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Abstract: 

An optimal trade-off design for fractional order (FO)-PID controller is proposed in this paper with a 
Linear Quadratic Regulator (LQR) based technique using two conflicting time domain control 
objectives. The deviation of the state trajectories and control signal are automatically enforced by the 
LQR. A class of delayed FO systems with single non-integer order element has been controlled here 
which exhibit both sluggish and oscillatory open loop responses. The FO time delay processes are 
controlled within a multi-objective optimization (MOO) formulation of LQR based FOPID design. 
The time delays in the FO models are handled by two analytical formulations of designing optimal 
quadratic regulator for delayed systems. A comparison is made between the two approaches of LQR 
design for the stabilization of time-delay systems in the context of FOPID controller tuning. The 
MOO control design methodology yields the Pareto optimal trade-off solutions between the tracking 
performance for unit set-point change and total variation (TV) of the control signal. Numerical 
simulations are provided to compare the merits of the two delay handling techniques in the multi-
objective LQR-FOPID design, while also showing the capability of load disturbance suppression 
using these optimal controllers. Tuning rules are then formed for the optimal LQR-FOPID controller 
knobs, using the median of the non-dominated Pareto solution to handle delays FO processes. 

Index Terms: Fractional order PID controller; integral performance index; multi-objective control; 
LQR weighting matrices; Non-Integer Order Plus Time Delay (NIOPTD) process 
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1. Introduction 

Modern optimal control theory has a rich set of analytical tools to design control strategies 
satisfying desirable characteristics of the excursion of the system states according to the designer’s 
specifications in an optimal manner [1]. The LQR is one such design methodology whereby quadratic 
performance indices involving the control signal and the state variables are minimized in an optimal 
fashion. Historically, in the area of industrial process control, PID controllers are tuned by minimizing 
a suitably chosen performance index for the control loop error function, which has yielded several 
thousands of tuning rules [2], in order to get an optimal PID setting. The tuning of PID controller uses 
the knowledge of the process model (mostly integer order models) like the gain (K), time-constant or 
lag (T) and time-delay (L). In spite of the huge advancements in the theoretical aspects of optimal 
control, successful integration of modern optimal control techniques in practical PID control problems 
was not there for decades due to several hidden heuristics in the design. For example, an effective 
choice of the weighting matrices (Q and R) in the optimal state feedback (LQR) design which is often 
impossible to know a priori, especially for the control of large industrial processes [3]. There have 
been some previous efforts to merge the PID controller tuning problem with LQR theory as described 
in [4], [5], considering the error and integral of error as the state variables. The LQR technique has 
also been extended for tuning PID controllers for sluggish over-damped second order processes in [5] 
by cancelling one of the real system poles with one of the zeros of PID controller. Thus, the approach, 
presented in [5] does not give the flexibility of tuning oscillatory processes by selecting the optimal 
controller gains via LQR for the three state variables i.e. error, its rate and integral. In the present 
paper, this concept is extended by simultaneously considering all the three state as the proportional, 
integral and derivative action of the controller and finding a synergism of the fractional calculus based 
enhancements of PID controllers [6] to circumvent the afore-said problems. The goal of the paper is to 
find out an answer to the following research questions – 1) how to optimally choose LQR weights, 
keeping in mind the final closed loop performance of a sluggish/oscillatory higher order process in FO 
template, 2) how to handle the time delay terms, especially large delays in LQR formulation, while 
preserving both the stability and performance, 3) which time delay handling technique yields a better 
trade-off control design in terms of Pareto non-dominance for oscillatory and sluggish higher order 
processes with varying level of lag and delay. 

The rest of the paper is organized as follows. In section 2 we briefly introduce the background 
of FO multi-objective control and FO optimal control, thereby highlighting the motivation of the 
current research. Section 3 discusses about the optimal state feedback approach of PIλDµ controller 
tuning and the methodology for the selection of LQR weighting matrices to handle FO systems with 
time delay. Section 4 presents the simulation studies of the proposed controller with an oscillatory and 
a sluggish process having small time delay, followed by test of its robustness and then verifying the 
methodology on lag/delay dominant and balanced lag-delay FO processes. The paper ends with the 
conclusions as section 5, followed by the references. 

2. Background and motivation 

2.1. FOPID controller and NIOPTD process 

Fractional calculus, although being an age old topic in mathematics, has only recently 
flourished within the domain of systems and control theory [7], [8]. The FOPID or PIλDµ controller, 
proposed by Podlubny [6] is an extension of conventional PID controller and is gradually getting 
importance in various industrial process control applications. Due to its higher degrees of freedom, 
the fractional order PIλDµ controller has better ability to enforce several conflicting control objectives 
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than the conventional integer order PID controllers. However, the performance of such controller 
greatly depends on its tuning methodology [9]. Several tuning philosophies have been proposed to 
design PIλDµ controllers e.g. analytical rule based [10], [11], stabilization based [12], time domain [9] 
and frequency domain [13], [12]  methods, to name a few amongst other available techniques [14]. In 
this paper, the LQR formulation is used for tuning FOPID controllers to handle a class of FO 
processes with one non-integer order element (α) as also studied in [12][15], with an additional 
inclusion of a time delay term along with the fractional dynamics. The reason behind the 
consideration of this particular FO template is that it has been shown in [9], [14], [16–18] that many 
higher order systems can be reduced to the Non-Integer Order Plus Time Delay (NIOPTD) template 
which is capable of faithfully capturing the oscillatory or sluggish higher order process dynamics with 
only four process parameters (K, L, T and α), thus enabling a compact representation of higher order 
processes. 

2.2. Determination of LQR weights in PID/FOPID controller design 

It is also well-known that an optimal state feedback regulator (LQR) automatically minimizes 
the variation in the state trajectories but it does not always show acceptable closed loop response and 
might often include high overshoot, oscillations etc. for a bad choice of the weighting matrices. In 
order to achieve efficient tracking for a set-point change, the weighting matrices should be chosen in 
such a manner that it meets some additional time domain optimality criteria in terms of overshoot, rise 
and settling time etc. He et al. [5] proposed the technique to find out the LQR weights from closed 
loop damping and frequency specifications. In this paper, this concept is extended with an MOO 
based approach to find out the optimum set of weighting matrices for the optimal regulator design, as 
also studied in [19], [20], [21] for the standard PID controller. Poodeh et al. [22] used genetic 
algorithm to find weighting matrices by the minimization of a custom cost function of steady-state 
error, maximum percentage of overshoot, rise time and settling time. Here, these concepts are 
extended with an LQR based framework for fractional systems with delay where the LQR weights (Q 
and R) that determines FOPID gains (Kp, Ki, Kd) and the integro-differential orders (λ, µ) of the 
FOPID controller both have been taken as the decision variables of the Non-dominated Sorting 
Genetic algorithm-II (NSGA-II) algorithm. The multi-objective design makes an optimal choice of the 
LQR parameters and the fractional order elements of the controller using an optimal design trade-off 
between two time domain performance indices, i.e. the Integral of Time Multiplied Squared Error 
(ITSE) and total variation of control signal which is measured as the Integral of Squared Deviation of 
Control Output (ISDCO) [15]. 

