Multi-objective LQR with Optimum Weight Selectioa Design
FOPID Controllers for Delayed Fractional Order Rsses

Saptarshi D&, Indranil Paf®, and Shantanu D4s

a) School of Electronics and Computer Science, éfaity of Southampton, Southampton SO17 1BJ,
United Kingdom.

b) Department of Power Engineering, Jadavpur Ursitgr Salt Lake Campus, LB-8, Sector 3,
Kolkata-700098, India.

c) Department of Earth Science and Engineering g College London, Exhibition Road, London
SW7 2AZ, United Kingdom.

d) Reactor Control Division, Bhabha Atomic Resedtemtre, Mumbai-400085, India.

Authors’ Emails:

s.das@soton.ac.ugaptarshi@pe.jusl.ac.{i$. Das*)

i.panll@imperial.ac.ykndranil.jj@student.iitd.ac.ifl. Pan)

shantanu@barc.gov.{i$h. Das)

Corresponding author’s phone number:+44(0)7448572598

Abstract:

An optimal trade-off design for fractional orderQJ=PID controller is proposed in this paper with a
Linear Quadratic Regulator (LQR) based techniqumguswo conflicting time domain control
objectives. The deviation of the state trajectodrd control signal are automatically enforced gy t
LQR. A class of delayed FO systems with single mteger order element has been controlled here
which exhibit both sluggish and oscillatory opewrgoresponses. The FO time delay processes are
controlled within a multi-objective optimization () formulation of LQR based FOPID design.
The time delays in the FO models are handled byamnalytical formulations of designing optimal
quadratic regulator for delayed systems. A comparis made between the two approaches of LQR
design for the stabilization of time-delay systeimshe context of FOPID controller tuning. The
MOO control design methodology yields the Parettnogl trade-off solutions between the tracking
performance for unit set-point change and totalatian (TV) of the control signal. Numerical
simulations are provided to compare the meritshef tivo delay handling techniques in the multi-
objective LQR-FOPID design, while also showing ttepability of load disturbance suppression
using these optimal controllers. Tuning rules &entformed for the optimal LQR-FOPID controller
knobs, using the median of the non-dominated Paadtdion to handle delays FO processes.

Index Terms: Fractional order PID controller; integral performea index; multi-objective control;
LQR weighting matrices; Non-Integer Order Plus Tibwlay (NIOPTD) process



1. Introduction

Modern optimal control theory has a rich set oflgtizal tools to design control strategies
satisfying desirable characteristics of the exaursif the system states according to the designer’s
specifications in an optimal manner [1]. The LQRe such design methodology whereby quadratic
performance indices involving the control signatl dhe state variables are minimized in an optimal
fashion. Historically, in the area of industriabpess control, PID controllers are tuned by miningz
a suitably chosen performance index for the corit/op error function, which has yielded several
thousands of tuning rules [2], in order to get ptiral PID setting. The tuning of PID controlleregs
the knowledge of the process model (mostly integder models) like the gaif], time-constant or
lag (T) and time-delayl(). In spite of the huge advancements in the thealeaspects of optimal
control, successful integration of modern optin@iteol techniques in practical PID control problems
was not there for decades due to several hidderiskies in the design. For example, an effective
choice of the weighting matrice® @ndR) in the optimal state feedback (LQR) design whghbften
impossible to know a priori, especially for the woh of large industrial processes [3]. There have
been some previous efforts to merge the PID cdatrtining problem with LQR theory as described
in [4], [5], considering the error and integral@ftor as the state variables. The LQR technique has
also been extended for tuning PID controllers faggish over-damped second order processes in [5]
by cancelling one of the real system poles with afithe zeros of PID controller. Thus, the approach
presented in [5] does not give the flexibility ohtng oscillatory processes by selecting the optima
controller gainsvia LQR for the three state variables i.e. errorrée and integral. In the present
paper, this concept is extended by simultaneoushsidering all the three state as the proportional,
integral and derivative action of the controlleddimding a synergism of the fractional calculusdih
enhancements of PID controllers [6] to circumvéiet &fore-said problems. The goal of the paper is to
find out an answer to the following research questi— 1) how to optimally choose LQR weights,
keeping in mind the final closed loop performanta sluggish/oscillatory higher order process in FO
template, 2) how to handle the time delay termpeeislly large delays in LQR formulation, while
preserving both the stability and performance, Bictv time delay handling technique yields a better
trade-off control design in terms of Pareto non-g@nce for oscillatory and sluggish higher order
processes with varying level of lag and delay.

The rest of the paper is organized as followsektien 2 we briefly introduce the background
of FO multi-objective control and FO optimal contrthereby highlighting the motivation of the
current research. Section 3 discusses about thmalpitate feedback approach ofPi controller
tuning and the methodology for the selection of L@&ghting matrices to handle FO systems with
time delay. Section 4 presents the simulation egidf the proposed controller with an oscillatong a
a sluggish process having small time delay, folldwg test of its robustness and then verifying the
methodology on lag/delay dominant and balanceddielgy FO processes. The paper ends with the
conclusions as section 5, followed by the reference

2. Background and motivation

2.1. FOPID controller and NIOPTD process

Fractional calculus, although being an age old ctdpi mathematics, has only recently
flourished within the domain of systems and contnelory [7], [8]. The FOPID or ED* controller,
proposed by Podlubny [6] is an extension of conweeal PID controller and is gradually getting
importance in various industrial process contrgl@ations. Due to its higher degrees of freedom,
the fractional order PD* controller has better ability to enforce severifticting control objectives



than the conventional integer order PID controllddswever, the performance of such controller
greatly depends on its tuning methodology [9]. $&ivauning philosophies have been proposed to
design PID* controllers e.g. analytical rule based [10], [Isthbilization based [12], time domain [9]
and frequency domain [13], [12] methods, to nanfi@aaamongst other available techniques [14]. In
this paper, the LQR formulation is used for tuniR@PID controllers to handle a class of FO
processes with one non-integer order elemeptaé also studied in [12][15], with an additional
inclusion of a time delay term along with the franal dynamics. The reason behind the
consideration of this particular FO template ig th&aas been shown in [9], [14], [16—18] that many
higher order systems can be reduced to the Nogént®rder Plus Time Delay (NIOPTD) template
which is capable of faithfully capturing the osaibiry or sluggish higher order process dynamich wit
only four process parametels, L, T andea), thus enabling a compact representation of highder
processes.

2.2. Determination of LQR weights in PID/FOPID cortdller design

It is also well-known that an optimal state feedbeagulator (LQR) automatically minimizes
the variation in the state trajectories but it doesalways show acceptable closed loop resporge an
might often include high overshoot, oscillations.dbr a bad choice of the weighting matrices. In
order to achieve efficient tracking for a set-paihatnge, the weighting matrices should be chosen in
such a manner that it meets some additional tinmeadlo optimality criteria in terms of overshoot eris
and settling time etc. Het al. [5] proposed the technique to find out the LQRghés from closed
loop damping and frequency specifications. In théper, this concept is extended with an MOO
based approach to find out the optimum set of waighmatrices for the optimal regulator design, as
also studied in [19], [20], [21] for the standaréDPcontroller. Poodelet al. [22] used genetic
algorithm to find weighting matrices by the mini@iion of a custom cost function of steady-state
error, maximum percentage of overshoot, rise timd aettling time. Here, these concepts are
extended with an LQR based framework for fractiaystems with delay where the LQR weigh®s (
and R) that determines FOPID gainky( Ki, Kg) and the integro-differential orderg, (1) of the
FOPID controller both have been taken as the dwtisiariables of the Non-dominated Sorting
Genetic algorithm-11 (NSGA-I11) algorithm. The mulbbjective design makes an optimal choice of the
LQR parameters and the fractional order elementeetontroller using an optimal design trade-off
between two time domain performance indices, he. Integral of Time Multiplied Squared Error
(ITSE) and total variation of control signal whishmeasured as the Integral of Squared Deviation of
Control Output (ISDCO) [15].

