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General Abstract  

The bumblebees (genus Bombus) are an ecologically and economically 

important group in decline. Their decline is driven by many factors, but parasites 

are believed to play a role. This thesis examines the factors that influence the 

diversity and distribution of multihost viruses in bumblebees using molecular 

and modelling techniques. In Chapter 2, I performed viral discovery to isolate 

new multihost viruses in bumblebees. I investigated factors that explain 

prevalence differences between different host species using co-phylogenetic 

models. I found that related hosts are infected with similar viral assemblages, 

related viruses infect similar host assemblages and related hosts are on 

average infected with related viruses. Chapter 3 investigated the ecology of four 

of the novel viruses in greater detail. I applied a multivariate probit regression to 

investigate the abiotic factors that may drive infection. I found that precipitation 

may have a positive or negative effect depending on the virus. Also, we observe 

a strong non-random association between two of the viruses. The novel viruses 

have considerably more diversity than the previously known viruses. Chapter 4 

investigated the effect of pesticides on viral and non-viral infection. I exposed 

Bombus terrestris colonies to field realistic doses of the neoticotinoid pesticide 

clothianidin in the laboratory, to the mimic pulsed exposure of crop blooms. I 

found some evidence for a positive effect of uncertain size on the infection rate 

of pesticide exposed colonies relative to non-pesticide exposed colonies, a 

potentially important result. Chapter 5 explored the evolution of avirulent 

multihost digital organisms across fluctuating fitness landscapes within a 

discrete sequence space. Consistent with theory, I found that evolution across a 

fluctuating discrete landscape leads to a faster rate of adaptation, greater 

diversity and greater specialism or generalism, depending on the correlation 

between the landscapes. A large range of factors are found to be important in 

the distribution of infection and diversity of viruses, and we find evidence for 

abiotic, biotic and anthropogenic factors all playing a role. 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Chapter 1 - General introduction 
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1.1 The causes and consequences of infection in bumblebees 

The bumblebees, genus Bombus, are important global pollinators. Animals, and 

particularly bees, play a role in the pollination of plants that provide 35% of total 

global food production (Klein et al. 2007). The existence of these pollinators 

provides what economists term an ecosystem service. For this reason, we have 

good economic incentives for attempting to understand the diseases that afflict 

them. This section of the introduction will provide background both to the 

species and the viruses that infect them.   

1.1.1 Relevant biology of the genus Bombus 

The considerations of bumblebee disease cannot be understood without 

reference to their biology and ecology. Bees, like wasps and ants, are 

hymenoptera. Specifically, the bees (and spheciform wasps) lie within the 

Apoidea, sister clade to the Formicidae, the ants (Johnson et al. 2013). Like the 

majority of the rest of the hymenoptera, their sex determination is mediated 

through the haplodiploid system (Goulson 2010). In this system, unfertilised 

eggs develop into males, whereas fertilised eggs develop into females. Thus, 

the males are haploid and the females are diploid, producing the name. This 

has important effects on the relatedness of individuals. Assuming the mother 

has mated only once, a female is more closely related to her sisters than she is 

to her own children, a fact that has been suggested to have enabled the 

evolution of eusociality through kin selection (Hamilton 1972) in the 

hymenoptera. Most bumblebee species are indeed eusocial, the exception to 

this being those within the subgenus Psithyrus, which, being social parasites of 

other bumblebee nests, have no caste system (Plath 1922). The bumblebee 

colony is highly ordered, with a queen who lays eggs, which are then cared for 

by the female worker caste. Reproductives, the drones and young queens, tend 

to be produced later in the season when the colony size has increased, with 

nests led by queens who did not experience diapause having their sexuals 

emerging significantly later (Beekman and Van Stratum 2000). Different species 

of bumblebee exhibit incomplete temporal separation throughout the year, 

causing some degree of community partitioning even when they are spatially 

sympatric, with, for example, Bombus pratorum beginning to produce workers 

around a month before Bombus lapidarius (Goodwin 1995).  
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Estimates of the number of bumblebee species present in the United Kingdom 

vary, based on whether the species is suspected to be locally extinct. Table 1.1 

shows the 27 species described in Britain, and marks the 26 believed to be 

extant. A comprehensive bumblebee phylogeny was generated in 2007 

(Cameron, Hines, and Williams 2007), which showed that some of the previous 

subgenera were paraphyletic. In an attempt to solve this problem, a new 

subgeneric system was proposed by Williams et al. (Williams et al. 2008). In 

this system, the genus Bombus is broken into groups of which 9 have extant 

British examples.  

TABLE 1.1 has been removed by the author of this thesis/dissertation for 

copyright reasons.  
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The nest is provisioned by foraging workers who gather pollen and nectar from 

flowers in the area around the nest. Bombus terrestris foragers have been 

estimated to travel as far as 1.5-2 km on their foraging journeys (Westphal, 

Steffan-Dewenter, and Tscharntke 2006), but lower estimates than this are the 

norm (Darvill, Knight, and Goulson 2004; Osborne et al. 1999, 2008; Walther-

Hellwig and Frankl 2000; Wolf and Moritz 2008). Foragers of different 

bumblebee species exhibit preferences for different flower species. It has been 

long known that flower choice by bumblebee foragers within a foraging flight is 

not random (Thomson 1981). Beyond this, considerable interspecific differences 

in plant species utilisation are commonly observed (e.g. Arbulo, Santos, 

Salvarrey & Invernizzi 2011; Goulson and Darvill 2004; Goulson, Lye, and 

Darvill 2008; Harder 1985), but this is not a universal phenomenon (Lye et al. 

2010), and the degree of overlap may depend on the diversity of flowers 

currently in bloom. Studies have shown that flower choice is correlated with 

species tongue length (Goulson et al. 2008; Harder 1985), which implicitly 

incorporates shared behavioural characteristics between closely related bee 

species as there is phylogenetic correlation between tongue length and 

relatedness (Harmon-Threatt and Ackerly 2013). Bumblebees are known to 

have innate aesthetic preference both for symmetry (Møller 1995) and surfaces 

reflecting predominantly ultraviolet, blue or green wavelengths (Lunau and 
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Maier 1995), but these innate preferences can be overridden by socially learned 

behaviours (Worden and Papaj 2005). 

1.1.2 The epidemiology and diversity of the viruses of bees 
Mass bee deaths have been intermittently recorded since at least the 10th 

century, when ‘a mortality of bees’ was noted in the Annála Uladh (Fleming 

1871). This recording has led to the discovery of a large number of bee 

pathogens and parasites and since the 1960s, a large number of viruses. Most 

viruses of bees were originally described in the honeybee, as historically, that 

species has been the focus of study. Table 1.2 below summarises the viral 

pathogens of bees. 

Table 1.2: The viral pathogens of bees. Information from a wide variety of sources, references 
in the table 

Pathogen Acrony
m Classification Multi-host?

Known to 
infect 
bumblebees?

Notes

Deformed wing 
virus - type A DWV-A Iflavirus (Oers 

2010)
Y (Zhang et 
al. 2012)

Y (Genersch et 
al. 2006; Singh 
et al. 2010)

Was considered a Japanese 
strain of EBV, but then 
renamed DWV-A. Reviewed in 
de Miranda et al. (2010)

Kakugo virus KV Iflavirus (Oers 
2010)

Y (Fujiyuki et 
al. 2006) ? Discovered by Fujiyuki et al. 

(Fujiyuki et al. 2004)

Sacbrood virus SBV Iflavirus (Oers 
2010)

Y (Levitt et 
al. 2013)

Y (Levitt et al. 
2013)

Positively identified by Bailey et 
al. (1964), but may have 
previously been discovered by 
Brcak et al. (1963)

Deformed wing 
virus - type B 
(Varroa 
destructor 
virus-1)

DWV-B 
(VDV-1)

Iflavirus (Oers 
2010)

Y (replicates 
in V. 
destructor)

Y 
(Schoonvaere 
et al. 2016)

Discovered by Ongus et al. 
(2004). Has been repeatedly 
shown to recombine with DWV-
A (Moore et al. 2011; Wang et 
al. 2013; Zioni, Soroker, and 
Chejanovsky 2011).

Israeli acute 
paralysis virus IAPV

Dicistroviridae 
(Maori et al. 
2007)

Y (Levitt et 
al. 2013)

Y (Levitt et al. 
2013)

Characterised by Maori et al. 
(2007)

Black queen cell 
virus BQCV

Dicistroviridae 
(Bonning and 
Miller 2010)

Y (Zhang et 
al. 2012)

Y 
(Peng et al. 
2011)

Discovered by Bailey and 
Woods (1977)

Kashmir bee 
virus KBV

Dicistroviridae 
(Bonning and 
Miller 2010)

Y (Singh et 
al. 2010) Y (Singh et al. 

2010)

Discovered by Bailey and 
Woods (Bailey and Woods 
1977)

Acute bee 
paralysis virus ABPV

Dicistroviridae 
(Bonning and 
Miller 2010)

Y (Bailey and 
Gibbs 1964)

Y (Bailey and 
Gibbs 1964)

Discovered by Bailey et al. 
(1963)

Slow bee 
paralysis virus SBPV Iflavirus (Oers 

2010)

Y (replicates 
in V. 
destructor) 
(de Miranda 
and 
Genersch 
2010)

Y (McMahon et 
al. 2015)

Discovered by Bailey and 
Woods (1974)
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Chronic bee 
paralysis virus CBPV

Unassigned (+ve 
RNA) (Olivier et 
al. 2008)

Y (Yang et al. 
2013) ? Discovered by Bailey et al. 

(1963)

Lake Sinai 
virus-1 LSV-1

Unassigned (+ve 
RNA) with 
homology to 
Nodaviruses 
(Runckel et al. 
2011)

? ? Discovered by Runckel et al. 
(2011)

Lake Sinai 
virus-2 LSV-2

Unassigned (+ve 
RNA) with 
homology to 
Nodaviruses 
(Runckel et al. 
2011)

? ? Discovered by (2011)

Lake Sinai 
virus-3 LSV-3

Unassigned (+ve 
RNA) with 
homology to 
Nodaviruses 
(Runckel et al. 
2011)

? ? Discovered by Cornman et al. 
(2012)

Lake Sinai 
virus-4 LSV-4

Unassigned (+ve 
RNA) with 
homology to 
Nodaviruses 
(Runckel et al. 
2011)

? ? Discovered by Ravoet et al. 
(2013)

Apis mellifera 
filamentous virus AmFV

Putative 
Nudivirus (Bailey, 
Carpenter, and 
Woods 1981; 
Wang and Jehle 
2009)

? ? Discovered by Clark (1978)

Arkansas bee 
virus ABV ? ? ? Discovered by Bailey and 

Woods (1974)

Aphid lethal 
paralysis virus - 
strain Bookings

ALPV
Dicistroviridae 
(Van Munster et 
al. 2002)

Y ? Found in bees by Runckel et al. 
(2011)

Big Sioux River 
virus BSRV

Dicistroviridae 
(Runckel et al. 
2011)

? ? Discovered by Runckel et al. 
(2011)

Berkeley bee 
picornavirus BBPV ? ? ? Discovered by Lommel et al., 

(1985)

Bee Virus X BVX

Possibly similar 
to Nudaurelia β 
virus (Bailey, 
Carpenter, et al. 
1980), so 
putative member 
of the 
Tetraviridae

? ?
Discovered by Bailey and 
Woods (Bailey and Woods 
1974)

Egypt bee virus EBV

Iflavirus (DWV is 
a strain of this) 
(de Miranda and 
Genersch 2010)

? ?
Discovered by Bailey et al. 
(Bailey, Carpenter, and Woods 
1979)

Thai sacbrood 
virus TSBV

Iflavirus (as a 
strain sacbrood 
virus) (Bailey, 
Carpenter, and 
Woods 1982)

? ? Discovered by Bailey et al. 
(Bailey et al. 1982)

Chronic bee 
paralysis satellite 
virus

CBPSV

Unassigned (+ve 
RNA) (Ball, 
Overton, and 
Buck 1985; 
Olivier et al. 
2008)

? ? Discovered by Bailey et al. 
(Bailey, Ball, et al. 1980)
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Cloudy wing virus CWV ? ? ? Discovered by Bailey et al. 
(1980)

Bee virus Y BVY

Possibly similar 
to Nudaurelia β 
virus (Bailey, 
Carpenter, et al. 
1980) so putative 
member of the 
Tetraviridae

? ? Discovered by Bailey et al. 
(1980)

Apis iridescent 
virus

AIV/
IIV-24

Iridovirus (Bailey, 
Ball, and Woods 
1976)

? ? Discovered by Bailey et al. 
(Bailey et al. 1976)

Cricket paralysis 
virus CrPVBEE

Dicistroviridae 
(Oers 2010) Y ?

Detected in A. mellifera by 
Anderson and Gibbs (Anderson 
and Gibbs 1988)

Unnamed 
Entomopoxvirina
e

-

New 
Entomopoxvirina
e Family (Clark 
1982)

? Y Discovered by Clark (Clark 
1982)

Bee macula-like 
virus BeeMLV

Tymoviridae (de 
Miranda et al. 
2015)

Y Y (Parmentier 
et al. 2016)

Discovered by de Miranda et 
al. (de Miranda et al. 2015)

Moku virus MV
Iflavirus 
(Mordecai et al. 
2016)

Y ? Discovered by Mordecai et al. 
(Mordecai et al. 2016)

DWV-C DWV-C
Iflavirus 
(Mordecai et al. 
2015)

Y ? Discovered by Mordecai et al. 
(Mordecai et al. 2015)

Scaldis River bee 
virus SRBV

Chuvirus 
(Schoonvaere et 
al. 2016)

Y ? Discovered by Schoonvaere et 
al. (Schoonvaere et al. 2016)

Ganda bee virus GBV
Bunyaviridae 
(Schoonvaere et 
al. 2016)

Y Y Discovered by Schoonvaere et 
al. (Schoonvaere et al. 2016)

Apis mellifera 
rhabdovirus 1 ARV-1

Rhabdoviridae 
(Remnant et al. 
2017)

Y ? Discovered by Remnant et al. 
(Remnant et al. 2017)

Apis mellifera 
rhabdovirus 2 ARV-2

Rhabdoviridae 
(Remnant et al. 
2017)

Y ? Discovered by Remnant et al. 
(Remnant et al. 2017)

Apis mellifera 
bunyavirus 1 ABV-1

Bunyaviridae 
(Remnant et al. 
2017)

Y ? Discovered by Remnant et al. 
(Remnant et al. 2017)

Apis mellifera 
flavivirus AFV

Flaviviridae 
(Remnant et al. 
2017)

Y ? Discovered by Remnant et al. 
(Remnant et al. 2017)

Apis mellifera 
bunyavirus 2 ABV-2

Bunyaviridae 
(Remnant et al. 
2017)

Y ? Discovered by Remnant et al. 
(Remnant et al. 2017)

Apis mellifera 
dicistrovirus ADV

Dicistroviridae 
(Remnant et al. 
2017)

Y ? Discovered by Remnant et al. 
(Remnant et al. 2017)

Apis mellifera 
Nora virus ANV

Picornaviridae 
(Remnant et al. 
2017)

Y ? Discovered by Remnant et al. 
(2017)

Tobacco ringspot 
virus TRSV Secoviridae 

(Roberts 1988) Y ? Found in bees by Li et al. 
(2014)
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There are currently 42 reported bee-associated viruses. There is also evidence 

that bumblebees have been historically infected with plant viruses, as there are 

sequences with high homology to plant viruses integrated into the B. terrestris 

genome (Cui and Holmes 2012), but it is unclear as to whether these still 

actively spread in bumblebee populations. Apis mellifera, the honeybee, is 

however known to be a viable host for Tobacco ringspot virus (Li et al. 2014). 

As Table 1.2 indicates, many known bee viruses were initially discovered in 

honeybees, but have since been identified as multihost parasites, also infecting 

bumblebees and a wide variety of other sympatric insect species (Manley, 

Boots, and Wilfert 2015). This section of the introduction will explore some of 

unique issues that relate to the multihost pathogens of bees. The majority of the 

viruses of bees are multihost viruses, having been reported in a wide variety of 

pollinator species. Any single parasite will spend different amounts of time in 

different host species, but all multihost parasites spend some degree of time in 

multiple hosts. A rich theoretical literature has developed around the factors that 

lead to persistence and high levels of infection in these systems. The ability of a 

parasite to maintain infection in a host species can be described by its basic 

reproductive ratio, or R0. Precisely, the R0 is the measure of the expected 

number of secondary infections in from a single infected individual in a 

completely naïve population (Anderson and May 1992) If the R0 of a parasite in 

a host species is greater than 1, that parasite will spread and an outbreak will 

occur. If the R0 is less than 1, the infection will be lost from the population, 

potentially after a long stochastic stuttering transmission chain. The R0s of 

parasites in the different species give a useful way of classifying multihost 

parasites (Fenton et al. 2015). If the R0 of a parasite in any one host species is 

greater than 1, then the multihost parasite can be considered a facultative 

multihost parasite, with the other hosts being unnecessary for the transmission 

of that parasite. If the R0 in no species exceeds 1 but the total R0 in the 

community exceeds 1, then the parasite is an obligate multihost parasite and 

persistence would not be possible if hosts were lost from the community. Cases 

where there is a host where the R0 is well below 1, but in other hosts the R0 is 

high represent spillover hosts for the parasite. 
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A reasonable definition of multihost parasite is therefore simply a parasite which 

exhibits has a positive R0 in multiple species, even if this R0 is close to 0 in 

some of those hosts. This definition has the advantage of being conceptually 

simple, but is practically difficult to assess, especially in understudied or 

uncommon hosts, where the rare transmission driven by those minor hosts may 

be undetectable. Given this practical issue, we use a working definition of a 

parasite detectable at prevalences greater than 5% in multiple species this 

thesis, with the caveats that some of the hosts infected at high levels may not 

provide any onward transmission. The question of whether or not many of these 

bumblebee species represent “true” hosts of the viruses here, and thus “true" 

multihost parasites  would require further experimentation. 

The best studied multihost bee virus is Deformed wing virus (DWV), a virus 

predominantly of honeybees, but that also infects bumblebees (McMahon et al. 

2015). DWV exists as three master variants (Mordecai et al. 2015). The 

transmission modes of DWV have been intensely studied, and like many 

pathogens (Antonovics et al. 2017), multiple modes have been recorded. A 

major driver of transmission (and pathology) in European honeybees is the 

virus’ vectoring by the mite, Varroa destructor, with V. destructor mediated 

transmission leading to systemic infection (Ryabov et al. 2014). V. destructor 

vectoring is only known to occur at high frequencies in Apis mellifera, as Apis 

cerana the Asian honeybee, exhibits much higher resistance to V. destructor 

infestation (Peng et al. 1987), and V. destructor does not parasitise 

bumblebees. DWV is also horizontally transmitted. de Miranda and Fries (de 

Miranda and Fries 2008) conclusively showed that artificial insemination with 

sperm from DWV infected males can cause infection in previously uninfected 

virgin females, with the virus actively replicating within the ovaries, and possibly 

the spermathecal tissues. Infected wild caught drones have a large variance in 

the viral titre of DWV in their semen, but drones with a high sperm titre do not 

appear to suffer adverse effects relative to those without (Yañez et al. 2012), 

and likely cases of natural transmission by mating have been recorded (Amiri, 

Meixner, and Kryger 2016). Artificial insemination experiments using both DWV-

positive and DWV-negative semen have demonstrated that vertical transmission 

can occur if either the queen or male is infected with the virus (Yue et al. 2007). 

Infection can also occur experimentally on consumption of contaminated food, 
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but infection generally remains localised to the gut in these cases (Möckel, 

Gisder, and Genersch 2011).  

Many of the dynamics of bee viruses in bumblebees are believed to represent 

spillover dynamics. Furst and McMahon showed that the distribution of DWV in 

bumblebees is best explained by the higher prevalence of the virus in sympatric 

honeybees (Fürst et al. 2014; McMahon et al. 2015), potentially exhibiting both 

superabundance and superinfection superspreading dynamics (Streicker, 

Fenton, and Pedersen 2013). 