2.3. Optimal control to LQR in the context of fractional order systems 

Similar to the conventional integer order scenario, optimal control theory has been extended 
for FO systems by Agrawal [23], for the Euler-Lagrange equation and boundary value problems 
(BVPs) with FO ordinary differential equations (ODEs). Shafieezadeh et al. [24] have investigated the 
effect of adding fractional derivatives of the state variables along with the conventional optimal state 
feedback law using LQR. Tricaud and Chen [25], Agrawal [26], Biswas and Sen [27] formulated the 
fractional optimal control problem with a finite horizon quadratic performance index involving the 
states and control action. The formulation has been extended by Biswas and Sen [28] for free final 
time optimal control problems. Tangpong and Agrawal [29], Biswas and Sen [30], and Ding et al. 
[31] also proposed similar finite horizon performance index for fractional optimal control problems 
and derived the optimality condition for the Euler-Lagrange equations. There have been other 
extensions as well e.g. optimal control theory for FO discrete time systems using the Grunwald-
Letnikov approach [32], [33], optimal control of distributed systems [34], [35] and derivation of the 
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necessary condition for optimality [36]. In spite of a large number of works on Euler-Lagrange 
equation, variational calculus and two point boundary value problems, there have been very few 
works on solving infinite horizon LQR problems and derivation of Riccati equation for FO systems. 
The fractional LQR was first proposed by Li and Chen [37], using the Riccati differential equation, as 
compared to an algebraic Riccati equation (ARE) for integer order systems. In Sierociuk and Vinagre 
[38] for infinite horizon LQR problems, the standard Riccati equation like solutions are obtained 
under some assumptions, which has also been adopted in this paper. 

There are also few attempts of using the concepts of optimal control, especially LQR theory, 
to tune FOPID controllers. For example, Saha et al. [39] studied LQR equivalence of dominant pole 
placement problem with FOPID controllers and then used a conformal mapping based approach to 
approximate FOPID zeros in the primary Riemann sheet with that of a PID controller. Das et al. [19] 
studied a single objective optimization based optimum weight selection of discrete time LQR to tune 
digital PID controllers using FO integral performance index. Das et al. [40] extended this concept to 
design an LQR-FOPID to handle FO systems with a single FO term but without time delay. In this 
paper, a time delayed FO system (in a structure NIOPTD) has been considered and the two different 
LQR theories for handling time delay systems are applied. This is because the classical LQR theory 
and the resulting optimal state feedback controller, obtained by solving the Riccati equation are likely 
to give unstable response in the presence of process delay. The present paper also extends the state-of-
the-art techniques by coupling the LQR theory with MOO based determination of weighting matrix 
(Q) and weighting factor (R) of the Continuous Algebraic Riccati Equation (CARE) for time delay 
systems. The optimum weight selection approach is then applied to tune the FOPID gains as the 
optimal state feedback gains along with integro-differential orders using an incommensurate FO state 
space formulation, while also keeping the flexibility of choosing FOPID orders independently unlike 
the approaches reported in [41], [39]. 

2.4. Motivation of the present approach 

The motivation of this work is to bridge the gap between the linear quadratic optimal control 
theory for time delay systems and FO process control using PIλDµ structure to handle a generalized 
FO template with time delay – NIOPTD [9], [14–18]. This NIOPTD template is capable of capturing 
the higher order dynamics of a wide variety of self-regulating processes [2] compared to the 
conventional integer order process models like First Order Plus Time Delay (FOPTD) or Second 
Order Plus Time Delay (SOPTD) and is also capable of capturing both sluggish and oscillatory 
dynamics. These compact FO models has the capability of explaining a more generalized power law 
decaying envelope and Mittag-Leffler oscillation, instead of an exponential envelope and sinusoidal 
oscillation, commonly encountered in impulse response of integer order ODEs [42]. The present LQR 
based FOPID controller design first converts the problem in an incommensurate FO state space 
framework by considering the error signal and the two FO integro-differential orders of the loop error 
as the state variables. In the present approach, the diagonal elements of the weighting matrix (Q) and 
weighting factor (R) are chosen as the decision variables along with the FOPID integro-differential 
orders (λ, µ) using the NSGA-II multi-objective optimizer [43]. The optimal state-feedback gains 
(here the PIλDµ controller gains) associated with the three state variables are then obtained by solving 
the CARE for each stable solution in the MOO framework. Integral performance indices – ITSE and 
ISDCO are used here to show that there is a design trade-off between these two conflicting objectives 
i.e. the set-point tracking performance and required controller effort [15]. These two conflicting 
objective functions are simultaneously minimized using the multi-objective NSGA-II algorithm to get 
the Pareto optimal fronts showing the bound of control performance achieved using the two time-
delay handling formulation of LQR-FOPID. We also report exhaustive simulation results for 



5 
 

oscillatory and sluggish higher order processes with lag-dominant, delay dominant and balanced lag-
delay dynamical characteristics in the delayed FO template, using two different delay handling 
techniques within the LQR framework. This has been translated then to simple FOPID tuning rules 
for obtaining five controller parameters using the knowledge of the process parameters. 

3. Theoretical formulation for optimal fractional order controller design 

3.1. Lyapunov stability to optimal LQR regulator design for fractional order systems 

The classical optimal state-feedback controller or LQR minimizes the infinite horizon 
quadratic cost function (1) involving the state variables (x) and control actions (u). 

 
0

( ) ( ) ( ) ( )T TJ x t Qx t u t Ru t dt
∞

 = + ∫    (1) 

Here,{ },Q R are the symmetric positive semi-definite weighting matrix and the positive weighting 

factor respectively, which balance the penalty on the excursion of state variables and control action. 
Minimization of the integral performance index (1) yields the continuous time algebraic Riccati 
equation given by (2) which can be used to devise the optimal state-feedback control law (3). 

 1 0T TA P PA PBR B P Q−+ − + =    (2) 

 1( ) ( )Tu t R B Px t−= −    (3) 

where,{ },A B are the system matrices of the standard integer order system structure x Ax Bu= +ɺ  and 

P is the symmetric positive definite solution of the algebraic Riccati equation (2). 

 It is well-known that minimization of the infinite-horizon cost-function given by (1) leads to 
the standard Riccati equation in (2) for integer order systems. Now the question arises whether a 
similar framework holds for fractional order systems or not. Using Lyapunov stability theory to find 
out the optimal state-feedback control law for integer order systems is an age-old topic in the area of 
optimal control which involves two steps – (i) formulating the infinite horizon cost function (ii) 
deriving the ARE using the Lyapunov stability equation. The extension of Lyapunov stability analysis 
for FO time varying and nonlinear systems has been proposed by Aguila-Camacho et al. [44]. 
Whereas, a different approach of has been adopted by Trigeassou et al. [45] which led to a new 
concepts of the Lyapunov stability analysis for FO systems like sufficiency of quadratic cost function, 
possible choice of fractional derivative of the energy function [46], generalization for commensurate 
and incommensurate FO system etc. The Lyapunov stability based Linear Matrix Inequality (LMI) 
stabilization schemes for FO systems have been discussed in [47], [48]. 

Sierociuk and Vinagre [38] revisited the earlier works on fractional LQR [37] starting from 
Euler-Lagrange equation to Riccati differential equation and gave two formulations by considering 
that the control process is close to the final time (Tf) or the half-time (Tf/2). By introducing the Riesz 
potential, the work reported in [38] has shown that the same Riccati equation can be obtained similar 
to the integer order system with two additional assumptions - (i) the system is around the middle of 
the control process t = Tf/2 and (ii) the time varying matrix P(t) converges to a constant value as t→∞. 

Under these assumptions an FO system having structure 0
C

tD x Ax Buγ = + will also produce the same 

Riccati equation and optimal control law as in (2)-(3). The goal here is to develop a trade-off design 
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using the existing theoretical knowledge of LQR for FO systems [42], [43] which will finally yield 
optimal FOPID controller parameters to handle FO time delay processes. 

Here, the0
C

tDγ denotes the Caputo fractional derivative [7][8] with zero initial condition of 

order γ and is given by (4). 