2.3. Optimal control to LQR in the context of fraohal order systems

Similar to the conventional integer order scenawjatjmal control theory has been extended
for FO systems by Agrawal [23], for the Euler-Lagya equation and boundary value problems
(BVPs) with FO ordinary differential equations (Of)EShafieezadedt al.[24] have investigated the
effect of adding fractional derivatives of the statriables along with the conventional optimatesta
feedback law using LQR. Tricaud and Chen [25], Agrla[26], Biswas and Sen [27] formulated the
fractional optimal control problem with a finite fiwon quadratic performance index involving the
states and control action. The formulation has b=d¢anded by Biswas and Sen [28] for free final
time optimal control problems. Tangpong and Agraj2dl], Biswas and Sen [30], and Dimg al.
[31] also proposed similar finite horizon perforraarindex for fractional optimal control problems
and derived the optimality condition for the Eulexgrange equations. There have been other
extensions as well e.g. optimal control theory F@ discrete time systems using the Grunwald-
Letnikov approach [32], [33], optimal control ofstlibuted systems [34], [35] and derivation of the
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necessary condition for optimality [36]. In spité @ large number of works on Euler-Lagrange
equation, variational calculus and two point bougdealue problems, there have been very few
works on solving infinite horizon LQR problems aderivation of Riccati equation for FO systems.
The fractional LQR was first proposed by Li and CIj&7], using the Riccati differential equation, as
compared to an algebraic Riccati equation (ARE)riteger order systems. In Sierociuk and Vinagre
[38] for infinite horizon LQR problems, the standaRiccati equation like solutions are obtained
under some assumptions, which has also been adoptgd paper.

There are also few attempts of using the concdptptimal control, especially LQR theory,
to tune FOPID controllers. For example, Sahal. [39] studied LQR equivalence of dominant pole
placement problem with FOPID controllers and theedua conformal mapping based approach to
approximate FOPID zeros in the primary Riemann tstvil that of a PID controller. Dast al. [19]
studied a single objective optimization based optimweight selection of discrete time LQR to tune
digital PID controllers using FO integral perforncarindex. Dat al. [40] extended this concept to
design an LQR-FOPID to handle FO systems with glsiRrO term but without time delay. In this
paper, a time delayed FO system (in a structurePNIQ) has been considered and the two different
LQR theories for handling time delay systems anglie@. This is because the classical LQR theory
and the resulting optimal state feedback controtibtained by solving the Riccati equation areljike
to give unstable response in the presence of patslay. The present paper also extends the dtate-o
the-art techniques by coupling the LQR theory WitDO based determination of weighting matrix
(Q) and weighting factorR) of the Continuous Algebraic Riccati Equation (CBRfor time delay
systems. The optimum weight selection approachheés tapplied to tune the FOPID gains as the
optimal state feedback gains along with integrdedéntial orders using an incommensurate FO state
space formulation, while also keeping the flextilbf choosing FOPID orders independently unlike
the approaches reported in [41], [39].

2.4. Motivation of the present approach

The motivation of this work is to bridge the gapviseen the linear quadratic optimal control
theory for time delay systems and FO process cbuosing PtD* structure to handle a generalized
FO template with time delay — NIOPTD [9], [14—18his NIOPTD template is capable of capturing
the higher order dynamics of a wide variety of -sejulating processes [2] compared to the
conventional integer order process models liketFd=der Plus Time Delay (FOPTD) or Second
Order Plus Time Delay (SOPTD) and is also capalbleapturing both sluggish and oscillatory
dynamics. These compact FO models has the capatiiléxplaining a more generalized power law
decaying envelope and Mittag-Leffler oscillationstead of an exponential envelope and sinusoidal
oscillation, commonly encountered in impulse resgoof integer order ODESs [42]. The present LQR
based FOPID controller design first converts thebfam in an incommensurate FO state space
framework by considering the error signal and the FO integro-differential orders of the loop error
as the state variables. In the present approaelditlyonal elements of the weighting mat@ énd
weighting factor R) are chosen as the decision variables along WehHOPID integro-differential
orders {, 1) using the NSGA-II multi-objective optimizer [43The optimal state-feedback gains
(here the PD* controller gains) associated with the three statébles are then obtained by solving
the CARE for each stable solution in the MOO frarady Integral performance indices — ITSE and
ISDCO are used here to show that there is a désige-off between these two conflicting objectives
i.e. the set-point tracking performance and reguicentroller effort [15]. These two conflicting
objective functions are simultaneously minimizethgghe multi-objective NSGA-II algorithm to get
the Pareto optimal fronts showing the bound of @merformance achieved using the two time-
delay handling formulation of LQR-FOPID. We alsopoe exhaustive simulation results for
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oscillatory and sluggish higher order processeh Vaij-dominant, delay dominant and balanced lag-
delay dynamical characteristics in the delayed E@plate, using two different delay handling

technigues within the LQR framework. This has b#anslated then to simple FOPID tuning rules
for obtaining five controller parameters using kim@wledge of the process parameters.

3. Theoretical formulation for optimal fractional order controller design

3.1. Lyapunov stability to optimal LQR regulator sign for fractional order systems

The classical optimal state-feedback controller LR minimizes the infinite horizon
guadratic cost function (1) involving the stateighles &) and control actionauj.

I={[X Q)+ d()R¢ Y] d (1)

oOt—3

Here{Q, R are the symmetric positive semi-definite weightimatrix and the positive weighting

factor respectively, which balance the penalty lom éxcursion of state variables and control action.
Minimization of the integral performance index (fiplds the continuous time algebraic Riccati
equation given by (2) which can be used to devViseoptimal state-feedback control law (3).

AP+PA-PBR B P GO @)
ut) =—-R*EB PX) 3

Where{ A B} are the system matrices of the standard integear aygktem structureéc= Ax+ Bu and
P is the symmetric positive definite solution of ilgebraic Riccati equation (2).

It is well-known that minimization of the infinklorizon cost-function given by (1) leads to
the standard Riccati equation in (2) for integedenrsystems. Now the question arises whether a
similar framework holds for fractional order systewnr not. Using Lyapunov stability theory to find
out the optimal state-feedback control law for geteorder systems is an age-old topic in the afea o
optimal control which involves two steps — (i) fartating the infinite horizon cost function (ii)
deriving the ARE using the Lyapunov stability egoiat The extension of Lyapunov stability analysis
for FO time varying and nonlinear systems has beeposed by Aguila-Camachet al. [44].
Whereas, a different approach of has been adoptetripeassouwet al. [45] which led to a new
concepts of the Lyapunov stability analysis for $§@tems like sufficiency of quadratic cost function
possible choice of fractional derivative of the mgyefunction [46], generalization for commensurate
and incommensurate FO system etc. The Lyapunovlistaiiased Linear Matrix Inequality (LMI)
stabilization schemes for FO systems have beengstisd in [47], [48].