While the example of DWV provides a good illustration of how a generic bee 

virus could transmit between nest-mates when it enters a bumblebee colony, 

given that bumblebees freely defecate inside the nest (Free 1955), it does not 

explain inter-colony transmission. Bee viruses have the added challenge of 

ensuring that between-colony transmission can occur. It is generally thought 

that the majority of cross-colony transmission takes place at flowers, however 

the direct evidence for this is limited to two papers. In the first, Bombus 

terrestris workers were shown to become infected with Crithidia bombi, a 

trypansomatid bumblebee parasite, at experimentally contaminated flowers 

(Durrer and Schmid-Hempel 1994) and in the second, B. terrestris workers were 

shown to be able to vector A. mellifera parasites between flowers and vice 

versa (Graystock, Goulson, and Hughes 2015). Viral particles on collected 

pollen are known to often be infective (Mazzei et al. 2014; Singh et al. 2010). 

Taken together, these results indirectly imply the possibility of cross-species 

transmission at flowers. 

Other possibilities for cross-colony transmission in bumblebees exist. Sexual 

transmission, as described above, could potentially allow enable infection 

between colonies, though this may be more important in allowing diseases to 

persist across seasons than for transmission between colonies within a season, 

as a source of infection for the overwintering queens (Schmid-Hempel 1998). 

Another possibility is the cuckoo bumblebees in the sub-genus Psithyrus. As 

inquiline parasites, they move into existing nests (Franks 1987), providing an 

obvious route for contamination, especially due to the propensity for viruses of 

Bombus species to infect multiple hosts (Manley et al. 2015). If a Psithyrus 
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female is infected with a parasite, her invasion will expose the nest to that 

parasite. This would be a particular risk to the nest of the host species if 

Psithyrus individuals are systematically exposed to different parasites to their 

hosts, through, for instance, differing preferences for diapause locations. 

Despite the fact that a single Psithyrus species (Bombus vestalis) may 

parasitise up to 35% of nests B. terrestris in some areas (Erler and Lattorff 

2010), there is a general paucity of knowledge on the biology of species in the 

sub-genus Psithyrus and almost nothing is known about their viral status. 

1.1.3 The impacts of infection in bumblebees 

The large-scale impacts of viral infection in wild pollinators such as bumblebees 

is unclear. Over the last century, there have been consistent declines in both the 

abundance and range of wild bumblebees in Europe, North America and Asia 

(Williams and Osborne 2009). A wide range of factors are implicated in these 

declines (e.g. land use changes (Williams, Araújo, and Rasmont 2007) and 

pesticides (Bryden et al. 2013)), but pathogens are also believed to play a role 

(Brown et al. 2016). 

Our understanding of the pathology of bee viruses in bumblebees remains 

limited, as most studies investigating the effect of infection are performed on 

honeybees. But in honeybees, many bee viruses cause no obvious symptoms 

in standard infections (e.g. SBPV (Bailey and Ball 1991), DWV (Benaets et al. 

2017), ABPV (Bailey, Ball, et al. 1980)). However, at least in the case of DWV, 

even in covert infections, there are increases in mortality, in both honeybees 

(Benaets et al. 2017) and bumblebees (Graystock et al. 2016). Similarly, in 

many cases, pathology is found to be context-dependent. Manley et al. (2017) 

showed that, in B. terrestris workers, SBPV only causes increased mortality 

under starvation, which is likely to be a proxy for general resource limitation. 

DWV, likewise, generally only causes the classical deformed wing phenotype, 

when injected directly into the bee bypassing the gut (Möckel et al. 2011), as 

occurs in honeybees during V. destructor mediated transmission. This may 

explain the lack of a common deformed wing phenotype in infected 

bumblebees, even though infection is relatively common (Fürst et al. 2014) and 

the phenotype is known to be able to occur (Genersch et al. 2006). Bee viruses 

also interact with pesticides, another important stressor, and these effects are 
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generally synergistic in nature. For instance, Doublet et al. (2015) found that 

Black queen cell virus, a virus that infects honeybees and bumblebees (Peng et 

al. 2011), interacts synergistically with the pesticide thioclopid when they are 

provided simultaneously, leading to an increase in mortality beyond what would 

be expected from both treatments individually. 

Both the lack of specific studies on the pathology of viruses in bumblebees, and 

the context dependence of pathology in honeybees makes it difficult to 

determine the overall impact of bumblebee viruses on their currently declines.  

1.2 Aims of the thesis 

The aim of this thesis is to explore the underlying factors that explain the 

distribution of infection in wild bumblebees and examine how that relates to the 

diversity both the species and genetic level of the viral parasites infecting them. 

The distribution of infection in bumblebees is affected by within-species and 

between-species factors. Within a species, hosts differ in their susceptibility to 

infectious agents. This can be caused by genetic factors, either in the host 

(Whitehorn et al. 2011) or the parasite (Nagata et al. 2006). It can also be 

caused by environmental and ecological factors, such as malnutrition (Schaible 

and Kaufmann 2007), exposure to poisonous chemicals (Di Prisco et al. 2013) 

and exposure to a different infectious agent (Telfer et al. 2010). Pesticides are 

known to have immunological effects in bees (e.g. Pettis et al. 2012; Di Prisco 

et al. 2013), so they may have developed an important role in determining the 

individuals in a population that become infected. Chapter 4 therefore set out to 

quantify this risk through experimental manipulation, by exposing B. terrestris 

bumblebees to pesticides and monitoring their subsequent uptake of pathogens 

from the environment. The aim of this chapter was to attempt confirm the 

presence or absence of a field realistic dose of commonly used pesticides on 

the distribution of infection in the population. We used an experimental 

procedure based on the one Whitehorn et al. (2012) used in the study of the 

ecological endpoints of pesticide exposure on bumblebee colonies. 
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A different set of factors would be expected to determine the distribution of 

infection between hosts of different species. Hosts differ in systematic ways, 

having different ecologies and underlying genetics. The genetic relatedness 

between hosts is known to have an impact on parasite sharing between host 

species (de Vienne, Hood, and Giraud 2009) though mechanisms exist for the 

emergence of pathogens into highly divergent hosts (Araujo et al. 2015). The 

aim of Chapter 2 was therefore to quantify the range of viruses infecting 

bumblebee communities, and determine the effect that the evolutionary history 

of hosts and parasites has on the distribution of infection in a natural multi-host 

multi-parasite system. We aimed to perform this analysis using the co-

phylogenetic methods as developed by Hadfield et al. (2014) and a suite of 

novel viruses found as part of the study. Novel viruses were used both due the 

inherent biological interest in better understanding of the viral biodiversity of an 

economically important species, and the fact that most viruses described in 

bees were originally described in honeybees. If the known honeybee viruses 

other than DWV represent spillover infections into bumblebees (Fürst et al. 

2014), then the pattern observed may be biased, by the non-detection of 

existing “true” bumblebee viruses. The co-phylogenetic methods used jointly 

determine the amount of variation explained by two phylogenies simultaneously 

in a system, and allow partitioning variation explained by both the hosts 

evolutionary history and the pathogens evolutionary history and their 

interactions.  

Abiotic factors are also known to influence disease risk and generally come in 

two forms. Firstly, factors that change disease risk by directly modifying the 

susceptibility of the host, such as temperature increasing crop susceptibility to a 

fungal pathogen (Sharma, Duveiller, and Ortiz-Ferrara 2007). And secondly, 

those that interact with the transmission route of the pathogen, a classic 

example being the epidemics of waterborne pathogens that occur after flooding 

caused by heavy rain (Baqir et al. 2012). No abiotic predictors of the risk of 

bumblebee infection are currently known. As abiotic factors are important in the 

distribution of infection in other systems, an aim of Chapter 3 was to perform 

exploratory research to see if infection with a series of viruses correlates 

strongly with any reasonable abiotic predictor in a large cross-host sample, after 

accounting for the host species. Simultaneously, we sought to explore the 



!  27

diversity of the viruses infecting the bumblebees and observe whether diversity 

was similar or different across infecting viruses. 

It is increasingly understood that different hosts provide very different 

environments for multihost parasites (Duffy, Turner, and Burch 2006; Remold, 

Rambaut, and Turner 2008), and that measurable incongruities between the 

fitness landscapes in different hosts exist (Cervera, Lalić and Elena 2016). The 

aim of Chapter 5 was to investigate the effects of these incongruities on the 

evolution of digital multihost parasites and determine whether, in concordance 

with theory and prior simulations, evolution across multiple hosts increased 

diversity (Kassen 2002), and the rate of adaptation (Cheetham 1993).  
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Chapter 2 - Evolution of host range: The prevalence of novel bumblebee 

viruses is explained by both host and pathogen phylogenies 

David J. Pascall containing additional work from Matthew Tinsley, Darren J. 

Obbard and Lena Wilfert  

Note: This chapter features a box containing an aside, it is labelled 2.2.1 
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2.1 Abstract 

The question of what drives the association of an infectious disease with one 

host species but not with another is one of the most important in disease 

ecology. Both the ecology of the host and the evolutionary histories of the hosts 

and pathogens have previously been implicated. Here we use transcriptome 

sequencing of 13 species of wild caught bumblebee to discover a new set of 

viruses, and to quantify the impact of phylogeny and range overlap on the 

associations between viruses and their pollinator hosts. We present 18 novel 

bumblebee-associated viruses, with the possible existence of 19 more, and use 

strand-specific PCR and small RNA sequencing to demonstrate that they form 

active infections in wild bumblebees. Using a phylogenetic mixed model 

approach, we show that the evolutionary histories of both the host and virus 

have impacted the distribution of infection of 15 of these novel viruses, as well 

as three viruses previously described in honeybees, with related hosts sharing 

viral assemblages, related viruses sharing host assemblages and related hosts 

being infected to similar degrees by related viruses.  

2.2 Introduction 

2.2.1 Introduction Part 1 

Pathogens that naturally infect more than one host species have a particularly 

high risk of disease emergence (Woolhouse and Gowtage-Sequeria 2005). One 

particularly important group of pathogens are the viruses, whose ubiquity leads 

to them having a disproportionate role in the regulation of natural populations, 

especially in the oceans (Suttle 2007). The determinants of the strength of an 

association between a virus and a potential host species are numerous and 

complex, shaped by genetic and environmental factors. Infection is a function 

both of the rate of contact between the virus and the host, and the probability of 

infection on contact. The contact rate between the virus and the host is primarily 

determined by ecological and behavioural factors. Conversely, the probability of 

infection on contact is a function of the host immune system, the viral infectivity 

in that host species, and the interaction between their cellular and reproductive 

machineries.  
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At the broadest level, a multihost parasite can arise in two ways: a parasite 

infecting a single host may gain the ability to infect other host species or, 

alternatively, infecting multiple host species is the ancestral state, and is 

inherited as a trait in the daughter species. These different origins would be 

expected to lead to detectably different phylogenetic signals of shared history, 

see Figure 1. Dissimilarity between hosts increases with evolutionary distance, 

and the probability of a successful infection in a novel host is dependent on the 

similarity between the potential new host and the current host (Longdon et al. 

2011; Perlman and Jaenike 2003). If multihost parasites are predominantly 

generated by viruses gaining the ability to infect new host species, then related 

host species should share virus assemblages, as host switch events should 

occur more often between closely related species (Longdon et al. 2014). 

Contrastingly, if infecting multiple hosts were the ancestral state, it would lead to 

related groups of viruses having shared host assemblages. Both ancestral 

infection of multiple host species followed by host range expansion to related 

host species, and host-virus cospeciation, should lead to a statistical 

coevolutionary interaction where related hosts share related viruses. As well as 

interactions between the hosts and parasites, both realised general 

susceptibility and realised general infectivity (see box) have been observed to 

vary systematically across host and parasite phylogenies (Hadfield et al. 2014; 

Longdon et al. 2011; Waxman et al. 2014) and a growing empirical literature 

indicates that the evolutionary history of hosts and their pathogens may be 

important in explaining how these associations vary between related species 

(Hadfield et al. 2014; Hafner and Nadler 1990; Liu et al. 2016; Longdon et al. 

2011, 2015; Waxman et al. 2014). 
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!  
Figure 2.1 Mechanisms for the emergence of novel multihost viruses. The generation of novel 
multihost viruses through host switching (left panel) leads to a host evolutionary assemblage 
effect, as the consistent host switching of viruses to hosts near their focal host will causes to 
related hosts having correlated viral assemblages. The generation of novel multihost viruses 
through speciation (right panel) of can lead to a viral assemblage effect through the inheritance 
of the ancestral host range, leading to the daughter species having correlated host 
assemblages. 

The prevalence of pathogens such as viruses across host species is, in 

principal, structured in two levels. Firstly, the virus may be present or entirely 

absent in a potential host species, and secondly, if a virus does infect a species, 

a potentially different set of factors may then influence how prevalent a 

pathogen is within that species. While this distinction is ultimately often difficult 

to make in empirical studies, given the uncertainty in distinguishing between a 

true absence and a rare infection in most field and experimental studies, 

considering both levels allows us to consider the potentially different factors 

driving these infection patterns and allows us to go beyond studying infectivity 

as a mere binary trait. 

At the binary level, a complete lack of infection in nature can occur firstly if an a 

host and virus exist in allopatry, preventing transmission irrespective of the 

host’s susceptibility. Secondly, a physiological mismatch between a host and a 

virus can prevent infection. For example, Feline panleukopenia virus (FPV) is 

incapable of infecting dog cells due to the inability of FPV to bind to the canine 

transferrin receptors, a form of resistance that is removed if the feline transferrin 
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receptors are expressed on the dog cells in cell culture (Hueffer et al. 2003). 

Neither mechanism represents an immutable barrier. Spatially separated hosts 

and parasites may come into contact through migrations or human facilitated 

invasions, allowing new associations to emerge. For example, the arrival of 

Plasmodium relictum, a causative agent of the previously absent avian malaria, 

to the Hawaiian islands, led to population declines and potentially contributed to 

extinctions in the naturally susceptible but naïve populations (van Riper et al. 

1986). Equally, incompatibility can break down if evolution in the pathogen or 

host result removes the physiological barriers to infection. For instance, Canine 

parvovirus type 2 (CPV2) emerged as a novel disease from FPV when it 

evolved to the ability to bind to the canine transferrin receptor (Hueffer et al. 

2003). 

At the quantitative level, differences in prevalence between species can be 

driven by variation in transmission rates, e.g. through varying direct and indirect 

contact rates and through physiological variation in viral replication. Examples 

of this include the propensity for group living (Johnson et al. 2011), population 

densities (Arneberg et al. 1998), the biodiversity of the community (Civitello et 

al. 2015) and host avoidance behaviours (Curtis 2014). Variation in prevalence 

among host species can also be driven by physiological factors, with hosts 

having varying suitability for the replication of a given parasite, through 

differential intracellular processes and anatomical factors. For instance, the low 

rate of human H5N1 avian influenza A virus infection is thought to be due to the 

cells with the strongest binding affinities being localised deeper in the 

respiratory tract than those bearing receptors for the common human influenza 

strains, leading to inefficient aerosolisation (Shinya et al. 2006). In the extreme 

case, a host species may exhibit only condition dependent susceptibility, where 

under normal conditions, with a fully functioning immune system, that host 

species would only very rarely become infected. However, when the immune 

system is suppressed to some degree, either directly, through an 

immunosuppressant disease or chemical agent, or indirectly, through trade-offs 

in resource allocation brought about by malnutrition, infection can occur with 

higher frequency (Chandra 1983). In humans, for example, individuals suffering 

from AIDS experience bacteremic and fungeremic episodes at around a 300 

times higher rate than the background population (Meyer, Skinhøj, and Prag 
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1994) and the causative agents are compositionally different to those infecting 

HIV-negative individuals (Bouza and Rodriguez-Créixems 1999).  

2.2.2 Box 1 
As historical events, such as spatial segregation, can determine the presence 

and strength of a host-parasite association, we here define the general 

relationship between a host’s degree of infection averaged over all the 

pathogens that infect it as the realised general susceptibility (RGS). Realised 

general susceptibility is observed in field surveys, whereas the true general 

physiological susceptibility of a host can only be estimated by exposing a host 

species to a random selection of pathogens under controlled lab conditions. 

RGS is a function of both the physiology and natural history of a host. A virus 

may also be considered to have a realised general infectivity (RGI), analogous 

to a host’s realised general susceptibility.  

In a phylogenetic regression, either RGS or RGI can be correlated between 

host or viral species across an estimated phylogeny to test for statistical 

associations driven by relatedness. These estimated correlations are termed 

phylogenetic effects. In the case of RGS, if there were a large phylogenetic 

effect, related hosts would share similar average susceptibilities. Phylogenetic 

regressions can also be used to analyse association data using two 

phylogenies, allowing the estimation of phylogenetic effects for RGS and RGI 

simultaneously. 

These techniques were extended by Hadfield et al. (2014) to allow more 

complicated phylogenetic models, including interactions between phylogenies, 

to be fit. An evolutionary assemblage effect, termed an evolutionary interaction 

by Hadfield et al., occurs when the structure of the assemblage of interaction 

partners is correlated between related species. In the host-virus case, this 

would represent either related hosts sharing association strengths for sets of 

viruses (a host evolutionary assemblage effect) or related viruses share 

association strengths for sets of hosts (a virus evolutionary assemblage effect). 

A co-evolutionary interaction occurs when related species share interaction 

strengths for related interaction partners. In the host-virus case, this would 

represent related pathogens sharing association strengths for related hosts. 
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2.2.3 Introduction Part 2 

We tested for the role of evolutionary interactions in shaping differences in 

infection level within a set of species from an ecologically and economically 

important group, the bumblebees. We performed viral discovery by RNA-seq, 

finding a suite of new viruses and then tested 11 species of bumblebee, wild 

caught from sites across Scotland, for a subset of these novel viruses, as well 

as three previously reported honeybee viruses: Slow bee paralysis virus (Bailey 

and Woods 1974), Acute bee paralysis virus (Bailey et al. 1963) and Hubei 

partiti-like virus 34 (Cornman et al. 2012; Shi et al. 2016). We analysed the 

prevalence using co-phylogenetic models to determine the presence or 

absence and relative strengths of the evolutionary signals expected to shape 

the host/parasite assemblage in this system. 

2.3 Methods 

2.3.1 Sampling Regime and Post Collection Treatment 

A total of 926 individual bumblebees of 13 species were collected on the wing 

from 9 sites across Scotland in 2009 and 2011, and frozen in liquid nitrogen or 

at -80°C. In 2009, we sampled the Ochil Hills, Glenmore, Dalwhinnie, Stirling, 

Iona, Staffa, and the Pentlands were sampled and in 2011 we sampled 

Edinburgh and Gorebridge. Precise locations of the sites are available in 

Chapter 2 Appendix Table A2.1. All individuals were cut in half longitudinally. 

The cryptic species complex of Bombus terrestris, Bombus lucorum, Bombus 

cryptarum and Bombus magnus  was resolved using RFLP analysis following 

Murray et al. (2008). One half of each bee was used in grouped RNA 

extractions of 2-11 individuals per species (median 10; see Chapter 2 Appendix 

Table A2.2 for pool composition). Two of these groups (DIV and P11) were 

included in the RNAseq, but excluded from prevalence testing, as the DIV group 

contained multiple species and the P11 group contained bees that were also in 

other B. pascuorum pools. The groups of bees were ground in liquid nitrogen 

and added to TRIzol reagent (Life Technologies) for RNA extractions following 

the manufacturers’ standard protocol. The RNA concentrations in the pooled 

samples were equalized to 200 ng/ul/individual based on Nanodrop 

measurements.  
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2.3.2 RNA Sequencing and Bioinformatics 

The RNA was combined by species for B. terrestris (239 individuals), Bombus 

pascuorum (212 individuals), B. lucorum (182 individuals) and other Bombus 

(293 individuals) into four RNA pools. Pools were sequenced using the Illumina 

HiSeq platform with 100bp paired end reads (Beijing Genomics Institute) after 

poly-A selection to enrich for polyadenylated mRNAs, and positive sense single 

stranded RNA (+ssRNA) virus genomes. The single-species bumblebee pools 

were also re-sequenced following duplex specific nuclease normalization, to 

enrich for rare transcripts and reduce rRNA representation while retaining non-

polyadenylated viruses and virus products. The small RNAs of the same RNA 

pools of B. terrestris, B. lucorum and B. pascuorum were also sequenced to test 

for the replication of viruses identified via the transcriptome sequencing.  