 ( ) ( ) ( )
( )

( )0 10

1
, , ,

m
tC m m

t m

D f
D f t I D f t d m m

m t
γ γ

γ

τ
τ γ γ

γ τ
−

− += = = ∈ ∈  Γ − −∫ ℤ ℝ   (4) 

where, ‘C’ stands for Caputo definition, ‘I’ stands for integral and ‘D’ stands for derivative and f(t) 
represents the function in time domain which undergoes fractional derivative operation.  

3.2. State-feedback approach of FOPID controller tuning to handle fractional order systems 

Classical PID controller can be designed using the LQR technique, satisfying the quadratic 
cost function (1) where the state feedback gains can be considered as the PID controller gains [5], 
[19], [39] if the control loop error, its derivative and integral are considered as the three state 
variables. Similarly, the concept could be extended as an efficient tuning technique for FOPID 
controllers using the FO version of LQR [38], if the error and its fractional differ-integrals are 
considered as the state variables [40]. The formulation of the LQR based FOPID controller for 
controlling a class of fractional order plant in NIOPTD structure has been shown in Figure 1, where 
the FO differ-integrated error signals have been considered as the state variables. Here, the class of 
FO systems is considered to have a NIOPTD template, since most of the higher order oscillatory or 

sluggish processes can be compactly represented by this structure ( )1LsKe Tsα− + , in terms of the 

pseudo time-constant, dc gain, time delay and compact system order i.e.{ }, , ,T K L α respectively.  

Here, the task is to design an optimal state feedback regulator based FOPID controller that 
can handle this typical class of FO systems with time delay. In the design of a FOPID controller for 
delay free systems, the controller gains can be obtained from LQR satisfying the Riccati equation in 
(2) to produce the control action given by (3). Now the performance of the FOPID control loop could 
be manipulated in two different ways – (i) the state variables x(t) in (3) could be manipulated by the 

choice of fractional order integral and derivative operators{ },λ µ , (ii) choice of LQR weights affects 

the state feedback gains which in turn affects the overall closed loop performance.  

 

Figure 1: The feedback control system comprising of a NIOPTD plant and PIλDµ controller.  
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In fact, the choice of weighting matrices (Q and R) and also the integro-differential orders of 
fractional state variables of the PIλDµ controller (λ and µ) does not affect the optimal regulator 

formulation given by (1)-(3) for systems with no delay ( 0L = ). For each choice of { },Q R it is 

possible to find out a Riccati solution (P) and the associated controller gains { }, ,p i dK K K by solving 

the CARE in (2). It is obvious that the closed loop performance changes a lot with variation in all the 

key parameters{ }, , ,Q R λ µ . So, the objective is to find out an optimal set of parameters having the 

best closed loop tracking performance among all the optimal controllers that could be designed via 
LQR. In order to achieve this, the optimal regulator’s weight selection has been improved with other 
time domain optimality criteria like ITSE and ISDCO (discussed in the next subsection). The ITSE 
criterion is chosen since it minimizes the overshoot and increases the speed of transient response, 
while the ISDCO criterion reduces the total variation of the control signal or violent perturbation of 
the manipulated variable [15].  

In Figure 1, if the system is excited with an external input ( )r t  to have a FO control input 

( )u t and process output( )y t , then the state variables can be considered as (5). 

 ( ) ( ) ( )1 2 3( ) , ( ) , ( )
d d

x t e t x t e t x t e t
dt dt

λ µ

λ µ

−

−=   = =         (5) 

where, differ-integral operator D d dt= and ( )e t is the control loop error. Therefore, 

 ( ) ( ) ( ) ( )1 2 2 3,
d d

x t x t x t x t
dt dt

λ µ

λ µ  =   =       (6) 

It is shown by He et al. [5] that in the case of such output feedback control design, the 
external set-point does not affect the optimal regulator design so that the external set-point change 
could be considered zero i.e. 0r = . Thus the closed loop output feedback problem is reduced to a 

state-feedback regulator problem. Clearly, for set-point 0r = , the error signal becomese r y y= − = − . 

Thus, the output signal 2y e x= − = − . Now, the FO process in [15][12] with a time delay term is given 

by (7). 

 

[ ]2 2

( )

( ) 1

( )

( ) 1

( ) ( ) ( )

Ls

Ls

Y s Ke

U s Ts

E s Ke

U s Ts

TD x t x t Ku t L

α

α

α

−

−

=
+

⇒ − =
+

⇒ + = − −

   (7) 

Assuming zero initial condition for fractional derivative composition rule, (7) reduces to (8). 

 
3 2

3 2

( ) ( ) ( )

1
( ) ( ) ( )

TD x t x t Ku t L

K
D x t x t u t L

T T

α µ

α µ

−

−

+ = − −

⇒ = − − −
   (8) 

From (6)-(8) we get (9). 
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( )
( )
( )

1 1

2 2

3 3

0 1 0 ( ) 0

0 0 1 ( ) 0 ( )

0 1 0 ( )

D x t x t

D x t x t u t L

D x t T x t K T

λ

µ

α µ−

       
       = + −       
       − −      

   (9) 

This is the representation of the above dynamical system with the FOPID controller in a generalized 
incommensurate FO state-space template, i.e. 

 
( ) ( ) ( )

q

q

d x t
Ax t Bu t L

dt
= + −   (10) 

Here, 

Tq

q

d d d d

dt dt dt dt

λ µ α µ

λ µ α µ

−

−

 
=  
 

and ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 3

T
T d e t d e t

x t x t x t x t e t
dt dt

λ µ

λ µ

−

−

 
=   =   

 
.     

The FO system matrices are given by (11). 

 

0 1 0 0

0 0 1 ; 0

0 1 0

A B

T K T

   
   = =   
   − −   

  (11) 

Since the augmented state space framework (9) has different fractional orders, with a scope of 
independently choosing the systems and controller orders, the system can be viewed as an 
incommensurate FO linear dynamical system. If the system is delay free ( 0L = ), the fractional state 
space reduces to the following simple form (12) which is similar to the quadratic optimal control 
problems often referred in the literatures of analogous integer order systems. 

 
( )

( ) ( )
q

q

d x t
Ax t Bu t

dt
= +   (12) 

Equation (11) represents the open loop system combing both the system and the controller in a 
generalized incommensurate FO state-space model. The stability criteria for such FO system is not the 
same as that of the integer order system. Even the right-half plane poles or eigenvalues of the closed 

loop matrix ( cA A BF= − ) can be stable since the instability region is squeezed from[ ]2, 2π π− to

[ ]2, 2q qπ π− , if it is assumed that state space representation is in commensurate form with order q, 

as a special case of the incommensurate augmented FO system. In addition, the open loop system in 
(11) should not be judged alone for stability since the LQR formulation with proper weight selection 
inside the optimization routine calculates the state feedback gains (F) which again enforces the 
stability of the closed loop system using ITSE vs. ISDCO criteria. 

It is also important to emphasize that the general solution of the FO systems converges to the 
classical integer order Riccati equation only under the assumption that the system is around middle of 
the control process and the time varying Riccati differential equation has a steady-state solution [38]. 

Along with these two assumptions, let 
1

2

3

0 0

0 0

0 0

Q

Q Q

Q

 
 =  
  

and 
11 12 13

12 22 23

13 23 33

P P P

P P P P

P P P

 
 =  
  

 which are used to 

solve the CARE in (2). For a guess value of the weighting matrix Q and R, the elements of the 



9 
 

positive definite Riccati solution matrix i.e.{ }11 22 33 12 13 23, , , , ,P P P P P P can be obtained using MATLAB 

function lqr(). Therefore, the state feedback gain matrix (F) is obtained as: 

 

11 12 13
1

12 22 23

13 23 33

1
13 23 33

1
0 0T

i p d

P P P
K

F R B P P P P
R T

P P P

K K K
R P P P

T T T

K K K

−

−

 
   = = −    

  

      = − − −      
      

 = − − − 

  (13) 

Since the state variables are chosen in such a way that it represents the error signal and its fractional 
differ-integrals, the design of the optimal state feedback regulator yields the PIλDµ controller gains as 
the optimal state feedback gain matrix (F). The corresponding optimal control law is given by (14). 