Sierociuk and Vinagre [38] revisited the earlierriigon fractional LQR [37] starting from
Euler-Lagrange equation to Riccati differential atjon and gave two formulations by considering
that the control process is close to the final t{fie or the half-time Ti/2). By introducing the Riesz
potential, the work reported in [38] has shown thatsame Riccati equation can be obtained similar
to the integer order system with two additionaluaggtions - (i) the system is around the middle of
the control process= T+2 and (ii) the time varying matriR(t) converges to a constant value-aso.
Under these assumptions an FO system having steugly'x = Ax+ Buwill also produce the same

Riccati equation and optimal control law as in (2)- The goal here is to develop a trade-off design



using the existing theoretical knowledge of LQR K systems [42], [43] which will finally yield
optimal FOPID controller parameters to handle Faetdelay processes.

Here, thé&D/ denotes the Caputo fractional derivative [7][8]twitero initial condition of
ordery and is given by (4).

1 It Dmf(T)

dr, = ,mOZ,yOR 4
m_y) o(t_z_)y—mﬂ r, m ’_y—| m 4 ()

cDYf(t)=1""D ™ (t)=r(

where, C' stands for Caputo definition)’*stands for integral andd’ stands for derivative anf{t)
represents the function in time domain which undesgfractional derivative operation.

3.2. State-feedback approach of FOPID controlleming to handle fractional order systems

Classical PID controller can be designed usingl®® technique, satisfying the quadratic

cost function (1) where the state feedback gaimshkea considered as the PID controller gains [5],
[19], [39] if the control loop error, its derivadvand integral are considered as the three state
variables. Similarly, the concept could be extendsdan efficient tuning technique for FOPID
controllers using the FO version of LQR [38], ifetlerror and its fractional differ-integrals are
considered as the state variables [40]. The fortimmaof the LQR based FOPID controller for
controlling a class of fractional order plant inQRTD structure has been shown in Figure 1, where
the FO differ-integrated error signals have beemsittered as the state variables. Here, the class of
FO systems is considered to have a NIOPTD tempdatee most of the higher order oscillatory or

sluggish processes can be compactly representddisbystructureb(e‘“/ (Té’ +1), in terms of the

pseudo time-constant, dc gain, time delay and cotrgyastem order i.{aT, K, L,a} respectively.

Here, the task is to design an optimal state feddbegulator based FOPID controller that
can handle this typical class of FO systems wittetdelay. In the design of a FOPID controller for
delay free systems, the controller gains can baidd from LQR satisfying the Riccati equation in
(2) to produce the control action given by (3). Nilv@ performance of the FOPID control loop could
be manipulated in two different ways — (i) the staariables(t) in (3) could be manipulated by the

choice of fractional order integral and derivathmrator@,,u} , (i) choice of LQR weights affects
the state feedback gains which in turn affectsotherall closed loop performance.

1 xl (t)
st !
TS () (1)
0, o) x,(7) N u Kol -
+ K, Ts” +1
_ A
x,(?) +

s K,

Figure 1: The feedback control system comprising BOPTD plant and FD* controller.
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In fact, the choice of weighting matrice® &ndR) and also the integro-differential orders of
fractional state variables of the*B! controller ¢ and ) does not affect the optimal regulator

formulation given by (1)-(3) for systems with nolade (L=0). For each choice o{Q,R} it is
possible to find out a Riccati solutioR)(and the associated controller ga{riep, Ki,Kd} by solving

the CARE in (2). It is obvious that the closed Igmgformance changes a lot with variation in a#f th
key parametel{sQ, R,/L,u} . So, the objective is to find out an optimal skparameters having the
best closed loop tracking performance among alloftgmal controllers that could be designad
LQR. In order to achieve this, the optimal regulateveight selection has been improved with other
time domain optimality criteria like ITSE and ISDQ@iscussed in the next subsection). The ITSE
criterion is chosen since it minimizes the overshaad increases the speed of transient response,

while the ISDCO criterion reduces the total vadatof the control signal or violent perturbation of
the manipulated variable [15].

In Figure 1, if the system is excited with an em&rinput r(t) to have a FO control input
u(t) and process outpyrft),, then the state variables can be considered as (5)

&(t):jt__l[e(t)]. x(0= 4], x0=-3:] ¢ )

where, differ-integral operatd? =d/ dtand e(t) is the control loop error. Therefore,

S Da(0]=%(0. T x(9]= () ®

It is shown by Heet al. [5] that in the case of such output feedback @brdesign, the
external set-point does not affect the optimal k&tgu design so that the external set-point change
could be considered zero ite=0. Thus the closed loop output feedback problenediuced to a
state-feedback regulator problem. Clearly, formstt r =0, the error signal becomes r—y=-y.

Thus, the output signgl=—-e=—-x,. Now, the FO process in [15][12] with a time detaym is given
by (7).

Y(9 _ Ke™
U(s) T¢ +1
E(s) _ Ke“
B9 Ke ™)
U(s) T +1
= TD[%()]+ %()=-Kut- 1)
Assuming zero initial condition for fractional destive composition rule, (7) reduces to (8).
TD () + %(9) = - Ku(t= 1)
(8)

= DT =T a() - ut- )

From (6)-(8) we get (9).



D"x (1) 0 1 O0][x@) 0
D% (1) |=[0 0 1|[x®)|+| 0 |ut-L) 9)

D% (t)| [0 -¥T 0| x(®)] [-K/T

This is the representation of the above dynamigstesn with the FOPID controller in a generalized
incommensurate FO state-space template, i.e.

d::g Y = Ax(t) + Bu( t- L) (10)
e, = & & T anax(=[x(0 50 53] %A ¢y L4

The FO system matrices are given by (11).

0 1 0 0
A=l0 0 1/;B=| © (11)
0 -YT 0 -K/T

Since the augmented state space framework (9) ifiesedt fractional orders, with a scope of
independently choosing the systems and controliglers, the system can be viewed as an
incommensurate FO linear dynamical system. If §aesn is delay freel(=0), the fractional state
space reduces to the following simple form (12) alhis similar to the quadratic optimal control
problems often referred in the literatures of agalss integer order systems.

dox(t)
dte

= Ax(1) + BU Y (12)

Equation (11) represents the open loop system cmnboth the system and the controller in a
generalized incommensurate FO state-space modelstability criteria for such FO system is not the
same as that of the integer order system. Evernighehalf plane poles or eigenvalues of the closed

loop matrix (A, = A— BF) can be stable since the instability region isesgqed fror{1—7T/2,iT/2] to
[—q7T/ 2,q7m1/ 2] , if it is assumed that state space representationcommensurate form with ordegr

as a special case of the incommensurate augmefitesy$tem. In addition, the open loop system in
(11) should not be judged alone for stability sitiee LQR formulation with proper weight selection
inside the optimization routine calculates the estigedback gainsFj which again enforces the
stability of the closed loop system using IT8EISDCO criteria.

