability and other abiotic 780 

factors. There is a propensity for strong covariance among many key physiological traits as well 781 

as fundamental tradeoffs which determine the distribution of these properties across 782 

landscapes. Moreover, the nonlinearity in the scaling of model processes from leaf to larger 783 
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regions requires careful consideration of model parameterization in order to effectively capture 784 

the larger-scale emergent responses (Fisher et al., 2015). Parameterization with single, fixed 785 

values of photosynthetic capacity likely obscures the true response of vegetation to global 786 

change across landscapes, particularly at the current climatic extents of vegetation, thus 787 

inadequately capturing critical plant threshold responses to factors such as temperature and 788 

precipitation. The links between leaf-level observations, environmental responses and 789 

emergent landscape-scale parameterizations needed for TBMs is are not straightforward, and 790 

as such global parameterizations are commonly derived through the inversion of large-scale 791 

datasets (e.g. Kattge et al., 2009; Lin et al., 2015). However use of such data sets can yield 792 

parameterization that is inconsistent with current model structures resulting in unrealistic 793 

model outputs (e.g. Bonan et al., 2012). Furthermore, the trade-offs among variables (e.g. 794 

Vc,max v N) are themselves scale-dependent, with slopes changing depending on whether one is 795 

looking at an across-PFT evolutionary constraint, a within-PFT community response, or a within-796 

individual phenotypic response (Feng and Dietze 2014). Care must be taken to not use data 797 

constraints at one scale (e.g. global) to drive responses at another scale (e.g. responses to 798 

change over time). 799 

 800 

The increasing use of trait databases (Wright et al., 2004; Kattge et al., 2011) in modeling 801 

activities has started to address some of these issues by leveraging more comprehensive 802 

descriptions of traits within models and across PFTs (LeBauer et al., 2013; Dietze et al., 2014; 803 

Fisher et al., 2015). These databases should also be used to more extensively explore trait-804 

environment relationships.  New, model-data integration frameworks (e.g. LeBauer et al., 2013; 805 
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Dietze et al., 2014) can be used to explore the capacity to adequately parameterize existing and 806 

new model representations, expand PFT descriptions, as well as identify critical model 807 

uncertainties and data gaps and thus prioritize observational and model development activities 808 

(Dietze et al., 2014). Given the current diverse methods used to parameterize photosynthetic 809 

parameters (Rogers, 2014), the available data (e.g. Kattge et al. 2011), and new opportunities 810 

to markedly expand databases (e.g. Serbin et al 2012, De Kauwe et al. 2016), we recommend 811 

that models should now use common parameterizations for photosynthetic parameters e.g. 812 

Vc,max and Jmax that are constrained by the available data and consistent with known trait 813 

covariance, thereby removing unnecessary uncertainty from model projections. 814 

 815 

The capacity to utilize remote sensing observations to inform model parameterizations, 816 

representations, and trait-environment relationships across spatial and temporal scales is 817 

increasing (Dahlin et al., 2013; Serbin et al., 2015; Schimel et al., 2015; Shugart et al., 2015; 818 

Singh et al., 2015). Importantly, remote sensing observations can provide a synoptic view of 819 

trait variability and functional diversity across landscapes (e.g. Dahlin et al., 2013; Asner et al. 820 

2015; Singh et al., 2015) and identify emergent relationships that could be included in next-821 

generation trait-based models.  These observations can also be used as important datasets to 822 

benchmark prognostic traits at the relevant spatial scales (e.g. Fisher et al., 2015). Proposed 823 

and upcoming and satellite missions, including NASA’s Hyperspectral Infrared Imager (HyspIRI) 824 

mission concept (Lee et al., 2015) and the European Space Agencies Environmental Mapping 825 

and Analysis Program (EnMAP; Guanter et al., 2015), will provide a critical capacity to provide 826 

this information for global-scale models. 827 
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Recommendations: (19) Data constraints (e.g. trait tradeoffs) must be applied at the relevant 828 

spatial and temporal scales. (20) Where possible, TBMs should use common parameterization 829 

for photosynthetic parameters. (21) TBMs should make better use of remote sensing data to 830 

inform model parameterizations and test predictions. 831 

 832 

Conclusion 833 

 834 

Realistic model representation of A, and more broadly, plant physiological processes, should be 835 

an essential component of TBMs because that same plant physiology is determining the 836 

response of the terrestrial biosphere to global change, including the fate of the terrestrial 837 

carbon sink. However, many TBMs fail to accurately represent photosynthetic responses to key 838 

environmental variables. Here, in a subset of TBMs, we have shown marked model divergence 839 

in the representation of key physiological responses for a single well-defined PFT. We have 840 

made 21 recommendations that highlight where steps can be taken to improve existing model 841 

representation. Our recommendations include areas where immediate steps could be taken, 842 

areas where model development is hindered by a lack of physiological data and several 843 

important avenues of research that are critical to our understanding that are not currently 844 

mature enough to include in model structures. These recommendations are summarized in Fig. 845 