 

1( ) ( ) ( )

( ) ( )
( )

( )
( ) ( )

T

T

i p d

p i d

fold

u t Fx t R B Px t

d e t d e t
K K K e t

dt dt

d e t
K e t K e t dt K

dt

λ µ

λ µ

µ

µ

λ

−

−

−

−

= − = −

 
 = − − − −   

 

= + +∫ ∫⋯���

  (14) 

3.3. Modification of LQR formulation for time delay systems 

 It is well known that the LQR framework cannot lead to a guaranteed stabilizing controller if 
the system has inherent time delay. In standard process control problems, suitable control algorithms 
like Smith predictors, dead-time compensator, model predictive control etc. are commonly employed 
for handling large process delays [49]. Optimization based time domain and frequency domain 
FOPID controller design in industrial process control having large time-delay are discussed in 
[7][9][14]. Since, the task here is to design an optimal state feedback regulator based FOPID 
controller, the LQR framework needs to be suitably modified that can stabilize the large process delay 
without the loss of the optimality condition. We here adopt two such design frameworks which 
preserves the optimality of state-feedback regulator even for a time-delay system viz. (i) by fusing the 
time delay in the system matrices, proposed by Cai et al. [50] and (ii) multiplying nominal delay-free 
state-feedback gain with an exponential term by He et al. [5].   

3.3.1. Fusion of time delay with system matrices 

Cai et al. [50] derived an algorithm to handle systems with time delay using optimum LQR 
controllers by modifying the system matrices. In this approach, it is shown that the continuous time 

linear time invariant (LTI) system with delay (L) of the structure ( ) ( ) ( )x t Ax t Bu t L= + −ɺ can be 

modified using suitable transformations to produce an LQR framework similar to a delay-free system 
where the modified system matrices capture the effect of the explicit time delay term. In such a case, 
the CARE is derived with the augmented system matrices as in (15). 

 ( ) ( )1 0
TTA P PA P B A R B A P Q−+ −     + =      (15) 
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where, the modified input matrix for the time delay systems is represented by (16) and the time delay 

(L) appears within the modified input matrix ( )B A   as an exponential term containing the product of 

stability matrix A and the process delay L.   

 ( ) ALB A e B−=   (16) 

It is clear that equation (15) is given by the same algebraic Riccati equation (2) except the 

original input matrix (B) is replaced by the modified input matrix( )B A   to handle the explicit time 

delay term in the state equation. It has been shown in [50] that in steady state (by neglecting transients 

of a time varying control term), the control signal is obtained as (17) where P  is the symmetric 
positive definite solution of equation (15). 

 ( )1 1( ) ( ) ( ) ( )
TT T ALu t Fx t R B A Px t R B e Px t− − − = − = −   = −      (17) 

In addition, the weighting matrices for the LQR i.e.{ },Q R and integro-differential orders

{ },λ µ are chosen using multi-objective NSGA-II algorithm while minimizing the ITSE representing 

good set-point tracking and ISDCO representing minimum variation of the manipulated variable to 
obtain the trade-off between them. With the assumptions of the process being in the middle of the 

final control time and with a steady state Riccati solutionP , the delayed FO model in (10) can now be 
reduced to the standard delay free FO state-space (12) with modified input matrix (16). The optimal 
state-feedback controllers can now be obtained using the standard Riccati equation but with the 

modified input matrix ( )B A   , as shown in (15). 

3.3.2. Multiplying nominal state-feedback gains with an exponential term containing the product of 
closed loop matrix and delay 

He et al. [5] developed a method where the controller gains are initially time varying. Finally 
as the transient response crosses the system delay (L) after a set-point change, the controller gains 
become constant. The steady state controller gains that stabilize a similar state space model with time 
delay, has been derived from the LQR theory which results in an additional exponential term along 
with the traditional state feedback gains F in (13). The steady state control signal for He’s method [5] 
of handling time delay systems with LQR formulation and steady state value of the time varying PID 
controller gains are given by (18). 

 
( ) ( )

( )

1
1 ( ) ,

( ) ( )

T

c

A BR B P LT

A BF L A L

u t R B Pe x t t L

Fe x t Fe x t

−−−

−

= − ≥

= − = −
  (18) 

Here, the closed loop matrixcA A BF= − , where F refers to the optimal state feedback gains for the 

delay free system in (12). Therefore, a second formulation is obtained to handle the time delay term 
within the LQR design. The similarity between these two formulations is that both of them ignores the 
transient dynamics of the controller which is implemented as a small time varying term within the 
interval t < L and both of them contains an exponential term involving the time delay of the process. 
The difference between the control actions in (17) and (18) is that the Riccati solution of Cai’s method 

[50] is based on the modified CARE (15) i.e.P involving modified input matrix ( )B A    but in He’s 
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method [5] the same Riccati solution (P) and state feedback gains (F) are used along with some 
additional terms. This paper compares which formulation among these two is capable of producing a 
non-dominated Pareto front indicating better control performance.  

3.4. Optimum selection of weighting matrices of LQR using two conflicting time-domain control 
objectives 

 The above two LQR formulations are optimal for a specific choice of the weighting matrices 
Q and R. Indeed, the time domain performance is heavily affected for any arbitrary choice of the LQR 
weights, although in each case the state optimality is preserved from (1). This is logical since the 
choice of weighting matrices determine the state feedback gains (PIλDµ controller gains in this case) 
that directly affect the performance of the closed loop system. In order to handle this problem, a MOO 

technique is employed by minimizing two conflicting time domain performance indices1J and 2J (19) 

as also studied in [15]. This tunes the elements of the diagonal elements of the weighting matrix and 

weighting factor i.e. { }1 2 3, , ,Q Q Q R [19] and integro-differential orders of the FOPID controller i.e.

{ },λ µ  [40]. 

 ( )22
1 20 0

( ) , ( )ITSE ISDCO
ssJ te t dt J u t u dt

∞ ∞
= = −∫ ∫   (19) 

Such a choice of control objectives has been reported to have a design trade-off since higher 
speed of tracking for the process variable needs large perturbation of the manipulated variable or the 
control signal [15], [14]. Thus instead of focusing on a particular controller minimizing a single 
objective function as weighted sum of two objectives ITSE and ISDCO [14], a set of controllers that 
lie on the Pareto front is sought, since optimal choice of such weights of the two parts of the cost 
function are often heuristic and largely depends on the controller and the system under control [15]. 
Thus some of the solutions may give good performance in terms of one objective at the cost of 
deterioration in the others, while for other solutions on the Pareto front it would be vice-versa. Hence 
the set of non-dominated solutions obtained on the Pareto front give the limits of the controller 
performance. Thus the controller solutions lying on the Pareto front cannot perform better in one 
control objective without a corresponding deterioration in the performance of the other. 