It is also important to emphasize that the gersshltion of the FO systems converges to the
classical integer order Riccati equation only urtierassumption that the system is around middle of
the control process and the time varying Riccdfedintial equation has a steady-state solutiof. [38

Q 0 0 R, R, R
Along with these two assumptions, ®=| 0 Q, O |andP=|R, B, B,| which are used to
O O QB P13 P23 P33

solve the CARE in (2). For a guess value of thegiving matrixQ and R, the elements of the



positive definite Riccati solution matrix i{ePﬂ, P, P By Ps PZ} can be obtained using MATLAB
functionlqr(). Therefore, the state feedback gain maffixi¢ obtained as:
R, B, R
R _ 1 K 11 12 13
F=R BP_EO 0 _? 12 Fz)z F2)3
F?L3 P3 P?aS

= R_lK_E Fl)sj (_5 F%sj (_5 Fésj (13)
T T T

=[-K K, K]

N

Since the state variables are chosen in such alhveadyt represents the error signal and its fraetio
differ-integrals, the design of the optimal stadedback regulator yields the’Bt controller gains as
the optimal state feedback gain matf#.(The corresponding optimal control law is givegn(b4).

u(t)=—Fx() =—-R*'B PX}
=[K, K, —Kd]{d_Ae(t) (0 —‘”’} (14)

dt™ dt*

d”e(Y)

=Ke(0+ K [ ehdtr =2

—
A-fold

3.3. Modification of LQR formulation for time delagystems

It is well known that the LQR framework cannot ldada guaranteed stabilizing controller if
the system has inherent time delay. In standardegssocontrol problems, suitable control algorithms
like Smith predictors, dead-time compensator, mqaetlictive control etc. are commonly employed
for handling large process delays [49]. Optimizatiopased time domain and frequency domain
FOPID controller design in industrial process cohthaving large time-delay are discussed in
[71[9][14]. Since, the task here is to design artiropl state feedback regulator based FOPID
controller, the LQR framework needs to be suitabbdified that can stabilize the large process delay
without the loss of the optimality condition. Werdeadopt two such design frameworks which
preserves the optimality of state-feedback regulewen for a time-delay systeviz. (i) by fusing the
time delay in the system matrices, proposed bye€al. [50] and (ii) multiplying nominal delay-free
state-feedback gain with an exponential term byetd. [5].

3.3.1. Fusion of time delay with system matrices

Cai et al. [50] derived an algorithm to handle systems wiithet delay using optimum LQR
controllers by modifying the system matrices. Iis thpproach, it is shown that the continuous time

linear time invariant (LTI) system with delay)(of the structurex(t)= Ax(t)+ Bu t- L)can be

modified using suitable transformations to prodand_.QR framework similar to a delay-free system
where the modified system matrices capture theceffethe explicit time delay term. In such a case,
the CARE is derived with the augmented system iedras in (15).

AP+PA-H HA|R[ BN P @O (15)



where, the modified input matrix for the time delystems is represented by (16) and the time delay
(L) appears within the modified input matEiB( A)]as an exponential term containing the product of

stability matrixA and the process deldy
B(A)=€e* B (16)

It is clear that equation (15) is given by the saatgebraic Riccati equation (2) except the
original input matrix B) is replaced by the modified input mat[rB(A)]to handle the explicit time

delay term in the state equation. It has been shoys0] that in steady state (by neglecting transs

of a time varying control term), the control signslobtained as (17) wherB is the symmetric
positive definite solution of equation (15).

u(t)=-Fx() =-R*[ B( A] Pxr=- R B[ &] Rx (17)

In addition, the weighting matrices for the LQR.{i(@,R} and integro-differential orders

{/1,,u} are chosen using multi-objective NSGA-II algorithvhile minimizing the ITSE representing

good set-point tracking and ISDCO representing mim variation of the manipulated variable to
obtain the trade-off between them. With the assionptof the process being in the middle of the

final control time and with a steady state RicsafitionP, the delayed FO model in (10) can now be
reduced to the standard delay free FO state-sd@&)enjth modified input matrix (16). The optimal
state-feedback controllers can now be obtainedgutiie standard Riccati equation but with the

modified input matrif B( A) ], as shown in (15).

3.3.2. Multiplying nominal state-feedback gains wian exponential term containing the product of
closed loop matrix and delay

He et al.[5] developed a method where the controller gaiesinitially time varying. Finally
as the transient response crosses the system @d@lafter a set-point change, the controller gains
become constant. The steady state controller gaatsstabilize a similar state space model withetim
delay, has been derived from the LQR theory whesults in an additional exponential term along
with the traditional state feedback gaf# (13). The steady state control signal for Hasthod [5]
of handling time delay systems with LQR formulatiemd steady state value of the time varying PID
controller gains are given by (18).

A-BRLE ﬁ L

u(t)=-R'B P Xy , el

(18)
= -Fe" P () = - Feht X )

Here, the closed loop matx = A— BF, whereF refers to the optimal state feedback gains for the
delay free system in (12). Therefore, a second ditation is obtained to handle the time delay term
within the LQR design. The similarity between these formulations is that both of them ignores the
transient dynamics of the controller which is impénted as a small time varying term within the
intervalt < L and both of them contains an exponential termliring the time delay of the process.
The difference between the control actions in @W (18) is that the Riccati solution of Cai’'s nuath

[50] is based on the modified CARE (15) _F.’énvolving modified input matri%B(A)] but in He’s
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method [5] the same Riccati solutioR) (and state feedback gains) (are used along with some
additional terms. This paper compares which fortmmaamong these two is capable of producing a
non-dominated Pareto front indicating better cdmssformance.

3.4. Optimum selection of weighting matrices of LQRing two conflicting time-domain control
objectives

The above two LQR formulations are optimal for agfic choice of the weighting matrices
Q andR. Indeed, the time domain performance is heavilgaéd for any arbitrary choice of the LQR
weights, although in each case the state optimalitgreserved from (1). This is logical since the
choice of weighting matrices determine the stagglti@ack gains (PD" controller gains in this case)
that directly affect the performance of the clokmip system. In order to handle this problem, a MOO
technique is employed by minimizing two conflictitigiye domain performance indicdsandJ, (19)
as also studied in [15]. This tunes the elementh®fdiagonal elements of the weighting matrix and

weighting factor i.e.{Ql,QZ,Q3, F} [19] and integro-differential orders of the FOPIDntroller i.e.

=l gdt 3P0=[(u)-u) d (19)

Such a choice of control objectives has been reddad have a design trade-off since higher
speed of tracking for the process variable nead Iperturbation of the manipulated variable or the
control signal [15], [14]. Thus instead of focusing a particular controller minimizing a single
objective function as weighted sum of two objediVESE and ISDCO [14], a set of controllers that
lie on the Pareto front is sought, since optimalioh of such weights of the two parts of the cost
function are often heuristic and largely dependshencontroller and the system under control [15].
Thus some of the solutions may give good performancterms of one objective at the cost of
deterioration in the others, while for other sau on the Pareto front it would be vice-versa.déen
the set of non-dominated solutions obtained onRhesto front give the limits of the controller
performance. Thus the controller solutions lyingtbe Pareto front cannot perform better in one
control objective without a corresponding detetiiorain the performance of the other.

The rationale for using these specific integralfgranance indices in (19) is to get a good
time domain response and at the same time to tmitdeviation in the controller output to avoid
actuator saturation and integral wind-up [3]. last®f the ITSE criterion for set-point trackinghet
criterion like Integral of Time multiplied Absolutérror (ITAE) or Integral of Absolute Error (IAE)
could have been used which would have resultedhaller penalty for high oscillations at later stage
[9][2]. The deviation of the control signal is alsanimized in the form a performance index known
as ISDCO to limit violent perturbation of the manigted variable. At a first glance this might seem
as a redundant criteria since the LQR methodoldggady gives optimal values of the controller
gains with the lowest cost. However, this is adyuabtained for a fixed value of the weighting
matrices. WherQQ andR are varied, for each choice of weighting matridhs, LQR would give an
optimal gain with the lowest possible cost, but tl@es not necessarily imply a good time domain
performance [4], [19], [21], [22] with the LQR co&inction (1). Also, for an optimal choice of
weighting matrices@ andR) and differ-integral orders. @ndu), the FOPID tuning problem becomes
optimal due to the introduction of time domain pemfiance indices (19) as well as the classical
optimal regulator (LQR) based approach (1), invadvihe fractional states.
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3.5. Multi-objective optimization framework for tung LQR weights and FOPID orders

A generalized multi-objective optimization framewaran be defined as follows:

Minimize F (x) = (f,(x), f,(X),..., f, (X))
subject to g, (x)< 00i0[ 1p| | (20)
h; (x)=0,0 jO[1,q]

such thatx(JQ.

where, Q is the decision spac®™ is the objective spacefF :Q — R"™ consists ofm real valued
objective functions andy () and h, () are the optionap number of inequality and number of

equality constraints on the problem respectively.