6. 846 

Current model representation of A has a foundation in research conducted in temperate 847 

climates. However, other biomes that are climatically sensitive and globally important are 848 

understudied, and therefore process representation in these biomes is uncertain; the Arctic and 849 
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tropics deserve particular attention. The approach taken here, i.e. evaluating how TBMs 850 

reproduce physiological responses to key environmental drivers, was found to be extremely 851 

informative by all who participated.  We feel the process provides a useful template for 852 

meaningful collaboration between empiricists and modelers and that including the 853 

physiological outputs considered here as readily available diagnostic features would be a highly 854 

valuable feature to include in new TBMs.  This study also highlighted the need for a multi-855 

assumption model framework within which the modeling community and domain experts could 856 

evaluate different model structures and parameterization approaches and quantitatively 857 

evaluate their effect on model outputs.  Such a framework would provide a forum where 858 

modelers and, in this case, physiologists could reach agreement over the best approaches for 859 

representing and parameterizing the sub-processes within complex TBMs.  860 
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Figure Legends 1583 

 1584 

Figure 1 The response of leaf level (a) and canopy level (b,c,d) photosynthesis (A) to 1585 

instantaneous quantum flux density (Q) for three different values of leaf area index; LAI=1 (b), 1586 

LAI=3 (c), and LAI=7 (d) for seven models; BETHY (red), CLM (blue), ED2 (cyan), JSBACH (pink), 1587 

JULES (dark green) G’DAY (black), O-CN (green). Plots show responses in standard conditions for 1588 

a single plant functional type, a generic temperate broad leaved deciduous tree.  Where Vc,max 1589 

is 60 µmol m-2 s-1. VPD was fixed at 1 kPa, soil moisture content was fixed at field capacity,  and 1590 

atmospheric [O2] at 210 mmol mol-1, Ca at 380 µmol mol-1. Sunlit upper canopy leaf 1591 

temperature was fixed at 25oC. 1592 

 1593 

Figure 2 The response of leaf level (a,b) and canopy level (LAI =3; c, d) photosynthesis (A) 1594 

to leaf temperature at two atmospheric [CO2] (380 µmol mol-1 a, c and 550µmol mol-1 b, d)  for 1595 

seven models; BETHY (red), CLM (blue), ED2 (cyan), JSBACH (pink), JULES (dark green) G’DAY 1596 

(black), O-CN (green). Plots show responses in standard conditions for a single plant functional 1597 

type, a temperate broad leaved deciduous tree.  Where Vc,max is 60 µmol m-2 s-1. VPD was fixed 1598 

at 1 kPa, soil moisture content was fixed at field capacity, and atmospheric [O2] at 210 mmol 1599 

mol-1, Q at 1500 µmol m-2 s-1.  Sunlit upper canopy leaf temperature was fixed at 25oC. 1600 

 1601 

Figure 3 The response of leaf level (a,b) and canopy level (LAI=3; c,d) photosynthesis (A) 1602 

to atmospheric [CO2] (Ca) in seven models; BETHY (red), CLM (blue), ED2 (cyan), JSBACH (pink), 1603 

JULES (dark green) G’DAY (black), O-CN (green). Panels show responses in our standard 1604 
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conditions for a single plant functional type, a temperate broad leaved deciduous tree where 1605 

Vc,max = 60 µmol m-2 s-1 (a,c) and when Vc,max = 45 µmol m-2 s-1 (b, d). The VPD was fixed at 1 1606 

kPa, soil moisture content at field capacity and Q at 1500 µmol m-2 s-1, atmospheric [O2] at 210 1607 

mmol mol-1 Sunlit upper canopy leaf temperature was fixed at 25oC. 1608 

 1609 

Figure 4 The response of leaf level (a) and canopy level, where LAI=3 (b) photosynthesis 1610 

(A) to vapor pressure deficit (VPD) for seven models; BETHY (red), CLM (blue), ED2 (cyan), 1611 

JSBACH (pink), JULES (dark green) G’DAY (black), O-CN (green). Plots show responses in 1612 

standard conditions for a common plant functional type, a temperate broad leaved deciduous 1613 

tree.  Where Vc,max = 60 µmol m-2 s-1. Soil moisture content was fixed at field capacity, Q at 1500 1614 