  

For each pool, paired end RNAseq data were mapped to the published Bombus 

terrestris and B. impatiens genomes using bowtie2 (Langmead and Salzberg 

2012) to reduce the representation of conserved bee sequences. Read pairs 

that did not map concordantly, including divergent bee sequences and other 

associated microbiota, were assembled de novo using Trinity 2.2.0 (Grabherr et 

al. 2011) as paired end libraries, following automated trimming (‘--trimmomatic') 

and digital read normalisation (‘--normalize_reads'). Where two RNAseq 

libraries (Poly-A and DSN) had been sequenced, these were combined for 

assembly.  

To identify putative viruses, all long open reading frames from each contig were 

identified and concatenated to provide a ‘bait’ sequence for similarity searches 

using Diamond (Buchfink, Xie, and Huson 2015) and BLASTp (Altschul et al. 

1990). Contigs shorter than 500 base pairs were discarded. These contig 

translations were used to search against a Diamond database comprising all of 

the virus protein sequences available in NCBI database ‘nr’, and all of the 

Dipteran, Hymenopteran, Nematode, Fungal, Protist, and prokaryotic proteins 

available in NCBI database ‘refseq_protein’ (mode ‘blastp’; e-value 0.001; 

maximum of one match). Matches to phage and short matches to large DNA 

viruses were excluded. Remaining contigs were manually curated to identify 

and annotate high-confidence virus-like sequences. To quantify approximate 
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fold-coverage, and to assess viRNA properties, the raw RNAseq and trimmed 

small RNA reads were mapped against the putative viral contigs using bowtie2’s 

‘--very-sensitive’ setting and retaining only the top map (Langmead and 

Salzberg 2012), and reads per kilobase of transcript per million mapped reads 

(RPKMs) were generated from this output. Following Fauquet and Stanley 

(2005), we defined contigs exhibiting greater than 10% difference in nucleotide 

identity as separate viruses and those exhibiting less than 10% difference as 

strains of known viruses. 

2.3.3 PCR Validation and Testing 

To select contigs for further validation, the putative virus sequences were 

manually filtered on two conditions: the presence of mapping reads in the 

bumblebee small RNAs (for the B. terrestris, B. pascuorum and B. lucorum 

pools) or the transcriptomic RNAs (for the other Bombus pool where small 

RNAs were not generated), and the closest blast match being viral RNA-

dependent RNA-polymerase. This approach will necessarily exclude some viral 

contigs, but as RNA viruses contain a single RdRp, this should ensure that a 

single contig per novel virus was generated and unconnected contigs from the 

same virus were not retained. Internal primers for these contigs were generated 

using primer3 (Untergasser et al. 2012) and amplification of the target was 

verified via Sanger sequencing. See Chapter 2 Appendix Table A2.3 for PCR 

conditions. Mayfield virus 1 and 2 were Sanger sequence validated over the 

entirety of the contig. Loch Morlich and River Liunaeg viruses both had further 

contigs linked to their initial contig by between contig PCRs, and the complete 

region was Sanger sequenced. All groups excepting DIV and P11 were then 

tested for the presence of validated viruses via PCR. Black Hill virus was 

excluded from further analysis after post-hoc sequencing found that the PCR 

also amplified a host sequence of equal length to the viral target.  

2.3.4 Phylogenetic Analysis 

We inferred a host phylogeny using cytochrome oxidase I, elongation factor 1-

alpha, opsin, phosphoenolpyruvate carboxykinase, the mitochondrial 16S rRNA 

gene and arginine kinase genes, based on the bumblebee phylogeny reported 

in Cameron et al. (2007). Where possible the sequences used were the same 
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as  those used by Cameron et al. with the only new additions being for species 

not included in their initial phylogeny.  To break up long branches and as 

outgroups, additional species were added. When a specific gene could not be 

acquired for a species, the gene was entered as missing data after alignment 

had been performed on the other sequences. The sequences taken from 

genbank with their accession numbers are shown in Chapter 2 Appendix Table 

A2.4. The DNA sequences were aligned with MAFFT (Katoh et al. 2002; Katoh 

and Standley 2013) using the default settings. The alignments for each region 

were then submitted to the GUIDANCE2 server (Sela et al. 2015), and any 

columns with a score of less than 1 were removed to reduce the effects of 

alignment uncertainty on the downstream analysis. The 6 gene alignments were 

then used to generate the phylogeny in BEAST v2.4.5 (Bouckaert et al. 2014), 

treating each file as a separate partition, using bModelTest (Bouckaert and 

Drummond 2015) and the “transitionTransversion split” setting. Partitions were 

allowed to vary in mutation rate and a lognormal relaxed clock shared between 

partitions was used to model rate variation across the tree (Drummond et al. 

2006). Strong priors were placed on the topology of the tree to represent the 

strong prior information we have about the branching order of the Hymenoptera 

and Diptera. The bumblebees in the tree were constrained to be monophyletic, 

then a second monophylly prior was placed around the bumblebee-honeybee 

(Apinae) group, above this, a third monophylly prior was then placed around the 

Apinae members and the other members of the hymenoptera (Allantus luctifer 

and Philotrypesis pilosa). The dipterans (Drosophila melanogaster, Anopheles 

dirus, Episyrphus balteatus and Episyrphus pertinax) and lepidopterans 

(Bombyx mori and Heliconius melpomene) were both separately given 

monophylly priors. These priors follow evidence from the phylogenies of Hines 

(2008), Hedtke et al. (2013) and Wiegmann et al. (2009). This allowed the 

branching within the bumblebees, within the flies, between Allantus luctifer and 

Philotrypesis pilosa and the position of the root between the Hymenoptera, 

Diptera and Lepidoptera to vary. Four separate runs of the phylogeny were 

performed for 550,000,000 generations with the first 50,000,000 generations 

being discarded as burn in. Convergence was assessed in Tracer v1.6 

(Rambaut et al. 2013). The posterior distribution of trees was then 

downsampled to 1000 trees.  



!  38

For the viral phylogeny, amino acid sequences were predicted based on the 

translated ORFs for regions predicted to contain RdRp motifs using the 

GenomeNet MOTIF search function (Kanehisa et al. 2002) against the Pfam 

database (Finn et al. 2014) with an expectation cut-off of 0.00001. If a virus had 

no annotated motifs, the canonical GDD RdRp amino acid motif (Kamer and 

Argos 1984) was searched for manually. The sequences were then cut to a 

trailing region either side of this motif. Additional viral species were added to the 

phylogeny to anchor species with incomplete sequence and to break up long 

branches. See Chapter 2 Appendix Table A2.5 for genbank accession numbers 

of the additional viruses used. Given the long evolutionary distance between the 

viruses, PROMALS3D (Pei, Kim, and Grishin 2008) was used to align viral 

sequences. This is a multistage alignment tool that first aligns closely related 

amino acid sequences then performs structural prediction and additionally uses 

the structural information to align more divergent amino acid chains. Two of the 

novel viruses (Agassiz Rock virus and Cnoc Mor virus) were not included in this 

phylogeny because they lacked the section of the RdRp gene required. 

Whether the negative sense RNA viruses are phylogenetically related to the 

positive sense and double stranded RNA viruses or represent a separate origin 

is currently under scientific debate (reviewed in Koonin et al. 2015). We 

therefore generated the phylogeny twice, with and without the negative sense 

RNA viruses (see Chapter 2 Appendix Table A2.5). The trees exist to quantify 

expected variance (under a Brownian motion model of evolution) between 

closely related viruses. While the deep splits in the phylogeny are likely to be 

poorly resolved, due to the fast evolutionary rates of RNA viruses and the 

considerable time since divergence (if indeed a common ancestor existed), this 

should not overly bias the conclusions as beyond a certain evolutionary 

distance, the viruses would be expected to become essentially uncorrelated. 

The alignment including all the RNA viruses was trimmed to the first conserved 

secondary structural element at both ends, then any internal columns containing 

amino acid sequence from only one virus were removed to speed computation. 

For the positive sense and double stranded RNA viruses, the alignment was 

trimmed to the first predicted conserved secondary structural motif on the left 

hand side and the second on the right hand side, removing any internal 

columns with containing amino acid sequence from only one virus. 
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We performed model selection using MODELGENERATOR (Keane et al. 2006) 

with 8 categories for the gamma distributed rate variation, selecting the model 

with the best AIC2 performance (Crandall 2001). In both cases, the two best 

fitting rate matrices included the rtREV rate matrix (Dimmic et al. 2002) with 

empirical amino acid frequencies, a combination that is not implemented in 

BEAST, so instead the third best fitting model was used; the BLOSUM62 rate 

matrix (Henikoff and Henikoff 1992) with gamma distributed rate variation using 

8 gamma categories, an estimated proportion of invariant sites, and a lognormal 

relaxed clock (Drummond et al. 2006). This model was run over 30 separate 

chains for 13,000,000 generations each for the tree containing the negative-

sense viruses, and 40 separate chains with the same conditions for the positive-

sense only tree. Both trees were run on a cluster in BEAST v1.8.4 (Drummond 

et al. 2012), with 10,000,000 generations discarded as burn-in for the negative-

sense viruses containing tree and 10,750,000 discarded as burn-in for the 

positive-sense only tree. Convergence was assessed in Tracer v1.6 (Rambaut 

et al. 2013). The posterior distributions of trees were downsampled to 1000 

trees. 

2.3.5 Prevalence Estimation 
Raw prevalence was estimated for each host virus combination with more than 

one pool using the JAGS model associated with the ‘truePrevPools’ function in 

the prevalence package (Devleesschauwer et al. 2014) in R 3.3.2 (R Core 

Development Team 2016), with a uniform Beta (1, 1) prior, with 100000 

iterations for both burnin and sampling.  If no pools are negative for a species, 

the posterior is nearly flat over a large proportion of the parameter space for the 

underlying probability, making estimates of shortest posterior intervals highly 

dependent on the stochasticity of the MCMC chains. Given this, 90% shortest 

posterior intervals are presented in these cases and point estimates were not 

generated, as the MLE/posterior mode (with a flat prior) of 1 is not meaningful 

given the extensive bias.  Highest posterior density intervals were calculated by 

the SPIn method (Liu, Gelman, and Zheng 2015). For simplicity, a common 

likelihood was assumed for each virus between sampling locations.  
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2.3.6 Co-phylogenetic Mixed Model Analysis 

The presence/absence data for each of the viruses in each pool in the 

phylogenies and the posterior distributions of the host and viral trees were 

combined to model the effect of the evolutionary histories of the hosts and 

viruses on the distribution of infection by adapting the model and code of 

Hadfield et al. (2014) estimated in MCMCglmm (Hadfield 2010). The modelling 

procedure ignored the fact that sites were sampled in different years. The pools 

were originally generated by combination of hosts by species rather than by 

location, which means that a minority of pools had individuals from multiple 

locations. As such, we treated each location and realised combination of 

locations as a level of the random effect, terming this the spatial composition 

effect. In addition to the phylogenetic terms, non-phylogenetic host and virus 

terms were fitted, as well as a pool ID term and the spatial composition term as 

random effects. Four versions of the model were fitted. Model 1 included all the 

viruses, Model 2 excluded the negative sense RNA viruses, Model 3 fitted a 

pseudo-taxonomic model, where a polytomic viral tree with arbitrary branch 

lengths (summing to 1, with an equal length between each split) was generated 

with the viruses being split first by their genomic type (+ve sense RNA, -ve 

sense RNA and dsRNA) implying a covariance of 0 between genome 

structures, followed by splitting by the putative viral clades identified by Shi et 

al. (2016) and Model 4 was run without any of the terms involving the virus 

phylogeny to assess the effect of uncertainty in the deep splits on the other 

parameters in the model. An additional model using all the viruses and 

aggregating the pools per species is shown in Appendix A2.6. 

As the samples were small pooled groups of individuals, such that a PCR 

‘positive’ represents one or more infections, the data do not conform to a 

standard binomial model. Instead we modelled the data using a likelihood 

based on the binomial cumulative density function, as has been previously 

described (Ebert, Brlansky, and Rogers 2010; Gibbs and Gower 1960), using a 

logit link. To account for uncertainty in inferred phylogeny/phylogenies, we fitted 

the models 200 times using random phylogenies drawn from the downsampled 

joint independent posterior distribution of trees for both the host and virus 

phylogenies. The posterior distributions from each run of the models were 

combined manually, with the posterior distributions of all chains downsampled 
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to below the autocorrelation time of the slowest chain in order to equalise 

information between runs. Summary statistics were derived from this combined 

posterior. 

The form of Models 1, 2 and 3 is shown below, where y’ is the value of the 

latent variable, i is the index of the data point, µ is the global mean of the latent 

variable, ε is a fixed unidentified error term and all other effects are estimated 

by partial pooling: 

y’i = µ + hosti + virusi + host phylogenetic effecti + virus phylogenetic effecti + 

host evolutionary assemblage effecti + virus evolutionary assemblage effecti + 

coevolutionary interactioni + pool IDi + species compositioni + ε 

The form of Model 4 is: 

y’i = µ + hosti + virusi + host phylogenetic effecti + host evolutionary assemblage 

effecti + pool IDi + species compositioni + ε 

All variance-covariance matrices were generated as described in Hadfield et al 

(2014). The MCMCglmm default normal fixed effect prior with mean 0 and 

variance 110 was retained for the global intercept, all variance components were 

given improper, close to uniform, priors (parameters: V=2x10-16, nu=-2). While in 

pooled binomial models, the residual variance can in theory be estimated, data 

is often weakly informative for this parameter, so it was fixed at 1 (Hadfield, pers 

comm). Intraclass correlations were calculated from the model outputs and 

reported. Highest posterior density intervals were calculated by the SPIn 

method (Liu, Gelman, and Zheng 2015). 

The total phylogenetic variance was calculated as (with the appropriate terms 

removed for Model 4): 

(σhostphylogenetic + σhostassemblage + σvirusphylogenetic + σvirusassemblage + 

σcoevolutionaryinteraction)/(σtotal + 1 + π2/3) 

2.4 Results 

2.4.1 Read and Assembly Statistics 

A total of 134,026,056 sequencing reads were generated for Bombus lucorum, 

135,590,922 for Bombus terrestris, 128,670,194 for Bombus pascuorum and 
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26,838,390 for the other Bombus species with 0.37, 0.38, 3.36 and 15.12 

percent of reads mapping to the known viruses included in our reference set or 

the novel bee viruses found in the study.  The correlation of the number of reads 

mapping to the previously described viruses and the novel putative viral contigs 

between the poly-A selected and nuclease normalized sequencing runs was 

universally high. Post-sequence processing, the correlation was 1.000 for 

Bombus terrestris, 0.999 for Bombus pascuorum and 0.998 for Bombus 

lucorum. This is surprising as in theory these two methods should be sampling 

from different RNA populations. 

2.4.2 Virus-like Sequences 

2.4.2.1 Previously Described Viruses Detected 

RNA-seq reads mapped to three previously described bee viruses. The majority 

of these reads mapped either to the Acute bee paralysis virus/Kashmir bee virus 

complex (henceforth ABPV) or to Slow bee paralysis virus (SBPV). Additionally, 

in the mixed Bombus pool, reads were found mapping to Hubei partiti-like virus 

34 (HPLV34), a virus initially detected, though not named, in honeybees by 

Cornman et al. (2012), then subsequently rediscovered in Chinese landsnails 

by Shi et al. (2016). Reads in the sequenced small RNAs were found mapping 

to a considerably more diverse viral community potentially because of the 

higher comparable depth of sequencing in the small RNAs; Deformed wing 

virus – type A (Bailey and Ball 1991), Chronic bee paralysis virus (Bailey et al. 

1963) , Bee macula-like virus (de Miranda et al. 2015), Ganda bee virus 

(Schoonvaere et al. 2016), Scaldis River bee virus (Schoonvaere et al. 2016), 

Black queen cell virus (Bailey and Woods 1977), Apis rhabdovirus 1 (Remnant 

et al. 2017), Apis rhabdovirus 2 (Remnant et al. 2017), Apis bunyavirus 1 

(Remnant et al. 2017), Apis bunyavirus 2 (Remnant et al. 2017), Apis flavivirus 

(Remnant et al. 2017), Apis dicistrovirus (Remnant et al. 2017), Apis Nora virus 

(Remnant et al. 2017) and members of the Lake Sinai virus complex (Runckel 

et al. 2011). Two of the viral contigs generated by the de novo assembly had 

high similarity to previously described plant viruses; both RNAs of White clover 

cryptic virus 2 (Boccardo et al. 1985) (96% identity), and both RNAs of Arabis 

mosaic virus (Smith and Markham 1944) (91% identity). 
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2.4.2.2 Putative Novel Viral-like Sequences 

We identified 37 putative novel viral contigs, four assumed to be from DNA 

viruses and 33 from RNA viruses. See Table 2.1 for more details. 

Table 2.1 The putative viral contigs found by the de novo assembly of raw RNAseq reads after 
bioinformatic checking 

Putative 
viral 

contig
Clade

Genome 
structur

e

Sequ
e-

nce 
lengt

h

Closest 
blastx 
match

Query 
cover/ 
Percen

t 
identit

y

Valid
a  -
ted 
by 

PCR
?

Prevalen
ce data 

acquired
?

Notes

Densovirus
_cfminiamb
idensovirus

Parvovirida
e?

positive 
sense 

ssDNA?
811

Neodiprion 
lecontei 

nucleopolyhe
drovirus 

(YP_025282.
1)

39%/ 
42% 　 　

One incomplete ORF; 
predicted protein 
contains the Parvovirus 
coat protein VP1 
(PF08398) motif.

Densovirus
_cfminiamb
idensovirus

2

Parvovirida
e

positive 
sense 
ssDNA

1071
Densovirus 

SC1065 
(AFH02754.1

)

29%/ 
43% 　 　

One incomplete ORF; 
predicted protein 
contains the Parvovirus 
coat protein VP1 
(PF08398) motif.

Densovirus
_cfDiaphori
naCitriDen

sovirus

Parvovirida
e

positive 
sense 
ssDNA

2009

Diaphorina 
citri 

densovirus 
(ALV85426.1

)

64%/ 
36% 　 　

One incomplete ORF; 
predicted protein 
contains the Parvovirus 
non-structural protein 
NS1 (PF01057) motif.

Densovirus
_cfViltainVi

rus
Parvovirida

e

positive 
sense 
ssDNA

1345

Diaphorina 
citri 

densovirus 
(ALV85426.1

)

67%/ 
28% 　 　

One incomplete ORF; 
no predicted motifs. 
Blastx hits against RNA 
helicases.

Agassiz 
Rock virus Reo dsRNA 1385

Hubei 
odonate virus 

14 
(APG79163.1

)

72%/ 
40% x x

One incomplete ORF; 
no predicted motifs. 
Blastx hits against 
RdRps.

Cnoc Mor 
virus Reo dsRNA 1116

Grange virus 
(AMO03252.

1)

80%/ 
38% x x

One incomplete ORF; 
no predicted motifs. 
Blastx hits against 
RdRps.

CnocMor-
PossibleFr

agment
Reo dsRNA 1048

Hubei 
odonate virus 

14 
(APG79163.1

)

96%/ 
47% 　 　

One incomplete ORF; 
no predicted motifs. 
Blastx hits against 
RdRps. Aligns with Elf 
Loch virus and Agassiz 
Rock virus, potentially 
part of Cnoc Mor virus.

Elf Loch 
virus Reo dsRNA 2996

Hubei 
odonate virus 

14 
(APG79163.1

)

87%/ 
44% x x

One incomplete ORF; 
no predicted motifs, but 
manual search found 
GDD motif of RdRp. 
Blastx hits against 
RdRps.

Dumyat 
virus Toti-Chryso dsRNA 4981

Leptopilina 
boulardi Toti-

like virus 
(YP_009072

448.1)

46%/ 
48% x x

One incomplete ORF; 
predicted protein 
contains the RdRp 4 
(PF02123) motif.
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Sheriffmuir 
virus Toti-Chryso dsRNA 549

Leptopilina 
boulardi Toti-

like virus 
(YP_009072

448.1)

100%/ 
63% x x

One incomplete ORF; 
no predicted motifs, but 
manual search found 
GDD motif of RdRp. 
Blastx hits against 
RdRps.