Let,u={u,....4,} OR™andv={\,...,v,} JR™be two vectors and is said to dominate if
u <vOi0{L,2,..m} anduzv. A point X 0Q is called Pareto optimal iZk|x0JQ such that
F(x) dominated=(X) . The set of all Pareto optimal points, denotedPl¥yis called the Pareto set.
The set of all Pareto objective vectd?E,z{ F(X)OR™, xOJ P§, is called the Pareto Front. This

implies that no other feasible objective vectorsexiwhich can improve one objective function
without simultaneous worsening some other objedtimetion.

The NSGA-II algorithm [43] converts diverse objectives into one single fitness functay
creating a number of different fronts. The solusian these fronts are refined iteratively based on
their distance with their neighbours (crowding aigte) and their level of non-domination. The
NSGA-II algorithm ensures that the solutions foluaré close to the original Pareto front and are
diverse enough to find the whole length of the Rafi@nt.

For the present simulation study, the populatiare 36 taken as 100 and the number of
generations as 100. The elite count representsitih@er of fittest individuals which are directly
copied over to the next generation. The Paretotifnacn this study is considered as 0.7. An
intermediate crossover scheme is adopted whichupesdoff-springs by random weighted average of
the parents. The mutation scheme adds a randomearuahfan arbitrary point in the individual. The

variables that constitute the search space folL@R based FOPID design aﬁ@l,Qz,Qg, RA ,,u} .

The intervals of the search space for these vasante{ Q,Q,, Q, B 0[0,10¢ and{A, 24 0[0,7. In

fact, with this search interval, the number of estaariables remains always three in the state space
formulation (9) even though the integral and défefal orders may take values higher than unity,
representing faster time response and better |d¢alpilisy respectively. The MOO algorithm is
terminated when the average change in the Paredadpf the generation is not significant. It iscal
possible to encounter local minima in the objectivgction space within the MOO. In order to ensure
that a true global minima has been found, we raratgorithm multiple times and report here the best
result with the most non-dominated Pareto frontsoilin the present design scenario, the LQR
weights does not need any particular initializatianthey are chosen with an MOO algorithm which
automatically takes random initial guess valuesetiene. The initialization of LQR weights is an
important issue when the optimization is a deteistimone like any gradient-descent algorithm and
the application is intended for online implemeratfor example in [51].
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Also unstable response within the optimization irishows high values of the chosen cost
functions — ITSE and ISDCO and are therefore auticalyy rejected if a bad random guess is
encountered. This way the MOO evolves over theatimns to yield better solutions by
simultaneously minimizing both the design objedive finally giving the optimal Pareto front on
which all the solutions are not only stable bubalspresent the best possible trade-off between the
two conflicting objectives.

4. lllustrative examples

The FO plants that have been considered here, Sleawily oscillatory and sluggish open
loop response as shown in Figure 2. The processnyeders of the two test plants in NIOPTD
structure have been chosen from the study by Ruskiefp2]. Figure 2 also shows that the FO

processes (7) exhibit sluggish and oscillatory ojpep dynamics fofa <1) and(a >1) respectively

which is also evident from the sharp increase énsystent.. norm for(a >1) .

It is observed that the system shows oscillata?y & >1) and sluggish 1>a >0) open
loop response, even with the simple first ordesplme delay (FOPTD) like FO template due to the
presence of higher order dynamics of the plant wiciEn be easily and compactly modelled as a FO
transfer function with delay. The present simulatibudies are reported using the FOMCON toolbox
[53] and the performance measures are calculatedfioite time horizon of 100 sec.

Oscillatory NIOPTD process (o = 1.1-1.9)

Sluggish NIOPTD process (a = 0.1-0.9)
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Figure 2: Open loop step response and Bode magndtiadiram of NIOPTD plant (7) witk=1,
L=0.5, T=2 with change inx, exhibiting sluggish and oscillatory dynamics.

4.1. Oscillatory fractional order process with tintelay

The oscillatory system under consideration is regmeed by the following lag-dominanT & L)
transfer function [52]:

1e—0.55
G (s)= 5541 (21)
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Figure 3 shows the obtained Pareto fronts for th@AN'D process using both Cai’'s method [50] and
He’s method [5]. It is observed that both the mdthoan handle time delays and give a set of non-
dominated solutions on the Pareto front. For thieogaolutions obtained with Cai's method, lower
values of ITSE are obtained at the cost of higreues of ISDCO. On the other hand, for He's
method, the Pareto optimal solution set contaimgetovalues of ISDCO at the expense of higher
values of ITSE. However, in He's method, the solugi lie on the convex side of those with Cai's
method. This implies that the solution obtainechgdHe’s method are better (non-dominated with
respect to Cai's method). Next, three represertatdlutions are chosen on the Pareto front wittsHe’

method i.e{ A, Bl,q and the corresponding time domain simulations &®@va as well. These
solutions are the ones at the extreme end and ¢d@&amsolution on the Pareto front.

Figure 4 show the time domain evolution of the psscoutput, controller output and states
for the three representative solutions on the Bdrent {Ai1, B, Ci} using the non-dominated He’s
method of LQR-FOPID. A load disturbance is appledthe later stages of settling down the
oscillation for set-point change and the disturleargjection properties of the obtained controlier a
also investigated. As can be inferred from the ®dmnt and also the time domain simulations, the
solution G has the highest overshoot and settling time tharsolution A, whereas the solution;B
lies in between. However it is the other way rofimdthe control signal. SolutionAas the highest
deviation in control signal and:®as the lowest. Hence the simulation results iesribur proposition
that the set point tracking and the control sigaral conflicting objectives. Solution;Ajives the best
load disturbance rejection over Bnd G. However, the load disturbance rejection was nptigtly
taken into the optimization framework unlike [14fce its integration within an LQR framework is
not very popular. The simulation studies show thatsolutions would work in a practical setting as
well, as physical processes must be able to r&gact disturbances to a sufficient level for effeeti
functioning. Since the LQR based method also mim@siithe deviation in the state trajectories, the
state variables i.e. the loop error and their fomet differ-integrals have also been shown in Fégd

Pareto front of oscillatory NIOPTD plant Pareto front of sluggish NIOPTD plant
with PI*D" controller with PI*D" controller
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Figure 3: Pareto fronts of NIOPTD plant with FORiéntroller using two methods of handling time
delay in LQR: (left) oscillatory process (21) (riyysluggish process (22).
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Figure 4: Time response, controller output ancestaijectories of oscillatory NIOPTD plant (21)
with LQR based FOPID controller for solution A

4.2. Sluggish fractional order process with timelayg

A sluggish process is considered next havingdgedominant T > L) transfer function (22),
similar to that studied in [52].

1e—0.5$
C(d= 271 @2)
Figure 3 shows the Pareto fronts for the sluggisBRN'D processes with both the Cai's method [50]
and He’s method [5] for handling the time delayam LQR framework. As can be seen in this case,
the Pareto front obtained using Cai's method hdarger spread, i.e. has got more diverse non-
dominated LQR-FOPID solutions. Therefore, threeegspntative solutions ¢AB,, C,) are chosen on
this Pareto front and the time domain responsespltted for each of the cases in Figure 3
respectively. As can be seen from the Pareto faot also from the time domain simulations, the
Solution A has the fastest settling time (within 20 secondsjile it is longer for solutions B
(settling time within 40 seconds) and solutiop (€ettling time within 100 seconds). However an
investigation into the time domain evolution of tentrol signals would show that solution Aas a
much higher control signal than solutionsdd G. This again reaffirms the proposition that better
time domain performance can only be obtained aexpense of increased control cost [14]. The load
disturbance rejection performances for the thrdatisos show that A performs the best in this
category, followed by Band lastly G.