The rationale for using these specific integral performance indices in (19) is to get a good 
time domain response and at the same time to limit the deviation in the controller output to avoid 
actuator saturation and integral wind-up [3]. Instead of the ITSE criterion for set-point tracking, other 
criterion like Integral of Time multiplied Absolute Error (ITAE) or Integral of Absolute Error (IAE) 
could have been used which would have resulted in smaller penalty for high oscillations at later stages 
[9][2]. The deviation of the control signal is also minimized in the form a performance index known 
as ISDCO to limit violent perturbation of the manipulated variable. At a first glance this might seem 
as a redundant criteria since the LQR methodology already gives optimal values of the controller 
gains with the lowest cost. However, this is actually obtained for a fixed value of the weighting 
matrices. When Q and R are varied, for each choice of weighting matrices, the LQR would give an 
optimal gain with the lowest possible cost, but that does not necessarily imply a good time domain 
performance [4], [19], [21], [22] with the LQR cost function (1). Also, for an optimal choice of 
weighting matrices (Q and R) and differ-integral orders (λ and µ), the FOPID tuning problem becomes 
optimal due to the introduction of time domain performance indices (19) as well as the classical 
optimal regulator (LQR) based approach (1), involving the fractional states. 
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3.5. Multi-objective optimization framework for tuning LQR weights and FOPID orders 

A generalized multi-objective optimization framework can be defined as follows: 

 ( ) [ ]
( ) [ ]

1 2Minimize ( ) ( ( ), ( ),..., ( ))

subject to : 0, 1, ,

0, 1,

m

i

j

F x f x f x f x

g x i p

h x j q

=
≤ ∀ ∈

= ∀ ∈

  (20) 

such that x∈Ω .                                             

where, Ω  is the decision space, mℝ  is the objective space,  : mF Ω →ℝ  consists of m real valued 

objective functions and ( )ig i and ( )jh i  are the optional p number of inequality and q number of  

equality constraints on the problem respectively. 

 Let, { }1,...,
m

mu u u= ∈ℝ and { }1,...,
m

mv v v= ∈ℝ be two vectors and u is said to dominate v if 

{1,2,..., }i iu v i m< ∀ ∈  and u v≠ . A point *x ∈Ω  is called Pareto optimal if |x x∃ ∈Ω  such that 

( )F x  dominates *( )F x . The set of all Pareto optimal points, denoted by PS is called the Pareto set. 

The set of all Pareto objective vectors, { }( ) ,mPF F x x PS= ∈ ∈ℝ , is called the Pareto Front. This 

implies that no other feasible objective vector exists which can improve one objective function 
without simultaneous worsening some other objective function. 

The NSGA-II algorithm [43] converts m diverse objectives into one single fitness function by 
creating a number of different fronts. The solutions on these fronts are refined iteratively based on 
their distance with their neighbours (crowding distance) and their level of non-domination. The 
NSGA-II algorithm ensures that the solutions found are close to the original Pareto front and are 
diverse enough to find the whole length of the Pareto front. 

For the present simulation study, the population size is taken as 100 and the number of 
generations as 100. The elite count represents the number of fittest individuals which are directly 
copied over to the next generation. The Pareto fraction in this study is considered as 0.7. An 
intermediate crossover scheme is adopted which produces off-springs by random weighted average of 
the parents. The mutation scheme adds a random number at an arbitrary point in the individual. The 

variables that constitute the search space for the LQR based FOPID design are{ }1 2 3, , , , ,Q Q Q Rλ µ . 

The intervals of the search space for these variables are { } [ ]1 2 3, , , 0,100Q Q Q R ∈ and{ } [ ], 0,2λ µ ∈ . In 

fact, with this search interval, the number of state variables remains always three in the state space 
formulation (9) even though the integral and differential orders may take values higher than unity, 
representing faster time response and better loop stability respectively. The MOO algorithm is 
terminated when the average change in the Pareto spread of the generation is not significant. It is also 
possible to encounter local minima in the objective function space within the MOO. In order to ensure 
that a true global minima has been found, we ran the algorithm multiple times and report here the best 
result with the most non-dominated Pareto front. Also, in the present design scenario, the LQR 
weights does not need any particular initialization as they are chosen with an MOO algorithm which 
automatically takes random initial guess values every time. The initialization of LQR weights is an 
important issue when the optimization is a deterministic one like any gradient-descent algorithm and 
the application is intended for online implementation for example in [51].   
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Also unstable response within the optimization routine shows high values of the chosen cost 
functions – ITSE and ISDCO and are therefore automatically rejected if a bad random guess is 
encountered. This way the MOO evolves over the iterations to yield better solutions by 
simultaneously minimizing both the design objectives – finally giving the optimal Pareto front on 
which all the solutions are not only stable but also represent the best possible trade-off between the 
two conflicting objectives.   

4. Illustrative examples 

 The FO plants that have been considered here, show heavily oscillatory and sluggish open 
loop response as shown in Figure 2. The process parameters of the two test plants in NIOPTD 
structure have been chosen from the study by Ruszewski [52]. Figure 2 also shows that the FO 

processes (7) exhibit sluggish and oscillatory open loop dynamics for( )1α < and( )1α > respectively 

which is also evident from the sharp increase in the system H∞ norm for( )1α > . 

It is observed that the system shows oscillatory (2 1α> > ) and sluggish (1 0α> > ) open 
loop response, even with the simple first order plus time delay (FOPTD) like FO template due to the 
presence of higher order dynamics of the plant which can be easily and compactly modelled as a FO 
transfer function with delay. The present simulation studies are reported using the FOMCON toolbox 
[53] and the performance measures are calculated on a finite time horizon of 100 sec. 

 

Figure 2: Open loop step response and Bode magnitude diagram of NIOPTD plant (7) with K=1, 
L=0.5, T=2 with change in α, exhibiting sluggish and oscillatory dynamics.  

4.1. Oscillatory fractional order process with time delay 

The oscillatory system under consideration is represented by the following lag-dominant (T L> ) 
transfer function [52]: 

 ( )
0.5

1 1.5

1

2 1

se
G s

s

−

=
+

  (21) 
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Figure 3 shows the obtained Pareto fronts for the NIOPTD process using both Cai’s method [50] and 
He’s method [5]. It is observed that both the methods can handle time delays and give a set of non-
dominated solutions on the Pareto front. For the set of solutions obtained with Cai’s method, lower 
values of ITSE are obtained at the cost of higher values of ISDCO. On the other hand, for He’s 
method, the Pareto optimal solution set contains lower values of ISDCO at the expense of higher 
values of ITSE. However, in He’s method, the solutions lie on the convex side of those with Cai’s 
method. This implies that the solution obtained using He’s method are better (non-dominated with 
respect to Cai’s method). Next, three representative solutions are chosen on the Pareto front with He’s 

method i.e.{ }1 1 1, ,A B C and the corresponding time domain simulations are shown as well. These 

solutions are the ones at the extreme end and the median solution on the Pareto front. 

Figure 4 show the time domain evolution of the process output, controller output and states 
for the three representative solutions on the Pareto front {A1, B1, C1} using the non-dominated He’s 
method of LQR-FOPID. A load disturbance is applied at the later stages of settling down the 
oscillation for set-point change and the disturbance rejection properties of the obtained controller are 
also investigated. As can be inferred from the Pareto front and also the time domain simulations, the 
solution C1 has the highest overshoot and settling time than the solution A1, whereas the solution B1 
lies in between. However it is the other way round for the control signal. Solution A1 has the highest 
deviation in control signal and C1 has the lowest. Hence the simulation results verifies our proposition 
that the set point tracking and the control signal are conflicting objectives. Solution A1 gives the best 
load disturbance rejection over B1 and C1. However, the load disturbance rejection was not explicitly 
taken into the optimization framework unlike [14] since its integration within an LQR framework is 
not very popular. The simulation studies show that the solutions would work in a practical setting as 
well, as physical processes must be able to reject load disturbances to a sufficient level for effective 
functioning. Since the LQR based method also minimizes the deviation in the state trajectories, the 
state variables i.e. the loop error and their fractional differ-integrals have also been shown in Figure 4. 