µmol m-2 s-1, Ca at 380 µmol mol-1, atmospheric [O2] at 210 mmol mol-1 Sunlit upper canopy leaf 1615 

temperature was fixed at 25oC. 1616 

 1617 

Figure 5 The response of leaf level (a) and canopy level, where LAI=3 (b) photosynthesis 1618 

(A) to soil water content expressed as a fraction of field capacity for seven models; BETHY (red), 1619 

CLM (blue), ED2 (cyan), JSBACH (pink), JULES (dark green) G’DAY (black), O-CN (green). Plots 1620 

show responses in standard conditions for a single plant functional type, a temperate broad 1621 

leaved deciduous tree.  Where Vc,max = 60 µmol m-2 s-1). VPD was fixed at 1 kPa, Q at 1500 µmol 1622 

m-2 s-1, Ca at 380 µmol mol-1, atmospheric [O2] at 210 mmol mol-1 Sunlit upper canopy leaf 1623 

temperature was fixed at 25oC. 1624 

 1625 
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Figure 6 Summary of the main areas of scientific activity required to advance 1626 

representation of photosynthesis in Earth System Models.  Blue boxes show areas where 1627 

fundamental research is required to advance understanding prior to incorporation into models.  1628 

Yellow boxes show areas where model refinement or development is required to improve 1629 

process representation.  Green boxes highlight areas where data are needed to parameterize 1630 

models or are required to evaluate alternative approaches. The numbers in the boxes are keyed 1631 

to our recommendations in the text. 1632 



Table 1 Model representation of the response of C3 photosynthesis to key environmental variables used for this study.   
BETHY CLM4.5 ED2 G’DAY JSBACH JULES O-CN 

Leaf photosynthesis (response to Ca) 
Farquhar et al 
(1980), no TPU 
limitation 

Farquhar et al 
(1980),  includes 
TPU limitation and 
co-limitation from 
Collatz et al. (1991)  
 

Collatz et al. (1991) 
and Foley et al. 
(1996); no TPU 
limitation 

Farquhar et al 
(1980), no TPU 
limitation 

Farquhar et al 
(1980), no TPU 
limitation 

Collatz et al. 
(1991), TPU 
limitation included 

Farquhar type 
(Farquhar et al 
1980) following 
Kull and Kruijt 
(1998) 

Stomatal conductance (response to atmospheric VPD, Ca soil moisture and A) 
Minimum of (1) 
stomatal 
conductance 
necessary to 
realize maximum 
Ci:Ca and (2) soil 
water availability 
(Federer 1982). 

Sensitivity to 
atmospheric RH, Ca 
and A from Ball, 
Woodrow & Berry 
(1987)   
 
Sensitivity to soil 
moisture is from a  
beta factor applied 
to the intercept of 
the Ball, Woodrow 
& Berry (1987) 
model. The beta 
factor is summed 
over soil layers, 
weighted by root 
fraction in each 
layer and calculated 
based on soil 
moisture content 
 

Sensitivity to 
atmospheric VPD, 
Ca and A from 
Leuning et al. 
(1995)  
 
Water supply is 
proportional to soil 
moisture � root 
biomass. If the open 
stomata demand 
exceeds supply then 
gs is linearly scaled 
between open and 
closed stomata. 

Sensitivity to 
atmospheric VPD, 
Ca and A from 
Medlyn et al. 
(2011)  
 
Sensitivity to soil 
moisture from beta 
factor applied to the 
slope of the 
stomatal response 
(Medlyn et al. 
2011).  Soil 
moisture content is 
expressed as a 
fraction of total 
plant available 
water and 
dependent on soil 
type  
 

Estimates potential 
A for any given 
condition assuming 
a maximal Ci:Ca  
resulting from a 
maximum potential 
gs 
 
When soil moisture 
content falls below 
50% of plant 
available water 
maximum potential 
gs is reduced 
linearly.  

Sensitivity to 
atmospheric VPD, 
Ca and A from 
modification of 
Leuning et al 
(1995) model as 
proposed by Jacobs 
(1994) 
 

Non-linear 
sensitivity to 
specific humidity 
deficit and Ci. 
The latter is 
necessary 
because A for gs 
is evaluated at 
saturating Ci.  
 
A beta factor is 
applied to the 
slope of the 
stomatal response 
when soil 
moisture content 
falls below 50% 
of plant available 
water. 
 