Table 1 and Table 2 report the numerical valuethefrepresentative solutions on the Pareto
fronts which are obtained after multi-objective inpzation. Table 1 shows the three representative
solutions as the LQR weighting matrices and FORItegro-differential orders from each of the best
Pareto fronts for time delay handling i.e. usingstsnd Cai’s method to control the oscillatory and
sluggish NIOPTD plants respectively. From the LQ&gfts given in Table 1, the FOPID gains can
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be calculated by solving the matrix Riccati equagiocorresponding to two different methods

discussed for time delay handling and have beeorteghin Table 2.

Table 1: Representative solutions on the Paretd 8loowing the LQR matrices for lag-dominant
processes using different delay handling methods

Time delay handling .
Type of Process in LOR formulation Solution Q Q Qs R p) u
A1 0.970396 | 0.040181] 0.022387  0.204583  1.071069  QG7LA
Oscillatory lag He’s method [5] B: 0.643793| 002965 0.062444 034342 1133782 0.%49
dominant ¢ = 1.5)
C1 0.086837 | 0.023281] 0.095594  0.9923p2  1.382862 QMBS
Az 0.605858 | 0.08023¢ 0.057087  0.946606  0.995725  BER4
S'”gg'(s:z'ag :)Om'”am Cai's method [50] B> 0.061832| 0033902 009303 0873642 0.891239  04DE
C2 0.049785| 0.026213 0.098279 0.9181p9 0.754981 03R4
From the above simulations, apparently it may apgest He's method of LQR-FOPID for
oscillatory NIOPTD plants and Cai's method of LOQRHED for sluggish NIOPTD plants yields
better non-dominated Pareto fronts using ITSE &1AO criteria. However, consistent winning of
one method over the other for a class of FO prooessis to be verified for varying level of
dominance between the time delay and time congli&gy), along with variation in the characteristics
exponent ) of the FO process which are reported in the Walhg sub-sections.
Table 2: Representative solutions of tuned comtrgdhrameters on the Pareto front along with
objective function values for the lag-dominant meses
Type of Solution on the non- :
Process | dominated Pareto front | ' 1oC ISBCO Ke Ki Kd A H
A 0.515799| 32.10448 0.6718  0.9327 2.053 1.071069 16447
Oscillatory
lag B1 0.816633| 8.217709 0.569 0.7092 1.8411 1.133[782449655
dominant
C 3.116587| 1.434095 0.2182 0.0903 0.9434 1.3828362035Q94
Az 0.772218| 8.874867 0.8 0.9186 2.6498 0.995725 8624
Sluggish
lag B> 8.720682| 1.452479 0.266 0.119 1.1945 0.891239 60642
dominant
C, 17.32365| 1.067778 0.232p 0.0791 1.0728 0.754p81026@34

Now, the robustness property of the median solstiohthe FOPID controller (with the
parameters give in Table 2) on the Pareto fronteagdored in Figure 6, for the two chosen plants
with oscillatory (B) and sluggish (B open loop dynamics. The purpose here is to show the
closed loop performance changes with variationhim time constantTj and delay I{), while the
FOPID controller parameters are kept fixed. Theapaatric robustness in Figure 6 is shown in terms
of increase in both the ITSE and ISDCO measureshierbest delay handling scheme reported in
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Table 1 and Table 2. As expected, for the oscijatorocess ¢ = 1.5), both the performance
measures deteriorates much faster than that o$ltiggish processa(= 0.5). The decrease in the
closed loop performance is inevitable while congide a significant deviation from the nominal
process parameters which were used for tuning dmeraler. Figure 6 shows that the ITSE and

ISDCO measures does not blow up and is still capabstabilizing the process as well as keeping the
deterioration of closed loop performances withiowahble limits.

Solution A2 Solution 82 Solution 02
1 7 ,r/— 1 - 1
s 1 osf : : g oAsr—i__‘/‘(
00 Zb 40 SiU Sb 160 120 00 SiD 100 1 éD 200 00 Sh 1 I;JU 1 ISCI 260 260 300

0 Zb 40 SIO Sb 160 120 0 55 100 150 200 0 Sb 160 1éD 260 250 300
Time (sec) Time (sec) Time (sec)

Figure 5: Time response, controller output andestiajectories of sluggish NIOPTD plant with LQR
based FOPID controller for solutiory A

Oscillatory process (o = 1.5) controlled by He's method (robustness of the median solution)
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Sluggish process (o = 0.5) controlled by Cai's method (robustness of the median solution)
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Delay (L) | Lag (T) Delay (L) o Lag (T)

Figure 6: Robustness of the Pareto median solatyamnst variation in process delay and lag.
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4.3. Multi-objective control of lag dominant, balaed lag delay and delay dominant plants
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Figure 7: Comparison of the Pareto fronts for theiltatory NIOPTD processeaXl).

Figure 7 shows the comparison of the Pareto frais the two delay handling techniques
(Cai's and He'’s method) for different valuesaathat determines the oscillatory and sluggish bihayv
of the open loop system as shown in Figure 2. We b&plore which method has yielded a non-
dominated Pareto front for the three different £laENIOPTD processesz. lag-dominant T > L),
balanced lag and delay & L) and delay dominantT(< L) processes. From Figure 7, it is evident
that for the balanced lag-delay processes the @aéthod and for the delay dominant processes the
He’'s method gives a better non-dominant Paretotfralthough the length of the Pareto front may
vary, depending on the oscillatory natus ¢f the open loop process. Whereas for the lagiaamt
processes the Pareto fronts are comparable anechghgere is no clear winner. It is evident that fo
lag-dominant processes Cai’'s method keeps the [o®Ebut cannot restrict an increase in ISDCO
whereas the observation is just the reverse witls Hethod resulting in low ISDCO but increased
ITSE. In some cases, two Pareto front cuts eacér athich indicates a weak Pareto dominance, as
such one controller is better only in a particukgime.

A mixed response is observed for the sluggish NIDPfocesses in Figure 8, especially in
the balanced lag-delay and delay dominant proceskese the He's method outperforms the Cai's
method in providing non-dominated Pareto frontst Bw « = 0.6 anda = 0.8, Cai's method is
slightly better. For these two values @fthe lag-dominant processes show comparable sesith
both the methods. For highly sluggish lag-domindl@PTD processesi(= 0.2), He's method keeps
the ISDCO low and Cai's method vyields low ITSE, wdes for moderately sluggish € 0.4) lag-
dominant process, He’s method clearly outperfornesdther. Also, in both Figure 7 and Figure 8,
some of the Pareto fronts are discontinuous inidigafiorbidden regimes in the MOO space. This
discontinuity in the Pareto fronts could be a restipartitioning in the dynamical characteristios
FO elements below and above one, using the ratigppitoximation, or could be an effect of the
process itself which does not yield any stabiliziR@PID controller to operate in that particular
regime. These discontinuity in the Pareto fronesdseto be investigated in future studies.
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Figure 8: Comparison of the Pareto fronts for tliggish NIOPTD processea<1).