 

Figure 3: Pareto fronts of NIOPTD plant with FOPID controller using two methods of handling time 
delay in LQR: (left) oscillatory process (21) (right) sluggish process (22). 
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Figure 4: Time response, controller output and state trajectories of oscillatory NIOPTD plant (21) 
with LQR based FOPID controller for solution A1 

4.2. Sluggish fractional order process with time delay 

 A sluggish process is considered next having the lag-dominant (T L> ) transfer function (22), 
similar to that studied in [52]. 

 ( )
0.5

2 0.5

1

2 1

se
G s

s

−

=
+

  (22) 

Figure 3 shows the Pareto fronts for the sluggish NIOPTD processes with both the Cai’s method [50] 
and He’s method [5] for handling the time delay in an LQR framework. As can be seen in this case, 
the Pareto front obtained using Cai’s method has a larger spread, i.e. has got more diverse non-
dominated LQR-FOPID solutions. Therefore, three representative solutions (A2, B2, C2) are chosen on 
this Pareto front and the time domain responses are plotted for each of the cases in Figure 3 
respectively. As can be seen from the Pareto front and also from the time domain simulations, the 
Solution A2 has the fastest settling time (within 20 seconds), while it is longer for solutions B2 
(settling time within 40 seconds) and solution C2 (settling time within 100 seconds). However an 
investigation into the time domain evolution of the control signals would show that solution A2 has a 
much higher control signal than solutions B2 and C2. This again reaffirms the proposition that better 
time domain performance can only be obtained at the expense of increased control cost [14]. The load 
disturbance rejection performances for the three solutions show that A2 performs the best in this 
category, followed by B2 and lastly C2. 

Table 1 and Table 2 report the numerical values of the representative solutions on the Pareto 
fronts which are obtained after multi-objective optimization. Table 1 shows the three representative 
solutions as the LQR weighting matrices and FOPID integro-differential orders from each of the best 
Pareto fronts for time delay handling i.e. using He’s and Cai’s method to control the oscillatory and 
sluggish NIOPTD plants respectively. From the LQR weights given in Table 1, the FOPID gains can 
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be calculated by solving the matrix Riccati equations, corresponding to two different methods 
discussed for time delay handling and have been reported in Table 2. 

Table 1: Representative solutions on the Pareto front showing the LQR matrices for lag-dominant 
processes using different delay handling methods 

Type of Process 
Time delay handling 
in LQR formulation 

Solution Q1 Q2 Q3 R λ µ 

Oscillatory lag 
dominant (α = 1.5) 

He’s method [5] 

A1 0.970396 0.040181 0.022387 0.204583 1.071069 0.716467 

B1 0.643793 0.02965 0.062444 0.34342 1.133782 0.449655 

C1 0.086837 0.023281 0.095594 0.992322 1.382362 0.035294 

Sluggish lag dominant 
(α = 0.5) 

Cai’s method [50] 

A2 0.605858 0.080236 0.057087 0.946696 0.995725 0.026867 

B2 0.061832 0.033902 0.09303 0.873642 0.891239 0.026349 

C2 0.049785 0.026213 0.098279 0.918109 0.754981 0.026134 

 

From the above simulations, apparently it may appear that He’s method of LQR-FOPID for 
oscillatory NIOPTD plants and Cai’s method of LQR-FOPID for sluggish NIOPTD plants yields 
better non-dominated Pareto fronts using ITSE and ISDCO criteria. However, consistent winning of 
one method over the other for a class of FO process needs to be verified for varying level of 
dominance between the time delay and time constant (lag), along with variation in the characteristics 
exponent (α) of the FO process which are reported in the following sub-sections.  

Table 2: Representative solutions of tuned controller parameters on the Pareto front along with 
objective function values for the lag-dominant processes  

Type of 
Process 

Solution on the non-
dominated Pareto front 

ITSE ISDCO Kp Ki Kd λ µ 

Oscillatory 
lag 

dominant 

A1 0.515799 32.10448 0.6718 0.9327 2.053 1.071069 0.716467 

B1 0.816633 8.217709 0.5692 0.7092 1.8411 1.133782 0.449655 

C1 3.116587 1.434095 0.2182 0.0903 0.9434 1.382362 0.035294 

Sluggish 
lag 

dominant 

A2 0.772218 8.874867 0.8 0.9186 2.6498 0.995725 0.026867 

B2 8.720682 1.452479 0.266 0.119 1.1945 0.891239 0.026349 

C2 17.32365 1.067778 0.2329 0.0791 1.0728 0.754981 0.026134 

 

Now, the robustness property of the median solutions of the FOPID controller (with the 
parameters give in Table 2) on the Pareto front are explored in Figure 6, for the two chosen plants 
with oscillatory (B1) and sluggish (B2) open loop dynamics. The purpose here is to show how the 
closed loop performance changes with variation in the time constant (T) and delay (L), while the 
FOPID controller parameters are kept fixed. The parametric robustness in Figure 6 is shown in terms 
of increase in both the ITSE and ISDCO measures for the best delay handling scheme reported in 
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Table 1 and Table 2. As expected, for the oscillatory process (α = 1.5), both the performance 
measures deteriorates much faster than that of the sluggish process (α = 0.5). The decrease in the 
closed loop performance is inevitable while considering a significant deviation from the nominal 
process parameters which were used for tuning the controller. Figure 6 shows that the ITSE and 
ISDCO measures does not blow up and is still capable of stabilizing the process as well as keeping the 
deterioration of closed loop performances within allowable limits.    

 

Figure 5: Time response, controller output and state trajectories of sluggish NIOPTD plant with LQR 
based FOPID controller for solution A2 

 

Figure 6: Robustness of the Pareto median solution against variation in process delay and lag.  
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4.3. Multi-objective control of lag dominant, balanced lag delay and delay dominant plants 

 

Figure 7: Comparison of the Pareto fronts for the oscillatory NIOPTD processes (α>1). 
 

Figure 7 shows the comparison of the Pareto fronts with the two delay handling techniques 
(Cai’s and He’s method) for different values of α that determines the oscillatory and sluggish behavior 
of the open loop system as shown in Figure 2. We here explore which method has yielded a non-
dominated Pareto front for the three different class of NIOPTD processes viz. lag-dominant (T L> ), 
balanced lag and delay (T L≈ ) and delay dominant (T L< ) processes. From Figure 7, it is evident 
that for the balanced lag-delay processes the Cai’s method and for the delay dominant processes the 
He’s method gives a better non-dominant Pareto front, although the length of the Pareto front may 
vary, depending on the oscillatory nature (α) of the open loop process. Whereas for the lag-dominant 
processes the Pareto fronts are comparable and as such there is no clear winner. It is evident that for 
lag-dominant processes Cai’s method keeps the ITSE low but cannot restrict an increase in ISDCO 
whereas the observation is just the reverse with He’s method resulting in low ISDCO but increased 
ITSE. In some cases, two Pareto front cuts each other which indicates a weak Pareto dominance, as 
such one controller is better only in a particular regime.  

A mixed response is observed for the sluggish NIOPTD processes in Figure 8, especially in 
the balanced lag-delay and delay dominant processes where the He’s method outperforms the Cai’s 
method in providing non-dominated Pareto fronts. But for α = 0.6 and α = 0.8, Cai’s method is 
slightly better. For these two values of α, the lag-dominant processes show comparable results with 
both the methods. For highly sluggish lag-dominant NIOPTD processes (α = 0.2), He’s method keeps 
the ISDCO low and Cai’s method yields low ITSE, whereas for moderately sluggish (α = 0.4) lag-
dominant process, He’s method clearly outperforms the other. Also, in both Figure 7 and Figure 8, 
some of the Pareto fronts are discontinuous indicating forbidden regimes in the MOO space. This 
discontinuity in the Pareto fronts could be a result of partitioning in the dynamical characteristics for 
FO elements below and above one, using the rational approximation, or could be an effect of the 
process itself which does not yield any stabilizing FOPID controller to operate in that particular 
regime. These discontinuity in the Pareto fronts needs to be investigated in future studies.  
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Figure 8: Comparison of the Pareto fronts for the sluggish NIOPTD processes (α<1). 
 