Leaf photosynthesis (response to light) 
Rectangular 
hyperbola, with 
realized quantum 
yield and Asat 
calculated from 
Farquhar model  

Non-rectangular 
hyperbola, with 
realized quantum 
yield and Asat 
calculated from 
Farquhar model 

Hyperbolic 
function, with 
realized quantum 
yield and Asat 
calculated from the 
Collatz (1991) 
model, no Jmax term 
included 

Non-rectangular 
hyperbola, with 
realized quantum 
yield and Asat 
calculated from 
Farquhar model 

 Rectangular 
hyperbola, with 
realized quantum 
yield and Asat 
calculated from 
Farquhar model  

Hyperbolic 
function, with 
realized quantum 
yield and Asat 
calculated from the 
Collatz (1991) 
model, no Jmax term 
included 

Explicit 
separation into 
light saturated 
and limited 
regions: Asat is 
calculated from 
Farquhar et al 
(1980). Light 



limited A is 
assumed to be 
proportional to 
light absorption 
(Kull and Kruijt, 
1998) 
 

Leaf photosynthesis (response to temperature) 
Temperature 
dependence of 
kinetic constants 
follows 
Bernacchi et al. 
(2001). Vc,max and 
Jmax are peaked 
Arrhenius 
functions of 
temperature.  

Temperature 
dependence of 
kinetic constants 
follows Bernacchi 
et al. (2001). Vc,max 
and Jmax are peaked 
Arrhenius functions 
of temperature. 
TPU has the same 
temperature 
response as Vcmax.  
 
 

Follows  Collatz et 
al., (1991) and 
Foley et al., (1996). 
The temperature 
dependent kinetic 
constants follow a 
modified Arrhenius 
function.  A 
phenomenological 
thermal 
downscaling of 
Vc,max occurs at low 
and high 
temperatures 
(Medvigy et al., 
2009) 
 

Temperature 
dependence of 
kinetic constants 
follows Bernacchi 
et al. (2001). Vc,max, 
Jmax and Rd are 
peaked Arrhenius 
functions (Medlyn 
et al. 2002). 

Temperature 
dependence of 
kinetic constants 
and Vc,max follow an 
Arrhenius function, 
𝛤𝛤* and Jmax vary 
linearly with 
temperature. 

Follows Collatz et 
al. (1991), 
the temperature 
dependence of 
kinetic constants 
follows a Q10 
function.  Vc,max has 
a peaked 
temperature 
function calculated 
from Vc,max at 25oC 
using vegetation-
specific optimal 
temperature ranges. 

Temperature 
dependence of 
kinetic constants 
and Vc,max follows 
Bernacchi et al. 
(2001). The 
temperature 
dependence of 
Jmax is derived 
from June et al. 
(2004) 

Leaf photosynthesis (response to soil moisture content) 
 A beta factor is 

applied to Vc,max. 
The beta factor, 
calculated based on 
soil moisture 
potential, is 
summed over soil 
layers, weighted by 
root fraction in each 
layer. 

 A beta factor is 
applied to Jmax and 
Vc,max. Soil moisture 
content is expressed 
as a fraction of total 
plant available 
water and 
dependent on soil 
type  
 

 Potential A is 
multiplied by a soil 
water stress factor 
related to the mean 
soil moisture 
concentration in the 
root zone and the 
critical and wilting 
point soil water 
concentrations.(Cox 
et al.,1998) 
 

A beta factor 
reduces Vc,max and 
Jmax when plant 
available water 
<20% (Friend, 
2010) 

Canopy scaling       
Multiple canopy The Multi-layer Cohort-based model Big-leaf model, Multiple canopy Multi-layer canopy Multiple canopy 



layers, using 
Sellers’s (1987) 
two-stream 
approximation. 
Vc,max and Jmax 
declines 
exponentially 
within the canopy 
following  Lloyd 
et al. (2012). 

option explicitly 
resolves direct and 
diffuse radiation for 
sunlit and shaded 
leaves at each level 
in the canopy. Both 
options use Sellers’s 
(1987) two-stream 
approximation for 
radiative transfer. 
Nitrogen declines 
exponentially with 
greater cumulative 
leaf area index.  

with the number of 
layers equal to the 
number of cohorts.  
Cohorts differ by 
PFT definition. 
Radiation 
penetration is 
defined by LAI and 
the leaf and wood 
single scattering 
albedos. There is no 
separation of sunlit 
and shaded foliage 
in the default 
version 

assuming 
exponential light and 
nitrogen 
distributions. 
Daily A calculated 
using Gaussian 
integration (Sands 
1996) 

layers, using 
Sellers’s (1987) 
two-stream 
approximation. LAI 
typically = 3. For 
LAI < 3, N (and 
hence Vc,max, Jmax) 
is distributed evenly 
in the canopy 
(assumed to be 
open). For LAI > 3, 
N follows the 
distribution of light 
(exponential 
decline). 