Table 3: Summary of the non-dominated Pareto frdotsdifferent NIOPTD process order and
dominant characteristics

Process characteristics

NIOPTD process order| Lag dominant | Balanced lag and delay Delay dominant
a=0.2 He’s method He’s method He’s method
a=04 He’s method weak dominance He’s methad
a=0.6 He’s method Cai’s method He’s method
a=0.8 weak dominanc Cai's method He’s method
a=1.2 weak dominanc Cai's method He’s method
a=14 weak dominanc Cai's method He’s method
a=1.6 weak dominanc Cai's method He’s method
a=1.8 weak dominanc Cai's method He’s method

Comparing the results obtained in section 4.1-#&,can conclude that the non-dominated
Pareto front between the two delay handling methaisonly depend on the process characteristics
but also on the nature of its open loop dynamibgyacterized by its ordet. As shown in Table 3,
for delay dominant plants, He’'s method is considfelmetter. For balanced lag-delay processes, in
most of the cases Cai’'s method is better. For tagidant processes, both the methods give good
result and are comparable to each other which pexia weak dominance between the two methods.
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Especially in industrial control with very high @dprocess dynamics (modelled by the NIOPTD
process) and large time delay, the results repdantddgure 8 could be useful in selecting the delay
handling methodology with an optimal FOPID congollit has been shown in [9], [14] that very high
order process models can be compactly represest&®aransfer function template NIOPTD. The
model reduction results has been established orhitiieer-order test bench plants, available in
contemporary literature [14][9]. Therefore, ouruks are based on the assumption that the higher
order process dynamics could be faithfully represg:im the NIOPTD template and we here focus on
the results of LQR based FOPID controller to hamsdieh FO processes.

4.4.Summary of the proposed approach and translatingR@ade-off design in FOPID
tuning rules for NIOPTD plants

The steps of the proposed LQR-FOPID design algorithsummarized below:
Step 1 Reduce higher order oscillatory/sluggish proadsgamics in NIOPTD template (7).

Step 2 Run MOO algorithm to select LQR weight® {R} and FOPID orders4, u} using ITSE and
ISDCO as the two conflicting objectives (19).

Step 3 Select the transformation by Cai’'s method (1% be’s method (18) for time delay handling
within LQR.

Step 4 Solve the associated CARE within the MOO to caliiFOPID gainsK,, Ki, K4} and obtain
the Pareto front.

Step 5 Select the non-dominated Pareto front betweets @ad He’s method.
Step 6 Select the median solution on the non-dominata@t® front as a trade-off design.
Step 7 Check for the robustness of the FOPID contraidtings by varying the process parameters.

Also, similar to the rule based PID gains selegtr@tent studies have also suggested using
tuning rules to select integro-differential ord€¥s x} of the FOPID controller. Most results have
been reported for integer order plants [11], [1it the counterpart for FO processes have not been
investigated yet. However none of the above tunithgs consider the multi-objective LQR formalism
and report design trade-offs between conflictingectives. Also, any such tuning rule to selectesith
the FOPID gains or orders will not give the desitade-offs between the two chosen objectives
which is the prime focus of this paper. Rather ecHjr tuning rule will give a single point on the
chosen objective function space. Therefore, thegho-differential orders are selected along with th
LQR weights using an MOO algorithm which evolvegthe generations yielding a non-dominated
Pareto optimal front that can be considered asthévable optimal trade-off design [15], [54],ngsi
a particular controller structure.

Next, the analytical expressions of the five FORI@ameters are to be formulated (including the
integro-differential operators) as functions of #® process parameterk,{T, o} — showing both
sluggish and oscillatory open loop dynamics. Thenw rules are useful for easy calculation of the
FOPID parameters to control the FO plant withouning the optimization to get the trade-offs. The
tuning rules are also optimum since it balanced libe conflicting objectives, as their median
solution on the Pareto front. On the other hanel LQR optimality of the FOPID controller is already
enforced within the problem formulation while alsfficiently handling the time delays. The median
values are selected from the non-dominated Paretu {between He's and Cai's method) and are
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reported in the supplementary material. Using thta deported in the supplementary material, the
tuning rules are now generated for the FOPID cdletrtuning knobs, as a function of two significant
NIOPTD process parameters — delay to lag ratid)(and order of the procesg)( The goodness of
fit measures are also computed for the tuning ragea test of true representation of the data tesed
construct the rules as shown in
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Figure 9: Fitted tuning rule surface and contoordfie five FOPID parameters.

. The fitted surface and contour plots of the tgnmles for five FOPID parameters are
depicted in Figure 9. One outlier ik, and K4 are removed before fitting the tuning rule using
polynomial regression. In the tuning rule generapoocess, the orders of both ) anda have been
varied from one to four and the best model wascsede with highest adjusted coefficient of
determination gdjusted R). Here theadjusted Ris chosen as the deciding statistical measure for
model selection since it penalizes more complexeafdnlikeR?, thus reducing the chance of over-
fitting. Theadjusted Ralso does not capture the effect of differentescaf the independent variables
similar to the Root Mean Squared Error (RMSE). Efme, although more complex models could
have been yielded a better fit and pushRheear one, thadjusted Rprovides a safe-guard against
complex rule generation (using onlf) [11]. It also avoids the discrepancy due to défee in
scaling of the two input variable&/T) anda (using only RMSE). The tuning rules for the median
non-dominated LQR-FOPID controllers are given i8)(@s a polynomial model itAT) anda, of the
order of 2 and 4 respectively and the associatedfficients of the polynomial models for all these
five parameters are reported in Table 5.

{K,. KK} =[ T (LT.a)]/K. {Au}=1(T.a)
F(LT.a)= o+ Po(UT)* ma+ o YT+ nf L Ja+ pe? (23)
P (UT) @+ po(YT)a? + R+ pL/T) a®+ pf YT)a’+ pogr*
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Figure 9: Fitted tuning rule surface and contoordfie five FOPID parameters.

4.5. Discussions on achievements, assumptions amddtions

The contribution of this paper, can be considesetha successful integration of LQR theory
for the design of optimal FOPID controllers for Ffbocesses with time delay within an MOO
framework. As in many other design problems of L@ system has been considered to be linear
and noise free. The main emphasis is to show th&QR based FOPID controller could be designed
for a class of FO systems — NIOPTD, exhibiting bosgillatory and sluggish open loop dynamics.
The design methodology would help to enjoy theestgttimality of LQR technique even in the
presence of process delay along with the externaijyosed Pareto optimality between ITSE and
ISDCO by obtaining the best set of trade-off valt@sthe LQR weights and FOPID differ-integral
orders.

Table 4: Goodness of fit for the regression modéehée tuning rules of five FOPID parameters

FOPID parameter | Order of (L/T) | Order of « | Adjusted R> | R? RMSE
Kp 2 4 0.7875 0.8937 0.104
Ki 2 4 0.7328 0.8606 0.06512
Kq 2 4 0.9837 0.99190.09768
A 2 4 0.9535 0.9758 0.05212
u 2 4 0.899 0.806% 0.1268

Table 5: Coefficients of the regression model {@8)he tuning rules of five FOPID parameters

Coefficients Kp Ki Kqd y) H
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Poo 0.4225| 0.00137% 3.39 0.5972| 0.0653%
P1o -0.3738 1.002 -3.976 -0.180p 0.1732
Po1 -0.8846| 0.7251| -8.749 -0.3615 -0.2331
P20 0.08037| -0.2251 | 0.8184 0.04781| 0.1506
P11 2.079 -1.216 7.177 -0.3342 -0.2898
Po2 0.05753| -1.36 12.95 2.808 0.3127
P21 -0.4099| 0.3161| -1.484 0.08372 0.3712
P12 -1.245 | 0.09725 -3.758 0.03983 0.01343
Pos 0.935 1.389 -7.427 -2.304 -0.05011
P22 0.1884 | -0.07726 0.6184-0.05261| -0.1479
P13 0.1266 | 0.07146 0.36420.08205| 0.04369
Poa -0.3623| -0.4156| 1.508 0.5399 -0.01218

Although our work uses the methodology describedChyet al. [50] and Heet al. [5] for
handling time delay within LQR, these two desigrilggophies were discussed for integer order
systems. Also, in the original literatures thereraveo guidelines to optimally choose the LQR
weighting matrices. Here we extend these concepthd context of FO time delay systems with
sluggish and oscillatory dynamics using an inconsueste FO state space framework. In addition, a
multi-objective trade-off design is proposed taeseLQR weighting matrices and the FOPID integro-
differential orders and show how this affects twafticting closed-loop performance objectives.