Clamshell 
Cave virus

Bunya-
Arena 

negative 
sense 
ssRNA

505
Ganda bee 

virus 
(APT68154.1

)

99%/ 
86% x x

One incomplete ORF; 
predicted protein 
contains the 
Bunyavirus RdRp 
(PF04196) motif.

ClamshellC
ave_cfGan
daBeeVirus

-
possibleFra

gment1

Bunya-
Arena 

negative 
sense 
ssRNA

736

Ganda bee 
virus 

(APT68155.1
)

81%/ 
60% 　 　

One incomplete ORF; 
no predicted motifs. Hit 
against Bunyaviridae 
glycoprotein. 
Potentially Clamshell 
Cave virus M segment.

ClamshellC
ave_cfGan
daBeeVirus

-
possibleFra

gment2

Bunya-
Arena 

negative 
sense 
ssRNA

747

Ganda bee 
virus 

(APT68156.1
)

99%/ 
84% 　 　

One incomplete ORF; 
no predicted motifs. Hit 
against Bunyaviridae 
nucleoprotein. 
Potentially Clamshell 
Cave virus S segment.

Phleboviru
s_cfSalang
aVirusGlyc
oProtein

Bunya-
Arena 

negative 
sense 
ssRNA

2188
EgAN 

1825-61 virus 
(AEL29653.1

)

61%/ 
25% 　 　

One incomplete ORF; 
predicted protein 
contains Phlebovirus 
glycoprotein G2 
(PF07245).

Orthomyxo
virus_cfAra
nsasBayVir

us

Orthomyxo
vi-dae

negative 
sense 
ssRNA

1449

Hubei 
orthoptera 

virus 6 
(APG77906.1

)

90%/ 
26% 　 　

One incomplete ORF; 
predicted protein 
contains the Influenza 
RdRp subunit PB1 
(PF00602) motif.

Allermuir 
Hill virus 1 Hepe-Virga 

positive 
sense 
ssRNA

7586

Xinzhou 
nematode 

virus 1 
(YP_009345

041.1)

39%/ 
34% x x

Two putative ORFs; 
one containing the 
FtsJ-like 
methyltransferase 
(PF01728), RdRp 1 
(PF00978) and viral 
(Superfamily 1) RNA 
helicase (PF01443) 
motifs and one with no 
predicted motifs and no 
blast hits.

Allermuir 
Hill virus 2 Hepe-Virga 

positive 
sense 
ssRNA

9078

Xinzhou 
nematode 

virus 1 
(YP_009345

041.1)

49%/ 
34% x x

Two putative ORFs; 
one containing the 
FtsJ-like 
methyltransferase 
(PF01728), viral 
methyltransferase 
(PF01660), RdRp 1 
(PF00978) and viral 
(Superfamily 1) RNA 
helicase (PF01443) 
motifs and one with no 
one with no predicted 
motifs and no blast 
hits.

Allermuir 
Hill virus 3 Hepe-Virga 

positive 
sense 
ssRNA

6339

Xinzhou 
nematode 

virus 1 
(YP_009345

041.1)

47%/ 
34% x x

Three putative ORFs; 
one containing the 
RdRp 1 (PF00978) and 
viral (Superfamily 1) 
RNA helicase 
(PF01443) motifs, one 
with no one with no 
predicted motifs and no 
blast hits, and one with 
no predicted motifs and 
blast hits against 
hypothetical viral 
proteins.
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Mill Lade 
virus Hepe-Virga 

positive 
sense 
ssRNA

3152

Aedes 
camptorhync
hus negev-
like virus 

(YP_009388
601.1)

44%/ 
64% x x

One incomplete ORF; 
predicted protein 
contains the RdRp 2 
(PF00978) and viral 
(Superfamily 1) RNA 
helicase (PF01443) 
motifs.

Negevirus_
cfBlackford

Virus
Hepe-Virga 

positive 
sense 
ssRNA

1681

Blackford 
virus 

(AMO03220.
1)

63%/ 
63% 　 　

One incomplete ORF; 
predicted protein 
contains the RdRp 2 
(PF00978) motif.

Negevirus_
cfLoretovir

us
Hepe-Virga 

positive 
sense 
ssRNA

962
Hubei virga-
like virus 2 

(APG77663.1
)

92%/ 
31% 　 　

One incomplete ORF; 
predicted protein 
contains the viral 
(Superfamily 1) RNA 
helicase (PF01443) 
and AAA (PF13245) 
motifs.

Virga-
like_virus_
cfHubeiVirg

alike15
Hepe-Virga 

positive 
sense 
ssRNA

2265

Aedes 
camptorhync
hus negev-
like virus 

(YP_009388
603.1)

28%/ 
39% 　 　

Multiple short ORFs; 
no predicted motifs, 
blast hits against 
hypothetical viral 
proteins.

Virga-
like_virus_
cfXingshan
Nematode

Virus1

Hepe-Virga 
positive 
sense 
ssRNA

1840
Hubei virga-
like virus 17 
(YP_009337

715.1)

52%/ 
34% 　 　

One incomplete ORF; 
predicted protein 
contains the viral 
methyltransferase 
(PF01660) motif.

Black Hill 
virus

Picorna-
Calici

positive 
sense 
ssRNA

1332
Sacbrood 

virus 
(AID58097.1)

92%/ 
55% x 　

One incomplete ORF; 
predicted protein 
contains the RdRp 1 
(PF00680) motif.

Boghill 
Burn virus

Picorna-
Calici

positive 
sense 
ssRNA

9873

Hubei 
picorna-like 

virus 57 
(APG78030.1

)

60%/ 
98% x x

Two putative ORFs; 
one containing 
predicted the RNA 
helicase (PF00680) 
and RdRp 1 (PF00910) 
motifs, one with no 
predicted motifs. The 
closest well-studied 
virus is Acyrthosiphon 
pisum virus, which 
contains a second ORF 
at the 3’ end of its first 
with no start codon. 
This ORF is translated 
by -1 translational 
frameshift during 
protein synthesis (van 
der Wilk, Dullemans, 
Verbeek, & Van den 
Heuvel, 1997). This 
contig contains similar 
shift from the protein 
coding sequence lying 
in the +3 frame (as 
defined from the 
beginning) into the +2 
frame, with partial 
overlap of the ORFs.
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Gorebridge 
virus

Picorna-
Calici

positive 
sense 
ssRNA

5639

Hubei 
picorna-like 

virus 15 
(APG77985.1

)

45%/ 
97% x x

Two putative ORFs; 
one containing the 
RdRp 1 (PF00680) 
motif and one 
containing the CRPV 
capsid protein like 
(PF08762) and 
picornavirus capsid 
protein (PF00073) 
motifs. Apparent 
standard Dicistroviridae 
organisation.

Gorebridge
-like

Picorna-
Calici

positive 
sense 
ssRNA

1819

Hubei 
picorna-like 

virus 15 
(APG77986.1

)

75%/ 
90% 　 　

One incomplete ORF; 
predicted protein 
contains the CRPV 
capsid protein like 
(PF08762) and 
picornavirus capsid 
protein (PF00073) 
motifs.

Loch 
Morlich 
virus

Picorna-
Calici

positive 
sense 
ssRNA

3817

Sacbrood 
virus 

(AJA38040.1
)

60%/ 
40% x x

One incomplete ORF; 
predicted protein 
contains the RdRp 1 
(PF00680) motif.

Mayfield 
virus 1

Picorna-
Calici

positive 
sense 
ssRNA

8948

Wenzhou 
picorna-like 

virus 47 
(APG78496.1

)

53%/ 
29% x x

One complete ORF; 
predicted protein 
contains the RdRp 1 
(PF00680) and RNA 
helicase (PF00910) 
motif.

Mayfield 
virus 2

Picorna-
Calici

positive 
sense 
ssRNA

9019

Wenzhou 
picorna-like 

virus 47 
(APG78496.1

)

53%/ 
29% x x

One complete ORF; 
predicted protein 
contains the RdRp 1 
(PF00680) and RNA 
helicase (PF00910) 
motif.

Nepovirus_
cfBeetRing
spot_RNA2

Picorna-
Calici

positive 
sense 
ssRNA

2426
Beet ringspot 

virus 
(NP_620113.

1)

87%/ 
95% 　 　

One incomplete ORF; 
predicted protein 
contains the Nepovirus 
coat protein, N-terminal 
domain (PF03689), 
Nepovirus coat protein, 
central domain 
(PF03391) and 
Nepovirus coat protein, 
C-terminal domain 
(PF03688) motifs.

Nepovirus_
cfSoybean
LatentSphe

ricalVirus

Picorna-
Calici

positive 
sense 
ssRNA

1282

Soybean 
latent 

spherical 
virus 

(YP_009330
271.1)

58%/ 
47% 　 　

One incomplete ORF; 
no predicted motifs. 
Blastx hits against 
RdRps.

Nepovirus_
cfTomatoBl
ackRing_R

NA2

Picorna-
Calici

positive 
sense 
ssRNA

3816
Tomato black 

ring virus 
(CAA56792.1

)

91%/ 
60% 　 　

One incomplete ORF; 
predicted protein 
contains the Nepovirus 
coat protein, N-terminal 
domain (PF03689), 
Nepovirus coat protein, 
central domain 
(PF03391) and 
Nepovirus coat protein, 
C-terminal domain 
(PF03688) motifs.

Picornavira
les_cfHube
iArthropod

Virus3

Picorna-
Calici

positive 
sense 
ssRNA

1798
Kilifi virus 

(YP_009140
560.1)

19%/ 
30% 　 　

One incomplete ORF 
and one complete 
ORF; no predicted 
motifs. No blastx hits 
against identifed 
proteins.
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2.4.3 Evidence for Infection 

2.4.3.1 Titre-based Evidence for Infection 

Viruses with large numbers of mapping RNAseq reads in a sample are likely to 

be infective, as it is the most parsimonious explanation for the large number of 

mapping reads. If we consider an RPKM of 5 to a novel contig as inconclusive 

evidence of the virus replicating, the replicating sequence can be seen in Table 

2.2. It is worth noting that the titre-based results from the mixed Bombus pool is 

less directly interpretable, as viruses that are common in one species in the 

pool may be diluted out by the addition of species where they are less common, 

or completely absent, so a threshold of an RPKM of 5 is more conservative in 

this case.   

We also detected a large number of mapping reads from White clover cryptic 

virus 2 in Bombus pascuorum and Arabis mosaic virus in Bombus terrestris, but 

these do not represent evidence for infection, as the source of the virus being in 

the collected pollen is a better explanation for the presence of the reads given 

that these viruses are known to infect plants.  

Table 2.2 The reads per kilobase of transcript per million mapped reads mapping to the putative viral 
contigs from the RNASeq in the Bombus terrestris, Bombus lucorum, Bombus pascuorum and mixed 
Bombus pools and whether each contig met the criteria of having at least 50 mapping small RNA reads 
with a size distribution centred at 22nt in Bombus terrestris, Bombus lucorum and Bombus pascuorum. 

River 
Liunaeg 

virus

Picorna-
Calici

positive 
sense 
ssRNA

1955

Hubei tick 
virus 2 

(YP_009336
542.1)

91%/ 
40% x x

One incomplete ORF; 
predicted protein 
contains the RdRp 1 
(PF00680) motif.

Castleton 
Burn virus

Tombus-
Noda

positive 
sense 
ssRNA

2714

Shangao 
tombus-like 

virus 1 
(APG76298.1

)

44%/ 
43% x x

One incomplete ORF 
and one complete 
ORF; predicted protein 
contains the RdRp 3 
(PF00998) motif and 
one ORF contains no 
predicted motifs. No 
blastx hits against the 
ORF with no predicted 
motifs.

Nodavirus_
cfWuhanN
odavirus64

Tombus-
Noda

positive 
sense 
ssRNA

1011
Wuhan 

nodavirus 
(ABB71128.1

)

78%/ 
66% 　 　

One incomplete ORF; 
predicted protein 
contains the nodavirus 
capsid protein 
(PF11729) motif.

Putative viral contig

Bombus 
terrestris

Bombus 
pascuorum

Bombus 
lucorum

mixed 
Bombus

RNASeq siRNA RNASeq siRNA RNASeq siRNA RNASeq

Densovirus_cfminiambidensovirus 　 　 　 　 　 　 12.3



!  48

Densovirus_cfminiambidensovirus2 5.7 　 　 　 221.7 x 71.7

Densovirus_cfDiaphorinaCitriDensovirus 　 x 　 　 51.2 x 13.7

Densovirus_cfViltainVirus 　 　 　 　 　 　 14.2

Agassiz Rock virus 　 　 　 　 　 　 　

Cnoc Mor virus 　 　 　 　 　 　 20.4

CnocMor-PossibleFragment 　 　 　 　 　 　 　

Elf Loch virus 　 　 　 x 　 　 　

Dumyat virus 　 　 　 　 　 　 10.3

Sheriffmuir virus 　 　 　 　 　 　 　

Clamshell Cave virus 　 　 　 　 　 　 　

ClamshellCave_cfGandaBeeVirus-
possibleFragment1 　 　 　 　 　 　 5.6

ClamshellCave_cfGandaBeeVirus-
possibleFragment2 　 　 　 　 　 　 12.1

Phlebovirus_cfSalangaVirusGlycoProtein 　 　 　 　 　 　 　

Orthomyxovirus_cfAransasBayVirus 　 　 　 　 　 　 　

Allermuir Hill virus 1 16.0 x 　 x 　 x 　

Allermuir Hill virus 2 　 x 22.3 x 　 　 　

Allermuir Hill virus 3 　 x 　 x 　 x 　

Mill Lade virus 　 x 　 　 　 　 7.3

Negevirus_cfBlackfordVirus 　 　 　 　 　 　 　

Negevirus_cfLoretovirus 　 　 　 　 　 　 　

Virga-like_virus_cfHubeiVirgalike15 20.1 　 　 　 5.5 　 90.4

Virga-
like_virus_cfXingshanNematodeVirus1 　 　 　 　 　 　 　

Black Hill virus 　 　 　 　 　 　 　

Boghill Burn virus 　 　 　 　 13.9 　 　

Gorebridge virus 　 　 　 　 　 　 　

Gorebridge-like 7.3 　 　 　 　 　 　

Loch Morlich virus 　 　 　 　 　 　 7.8

Mayfield virus 1 403.0 x 　 　 255.4 x 7.7

Mayfield virus 2 5.5 x 339.0 x 　 　 558.8

Nepovirus_cfBeetRingspot_RNA2 　 　 　 　 　 　 　

Nepovirus_cfSoybeanLatentSphericalViru
s 　 　 　 　 　 　 　

Nepovirus_cfTomatoBlackRing_RNA2 　 　 　 　 　 　 6.3

Picornavirales_cfHubeiArthropodVirus3 　 　 　 　 　 　 　

River Liunaeg virus 　 　 　 　 　 　 9.6

Castleton Burn virus 　 x 11.0 x 12.7 x 123.0

Nodavirus_cfWuhanNodavirus64 　 　 　 　 　 　 　
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2.4.3.2 siRNA-based Evidence for Infection 

RNA interference is the predominant arthropod defence against RNA viruses, 

and may be important for protection against DNA viruses (Bronkhorst et al. 

2012). The pathway cleaves cytoplasmic dsRNA, leading to the production of 

short RNA fragments. The presence of these fragments is strongly indicative of 

a replicating virus. The RNAs produced by the bumblebee RNA interference 

system are 22nt. For positive sense RNA viruses, the presence of a strong peak 

of mapping 22nt fragments against the negative strand is the best indictor of 

infection, as the negative strand is only produced during replication, the reverse 

is true of negative sense RNA viruses, as the positive strand is only produced 

during replication. As such, we decided at least 50 reads mapping with at 22nt 

as the criteria for confirmation of replication. The putative viral contigs that met 

this threshold are marked in Table 2.2. The distribution of the mapped small 

RNA reads across the viral contigs is shown in Figure 2.2. 

Small RNA reads mapping to the putative viruses provide more information 

about whether the virus is really replicating in the bee species than general 

RNA-seq reads. This is true for two reasons. Firstly, small RNA reads are only 

generated if the virus is replicating in the sample. This is not true with RNA-seq 

reads, which may be present purely through contact with the virus rather than 

its replication. Secondly, as reads of a specific size would be expected, a read 

spectra not centred at 22nt implies that the virus may be replicating within a 

species associated with the bumblebee rather than the bee itself. RNA-seq 

reads provide no information about this question. 

In all three species with siRNA data, Phlebovirus_cfSalangaVirusGlycoProtein 

has a number of reads exceeding the threshold mapping to it. However, the size 

spectra of these reads is centred on 24nt with a strong bias for a terminal uracil 

and the antisense mapping orientation being more prevalent. This U-bias is 

consistent with insect piRNAs (Brennecke et al. 2007), and the predominant 

antisense orientation is consistent with the piRNA mapping pattern to 

endogenous viral elements (EVEs) in mosquitoes (Suzuki et al. 2017). 

However, the size of piRNAs in bumlebees is generally larger than this, 

potentially providing evidence against this hypothesis (Sam Lewis, pers comm). 

This pattern indicates that Phlebovirus_cfSalangaVirusGlycoProtein is 
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potentially an EVE that has either been gained multiple times or has been 

maintained in the bumblebee genome since at least the B. pascuorum-B. 

terrestris/B. lucorum split or has been independently gained multiple times. 

The read length spectra of Mayfield virus 1, Mayfield virus 2 and Slow bee 

paralysis virus, while still peaking at 22nt (excepting for Mayfield virus 1 in B. 

lucorum), are noticeably flatter than that for the other viruses observed. This is 

consistent with the existence of an RNAi suppressor in these viruses, given 

both the assumption that this behaviour is both aberrant and virus driven, and 

the similarity in spectra to the Drosophila C virus in Drosophila (Webster et al. 

2015), which contains a suppressor (van Rij et al. 2006).  

B. pascuorum also had siRNA reads mapping to Nepovirus_cfTomatoBlackRing 

RNA2. However, the read length spectra were centred on 21nt, rather than the 

22nt of bumblebee viRNAs. A 21nt centring is consistent with siRNA’s produced 

from DLC4, the main protein acting against positive sense RNA viruses in plants 

(Ding and Voinnet 2007). Given that this contig appears to be related to the 

nepoviruses, a classically plant infecting group, the acquisition of the small 

RNAs through the nectar or pollen seems likely in this case. Though to our 

knowledge, high concentrations of viRNAs in the nectar and pollen of plants 

have never been reported. 
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Figure 2.2 The mapping small RNA reads to each virus with at least 50 mapping reads, and 
their read size spectra. For positive sense RNA viruses, reads mapping to the negative sense 
strand are indicative of infection. For negative sense RNA viruses, reads mapping to the positive 
sense strand are indicative of infection. In both cases, the read size spectra should be centred 
at 22 nucleotides to provide evidence of infection. Blue lines represent reads mapping to the 
forward strand at that genomic position, red lines represent reads mapping to the reverse 
strand. The histogram of read size spectra shows the count of reads of each length mapping in 
the forward (above) and reverse (below) directions. The colouring of each bar shows the counts 
of the reads beginning with each 5’ base (red-U, blue-C, green-A, yellow-G). 

2.4.4 Prevalence 

Species level prevalences differed dramatically between the different viruses, 

see Figure 2.3. Prevalences were generally low, with modal viral prevalences 

for most host-virus combinations being below 15%, with many cases of viruses 

being either completely or near completely absent from hosts in our sample. 