using the two-
stream 
approximation from 
Sellers (1985) 
solving direct and 
diffuse radiation for 
sunlit and shaded 
leaves at each 
canopy layer. 
Includes 
exponential vertical 
nitrogen 
distribution of 
photosynthetic 
capacity and leaf 
respiration. 
 

layers with 
diffuse and direct 
radiation streams 
following Spitters 
(1986). Nitrogen 
declines 
exponentially 
with greater 
cumulative leaf 
area index, 
affecting Vc,max 
and Jmax 

Key Model References 
Knorr & 
Heimann (2001) 
 

Bonan et al (2011, 
2012), Oleson et al 
(2013) 

Medvigy et al 
(2009), Moorcroft et 
al (2001) 

 Knorr & Heimann 
(2001) 

Best et al (2011), 
Clark et al (2011), 
Harper (2016) 

Zaehle & Friend 
(2010), Friend 
(2010) 
 

BETHY = Biosphere Energy Transfer Hydrology scheme, CLM4.5 = the Community Land Model version 4.5, G’DAY = Generic Decomposition And 
Yield model (G’DAY), JSBACH = Joint Scheme for Biosphere Atmosphere Coupling in Hamburg, JULES = Joint UK Land Environment Simulator, O-
CN = An extension of the Organizing Carbon and Hydrology in Dynamic Ecosystems model that includes key N cycle processes. 

 



Table 2 Parameters used by the models in this study (Table 1).  
 BETHY CLM4.5 ED2 G’DAY JSBACH JULES O-CN 
Kc at 25°C (µmol mol-1) 404.9 404.9 300 404.9 404.9 300 404.9 
Ko at 25°C (mmol mol-1) 278.4 278.4 294 278.4 278.4 300 278.4 
Γ* at 25°C (µmol mol-1) 42.75 42.75 41.57 42.75 42.75 40.38 42.75 
Source of kinetic constants Bern Bern Foley Bern Bern Collatz Bern 
JVratio  1.92 1.97 N.A. 2.00 1.90 N.A. 2.08 
Jmax (µmol m-2 s-1) 115(86) 115(85) N.A. 120(90) 114(86) N.A. 126(94) 
Absorbtance 0.88 0.85 0.73 0.85 0.88 0.85 0.80 
Convexity N.A. 0.98 & 0.95a N.A. 0.7 N.A. 0.83 & 0.93a N.A. 
Ci at low light (µmol mol-1) 348 400 400 293 348 280 N.D. 
Model input for quantum yield 0.28b 0.4250b 0.08d 0.26c 0.28b 0.08d 0.08d 

Calculated φ int 0.070 0.106 0.080 0.076 0.070 0.080 0.080 
φreal 0.049 0.053 0.038 0.038 0.050 0.045 0.022 
The Michaelis-Menton constants of Rubisco for carbon dioxide (Kc) and oxygen (Ko), the CO2 compensation point in 
the absence of non-photorespiratory michondrial respiration in the light (Γ*) and the sources of those kinetic 
constants (Bern = Bernacchi et al. 2001, Collatz = Collatz et al. 1991, Foley = Foley et al. 1996). Where applicable the 
model specific ratio of the maximum electron transport rate (Jmax) to maximum photosynthetic capacity (Vc,max), the 
(JVratio), was used to calculate Jmax for standard conditions, low nitrogen conditions are shown in parentheses. Leaf 
absorbtance; the convexity term (afor the transition between Rubisco and light limited and light limited and TPU 
limited A respectively); the intercellular [CO2] (Ci) at low light. Three model inputs were used to parameterize 
quantum yield (bquantum yield of electron transport based on absorbed light, cquantum yield of electron transport 
based on incident light and dquantum yield of photosynthesis based on absorbed light and measured under non-
photorespiratory conditions (φ int). Here we also show the calculated intrinsic quantum yield for all models to enable 
model comparisons. The modeled realized quantum yield under our standard conditions when Q = 100 µmol mol-1 
(φreal) is the initial slope of the leaf level A-Q response shown in Fig 1a for our standard conditions where the (Vc,max) 
was set to 60 µmol m-2 s-1 (and 45 µmol m-2 s-1 for low nitrogen conditions) and where temperature = 25°C, 
atmospheric [O2] = 210 mmol mol-1, Ca = 380 µmol mol-1, VPD = 1 kPa and soil moisture content was at field capacity. 
N.A. = not applicable, N.D. = no data. 
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