Also, there have been exhaustive studies on dyréatling the FOPID controller parameters
using single or multi-objective optimization algbrns [54]. In Daset al. [40], the advantage of
weight optimized LQR-FOPID design has been shower dlve direct parameter optimized FOPID
design. In particular, due to the introduction loé LQR design in the present method, the optimality
of state and control trajectories are automaticafijorced which is not guaranteed with direct gain
and order selection of FOPID controller with a glbbptimization algorithm [14]. Although the state
vs. control optimality hold for a particular choice @fandR due to LQR, yet it is not sufficient from
the perspective of traditional time domain perfongea measures of the control system like set-point
tracking, disturbance rejection etc. The dynamiarahbteristics of the closed loop system keeps on
changing with different choice of the LQR weightingatrices. Also, the analytical stats. control
optimality is only valid for a particular choice thfe weights which motivates the MOO based indirect
approach of tuning the LQR weights along with FORIders in order to finally obtain the optimal
FOPID gains.

In the present study, the design has been restrattesidering no change in set-point=(0)
to develop the optimal state feedback stabilizasoneme for the incommensurate FO system using
LQR. Then a unit step change in the set-point wasdied to select the LQR weights and FOPID
orders through MOO and the disturbance rejectiorfoppances are also found satisfactory. In
general LQR theory cannot automatically enforcéstudbance rejection criteria, although in process
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control it is considered as an essential criterf@dar design is mainly based on LQR to preserve the
state optimality of the FOPID control loop and idddion the tracking and control effort were
optimized for a unit set-point change. The distadgarejection performance was not optimized, since
with such a criterion the resulting controller pasders would have been totally different and it may
not always produce good set-point tracking and ¢mntroller effort [54]. The reported simulation
study for both the oscillatory and sluggish FO pdashow that with the proposed method apart from
the considered objectives — ITSE and ISDCO, alsgoad disturbance rejection performance is
achieved. Earlier literatures like [15], [54] refst FOPID design considering both tracking and
disturbance inputs but without the consideration LJR optimality. Bridging the disturbance
rejection criteria with the LQR framework for FOPH2sign needs further investigation and we leave
it as the scope of future research.

5. Conclusion

An LQR based improved fractional order' controller tuning has been proposed in this
paper with optimal selection of weighting matrides handling FO process with time delay, in a
compact NIOPTD template. The optimal choice of wedghting matrices along with the FO differ-
integrals of the PD" controller have been obtained through multi-oljectNSGA-II algorithm,
based on simultaneous minimization of two conftigttime domain integral performance indices —
ITSE and ISDCO. Thus, the proposed method preséineestate optimality of LQR and at the same
time gives a low error index in the closed loop dimesponse while also ensuring stability and
efficiently handling the time delay terms of FO qess. These improvements enable the control
designer to obtain satisfactory closed loop respamisile also enjoying the benefits of LQR in the
optimal PtD* controller tuning. The MOO results in a range ohtroller parameters lying on the
Pareto front as opposed to a single controller inbta by commonly adopting single-objective
optimization framework, by satisfying different dbieting time domain objectives. It is shown that
there exists a trade-off between the two time doma@bjectives and an improvement in one
performance index would invariably result in a det@tion of the other. Thus the designer can
choose a controller according to the specific nenents of his control problem. Our simulation
results show that the proposed techniques work$ eweln for a highly oscillatory and a highly
sluggish FO system with time delay yielding a ramjesolutions on the Pareto front. For delay
dominant plants our simulation shows He's method for balanced lag and delay plants Cai's
method perform better, whereas for lag-dominantesys the solutions are comparable. Tuning rules
for the five optimal LQR-FOPID knobs have been ed as a function of process parameter —
delay to lag ratiol{/ T) and fractional exponent of the procegp Future scope of work may include
multi-objective LQR based FOPID controller tuningr funstable and integrating fractional order
systems with time delay and extending the concEpiBLQR to noisy processes using FO Kalman
filter and Linear Quadratic Gaussian (LQG) techeiqu

Appendix

Median solutions of the non-dominated Pareto frdatsall the processes under investigation have
been reported in the supplementary material. Thia Has been used for the tuning rule generation.
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Table 1: Median solutions on the non-dominated Pareto front

Supplementary Material

Process Type Kp Ki Ky A Y7} L/T a
0.2742 | 0.2952 | 1.4643 | 0.5908 | 0.0287 0.25 0.2
0.1368 | 0.2376 | 1.1798 | 0.6866 | 0.0138 0.25 0.4
0.1630 | 0.2653 | 1.0717 | 0.8634 | 0.0284 0.25 0.6
0.3392 | 0.3684 | 1.4124 | 0.9979 | 0.0206 0.25 0.8
0.2218 | 0.3013 | 1.7505 | 1.3476 | 0.0152 0.25 1.2
0.7017 | 0.5316 | 1.9313 | 1.2673 | 0.2538 0.25 14
0.7197 | 0.5679 | 1.8582 | 1.2067 | 0.5152 0.25 1.6
Lag dominant | 0.6429 | 0.5225 | 1.8176 | 1.2340 | 0.6094 0.25 1.8
0.2271 | 0.6640 | 0.0095 | 0.4276 | 0.9472 1 0.2
0.4045 | 0.6957 | 0.0333 | 0.4963 | 0.2792 1 0.4
2.3864 | 0.3661 | 3.1882 | 0.7451 | 0.0311 1 0.6
0.4247 | 0.3243 | 1.2120 | 0.9049 | 0.1082 1 0.8
0.8149 | 0.3449 | 1.6216 | 0.9846 | 0.1507 1 1.2
0.7910 | 0.3327 | 15229 | 1.0294 | 0.1728 1 14
0.7075 | 0.3045 | 1.3405 | 1.0799 | 0.2139 1 1.6

Balanced lag
and delay 0.7338 | 0.2744 | 1.2289 | 1.1583 | 0.2126 1 1.8
0.3317 | 0.5251 | 0.0461 | 0.6242 | 0.4754 4 0.2
0.3264 | 0.5035 | 0.0558 | 0.7560 | 0.6224 4 0.4
0.3046 | 0.4583 | 0.0496 | 0.8389 | 0.6297 4 0.6
0.2921 | 0.4352 | 0.0494 | 0.8956 | 0.4760 4 0.8
0.2625 | 0.3784 | 0.0442 | 0.9515 | 0.6183 4 1.2
0.2528 | 0.3572 | 0.0416 | 0.9759 | 0.6438 4 14
0.2398 | 0.3373 | 0.0402 | 0.9949 | 0.6949 4 1.6

Delay

dominant 0.2111 | 0.3280 | 0.0406 | 0.9985 | 0.7702 4 1.8
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