Slow bee paralysis virus was by far the most common virus in the sample, with 

estimated prevalences of greater than 25% in multiple species. Our ability to 

locate the prevalences of common viruses where all pools were positive was 

limited by the pooling, leading us to only be able to assign lower bounds to 

prevalences in these cases (as can be seen by the broad 90% highest posterior 

density intervals in Figure 2.3), but in 7 of 11 species, all pools were positive for 

SBPV. Acute bee paralysis virus, Hubei partiti-like virus 34, Castleton Burn 

virus, Gorebridge virus, Mayfield virus 1 and Mayfield virus 2 all reached 

15-25% prevalences in multiple species. Therefore, all previously reported 
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honeybee viruses for which prevalence was estimated are generalists in 

bumblebees.  Several viruses showed strong signals of species specificity, 

having very low to zero prevalences in multiple host species but high 

prevalences in others. Examples of this pattern include Allermuir Hill virus 1 in 

B. terrestris, Allermuir Hill virus 2 in B. pascuorum, Allermuir Hill virus 3 in B. 

magnus and B. monticola, as well as Loch Morlich virus and River Luinaeg virus 

in B. jonellus.  

 

Figure 2.3 The estimated prevalence of a subset of the novel viruses in every host. The circle represents 
the posterior mode, the thick lines represent the 50% highest posterior density interval and the thin lines 
show the 90% highest posterior density interval. For host-virus combinations where every pool was 
positive, only the 90% highest posterior density interval is shown, to illustrate the lower bound of the 
estimated prevalence. 
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Figure 2.4 A heatmap of the posterior modal estimates of the pooled prevalence estimates of the pooled 
prevalence on the data scale for each virus/host combination with a beta (1,1) prior. Hosts and viruses are 
ordered by phylogenetic relatedness, the trees represent the maximum clade credibility trees. 

2.4.5 Host-Pathogen Co-phylogenetic Models 

The model results fall into two clear groups. The first group is comprised of the 

model including the estimated phylogeny with all the viruses (M1), the model 

including the estimated phylogeny excluding the negative sense RNA viruses 

(M2) and the pseudotaxonomic model (M3), the second is the model excluding 

any kind of viral relationships (M4). The fact that the pseudotaxonomic model 

gave qualitatively similar results to the models including the estimated viral 

phylogenies is relatively surprising, despite previous reports of similar results, 

and means that the results are robust both to phylogenetic uncertainty and 

uncertainty in common ancestry. See Figure 2.5 and Table 2.3 for model 

comparisons. 
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Four results were common to all models. The proportion of variance explained 

by the pool ID random effect, representing the within-species variance in 

prevalence explained by different pools of the same species having different 

underlying prevalences, was precisely estimated and small, implying that each 

pool was roughly representative of the species it was comprised of.  The 

proportion of variance explained by the spatial composition random effect was 

also precisely estimated and small, indirectly implying that different sampling 

locations did not systematically differ in the average background viral 

prevalence at the time of sampling. The final shared result between the models 

was that both the host non-phylogenetic and host phylogenetic effects were 

estimated to explain a small proportion of the total variance in prevalence 

between samples with posterior modes near zero. The host non-phylogenetic 

intraclass correlation was estimated with moderate precision and the host 

phylogenetic intraclass correlation was estimated with moderate to poor 

precision. These results imply that there is neither large amounts of non-

phylogenetic variation nor a large phylogenetic effect in realised general 

susceptibility. 

The remaining results were qualitatively similar within the groups of models, but 

differed between them. As no effects involving the viral phylogeny were 

estimated in M4, the viral phylogenetic effect, viral evolutionary assemblage 

effect and coevolutionary interaction terms were undefined. Therefore, any 

phylogenetic variation in realised general infectivity falls into non-phylogenetic 

viral random effect, this lead to a moderately sized and imprecisely estimated 

non-phylogenetic viral intraclass correlation in M4. The results in the other 

group of models were consistent with this, with a modally small but highly 

imprecisely estimated viral phylogenetic effect intraclass correlation and a 

modally slightly larger but still imprecisely estimated non-phylogenetic viral 

intraclass correlation. This implies the variation between viruses in RGI explains 

a large amount of the total variation in prevalence, but that we cannot 

accurately split it into variation consistent with evolution by Brownian motion 

along a phylogeny and unexplained residual between virus variation.  

In M3, the largest proportion of the total variation in prevalence between 

samples was due to a host evolutionary assemblage effect. This accounts for 
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the variation explained by related hosts being infected to similar degrees with 

the same sets of viruses. The fact that this effect became considerably smaller 

when the virus phylogenies were added in the other models implies that some 

of this variation was better explained either by one or more of the three 

additional terms. When the virus phylogenies are added, a small host 

evolutionary interaction is still estimated, implying that the effect is indeed real 

and not simply due to the lack of ability to partition viral phylogenetic variation in 

M4. In M1 and M2, a viral evolutionary assemblage effect and coevolutionary 

interaction of a similar size to the host evolutionary assemblage effect were also 

estimated, in M3, these effects could not be resolved from 0. The three effects 

were all estimated with moderate precision. This implies that related viruses do 

share host assemblage to a detectable level, and likewise that related hosts are 

likely to have similar prevalences for related viruses.  

M4 estimated that approximately 40% of the total variation in prevalence can be 

explained by effects involving the phylogeny of the host. The addition of the viral 

phylogeny and the effects associated with it in the other three models increased 

the proportion of variance explained phylogenetic random effects to 55-60%. 
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Figure 2.5 Comparison of estimated proportion of variance in prevalence explained by different 
parameters between models. For each parameter, the circle represents the modal estimate, the 
thick bars represent the 50% highest posterior density interval and the thin bars represent the 
90% highest posterior density interval.  
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Table 2.3 Model estimates for the intra-class correlations of each variance component. The 
point estimate is the posterior mode, the numbers in brackets represent the 90% highest 
posterior density interval.  

2.5 Discussion 

We have found 33 novel putative viral contigs in the transcriptomes of wild 

caught bumblebees from across Scotland. Using 15 newly discovered and 3 

previously known multihost viruses found in 11 wild bumblebee species that 

share transmission opportunities, we have found that variation in the prevalence 

of infection in the wild is explained by related hosts having similar viral 

assemblages, related viruses having similar host assemblages and related 

hosts having similar prevalences for related viruses.  

Effect
Model 1 Model 2 Model 3 Model 4

All Viruses No Negative Sense 
Viruses Psuedo-taxonomic No Viruses

Pool ID
0.015 0.018 0.019 0.024

(0.006, 0.033) (0.007, 0.034) (0.007, 0.034) (0.010, 0.034)

Pool Spatial Composition
0.001 0.001 0.003 0.003

(0.000, 0.019) (0.000, 0.018) (0.000, 0.020) (0.000, 0.023)

Host
0.003 0.002 0.003 0.001

(0.000, 0.078) (0.000, 0.087) (0.000, 0.084) (0.000, 0.077)

Virus
0.077 0.017 0.075 0.176

(0.000, 0.264) (0.000, 0.280) (0.000, 0.278) (0.050, 0.380)

Host Phylogenetic Effect
0.010 0.002 0.003 0.004

(0.000, 0.171) (0.000, 0.179) (0.000, 0.181) (0.000, 0.158)

Virus Phylogenetic Effect
0.010 0.015 0.006 -

(0.000, 0.429) (0.000, 0.496) (0.000, 0.396)

Host Evolutionary 
Assemblage Effect

0.103 0.053 0.080 0.347

(0.023, 0.225) (0.001, 0.178) (0.000, 0.209) (0.221, 0.476)

Virus Evolutionary 
Assemblage Effect

0.042 0.064 0.061 -

(0.006, 0.122) (0.013, 0.133) (0.007, 0.139)

Coevolutionary Interaction
0.068 0.091 0.049 -

(0.004, 0.201) (0.007, 0.204) (0.000, 0.220)

Total Phylogenetic
0.582 0.611 0.530 0.424

(0.385, 0.773) (0.379, 0.808) (0.364, 0.753) (0.283, 0.563)

Residual + Link Variance
0.241 0.206 0.235 0.280

(0.130, 0.328) (0.107, 0.306) (0.136, 0.330) (0.196, 0.393)
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2.5.1 Virus Discovery 

There is now an extensive diversity of viruses known in bees, with nearly every 

new transcriptomic study looking at virus diversity finding novel viruses 

(Cornman et al. 2012; Mordecai et al. 2015; Remnant et al. 2017; Runckel et al. 

2011; Schoonvaere et al. 2016). The fact that we have found up to 33 more 

viruses indicates that we are not yet near saturation.  The size distribution of the 

small RNA reads, with a peak at 22nt for most viruses characteristic of the 

honeybee anti-viral RNAi pathway (Chejanovsky et al. 2014), indicates that 

these are likely infecting the bees themselves. However, it cannot categorically 

be ruled out that some of the described viruses are infecting pollinator-

associated organisms, such as their microbiota or parasites. While mite viRNAs 

appear to be centred at 24nt (Remnant et al. 2017), nematode viRNAs are also 

centred at 22nt (Félix et al. 2011). Very little is known of the nematode parasites 

of bumblebees excepting for Sphaerularia bombi which is only regularly known 

to infect queens. However, other nematodes have been rarely reported in 

members of the Bombus genus not used in this study (Rao, Poinar, and Henley 

2017). It seems unlike that they are common enough to explain the observed 

prevalences of viruses here however. Therefore, as for all sequence-based viral 

discovery studies, ultimate confirmation that these truly represent viruses of 

bumblebees could only be obtained by controlled lab experiments, or growth in 

bumblebee cell culture.  

2.5.2 Phylogenetic Effects 
We found no evidence for a host phylogenetic effect, and equivocal evidence for 

a viral phylogenetic effect, as phylogenetic viral and non-phylogenetic viral 

variation in prevalence could not be partitioned. The potential viral phylogenetic 

effect, with realised general infectivity being correlated across the phylogeny, is 

potentially the largest effect detected in the study and potentially non-existent. 

This is likely due to the fact that the number viruses in the study was small 

given that the predominant interest was on the assemblage and coevolutionary 

effects rather than the phylogenetic effects. Given this, we can make no strong 

conclusions about whether variation in realised general infectivity is 

phylogenetically associated, only that viruses strongly differ in it. 
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2.5.3 Host Evolutionary Assemblage Effect 

As hypothesised, a host assemblage effect, where phylogenetically related 

hosts share viral assemblages, termed a host evolutionary effect in Hadfield et 

al (2014), was found, showing that related hosts share prevalences for similar 

sets of viruses. At the level of presence or absence in a specific host, this 

pattern can be explained by biased host switching, where parasites successfully 

establish infections on hosts closely related to ones that they are already 

capable of infecting (assuming that the initial pool of infected hosts species was 

random). Biased host switching is known to be a general phenomenon, and has 

been observed in macroparasites, viruses and protozoans (reviewed in 

Longdon (2014)). Given that most of the viruses found here are true multihost 

viruses, with most being detected in over half the host species, and the dataset 

is small, biased host switching as traditionally envisioned is unlikely to be the 

cause, as there would be little power to detect it. Instead, it appears to be that 

related hosts have similar prevalences for each of the viruses that infect them. 

Two non-exclusive hypotheses could explain this: phylogenetically-biased 

cross-species transmission and phylogenetically-biased exposure.  

Phylogenetically-biased cross-species transmission, i.e multihost viruses being 

more frequently transmitted among close relatives, could cause their 

prevalences to be phylogenetically correlated. Mechanistically, this would be 

expected to occur simply because related hosts present correlated 

environments from the perspective of the virus, so there should be cross-

adaptation. This cross-adaptation should cause the probability of successful 

infection on contact to be similar between related hosts for leading to a then a 

phylogenetically-biased transmission network mediated through the underlying 

correlation between host environments. 

Phylogenetically-biased exposure represents an evolutionarily-driven ecological 

phenomenon that biases transmission probabilities. This can be mediated by 

niche overlap. In this case, flower preference might be a driver of 

phylogenetically-biased exposure, as contaminated flowers are likely to be 

important source of intra- and interspecies pathogen transmission (Durrer and 

Schmid-Hempel 1994; Graystock et al. 2015; McArt et al. 2014). In the single 

pathogen case, the flower visitation network has been shown to be associated 
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with the partitioning of genetic diversity of Crithidia bombi between bumblebee 

hosts (Ehlenfeldt and Martin 2009). Different bee species show tongue length 

differences, which are phylogenetically associated (Harmon-Threatt and Ackerly 

2013), and the differences in tongue length correlate with differential flower 

usage between bee species (Goulson et al. 2008; Inouye 1978). If infection 

occurs at contaminated flowers, then even if infection were occurring at random 

with respect to the host phylogeny, the structuring of the flower usage network 

would cause flowers to build up their viral communities through chance sorting. 

Related bee species would then become more heavily infected with whichever 

viral communities the flowers that bee species of their tongue lengths happen to 

visit. This would drive consistent phylogenetically-correlated differences in viral 

infection rates through differential exposure. Once a structured exposure 

network has been generated, it is expected that this would be reinforced by 

parasite adaptation, as the (fast evolving) parasite would then be spending 

relatively more or less time in some host species due to the partitioning of hosts 

between floral species.  

2.5.4 Virus Evolutionary Assemblage Effect 

A viral evolutionary assemblage effect was estimated to explain about 5% of the 

total variance in prevalence within the samples, implying that related virus 

species share similar host assemblages to a small degree.  Given that most of 

the viruses used in this study were not closely related, it appears implausible 

that the host community infected by the viruses was conserved over 

evolutionary time, especially as the deep splits in the viral families are have 

been argued to predate the origin of the host species in this case by many 

millions of years (Koonin et al. 2008). A possible alternate explanation is that 

groups of related viruses share broad replication strategies, by which we mean 

aspects of their physiology that relate to their replication, rather than any 

specific trait. These broad differences lead to different potential targets for the 

immune response. In mammals, some restriction factors, part of the innate 

immune system, are known to target specific viral families while others have a 

broader range (Duggal and Emerman 2012). If there were variation between 

host species in the expression of immune genes that had targeted responses to 

specific viral families, this could lead to related viruses having similar levels of 

efficiency of replication in those species. Assuming that these differences in 
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expression of the immune genes were not themselves correlated between host 

species, this could lead to related viruses having similar prevalences in sets of 

hosts. 

2.5.5 Coevolutionary Interaction 

A coevolutionary interaction of a similar size as the virus and host evolutionary 

assemblage effects was estimated, as has previously been observed in other 

species (Hadfield et al. 2014; de Vienne et al. 2009). The simultaneous action of 

the factors leading to a viral evolutionary assemblage effect and a host 

evolutionary assemblage effect can lead to a coevolutionary interaction, where 

related hosts are infected to similar degrees by related viruses. If related viruses 

share their assemblages due to effects that are predominantly acting at 

evolutionary time such as the gain or loss of host immune components, then 

either phylogenetically-biased exposure or phylogenetically-biased transmission 

allow transmission from these hosts to related hosts, then a coevolutionary 

interaction can emerge. Similarly, cospeciation could lead to this signature, but 

due to both the multihost nature of the viruses involved and the difference in 

timescales between the viral and host evolution, this is highly unlikely to be the 

explanation in this system.  

2.5.6 Conclusion 

While it is clear that viruses are abundant in pollinators, it has remained 

uncertain what determines the distribution of pollinator viruses, outside of a few 

well studied cases (Fürst et al. 2014; McMahon et al. 2015). With the series of 

novel viruses discovered in this study, we have investigated predictors of these 

virus-host associations and found that both the virus and host evolutionary 

histories contribute to the variation in prevalence between samples.  This 

supports both theory and prior empirical evidence that related species are more 

at risk of infection from each other’s diseases than the diseases of distantly 

related species. On an applied level, this suggests that the introduction of a 

novel virus into a community, for instance through poor biosecurity in 

bumblebee breeding facilities leading to the spread of infected colonies, may 

not only put at risk closely related bumblebees, but the entire bumblebee 

community, as the viral host assemblage is predicted by factors other than just 

host relatedness.  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Chapter 3 - The ecological predictors of viral infection in wild bumblebees 

David J. Pascall containing additional work from Matthew Tinsley, Sam Braine, 
Joseph Faulks, Darren J. Obbard and Lena Wilfert 
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3.1 Abstract 

Viruses are a key regulator of natural populations. Despite this, we have limited 

knowledge of the diversity and ecology of viruses without large fitness effects 

on their host. Surprisingly, this is even the case in wild host populations that 

provide direct economic benefits, where even small fitness effects may have 

major financial impacts in aggregate. One such group of hosts are the 

bumblebees (genus Bombus), which have a major role in the pollination of food 

crops and have suffered population declines and species losses in recent 

decades. In this study, we investigated the ecological factors that determine the 

prevalences of four recently discovered bumblebee viruses without known 

fitness effects (Mayfield virus 1, Mayfield virus 2, River Liunaeg virus and Loch 

Morlich virus), along with two previously known viruses (Acute bee paralysis 

virus and Slow bee paralysis virus). We found evidence for a positive effect of 

precipitation on the prevalence of River Luinaeg virus. The sequencing of 

Mayfield virus 1 isolates also indicated that cryptic viral specialisation may 

underlie differences in infection between host species. There is a strong 

association between the presence of Loch Morlich virus and River Luinaeg 

virus, which remains after controlling for host species, location and other 

relevant ecological variables. This study represents one of the first steps in the 

description of predictors of bumblebee infection in the wild independently of the 

presence of honeybees. 

3.2 Introduction 

Viruses are amongst the most abundant and diverse groups of organisms on 

Earth (Wommack et al. 2015); they affect almost all species as obligate 

pathogens. Despite this, viral ecology in natural populations remains 

understudied. In the wild, infection is generally only detectable when clear 

symptoms of the underlying disease are present, such as discolouration, 

aberrant tissue structures, or a noticeable increase in mortality. These 

symptoms are only rarely present in natural infections (Mackenzie and Jeggo 

2013). By focusing only on those viruses that cause obvious symptoms in well-

studied host species, we are likely to be underestimating both the diversity of 

viruses and their ecological importance in the regulation of natural populations. 
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For example, it is only in the last 30 years, that we have come to understand 

that the dynamics of algal blooms are strongly driven by density dependent 

regulation of the algae through viral infections (Bratbak, Heldal, and Egge 1991; 

Brussaard et al. 1996). This observability problem has recently been 

ameliorated by the development of relatively cheap and easily applicable 

molecular techniques allowing the detection and identification of pathogenic 

organisms within both the host, and the environment, enabling the systematic 

study of viral ecology in wild populations. This is especially important for 

threatened host species, where understanding the viral burden may have direct 

conservation consequences. 

Given the importance of pollinators economically, their viruses are 

comparatively well-studied. Over 50 viruses have now been described in bees, 

and their importance to survival is well recognised (Dainat et al. 2012; Doublet 

et al. 2015; Genersch et al. 2010; Natsopoulou et al. 2017). However, the 

majority of this work has been performed in honeybees, and the knowledge of 

the viral ecology of bumblebees is less full. Viruses known from honeybees 

have been shown to have pathogenic effects in Bombus terrestris (Graystock et 

al. 2016; Manley et al. 2017) and their prevalences have been assayed across 

the UK (Fürst et al. 2014; McMahon et al. 2015), but outside of the presence of 

sympatric honeybees, no strong predictors of infection have been described.  

In the wild, differences in prevalence between hosts or locations can be 

explained by a variety of ecological factors. If a virus is spread by environmental 

contamination or aerosolisation, then abiotic factors can become important. In 

bumblebees, infection is often thought to take place at flowers (Durrer and 

Schmid-Hempel 1994; Graystock et al. 2015; McArt et al. 2014) and so any 

factors that reduce contamination of the flower heads may be predicted to 

correspondingly reduce the rate of infection in the general bumblebee 

population. As flower heads are exposed to the elements, obvious candidates 

are UV exposure, rainfall, temperature and humidity. Areas with high UV levels 

may deactivate most virus particles, an effect thought to be highly important in 

the regulation of viral populations in oceanic waters (Suttle and Chen 1992). 

Rainfall may physically clean the flowers themselves if it is frequent enough. 

Aerosolised viruses are known to have different rates of deactivation in different 
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relative humidities depending on whether or not they are encapsulated (Yang 

and Marr 2012). Increasing temperature is also known to increase the rate of 

viral deactivation, both independently and through an interaction with relative 

humidity (Mbithi, Springthorpe, and Sattar 1991). Furthermore, bees must 

physically reach the flowers where infection can occur, so factors that reduce 

the contact of workers with heavily contaminated flowers may also reduce viral 

prevalence. Changes in wind speed are known to change the relative rates of 

collection of pollen and nectar (Peat and Goulson 2005), which may cause bees 

to visit different flowers in the community, while simultaneously altering the 

energetic costs of foraging (Wolf, Ellington, and Begley 1999), and 

consequently the susceptibility to infection.  