Table 3: Summary of the non-dominated Pareto fronts for different NIOPTD process order and 
dominant characteristics 

NIOPTD process order 

Process characteristics 

Lag dominant Balanced lag and delay Delay dominant 

α = 0.2 He’s method He’s method He’s method 

α = 0.4 He’s method weak dominance He’s method 

α = 0.6 He’s method Cai’s method He’s method 

α = 0.8 weak dominance Cai’s method He’s method 

α = 1.2 weak dominance Cai’s method He’s method 

α = 1.4 weak dominance Cai’s method He’s method 

α = 1.6 weak dominance Cai’s method He’s method 

α = 1.8 weak dominance Cai’s method He’s method 

 

Comparing the results obtained in section 4.1-4.3, we can conclude that the non-dominated 
Pareto front between the two delay handling methods not only depend on the process characteristics 
but also on the nature of its open loop dynamics, characterized by its order α. As shown in Table 3, 
for delay dominant plants, He’s method is consistently better. For balanced lag-delay processes, in 
most of the cases Cai’s method is better. For lag-dominant processes, both the methods give good 
result and are comparable to each other which produces a weak dominance between the two methods. 
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Especially in industrial control with very high order process dynamics (modelled by the NIOPTD 
process) and large time delay, the results reported in Figure 8 could be useful in selecting the delay 
handling methodology with an optimal FOPID controller. It has been shown in [9], [14] that very high 
order process models can be compactly represented as FO transfer function template NIOPTD. The 
model reduction results has been established on the higher-order test bench plants, available in 
contemporary literature [14][9]. Therefore, our results are based on the assumption that the higher 
order process dynamics could be faithfully represented in the NIOPTD template and we here focus on 
the results of LQR based FOPID controller to handle such FO processes. 

4.4. Summary of the proposed approach and translating LQR trade-off design in FOPID 
tuning rules for NIOPTD plants 

The steps of the proposed LQR-FOPID design algorithm is summarized below: 

Step 1: Reduce higher order oscillatory/sluggish process dynamics in NIOPTD template (7).  

Step 2: Run MOO algorithm to select LQR weights {Q, R} and FOPID orders {λ, µ} using ITSE and 
ISDCO as the two conflicting objectives (19). 

Step 3: Select the transformation by Cai’s method (17) and He’s method (18) for time delay handling 
within LQR. 

Step 4: Solve the associated CARE within the MOO to calculate FOPID gains {Kp, Ki, Kd} and obtain 
the Pareto front. 

Step 5: Select the non-dominated Pareto front between Cai’s and He’s method. 

Step 6: Select the median solution on the non-dominated Pareto front as a trade-off design. 

Step 7: Check for the robustness of the FOPID controller settings by varying the process parameters. 

Also, similar to the rule based PID gains selection, recent studies have also suggested using 
tuning rules to select integro-differential orders { λ, µ} of the FOPID controller. Most results have 
been reported for integer order plants [11], [10], but the counterpart for FO processes have not been 
investigated yet. However none of the above tuning rules consider the multi-objective LQR formalism 
and report design trade-offs between conflicting objectives. Also, any such tuning rule to select either 
the FOPID gains or orders will not give the design trade-offs between the two chosen objectives 
which is the prime focus of this paper. Rather a specific tuning rule will give a single point on the 
chosen objective function space. Therefore, the integro-differential orders are selected along with the 
LQR weights using an MOO algorithm which evolves over the generations yielding a non-dominated 
Pareto optimal front that can be considered as the achievable optimal trade-off design [15], [54], using 
a particular controller structure.   

Next, the analytical expressions of the five FOPID parameters are to be formulated (including the 
integro-differential operators) as functions of the FO process parameters {L, T, α} – showing both 
sluggish and oscillatory open loop dynamics. The tuning rules are useful for easy calculation of the 
FOPID parameters to control the FO plant without running the optimization to get the trade-offs. The 
tuning rules are also optimum since it balances both the conflicting objectives, as their median 
solution on the Pareto front. On the other hand, the LQR optimality of the FOPID controller is already 
enforced within the problem formulation while also efficiently handling the time delays. The median 
values are selected from the non-dominated Pareto front (between He’s and Cai’s method) and are 



21 
 

reported in the supplementary material. Using the data reported in the supplementary material, the 
tuning rules are now generated for the FOPID controller tuning knobs, as a function of two significant 
NIOPTD process parameters – delay to lag ratio (L/T) and order of the process (α). The goodness of 
fit measures are also computed for the tuning rules as a test of true representation of the data used to 
construct the rules as shown in 

 

Figure 9: Fitted tuning rule surface and contours for the five FOPID parameters. 

. The fitted surface and contour plots of the tuning rules for five FOPID parameters are 
depicted in Figure 9. One outlier in Kp and Kd are removed before fitting the tuning rule using 
polynomial regression. In the tuning rule generation process, the orders of both (L/T) and α have been 
varied from one to four and the best model was selected with highest adjusted coefficient of 
determination (adjusted R2). Here the adjusted R2 is chosen as the deciding statistical measure for 
model selection since it penalizes more complex models unlike R2, thus reducing the chance of over-
fitting. The adjusted R2 also does not capture the effect of different scales of the independent variables 
similar to the Root Mean Squared Error (RMSE). Therefore, although more complex models could 
have been yielded a better fit and push the R2 near one, the adjusted R2 provides a safe-guard against 
complex rule generation (using only R2) [11]. It also avoids the discrepancy due to difference in 
scaling of the two input variables (L/T) and α (using only RMSE). The tuning rules for the median 
non-dominated LQR-FOPID controllers are given in (23) as a polynomial model in (L/T) and α, of the 
order of 2 and 4 respectively and the associated coefficients of the polynomial models for all these 
five parameters are reported in Table 5.  
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Figure 9: Fitted tuning rule surface and contours for the five FOPID parameters. 

4.5. Discussions on achievements, assumptions and limitations 

The contribution of this paper, can be considered as the successful integration of LQR theory 
for the design of optimal FOPID controllers for FO processes with time delay within an MOO 
framework. As in many other design problems of LQR, the system has been considered to be linear 
and noise free. The main emphasis is to show that an LQR based FOPID controller could be designed 
for a class of FO systems – NIOPTD, exhibiting both oscillatory and sluggish open loop dynamics. 
The design methodology would help to enjoy the state optimality of LQR technique even in the 
presence of process delay along with the externally imposed Pareto optimality between ITSE and 
ISDCO by obtaining the best set of trade-off values for the LQR weights and FOPID differ-integral 
orders.  