Environmental effects could lead to systematic spatial partitioning in prevalence 

between areas. This could cause interspecific differences in prevalence if the 

species distributions differ spatially, as bumblebees do in the United Kingdom 

(Sladen 1912). However, environmental conditions are not expected to lead to 

interspecific prevalence differences locally. Incidence is also impacted by the 

background level of infection in the community, as this would change the 

contact rate between a host and other infected individuals. If an infection is 

uncommon, naïve hosts would rarely become infected, as their rate of contact 

with the virus itself would be low all else being equal. This is an especially 

important driver in species that act primarily as spillover hosts for an infection, 

where, by definition, the intraspecific transmission rate is small relative to the 

interspecific transmission rate. This pattern is shown by the prevalence of 

Deformed wing virus in bumblebee species, which is largely predicted by the 

corresponding prevalence in sympatric honeybees (Fürst et al. 2014; McMahon 

et al. 2015). 

Systematic differences in infection between areas can also be generated by low 

levels of interaction between populations, termed weak coupling in the 

epidemiological literature (reviewed in Keeling, Bjørnstad, and Grenfell 2004). 

These potential spatial differences in infection may have important knock-on 

effects on the amount of genetic diversity in the viral populations. When the 

linkage between host populations is weak, viral evolution occurs more 

independently as variants cannot mix globally. This may lead to spatially 
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structured genetic diversity, with viral types being shared unevenly between 

locations. The degree of linkage between bumblebee populations is only poorly 

understood (Goulson 2010), and as the linkage of the viral populations depends 

strongly on the linkage of their hosts, the amount of diversity that would be 

expected in multihost populations is unclear. This is particularly important in 

multihost pathogen populations, where incongruent fitness landscapes between 

hosts may favour cryptic specialisation with different genetic variants of the 

same pathogen preferentially associating with some host species (Le Gac et al. 

2007; Withenshaw et al. 2016). It is worth noting that this is not the same as 

cryptic pathogen species infecting the same hosts, which has also been 

commonly observed (Martínez-Aquino et al. 2009; Sehgal et al. 2006). This may 

lead to considerably within pathogen diversity even in sympatric host 

populations. 

Here we investigate the impact of environmental factors on the prevalences of 

viruses in natural bumblebee populations from 9 sites across Scotland. We 

hypothesise that differences in UV radiation, precipitation, humidity, temperature 

and wind speed will result in differences in the prevalences of four recently 

discovered bumblebee viruses without known fitness effects (Mayfield virus 1, 

Mayfield virus 2, River Liunaeg virus and Loch Morlich virus). We also consider 

the diversity in these viruses and contrast this to two known honeybee viruses 

with fitness effects on the host found in these populations (Acute bee paralysis 

virus and Slow bee paralysis virus). 

3.3 Methods 

3.3.1 Sampling Regime and Post Collection Treatment 

We collected a total of 759 bumblebees of 13 species from across 9 sites 

across Scotland, UK (see Table 3.1), using sampling methods described in 

Chapter 2. We performed individual RNA extractions using TRIzol (Life 

Technologies) following the manufacturers’ standard protocol. RNA was 

transcribed into cDNA using random hexamers and goScript MMLV reverse 

transcriptase (Promega) following the manufacturers’ instructions. 
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Table 3.1 The species-site breakdown of the bumblebees used in the study 

3.3.2 Viral Prevalence 
The prevalence of Mayfield virus 1, Mayfield virus 2, River Luinaeg virus, Loch 

Morlich virus was assayed per individual via PCR, see Chapter 3 Appendix 

Table A3.1 for primers and PCR conditions. All Mayfield virus 1 and Mayfield 

virus 2 samples were sequenced using an ABI Genetic Analyzer, and then 

aligned using the geneious de novo assembler (Kearse, Moir, and Cheung 

2012), to ID them to the species level. A subset of the samples was additionally 

tested for Slow bee paralysis virus and Acute bee paralysis virus.  

3.3.3 Diversity Analysis 
To analyse sequence diversity, we used the raw reads from the RNA 

sequencing as discussed in detail in Chapter 2; briefly, these consist of 100bp-

Locations

Dalwhinn
ie

Edinbur
gh

Glenmo
re

Gorebrid
ge Iona Ochil

s
Pentland

s Staffa Stirli
ng Total

Bombus 
bohemicus

0 0 1 6 0 1 2 0 0 10

Bombus 
campestris

0 0 0 1 0 0 0 0 0 1

Bombus 
cryptarum

0 3 0 5 2 19 1 0 0 30

Bombus 
hortorum

4 0 1 59 11 0 0 0 0 75

Bombus jonellus 3 0 31 0 1 0 0 21 0 56

Bombus 
lapidarius

0 8 0 17 0 4 0 1 2 32

Bombus 
lucorum

0 30 1 75 3 35 3 0 5 152

Bombus 
magnus

0 0 0 0 1 7 0 0 0 8

Bombus 
monticola

0 0 2 0 0 4 3 3 0 12

Bombus 
pascuorum

0 43 0 47 3 44 2 1 14 154

Bombus 
pratorum

0 29 0 13 0 1 0 0 3 46

Bombus 
sylvestris

0 0 0 1 0 1 1 0 0 3

Bombus 
terrestris

0 50 0 104 0 12 1 0 13 180

Total 7 163 36 328 21 128 13 26 37 759
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paired end RNA-Seq data from pools of B. terrestris, Bombus pascuorum and 

Bombus lucorum, each sequenced twice, once using duplex specific 

normalisation and once using poly-A selection, and a pool of mixed Bombus 

species, sequenced only with poly-A selection. Mayfield virus 1, Mayfield virus 

2, River Luineag virus, Lock Morlich virus, SBPV Rothamsted (EU035616.1) 

and ABPV (AF486072.2) sequences were aligned on the TranslatorX server 

(Abascal, Zardoya, and Telford 2010), using its MAFFT setting (Katoh and 

Standley 2013). Post-alignment, sequences were manually trimmed to the 

conserved region of the RdRp gene, minus eight codons, owing to the 

shortness of the River Luinaeg sequence. Trailing regions of 200 base pairs at 

both ends were retained so that reads were not prevented from mapping due to 

an overhang. This gave final sequence lengths of 1483, 1483, 1434, 1501, 1519 

and 1522 base pairs for Mayfield virus 1, Mayfield virus 2, River Luineag virus, 

Lock Morlich virus, SBPV and ABPV respectively. Raw bioinformatic reads were 

trimmed in sickle version 1.33 using the default parameters (Joshi and Fass 

2011). Overlapping mate reads were combined by FLASH version 1.2.11 using 

the default settings (Magoč and Salzberg 2011). Reads were aligned to the 

RdRp sequences generated above using MOSAIK version 2.1.73 (Lee et al. 

2014). Both merged read and singletons from the sickle run were aligned 

together in the single end setting. Unmerged paired end reads were separately 

aligned using the paired end setting. In both cases a quality threshold of 30 was 

used to remove ambiguously mapping reads. SAM files were recombined after 

the fact using SAMtools version 1.5 (Li et al. 2009). Given the high coverage of 

SBPV, Mayfield virus 1 and Mayfield virus 2, duplicate sequences were not 

marked. Variants were then called using the default settings in LoFreq version 

1.2.1 (Wilm et al. 2012). Base quality scores were then recalibrated using the 

outputted vcf file in GATK (DePristo et al. 2011). Variant calling and recalibration 

were repeatedly performed until the base quality scores converged to a stable 

distribution (total of four recalibrations), as there was no variant database to 

recalibrate quality scores off initially. Once the score distribution stabilised, 

variant calling was then performed again a last time to generate a set of 

variants for the entire sample. These variants were used to recalibrate the 

scores of each species-specific mapping, and generate species level variant 

calls. Given low numbers of mapping reads, several species-virus combinations 

were removed from the variant analysis. B. lucorum was analysed for SBPV 
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and ABPV. B. terrestris was analysed for SBPV, Mayfield virus 1 and Mayfield 

virus 2. B. pascuorum was analysed for ABPV, SBPV and Mayfield virus 2. The 

mixed Bombus pool was analysed for all viruses. 

The number of polymorphic sites were calculated for each virus. Calculations 

were performed with and without the removal of variants with allele frequencies 

less than 5% to test the effect of the non-detection of very low frequency 

variants in lower coverage viruses. Variants with allele frequencies greater than 

99% were removed as these represent fixed or nearly fixed differences from the 

underlying reference sequence. 

A selection of the Mayfield virus 1 and Mayfield virus 2 Sanger sequences used 

to assign species identity for these viruses were aligned. Due to sequencing 

issues, a large proportion of the sequences, while sufficient for species 

confirmation, were of too low quality for haplotype analysis and were discarded, 

a threshold of greater than 5% sequence quality and less than 5% ambiguous 

bases was used. ABPV and SBPV sequences were amplified by PCR and 

sequenced using Sanger sequencing to explore between host diversity. The 

sequences were aligned using the geneious de novo assembler (Kearse et al. 

2012), and error correction was performed manually. Haplotype networks using 

a Median Joining Network with an epsilon parameter of 0 were then estimated 

in POPART (Leigh and Bryant 2015). 

3.3.4 Phylogenetics 
A phylogeny was generated from the viral samples extracted from individual 

bees for Mayfield virus 1 in BEAST version 1.8.2 (Drummond et al. 2012), using 

8 gamma categories both with and without a strict molecular clock, and with 

ambiguous regions being used in the calculation of the likelihood. Convergence 

was assessed by the comparison of the posterior distributions of the parameters 

of four separate runs in Tracer version 1.6 (Rambaut et al. 2013) starting from 

random starting trees. As the tree indicated several well-resolved clades within 

the virus, we tested for an association between viral type and host species post-

hoc using BaTS (Parker, Rambaut, and Pybus 2008) to account for the 

phylogenetic uncertainty within the clades, using 1000 state randomizations for 
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the null distribution, having downsampled the posterior distribution of trees from 

BEAST to 1000 trees. 

3.3.5 Community Similarity 
We estimated the underlying sampling probability of each species of bumblebee 

at each site by treating the observed samples as being drawn from a 

multinomial distribution with 13 categories, corresponding to the 13 host 

species, using Bayesian estimation of the underlying probabilities with a 

Dirichlet prior with these 13 categories and a concentration parameter of 1 for 

each category, implying complete uncertainty about the underlying probability. 

Probabilities were estimated independently for each site. Ten thousand 

simulations were taken from the posterior distributions generated for each site 

to generate possible values of the underlying sampling probabilities of each bee 

species at each site, which we assume to be equivalent to the frequency of that 

bumblebee species at that site. For each of the 10000 simulations from the 

posteriors at the sites, we generated estimates of the community dissimilarity 

using the Morisita-Horn index (Horn 1966), implemented in the R package 

vegan (Oksanen et al. 2017). The posterior mode and 90% shortest probability 

intervals for the dissimilarity index were then reported. 

3.3.6 Prevalence Estimation 

The prevalence of each virus in each host at each location was estimated using 

the basic methods for the Bayesian estimation of a proportion, with a Beta (1,1) 

prior over the underlying probability. Posterior models and 90% SPIn intervals 

(Liu, Gelman, and Zheng 2015) were then calculated direct from simulations 

from the Beta distributed posterior. 

3.3.7 Factors Influencing Infection 

Climatic data for each of the 9 sites at which bees were collected was taken 

from the WorldClim database (Fick and Hijmans 2017). The variables were 

provided at 1km resolution. Data for July and August were extracted for mean 

daily maximum temperature, mean precipitation, mean solar radiation, mean 

vapour pressure and mean wind speed at the grip reference for the sites with a 

buffer area of 2km to account for the fact that bumblebees are known to forage 

over approximately that distance (Wolf and Moritz 2008). All values were 
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averaged to generate a consensus value for that site, and were then mean 

centred and scaled to unit standard deviation. 

The individual prevalence data for Mayfield virus 1, Mayfield virus 2, River 

Luinaeg virus and Loch Morlich virus was analysed using Stan version 2.16 

(Carpenter et al. 2017) using the rstan interface (Stan Development Team 

2016a) in R version 3.3.2 (R Core Development Team 2016). A multivariate 

probit model was fitted, with random host and location effects and maximum 

temperature, precipitation, solar radiation, vapour pressure and wind speed as 

fixed effects in each virus. As the small number of locations from which samples 

were collected was small, we expected that our ability to accurately determine 

the size and direction of effects caused by ecological covariates would be 

limited. In order to counter this, we applied regularisation as recommended by 

Lemoine et al. (2016). The global intercept for each virus was given a Normal 

(0,10) prior, which does not substantially penalise low probabilities. Each fixed 

effect coefficient was given a Normal (0,1) prior, which, with this little data, 

should dominate the likelihood if the effect is small. Host and location random 

effects were drawn from normal distributions centred at 0 with estimated 

standard deviations. In both cases, the standard deviations were given Cauchy 

(0,25) hyperpriors, which are only weakly informative but proper. The correlation 

in residuals for the multivariate normal was given a flat prior between -1 and 1 

using a LKJ prior with shape parameter 1. 

3.4 Results 

3.4.1 Community Similarity 

There is a clear discontinuity between the South and North of Scotland in 

community structure, with locations in the south having B. terrestris, B. 

pascuorum and B. lucorum dominated communities, and communities in the 

North having Bombus jonellus and Bombus hortorum dominated communities, 

as shown in Fig. 3.1. Table 3.2 shows the dissimilarity indexes between the 

sites, and the same effect is also observed there. Two potentially surprising 

results stand out. The Pentlands appears to represent a third type of 

community, separate from the North-South divide described above. The 

presence of Bombus monticola, otherwise only found in the highland sites, and 
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an equivalent frequency of B. pascuorum and B. lucorum makes the community 

look like a blending of Northern and Southern community types. Surprisingly, 

Iona’s community differs strongly from Staffa’s, despite their close proximity, 

with Iona having considerably fewer B. jonellus and many more B. hortorum. 

 

Figure 3.1 The locations of the sampling sites and species distributions of the bumblebees 
caught at them. Sample sizes for each site are shown above the site names. 
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Table 3.2 The Morisita-Horn dissimilarities of the different sites. 90% shortest posterior density 
intervals for the index are in brackets. 

3.4.2 Prevalence 

Figure 3.2 shows the prevalences of these viruses for each location-species 

combination measured. When broken down to the specific host-location level, 

sample sizes for many species become small, so the uncertainty around the 

modal prevalences is correspondingly large. However, it appears clear that the 

same species may be infected to a different level with the same virus between 

Dalwhinnie Edinburgh Glenmore Gorebridge Iona Ochils Pentlands Staffa Stirling

Dalwhinnie 0

Edinburgh 0.764 0

(0.548, 
0.909)

Glenmore 0.491 0.934 0

(0.228, 
0.774)

(0.855, 
0.971)

Gorebridge 0.548 0.162 0.918 0

(0.355, 
0.733)

(0.104, 
0.217)

(0.840, 
0.964)

Iona 0.220 0.653 0.817 0.415 0

(0.079, 
0.501) 

(0.494, 
0.819)

(0.629, 
0.914) 

(0.278, 
0.532)

Ochils 0.741 0.233 0.920 0.315 0.569 0

(0.527, 
0.894)

(0.150, 
0.325)

(0.837, 
0.962)

(0.243, 
0.415)

(0.336, 
0.737)

Pentlands 0.591 0.501 0.849 0.440 0.517 0.394 0

(0.357, 
0.795)

(0.278, 
0.674)

(0.661, 
0.934)

(0.272, 
0.663)

(0.324, 
0.748)

(0.160, 
0.572) 

Staffa 0.491 0.893 0.025 0.898 0.831 0.881 0.782 0

(0.190, 
0.742) 

(0.780, 
0.952)

(0.004, 
0.104)

(0.802, 
0.959)

(0.602, 
0.912)

(0.754, 
0.943) 

(0.572, 
0.898)

Stirling 0.780 0.070 0.907 0.174 0.637 0.213 0.450 0.853 0

(0.502, 
0.879) 

(0.019, 
0.144)

(0.806, 
0.964) 

(0.092, 
0.298)

(0.451, 
0.812)

(0.105, 
0.357)

(0.242, 
0.676)

(0.721, 
0.939) 
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sites. With the exception of SBPV, which is moderately to highly prevalent in all 

species at all sites, the levels of prevalence depend strongly on both the site 

and the species, to different degrees depending on the virus.  

River Luinaeg virus was present in B. jonellus at all sites where the species was 

sampled, with prevalences of approximately 25% or higher detected at multiple 

sites. The prevalence was similarly high in Bombus pratorum, consistent with 

the group level estimates presented in Chapter 2. Intermediate prevalences 

were detected in Bombus cryptarum. Low levels of infection with RLV were 

detected in B. lucorum with the prevalences of the virus appearing to be 

considerably higher in this species in Stirling and the Pentlands. Loch Morlich 

virus appears to exhibit much higher species specificity with almost all the 

detections being in B. jonellus (13/16) or being coincident with RLV infection 

(13/16). No species other than B. jonellus was infected with LMV without 

coinfection with RLV. The prevalence of Mayfield virus 1 showed a strong 

interaction between the host species and site. Edinburgh and Gorebridge, two 

sites around 15km apart with large sample sizes, have dramatically different 

prevalences MV1 prevalences in B. terrestris, B. pratorum and B. pascuorum, 

with the prevalences being between 30-60% in Edinburgh, and likely being 

below 15% in all species in Gorebridge. On the species level, MV1 appears to 

be a true generalist virus, with only B. jonellus having relatively certain low 

prevalence. Mayfield virus 2 shows a similar pattern, but without any obvious 

differences in infection levels between sites. The prevalences are generally 

lower across the board in MV2 than MV1, but beyond that, the range of species 

infected is largely similar. The sample tested for ABPV was considerably smaller 

than that of the other viruses, but APBV was found at intermediate modal 

prevalences, of above 10%, in all species apart from B. terrestris and B. 

lucorum. 
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Figure 3.2 The prevalences of ABPV, SBPV, Loch Morlich virus, River Luinaeg virus, Mayfield 
virus 1 and Mayfield virus 2 in each sampled host species in each site. The point estimate is the 
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posterior mode, with 50% shortest posterior intervals represented by the thick lines and 90% 
shortest posterior intervals represented by the thin lines. Untested combinations are left blank. 

3.4.3 Factors Influencing Infection 

Considering the application of regularisation as described in the methods, the 

following section should be interpreted with the proviso that this is intended to 

be an exploratory analysis. Covariates that had estimates shrunk towards zero 

are unlikely to truly have no effect on prevalence. Given this, under the 

assumption that no ecological covariate has truly no effect and equal positive 

and negative prior probabilities for the effect sign, we report the posterior 

probabilities that the effect is positive or negative for each. These probabilities 

are shown in Table 3.3, posterior intervals for raw parameter estimates are 

shown in Figure 3.3. 

For most covariates, the relative probabilities that the covariate caused a 

positive or negative effect after regularisation was roughly equal. Increasing 

precipitation had a high posterior probability of having a positive effect on the 

prevalence of River Luinaeg virus (97%), and there was some evidence that the 

decreasing of precipitation decreased the prevalence of Mayfield virus 1 (90%). 

There was also weak evidence that higher maximum temperatures and wind 

speeds similarly increased the prevalence of Mayfield virus 1 (87% and 82% 

respectively). 

Multivariate probit models also allow the calculation of the correlation in the 

error terms of the multivariate normal latent variable. This measures the degree 

to which, after accounting for the predictors, there is still shared error, as 

caused by unobserved factors effecting risk. Posterior correlations are shown in 

Table 3.4. In this case, it measures the extent to which there is excess 

coinfection after accounting for the location of sampling, the species of which 

the bees belong and the various location-level environmental variables. The 

only error correlation where the 90% shortest posterior interval did not overlap 0 

was the error correlation between RLV and LMV, which was strong and positive, 

consistent with the high levels of coinfection noted above.  
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Table 3.3 The posterior probabilities of the signs of the effects of the covariates in the table 
being positive for each virus. 

Precipitation Radiation Maximum 
Temperature

Vapour 
Pressure Wind Speed

River Luinaeg 
virus 0.97 0.47 0.49 0.32 0.43

Loch Morlich 
virus 0.65 0.45 0.54 0.56 0.52

Mayfield virus 1 0.10 0.75 0.87 0.31 0.82

Mayfield virus 2 0.42 0.51 0.46 0.51 0.29
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Table 3.4 The posterior correlations of the errors of each virus from the multivariate probit 
model. 90% shortest posterior intervals for each correlation are shown in brackets. 

River Luinaeg 
virus

Loch Morlich 
virus Mayfield virus 1 Mayfield virus 2

River Luinaeg 
virus 1

Loch Morlich 
virus

0.784 

1(0.594, 0.911)

Mayfield virus 1

0.043 -0.188

1(-0.416, 0.336) (-0.703, 0.217)

Mayfield virus 2

-0.604 -0.366 0.015

1(-0.855, 0.236) (-0.919, 0.211) (-0.121, 0.240)
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Figure 3.3 The estimates for each parameter in each virus from the multivariate probit model. 
Thick lines represent 50% shortest posterior density intervals. Thin lines represent 90% shortest 
posterior density intervals. 

Loch Morlich virus Mayfield virus 1 Mayfield virus 2 River Luinaeg virus

Fixed E
ffects

Partially Pooled Location E
ffects

Partially Pooled S
pecies E

ffects
Variances

−5 0 5 −2 −1 0 1 −2 0 2 −3 −2 −1 0 1 2

Vapour Pressure

Precipitation

Radiation

Average Wind Speed

Average Maximum Temperature

Intercept

Stirling

Staffa

Pentlands

Ochils

Iona

Gorebridge

Glenmore

Edinburgh

Dalwhinnie

B. terrestris

B. sylvestris

B. pratorum

B. pascuorum

B. monticola

B. magnus

B. lucorum

B. lapidarius

B. jonellus

B. hortorum

B. cryptarum

B. campestris

B. bohemicus

Species Variance

Location Variance

Effect Size



!  81

3.4.4 Diversity 

Haplotype networks were generated for the Sanger sequenced viral samples. 

As is clearly visible in Figure 3.4, there is considerably more diversity in MV1 

and MV2 than is present in SBPV, and more again than is present in ABPV, 

which showed no sequence variation over the Sanger sequenced region after 

heterozygous sites were removed. The fact that the same genotypes of MV1 

and MV2 are observed in both 2009 when Dalwhinnie, the Ochils and Iona were 

sampled and 2011 when Edinburgh, Gorebridge and the Pentlands were 

sampled, implies that the diversity is stable over short periods.  This pattern 

remained when the SNPs called from the raw RNA sequencing data were 

considered. Over homologous genomic regions within the RdRp, 12.7% of sites 

in RLV, 11.3% of sites in MV2, 8.4% of sites in MLV, 7.0% of sites in MV1, 1.1% 

of sites in SBPV and 0.3% of sites in ABPV exhibited polymorphism (defined as 

the presence of minor alleles at an allele frequency of greater than 5%). 

!  
Figure 3.4 Median-joining haplotype networks for Mayfield virus 1, Mayfield virus 2, ABPV and 
SBPV. Estimated using an epsilon parameter of 0. The dashes represent the number of 
mutations between sequence, and colours correspond to the sampling location. 
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Figure 3.5 A Bayesian phylogenetic tree of the Mayfield virus 1 isolates with their host species. 
Posterior clade probabilities are shown at the nodes. Non-resolvable polytomic clades were 
collapsed. Clade assignments represent arbitrary splits for the purposes of discussion. 

Post-hoc testing of the Mayfield virus 1 tree (Fig 3.5) appeared to show a clear 

association between viral type and host species, with the group marked on the 

tree as Clade A having an excess of B. terrestris isolates (AI statistic, p=0.003), 

and Clade B having fewer than expected B. terrestris infections. When the tree 
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was rerun using only isolates from Gorebridge, to control for a possible effect of 

spatial structure, the same result was found (AI statistic, p=0.007). 

3.5 Discussion 

In this study, we have explored the ecological factors influencing the diversity 

and distribution of the viruses of wild bumblebees. We found evidence for 

cryptic specialisation within viral species for parts of their host range, and 

significant differences in prevalence between host species (consistent with 

Chapter 2). We found that the viruses that have only been detected in 

bumblebees are considerably more diverse than those previously known from 

honeybees.  

3.5.1 Diversity 
Both Acute bee paralysis virus and Slow bee paralysis virus show considerably 

less diversity than Mayfield virus 1, Mayfield virus 2, River Luinaeg virus and 

Loch Morlich virus within the study region. ABPV and SBPV are viruses that 

were initially described in honeybees (Bailey and Gibbs 1964; Bailey et al. 

1963), while the other four viruses in the study were found in bumblebees and 

have not been recorded in honeybees at this point. In multihost systems, 

different species can differ in their susceptibility and response to an infection 

(Ruiz-González et al. 2012). Including this as an assumption when modelling 

multihost pathogens leads to the result that species have very different levels of 

importance for the maintenance of an infection (Fenton and Pedersen 2005; 

Gandon 2004). Superspreading dynamics have been observed or inferred in 

many systems, from small mammals infected with intestinal parasites (Streicker 

et al. 2013), to large ungulates infected with tuberculosis (Santos et al. 2015), 

and human sexually transmitted infections (Renton et al. 1995). In these cases, 

a single heavily infected host species (or population) can act as a source for 

infection in other sympatric species (or population). It is possible that the ABPV 

and SBPV isolates detected here might represent spillover from managed 

honeybee populations, which subsequently lead to epidemic spread, especially 

as both viruses are very close to the honeybee references on genbank. 

However, McMahon et al. (2015) found that SBPV is often found at higher 

prevalences in bumblebees than in sympatric honeybees, bringing in to the 
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question the direction of the spillover dynamics underlying the system. The 

patterns observed in SBPV and ABPV are, however, not inconsistent with the 

genetic diversity that may be observed during an epidemic with a bottlenecking 

or strong selective event (Agoti et al. 2014; Hapuarachchi et al. 2016), as while 

the prevalence of both SBPV and ABPV were consistent between sampling 

years, all sequences isolates were from within years.  

The large amounts of diversity in Mayfield virus 1, Mayfield virus 2, River 

Luinaeg virus and Loch Morlich virus could have multiple causes. MV1 

genotypes appear to non-randomly associate with specific host species. This 

could be driven by different hosts having differential contact with viral strains, or 

could represent functional differences between viral variants with some variants 

being able to replicate more efficiently in specific hosts. This potentially implies 

that at least some of the diversity within MV1 leads to biologically relevant 

outcomes. It has previously been shown with multiple viruses that the precise 

viral strain that infected an individual has important phenotypic effects on 

outcomes of infection (Ilonen et al. 1988; Mayerat, Mantegani, and Frei 1999). It 

has also been shown that pathogen genotype can correlate with the probability 

of being found in different host species (Cuevas et al. 2012; Withenshaw et al. 

2016). If the variants do have different fitnesses in different hosts, this would 

increase the viral diversity as more viral types would be maintained by 

selection. It is also possible that much of the observed variation is neutral, as 

most variation is at 3rd codon positions and codes for either identical or similarly 

charged amino acids, which are unlikely to have large fitness effects in either 

direction, and given the frequent bottlenecking that occurs during transmission 

(Zwart and Elena 2015) would be inefficiently selected against. 

3.5.2 Factors Influencing Infection 

We found evidence that the prevalence of River Luinaeg virus was positively 

associated with increased precipitation, though the size of this effect is 

uncertain given the bias added by the regularising prior. The direction of this 

effect is contrary to our hypothesis that higher rainfall would decrease 

prevalence by reducing the contact rate between the host and virus through 

mechanical cleaning of contaminated flowerheads and decreased bumblebee 

flight frequency. However, an alternative explanation consistent with the results 
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is that high precipitation reduces foraging time and therefore condition, 

mediated through starvation. Starvation is known to increase the severity of 

bumblebee viruses (Manley et al. 2017) and has been shown to increase 

infection risk in humans (reviewed in França et al. 2009; Schaible and 

Kaufmann 2007) and other mammals (Pedersen et al. 2002). However, we 

found some evidence of a negative effect of precipitation on Mayfield virus 1, 

which is consistent with our original hypothesis. We attempted to fit a host 

community similarity matrix as a random effect in our model, but there were not 

enough sites to accurately estimate to what extent similar pollinator 

communities share prevalences. None the less, it seems intuitive to posit that 

communities that have high proportions of highly susceptible species should 

have higher viral prevalences in all species, given the ability of highly infected 

susceptible species to act as source populations for infection (Streicker et al. 

2013).  

3.5.3 Coinfection 

River Luinaeg virus and Loch Morlich virus were rarely found separately in this 

study and they remained strongly correlated in the errors of the multivariate 

probit model after taking into account the explanatory variables. Multivariate 

probit models can be thought of as an extension of the models recommended in 

Fenton et al. (2010) for estimating interactions between parasite species, 

though it is only applicable to presence/absence data rather than the faecal egg 

counts used there. Instead of sequentially estimating the effect of sympatric 

parasites on a focal parasite, the joint probabilities of presence or absence of all 

parasites simultaneously are modelled by a multivariate normal distribution, with 

the values in the correlation being direct estimates of the association strength 

and direction between the parasites after controlling for the covariates. While 

the correlations between Mayfield virus 2 and both Loch Morlich virus and River 

Luinaeg virus did trend negative, given the small sample size relative to the 

prevalence of Loch Morlich virus and River Luinaeg virus, they could not be 

estimated precisely. 

A potential explanation for the strong association between Loch Morlich and 

River Luinaeg virus is that one of the viruses is a satellite of the other, as occurs 

in Chronic bee paralysis virus with Chronic bee paralysis virus satellite virus 
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(Bailey, Ball, et al. 1980). However, on further inspection this seems unlikely as 

both virus species are observed in single infections. Another possibility is that 

both viruses circulate in the population, but infection with one causes damage to 

the host in such a way that susceptibility to the second is dramatically 

increased, perhaps a manner similar to HIV’s synergism with TB though 

immune suppression (Kwan and Ernst 2011) or influenza virus’ changing of the 

environment of the nasopharynx so as to allow secondary bacterial invasion 

(Joseph, Togawa, and Shindo 2013). Viral coinfections are ubiquitously reported 

in prevalence studies in bees (Anderson and Gibbs 1988; Bacandritsos et al. 

2010; Blažytė-Čereškienė et al. 2016; Chen et al. 2004; Choe et al. 2012; 

Evans 2001; Gajger et al. 2014; McMahon et al. 2015; Mouret et al. 2013; 

Nielsen, Nicolaisen, and Kryger 2008; Roberts, Anderson, and Durr 2017; Thu 

et al. 2016), but to our knowledge, only McMahon et al. (2015) tested for a 

departure from random expectations of infection, and no departure was found. 

However, non-random associations between parasites appear common in other 

species, having been reported in, among other species, humans (Griffiths et al. 

2011), wood mice (Behnke et al. 2005), buffalo (Jolles et al. 2008), typical white-

eyes (Clark et al. 2016), ticks (Václav et al. 2011), moths (Hajek and van 

Nouhuys 2016) and plants (Biddle, Linde, and Godfree 2012; Seabloom et al. 

2009).  

3.5.4 Conclusion 

The importance of bumblebees both economically and ecologically makes a 

good understanding of their infections valuable, as they may play an important 

part in the declines currently observed. In this study, we investigated the 

ecology of four recently described bumblebee viruses (Mayfield virus 1, 

Mayfield virus 2, River Luinaeg virus and Loch Morlich virus) and compared 

their diversity to two previously described viruses: Slow bee paralysis virus and 

Acute bee paralysis virus. We find evidence that the probability of infection may 

be modified by the levels of precipitation in the areas in which the host-parasite 

communities exist implying that in order to get a realistic perspective on the 

underlying prevalences of bee viruses sampling over a wide range of ecological 

conditions is required. We detected no strong associations between the 

prevalence of the four recently described viruses and solar radiation, maximum 

temperature, vapour pressure or wind speed. The presence of non-random 
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associations between parasites also implies that simultaneous testing for 

multiple parasites in samples may be the only way to accurately assess the viral 

community structure. The recently discovered viruses are more diverse than 

SBPV and ABPV, however the reasons for this are unknown. There is also 

evidence that variants of Mayfield virus 1 assort non-randomly with hosts, 

potentially representing cryptic host specialisation within the virus species. 

Given the key role that viruses play in the regulation of natural populations and 

the importance of pollinators, we know very little about the ecological factors 

that predict infection. This study represents an important first step in isolating 

predictors of viral prevalence in wild bumblebees. 
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Chapter 4 - Pulsed pesticide exposure may increase the rate of pathogen 

uptake in Bombus terrestris bumblebees 

David J. Pascall containing additional work from Meri Anderson and Thomas 

Marceau 



!  89

4.1 Abstract 

Bees are economically and ecologically important as pollinators, and many 

species are currently suffering declines. Global bee declines are caused by a 

complex interaction between multiple stressors; two key stressors are 

pathogens and pesticides. It is becoming increasingly clear that neonicotinoid 

pesticides negatively affect wild bees, but the scale and importance of this 

damage remains unclear. Evidence is mounting that pathogens and parasites 

interact synergistically with pesticide exposure increasing the impact of 

infection. However, it is less clear how pesticide exposure increases the risks of 

infection. We exposed 20 buff-tailed bumblebee (Bombus terrestris) colonies to 

the neonicotinoid pesticide clothianidin in the laboratory for two weeks and then 

placed them in the field. This mimicked a pulsed pesticide exposure, as 

potentially experienced by bees during the bloom of mass-flowering pesticide-

treated crops such as oilseed-rape. We then measured their acquisition of a 

panel of 20 pathogens over an eight-week period. We found marginal evidence 

for increases in the rate of acquisition under pesticide exposure. This presents 

new evidence that the use of neonicotinoid pesticies may be lead to bee 

mortality by increasing disease susceptibility  

4.2 Introduction  

Pollinators, and particularly bumblebees and honeybees, are key players in 

global food production, with insect pollination contributing 15.12 billion USD to 

the US economy in 2009 (Calderone 2012). Many of these pollinators have 

declined in abundance in recent years (Kosior et al. 2007; Williams and 

Osborne 2009),while simultaneously, the need for pollination services has 

increased (Breeze et al. 2014). This decline is driven by a suite of 

anthropogenic and environmental factors acting in combination (Brown et al. 

2016; Vanbergen and the Insect Pollinators Initiative 2013). Besides habitat 

loss, the increased use of pesticides and fungicides are considered to be an 

important contributor (Vanbergen and the Insect Pollinators Initiative 2013). 

Pathogens and parasites have also been implicated, with the movement of 

infected bees causing the spread of disease in wild populations (Goka, Okabe, 

and Yoneda 2006; Manley et al. 2015; Wilfert et al. 2016).  
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The rate of uptake of pathogens from the environment into colonies appears 

likely to be a strong determinant of the degree of stress that pathogens impose 

onto bumblebee populations. Bumblebees face multiple pathogens in the wild 

and there is a stochastic element to how they encounter them. In the tropics, 

some species produce sexuals all year round (Michener and Amir 1977), but in 

temperate regions, bumblebees have seasonal colonies, with queens 

hibernating over winter (Goulson 2010), which puts a hard limit on the time 

period in which pathogens can affect them. If the transmission of a pathogen 

species to a seasonal colony is a slow process because of infrequent contact, 

then that pathogen is unlikely to cause strong effects that species, because on 

average, colonies will be infected towards the end of the colonies natural 

lifespan. This is complicated by the fact that sexuals are produced towards the 

end of a colony’s life. Thus, a highly virulent pathogen that is contracted late 

could still significantly decrease the reproductive output of a colony. But in 

general, late contracting pathogens seem liable to have less serious impacts. 

Despite this, little is known about the rate at which naïve colonies uptake 

pathogens from the environment.  

The stress of infection can also be compounded by stress from other sources. 

Pathogens in honeybees have been shown to act synergistically with pesticides, 

causing increases in mortality (Alaux et al. 2010; Doublet et al. 2015; Vidau et 

al. 2011), and infection intensity (Pettis et al. 2012; Di Prisco et al. 2013). Many 

parasites and pathogens exhibit condition-dependent virulence, where adverse 

effects are only expressed if the cost of infection is unmasked under stressful 

conditions. Without resource constraint, as in under ad libitum conditions, the 

cost in resources to both resist disease and repair the damage from infection is 

affordable. However, if resources are limited, different aspects of pollinator 

fitness must be traded off against one another, as has been demonstrated both 

at the individual and colony level in Bombus terrestris bumblebees (Moret and 

Schmid-Hempel 2000, 2001). For example, bumblebee longevity is often not 

affected by infectious diseases under standard laboratory conditions, but is 

drastically reduced under starvation (Brown, Loosli, and Schmid-Hempel 2000; 

Manley et al. 2017). The exact form that interaction of stressors will take 

depends on the underlying mechanism. A broad review of toxicant-environment 
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interactions found that they can be both synergistic and antagonistic, but 

synergistic interactions dominate (Holmstrup et al. 2010). Similarly, both 

antagonistic and synergistic interactions have been observed in cases of 

superinfection, with synergistic interactions dominating when coinfection occurs 

between different classes of parasites, and both occurring about equally when 

the parasites are of the same type (Griffiths et al. 2011; Kotob et al. 2016). The 

exact form of these superinfection interactions is also context-dependent and 

can change based on environmental and host factors (Zheng et al. 2015). Given 

this uncertainty, it is important to gather data about the nature and direction of 

these interactions in the wild, rather than in the lab setting.  

One particularly important class of stressors in pollinators are neonicotinoid 

pesticides, the class including the commonly used seed treatments 

imidacloprid, thiomethoxam and clothianidin, which have been used 

commercially since the late 1990s (Goulson 2013). Questions over their safety 

for wild pollinators have led to a moratorium on their use inside the European 

Union (Barroso 2013), but they are still used extensively in other parts of the 

world (Tsvetkov et al. 2017). These pesticides have negative effects on both 

honeybee (Henry et al. 2012; Di Prisco et al. 2013) and bumblebee (Laycock et 

al. 2012) physiologies leading to adverse outcomes at the colony level 

(Whitehorn et al. 2012). While negative outcomes in wild and managed 

bumblebee and honeybee populations from exposure to these pesticides have 

been repeatedly demonstrated (Doublet et al. 2015; Gill, Ramos-Rodriguez, and 

Raine 2012; Henry et al. 2012; Laycock et al. 2012; Pettis et al. 2012; Di Prisco 

et al. 2013; Retschnig, Neumann, and Williams 2014; Vidau et al. 2011; 

Whitehorn et al. 2012), the effect that exposure to pesticides has on the uptake 

and risk of infection from natural parasites in the wild has been less quantified. 

Most studies that conclusively demonstrate the effect of pesticides on the end 

points of infection take place in laboratory conditions, which may not generalise 

to the field given the complex buffering interactions exhibited by natural systems 

(Park et al. 2015).  

Here we tested the hypothesis that, on average, pesticide exposure would 

increase the rate of pathogen uptake and that this effect would be most 

pronounced immediately after the exposure. We explored both the rate of 
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uptake of pathogens from the environment in bumblebee colonies and the effect 

of neonicotinoids on infection rate in a semi-field setting. We exposed colonies 

to either sugar water or sugar water containing low (1 ppb) concentrations of 

clothianidin in the laboratory, a design similar to Whitehorn et al (2012) that 

mimics the pulsed exposure that occurs when a large seed-treated crop plant 

blooms. We then placed the colonies outside at multiple locations and 

measured their uptake of a large panel of pathogens from the environment over 

an eight-week period.  

4.3 Methods 

4.3.1 Laboratory Exposure 

Twenty buff-tailed bumblebee, Bombus terrestris audax, colonies were 

purchased from Biobest ltd. On arrival, each colony received ad libitum sugar 

water, and two teaspoons of radiation sterilised pollen every second day. Ten 

colonies were randomly assigned into two blocks, A1 and A2. Each block was 

randomly further split into two treatment groups, pesticide and control. All the 

following experimental procedures described were carried out on the A1 

colonies on one day prior to the A2 colonies to allow adequate time for sample 

collection once the colonies had been placed out into the field.  