Table 4: Goodness of fit for the regression model in the tuning rules of five FOPID parameters 

FOPID parameter Order of (L/T) Order of α Adjusted R2 R2 RMSE 

Kp 2 4 0.7875 0.8937 0.104 

Ki 2 4 0.7328 0.8606 0.06512 

Kd 2 4 0.9837 0.9919 0.09768 

λ 2 4 0.9535 0.9758 0.05212 

µ 2 4 0.899 0.8065 0.1268 

 

Table 5: Coefficients of the regression model (23) for the tuning rules of five FOPID parameters 

Coefficients Kp Ki Kd λ µ 
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p00 0.4225 0.001375 3.39 0.5972 0.06535 

p10 -0.3738 1.002 -3.976 -0.1805 0.1732 

p01 -0.8846 0.7251 -8.749 -0.3615 -0.2331 

p20 0.08037 -0.2251 0.8184 0.04781 0.1506 

p11 2.079 -1.216 7.177 -0.3342 -0.2898 

p02 0.05753 -1.36 12.95 2.808 0.3122 

p21 -0.4099 0.3161 -1.484 0.08372 0.3712 

p12 -1.245 0.09725 -3.758 0.03983 0.01343 

p03 0.935 1.389 -7.427 -2.304 -0.05011 

p22 0.1884 -0.07726 0.6184 -0.05261 -0.1479 

p13 0.1266 0.07146 0.3642 0.08205 0.04369 

p04 -0.3623 -0.4156 1.508 0.5399 -0.01218 

 

Although our work uses the methodology described by Cai et al. [50] and He et al. [5] for 
handling time delay within LQR, these two design philosophies were discussed for integer order 
systems. Also, in the original literatures there were no guidelines to optimally choose the LQR 
weighting matrices. Here we extend these concepts to the context of FO time delay systems with 
sluggish and oscillatory dynamics using an incommensurate FO state space framework. In addition, a 
multi-objective trade-off design is proposed to select LQR weighting matrices and the FOPID integro-
differential orders and show how this affects two conflicting closed-loop performance objectives. 

Also, there have been exhaustive studies on directly tuning the FOPID controller parameters 
using single or multi-objective optimization algorithms [54]. In Das et al. [40], the advantage of 
weight optimized LQR-FOPID design has been shown over the direct parameter optimized FOPID 
design. In particular, due to the introduction of the LQR design in the present method, the optimality 
of state and control trajectories are automatically enforced which is not guaranteed with direct gain 
and order selection of FOPID controller with a global optimization algorithm [14]. Although the state 
vs. control optimality hold for a particular choice of Q and R due to LQR, yet it is not sufficient from 
the perspective of traditional time domain performance measures of the control system like set-point 
tracking, disturbance rejection etc. The dynamic characteristics of the closed loop system keeps on 
changing with different choice of the LQR weighting matrices. Also, the analytical state vs. control 
optimality is only valid for a particular choice of the weights which motivates the MOO based indirect 
approach of tuning the LQR weights along with FOPID orders in order to finally obtain the optimal 
FOPID gains. 

In the present study, the design has been restricted considering no change in set-point (r = 0) 
to develop the optimal state feedback stabilization scheme for the incommensurate FO system using 
LQR. Then a unit step change in the set-point was applied to select the LQR weights and FOPID 
orders through MOO and the disturbance rejection performances are also found satisfactory. In 
general LQR theory cannot automatically enforce a disturbance rejection criteria, although in process 
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control it is considered as an essential criterion. Our design is mainly based on LQR to preserve the 
state optimality of the FOPID control loop and in addition the tracking and control effort were 
optimized for a unit set-point change. The disturbance rejection performance was not optimized, since 
with such a criterion the resulting controller parameters would have been totally different and it may 
not always produce good set-point tracking and low controller effort [54]. The reported simulation 
study for both the oscillatory and sluggish FO plants show that with the proposed method apart from 
the considered objectives – ITSE and ISDCO, also a good disturbance rejection performance is 
achieved. Earlier literatures like [15], [54] reported FOPID design considering both tracking and 
disturbance inputs but without the consideration of LQR optimality. Bridging the disturbance 
rejection criteria with the LQR framework for FOPID design needs further investigation and we leave 
it as the scope of future research.  

5. Conclusion 

An LQR based improved fractional order PIλDµ controller tuning has been proposed in this 
paper with optimal selection of weighting matrices for handling FO process with time delay, in a 
compact NIOPTD template. The optimal choice of the weighting matrices along with the FO differ-
integrals of the PIλDµ controller have been obtained through multi-objective NSGA-II algorithm, 
based on simultaneous minimization of two conflicting time domain integral performance indices – 
ITSE and ISDCO. Thus, the proposed method preserves the state optimality of LQR and at the same 
time gives a low error index in the closed loop time response while also ensuring stability and 
efficiently handling the time delay terms of FO process. These improvements enable the control 
designer to obtain satisfactory closed loop response while also enjoying the benefits of LQR in the 
optimal PIλDµ controller tuning. The MOO results in a range of controller parameters lying on the 
Pareto front as opposed to a single controller obtained by commonly adopting single-objective 
optimization framework, by satisfying different conflicting time domain objectives. It is shown that 
there exists a trade-off between the two time domain objectives and an improvement in one 
performance index would invariably result in a deterioration of the other. Thus the designer can 
choose a controller according to the specific requirements of his control problem. Our simulation 
results show that the proposed techniques works well even for a highly oscillatory and a highly 
sluggish FO system with time delay yielding a range of solutions on the Pareto front. For delay 
dominant plants our simulation shows He’s method and for balanced lag and delay plants Cai’s 
method perform better, whereas for lag-dominant systems the solutions are comparable. Tuning rules 
for the five optimal LQR-FOPID knobs have been provided as a function of process parameter – 
delay to lag ratio (L/T) and fractional exponent of the process (α). Future scope of work may include 
multi-objective LQR based FOPID controller tuning for unstable and integrating fractional order 
systems with time delay and extending the concept of FO-LQR to noisy processes using FO Kalman 
filter and Linear Quadratic Gaussian (LQG) technique.  

Appendix 

Median solutions of the non-dominated Pareto fronts for all the processes under investigation have 
been reported in the supplementary material. This data has been used for the tuning rule generation.  
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Table 1: Median solutions on the non-dominated Pareto front 

Process Type KRp KRi KRd λ μ L/T α 

Lag dominant 

0.2742 0.2952 1.4643 0.5908 0.0287 0.25 0.2 

0.1368 0.2376 1.1798 0.6866 0.0138 0.25 0.4 

0.1630 0.2653 1.0717 0.8634 0.0284 0.25 0.6 

0.3392 0.3684 1.4124 0.9979 0.0206 0.25 0.8 

0.2218 0.3013 1.7505 1.3476 0.0152 0.25 1.2 

0.7017 0.5316 1.9313 1.2673 0.2538 0.25 1.4 

0.7197 0.5679 1.8582 1.2067 0.5152 0.25 1.6 

0.6429 0.5225 1.8176 1.2340 0.6094 0.25 1.8 

Balanced lag 
and delay 

0.2271 0.6640 0.0095 0.4276 0.9472 1 0.2 

0.4045 0.6957 0.0333 0.4963 0.2792 1 0.4 

2.3864 0.3661 3.1882 0.7451 0.0311 1 0.6 

0.4247 0.3243 1.2120 0.9049 0.1082 1 0.8 

0.8149 0.3449 1.6216 0.9846 0.1507 1 1.2 

0.7910 0.3327 1.5229 1.0294 0.1728 1 1.4 

0.7075 0.3045 1.3405 1.0799 0.2139 1 1.6 

0.7338 0.2744 1.2289 1.1583 0.2126 1 1.8 

Delay 
dominant 

0.3317 0.5251 0.0461 0.6242 0.4754 4 0.2 

0.3264 0.5035 0.0558 0.7560 0.6224 4 0.4 

0.3046 0.4583 0.0496 0.8389 0.6297 4 0.6 

0.2921 0.4352 0.0494 0.8956 0.4760 4 0.8 

0.2625 0.3784 0.0442 0.9515 0.6183 4 1.2 

0.2528 0.3572 0.0416 0.9759 0.6438 4 1.4 

0.2398 0.3373 0.0402 0.9949 0.6949 4 1.6 

0.2111 0.3280 0.0406 0.9985 0.7702 4 1.8 

 

1 
 


	Manuscript_Final
	Supplementary Material
	16TSupplementary Material