The clothianidin sugar solution was generated by dissolving solid clothianidin in 

acetone to generate a 7.5mg l-1 solution, which was then diluted 1:7500 in sugar 

water generated from a 50:50 dilution of invertebrate sugar syrup and MilliQ 

H2O, to generated the 1ppb final solution. A control solution was created by the 

addition of an equal amount of acetone without dissolved clothianidin to the 

same stock sugar solution. Immediately prior to exposure, 10 bees were 

removed from each colony and faecal samples were collected and frozen at -80 

degrees centigrade. To account for differences in sugar water consumption, the 

initial weights of each colony’s sugar water containers were taken before 

treatment. Colonies were allowed to feed ad libitum on the sugar solution for 

two weeks. At the end of the exposure period, each sugar water container was 

reweighed to measure how much the colony had consumed and a further 10 

faecal samples were taken from each colony.   
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4.3.2 Field Placement 

Treatment and pesticide colonies within each group were randomly paired and 

assigned to one of 10 locations within Falmouth, Cornwall, UK. For reasons of 

practicality of access, a full randomisation of locations between the two groups 

was not performed, and sites within a block were closer together than would be 

expected if sites were assigned fully at random (see Figure 1). The colonies 

were placed at these locations under bespoke wooden shelters with slanted 

waterproofed roofs to protect them from the rain. At each site, one shelter had a 

blue circle painted on it and the other had a green triangle in order to provide a 

landmark to minimise between colony drifting. Each colony was placed on 

bricks to avoid surface water entering and weighed down with bricks from above 

to prevent the colony blowing away in high wind. Every two weeks, five bees 

were removed from each colony and frozen at -80 degrees centigrade to 

preserve the RNA. If less than five bees remained in a colony, all were 

removed. At day 42 in the field, in one of the pesticide exposed colonies only 

four B. terrestris were collected, as when the samples were taken back to the 

lab and examined, one of the bees collected was observed to be a brood 

parasitic bee from the subgenus Psithyrus. This was the only colony in which 

brood parasites were detected.  
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Figure 4.1 The map of locations of the sites at which colonies were placed. A 250m buffer 
around each site is shown. All sites were within 1km of at least one other site. The five 
southernmost sites comprise block A1 and the five northernmost sites comprise block A2. 

4.3.3 Molecular Work 

Pooled RNA extractions were performed using TRIzol (Life Technologies) for 

each colony at each timepoint. Both samples from before the bees were placed 

into the field were combined into a single day zero timepoint. Each of these 

pools were tested for a panel of twenty pathogens known to infect B. terrestris; 

Allermuir Hill virus 1 (AHV1), Boghill Burn virus (BBV), Castleton Burn virus 

(CBV), Clamshell Cave virus (CCV), Gorebridge virus (GV), Hubei partiti-like 

virus 34 (HPLV34), Mayfield virus 1 (MV1), Mayfield virus 2 (MV2), Mill Lade 

virus (MLV), Acute bee paralysis virus (ABPV), Slow bee paralysis virus – 

Rothamsted strain (SBPV-R), Slow bee paralysis virus – Harpenden strain 

(SBPV-H), Black queen cell virus (BQCV), Deformed wing virus – type A (DWV-

A), Deformed wing virus – type B (DWV-B), Sacbrood virus (SBV), Nosema 

ceranae, Nosema apis, Nosema bombi and Crithidia bombi. The primers and 

PCR conditions used are available in Chapter 4 Appendix Table A4.1.  
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4.3.4 Statistical Analysis 

The mass of sugar water consumed by the pesticide and treatment colonies 

was compared using a Gaussian linear model with an identity link in R v3.3.2 (R 

Core Development Team 2016) using the function ‘stan_glm’ in package 

rstanarm (Stan Development Team 2016b) with 5000 warmup draws and 95000 

sampling draws across four chains. The data were transformed by subtracting 

the maximum value + 1 from each observation then square rooting to remove 

negative skew. Results are given on the back transformed original scale. The 

priors assigned were Normal (0, 100) for the intercept parameter, Normal (0, 1) 

for the fixed effect coefficients (representing mild regularisation), and half-

Cauchy (0, 2.5) for the standard deviation of the normal distribution. All priors 

were then scaled by the observed standard deviation of the data, as is the 

default in rstanarm. The model fitted was: 

Sugar water consumed ~ Treatment group + Block 

The data for all pathogens that were detected in at least one colony were 

analysed in MCMCglmm (Hadfield 2010) in R v3.3.2 (R Core Development 

Team 2016). A series of models were run using the ‘nzbinomial’ link function to 

account for the pooled nature of the data. Four models were fitted, treating the 

data in two different ways. Models 1 and 3 treated the time as a continuous 

variable, while Models 2 and 4 ignored the continuous nature of time, treating 

each timepoint as an independent factor. Models 1 and 2 treated the amount of 

pesticide consumed by each colony as a continuous dose, while Models 3 and 

4 treated pesticide as a factor with levels exposed or not exposed. As timepoint 

0 was taken as a baseline, when time was treated as a continuous variable, no 

intercepts were fitted for the pesticide treatment, whether coded as a binary 

treatment variable or continuous dose variable, nor for the block assignment. 

These effects were instead estimated as interactions with timepoint 

representing treatment effects on the rate of update of pathogens over time. 

When timepoints were treated as factors, the time 0 data was excluded, and 

intercepts were fitted for both the pesticide treatment and the block. 

All models were run with a relatively uninformative parameter expanded prior 

with V equalling an identity matrix the size of the covariance matrix being 
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estimated, nu equalling the dimension of V, alpha.nu being a vector of zeros of 

length nu and alpha.V being a matrix of the size of the covariance matrix being 

estimated with 1000 repeated along the diagonal. Models were run for 

22000000 iterations including 2000000 iterations of burn-in, and samples were 

saved every 20000 iterations for a final sample size of 1000 draws from the 

posterior.  

In the models with continuous time, a random timepoint by location interaction 

was fitted, a random timepoint by colony interaction nested within location and a 

random virus effect with an estimated intercept and random slopes by location. 

This accounted for the fact that at day 0 all colonies were in the lab, so the 

intercept for all locations and colonies was considered to equal the global 

intercept, as in theory there has been no contact with pathogens to allow uptake 

at this point. Therefore, all differences driven by different locations and colonies 

having different uptake rates must be driven by changes in the rate of uptake 

after day 0, an interaction with time, explaining the random effect formulation 

above. As some pathogens were detected in the colonies at day 0, a random 

pathogen specific intercept was fitted for each pathogen, then pathogens were 

allowed to have different uptake rates through time. The covariance between 

the pathogen intercepts and slopes was estimated to investigate the possibility 

that the pathogens detected at day 0 had different uptake patterns than the 

other pathogens. 

In the models where timepoints where analysed separately with no relation 

between them and the day 0 data was excluded, the location, colony and virus 

were fitted as random intercepts, and a pathogen-pesticide treatment random 

interaction was added to test whether different pathogens responded differently 

to the pesticide treatment.  

The models run were as follows: 

Model 1 - continuous time, continuous pesticide dose 

yi ~ intercept + time(continuous) + time(continuous):pesticide(dose) + 

time(continuous):block + (time(continuous)|Location) + (time(continuous)|

Location/Colony) + (1 + time(continuous)|Pathogen) 
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Model 2 - discrete timepoints, continuous pesticide dose 

yi ~ intercept + timepoint + + pesticide(dose) + block + timepoint:pesticide(dose)

+ (1|Location) + (1 |Location/Colony) + (1 + pesticide(dose)|Pathogen) 

Model 3 - continuous time, discrete pesticide treatment 

yi ~ intercept + time(continuous) + time(continuous):pesticide(factor) + 

time(continuous):block + (time(continuous)|Location) + (time(continuous)|

Location/Colony) + (1 + time(continuous)|Pathogen) 

Model 4 - discrete timepoints, discrete pesticide treatment 

yi ~ intercept + timepoint + pesticide(factor) + block + timepoint: pesticide(factor) 

+ (1|Location) + (1 |Location/Colony) + (1 + pesticide(factor)|Pathogen) 

All reported shortest posterior intervals were calculated in the SPIn package(Liu 

et al. 2015). 

4.4 Results 

4.4.1 Pesticide Consumption 

The estimate of differential consumption of sugar water between the two 

treatment groups was highly uncertain with a posterior mode of -72.07g (90% 

SPI: -148.05g, 7.44g) change in the pesticide group over the 14-day period 

relative to the control group. This provides little evidence of an effect. However, 

given the uncertainty in the estimate, if an effect exists, it is potentially large with 

the 90% shortest posterior interval, being equivalent to a modal average daily 

change of -5.15g (90% SPI: -10.57g, 0.53g) in consumption, which is more than 

a 20th of the total sugar water consumed over the entire two-week period for 

some colonies (Figure 4.2). 
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Figure 4.2 The mass of sugar water consumed by each treatment group 

4.4.2 Survival and Health of Colonies Post-placement 

Colonies failed throughout the experiment, with the rate of failure increasing 

rapidly after 28 days outside, see Figure 4.3. Losses were roughly equivalent 

between treatment groups. One colony in the pesticide treatment was infested 

by a bumblebee brood parasite from the subgenus Psithyrus during the 

experiment (detected at day 42 post-placement), but the colony persisted until 

the final timepoint, when one B. terrestris worker remained. In total, three 

collections consisted of less than the full five bees due to less than five workers 

remaining in the colony (2 controls, 1 pesticide).  
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Figure 4.3 The presence or absence of each pathogen in each colony at each time point. 
Yellow represents absence, red represents presence and grey indicates that the colony is dead 
or there were too few bees remaining for a full sample. Clamshell Cave virus was detected in 
the experiment, but was only detected in an incomplete final sample in one colony, so the grid is 
marked grey rather than red. 

4.4.3 Presence of Pathogens 

Of the panel of pathogens tested for, six were absent in all tested colonies 

(Allermuir Hill virus 1, Boghill Burn virus, Mayfield virus 2, Acute bee paralysis 

virus, Deformed wing virus – type A and Slow bee paralysis virus – strain 

Harpenden). All other pathogens were detected in at least one colony, see Table 

4.1. Table 4.1 shows the number colonies each pathogen was detected in, as 

well as the number of colonies split by treatment group. 
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Table 4.1 The number of colonies that each pathogen was detected in 

Two viruses were detected in the day zero samples before placement into the 

field. Hubei partiti-like virus 34 (HPLV34) and Black queen cell virus (BQCV) 

were each found to infect five colonies (three pesticide, two control) colonies. 

No colony was observed to be infected with both HPLV34 and BQCV in the day 

0 samples collected. 

The pattern of infection over time varied considerably between the different 

pathogens, see Figure 4.2. Some pathogens such as Mayfield virus 1 and 

Crithidia bombi were immediately present in nearly every colony by the first 

sampling period 14 days in (19 and 18 colonies infected respectively). From this 

point on, they were detected in every colony going forward, implying that they 

reached high prevalences within the colonies. Gorebridge virus (GV) was found 

in a large number of the colonies at 14 days (14/19), after which it was only 

sporadically detected. Infections with Castleton Burn virus (CBV) proceeded at 

a similar rate initially, with 12/19 colonies being infected at day 14, but did not 

Pathogen Pesticide Control Total

Acute bee paralysis virus 0/10 0/9 0/19

Allermuir Hill virus 1 0/10 0/9 0/19

Black queen cell virus 9/10 9/9 18/19

Boghill Burn virus 0/10 0/9 0/19

Castleton Burn virus 9/10 9/9 18/19

Clamshell Cave virus 1/10 0/9 1/19

Crithidia bombi 10/10 9/9 19/19

Deformed wing virus - type A 0/10 0/9 0/19

Deformed wing virus - type B 2/10 0/9 2/19

Gorebridge virus 8/10 6/9 14/19

Hubei partiti-like virus 34 6/10 6/9 12/19

Mayfield virus 1 10/10 9/9 19/19

Mayfield virus 2 0/10 0/9 0/19

Mill Lade virus 4/10 3/9 7/19

Nosema apis 1/10 0/9 1/19

Nosema bombi 4/10 1/9 5/19

Nosema ceranae 3/10 2/9 5/19

Sacbrood virus 7/10 5/9 12/19

Slow bee paralysis virus - strain Harpenden 0/10 0/9 0/19

Slow bee paralysis virus - strain Rothamsted 0/10 1/9 1/19
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exhibit the same drop off in infection observed in Gorebridge virus (GBV). 

BQCV showed a similar pattern to Gorebridge virus, but with its peak of 

infection at 28 days rather than 14 days (12/18), before showing a similar 

reduction in infection rate. Others still maintained a low (Nosema bombi, 

Nosema apis, Nosema ceranae, Clamshell Cave virus, DWV-B, SBPV-R and 

Mill Lade virus) or intermediate (HPLV34 and Sacbrood virus) frequency 

throughout the experiment. 

4.4.4 The Effect of Pesticide on Pathogen Uptake Rate 

There is some evidence that pesticides increase the uptake rate of pathogens 

from the environment, regardless of the parameterisation. Table 4.2 shows the 

modal estimates and 90% shortest posterior intervals of the size of the pesticide 

time interaction for the continuous time parameterisations and the pesticide 

effect for the discrete timepoint parameterisations. The posterior probability that 

the effect of pesticide on viral uptake is positive is also shown, given the 

directionality of our hypothesis. 

Table 4.2 The estimated effect of pesticide on infection risk. Note that the effect sizes are 
measured on different scales for the different types of effect estimated, so are not directly 
comparable between models 

When time was treated as a continuous variable (Models 1 and 3), the effect 

was positive, meaning the rate of infection increased over time. We found a 

modal daily increase of 0.111 of the latent variable (90% SPI: 0.000, 0.213) in 

the continuous pesticide dose model and 0.124 (90% SPI: 0.011, 0.225) in the 

factorial pesticide model. The timepoint models (Models 2 and 4) indicated that 

the level of infection at day 28 exceeded that at day 14, and then fell back to be 

indistinguishable from the day 14 value at day 42 and 56, as the uncertainty 

Model Estimate type Posterior effect size P(x)>0

Continuous time
Continuous-Continuous Interaction

0.044
0.938

Continuous pesticide dose (0.000, 0.196)

Timepoints as factors
Continuous

2.853
0.971

Continuous pesticide dose (0.489, 6.275)

Continuous time
Continuous-Factor Interaction

0.019
0.907

Pesticide treatment as factor (-0.004, 0.047)

Timepoints as factors
Factor

0.811
0.985

Pesticide treatment as factor (0.222, 1.885)
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around the estimates increased. There was very weak evidence for a small 

positive effect on uptake rate observed in the second block, with the modal 

increases in all cases being of small to intermediate size (M1: 0.044, M2: 0.711, 

M3: 0.043, M4: 0.444) and the lower bound of the 90% SPI falling below zero. 

There was very little evidence for considerable differences in up the rate of 

uptake of pathogens between locations or colonies, with very small estimated 

variances for both (location variance posterior modes: M1: 0.000, M2: 0.002, 

M3: 0.000, M4: 0.006; colony variance posterior modes: M1: 0.001, M2: 0.220, 

M3: 0.000, M4: 0.005). 

There was little evidence that the different pathogens in the study responded 

differently to the pesticide treatment with small modal variances being estimated 

for the pathogen-pesticide random interaction and no variation not being 

excluded (M2: 0.080, 90% SPI: 0.000, 9.083; M4: 0.009, 90% SPI: 0.000, 

0.627), though this variance was imprecisely estimated in the factorial timepoint/

continuous pesticide model (Model 2). Pathogens did, however, have very 

different background probabilities of presence and absence, with large intercept 

random effect variances (M1: 2.830, 90% SPI: 0.805, 8.256; M2: 8.205, 90% 

SPI: 4.069, 23.455; M3: 2.909, 90% SPI: 0.622, 7.723; M2: 9.569, 90% SPI: 

4.730, 23.277). The considerably higher intercept variances in Models 2 and 4 

are likely due to the lack of a random interaction of the pathogen with time to 

control for the differential rate of uptake, which was estimated to be of 

intermediate size in models where it was included (M1: 0.028, 90% SPI: 0.014, 

0.102; M2: 0.014, 90% SPI: 0.029, 0.109), and the exclusion of the day 0 data. 

No evidence was found for a correlation between intercepts and slopes in any 

model. 

For Models 2 and 4 that treated the timepoint as a factor, there was a general 

trend for the pesticide timepoint interactions to be negative after day 14, 

consistent with the hypothesis that a pulsed pesticide exposure should lead to a 

reduction in the effect over time, but the imprecision in the estimates caused by 

colony death meant that this could not be confirmed. 
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4.5 Discussion 

In this study, we have provided evidence for an increased rate of pathogen 

uptake after exposure to field-realistic levels of pesticide, in concordance with 

our prior hypothesis.   

4.5.1 Pathogen Level Differences in Uptake Rate 

Incidence strongly differed between pathogens. This may be due to differences 

in the rate of exposure between each pathogen and the bees, or differential 

probabilities of infection on contact when exposure did occur. Initial exposure for 

a colony is thought to predominantly occur at flowers that have been 

contaminated by secretions from infected insects in the community, with 

different flowers providing different efficiencies of transmission from bee to 

flower (Durrer and Schmid-Hempel 1994; Graystock et al. 2015). Once an 

individual within a colony becomes infected, both additional infection from 

external sources and intracolony transmission can drive infection within that 

colony. As bumblebees defecate within the colony (Goulson 2010) 

contaminating the colony, as well as becoming physically contaminated with 

pathogens themselves, intracolony infection does occur, with an individual bee’s 

risk being related to the direct contact rate that that bee has with infected 

individuals within its colony (Otterstatter and Thomson 2007). For rare 

pathogens with an appreciable chance of infection on contact, this implies that 

the time to initial contact is likely to be the limiting factor for colony level 

prevalence, as once a bee within the colony becomes infected, within-colony 

contact changes the pathogen from being globally-rare to locally-common. This 

leads to the expectation that, in many cases, a lag would occur, followed by 

constant infection of a pathogen in the colony. However, Figure 4.2 shows that 

this pattern was rarely observed; in almost all cases, pathogens were detected 

sporadically throughout the experiment, or detected in nearly all colonies at day 

14 then were either lost or persisted at a detectable level until the colony failed. 

This is complicated by the fact that, with a sample of 5 bees being taken at each 

timepoint, we are more likely to fail to detect a low prevalence infection than 

detect it, with the switch to an infection being more likely to be detected than 

missed at approximately 13% prevalence. Additionally, new workers are 

constantly being produced by the colony, which drives down prevalence, 
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assuming that infection in the larval stage is rare. As such, sporadic detections 

are expected for infections maintained at a low level within colonies, simply due 

the sampling effects.  

There was no clear pattern in the pathogens that were rapidly taken up versus 

those that were gained more slowly. The most quickly gained pathogens were 

Mayfield virus 1, Castleton Burn virus, Gorebridge virus and Crithidia bombi; 

two picornavirus-like viruses, a tombus-like virus and a trypanosmatid. The 

three viruses have been previously reported at intermediate frequencies of 15 to 

20% in the general B. terrestris population in Scotland (see Chapter 2), but the 

consistency of detection in the colonies observed here implies a considerably 

higher prevalence within these specific colonies. The rate of uptake implies a 

considerable background prevalence, given that in order to become infective 

within the colony, replication first has to occur in the first infected individual. 

Therefore, the first infection must have occurred considerably early than day 14 

in most colonies, unless multiple foragers picked up the pathogen 

simultaneously due to high levels of environmental contamination. C. bombi has 

been long recognised as a very effective parasite of multiple bumblebee 

species, which consistently reaches high prevalences in the summer months 

(Plischuk et al. 2017; Popp, Erler, and Lattorff 2012; Ruiz-González et al. 2012; 

Shykoff and Schmid-Hempel 1991), making its rapid infection of the colonies 

unsurprising. Gorebridge virus shows an interesting pattern where at day 14, 

most colonies test positive for the virus then after that point it only becomes 

sporadically detected. This could be due to the virus being highly pathogenic, 

with the workers that get infected quickly dying, and so not passing the virus on 

or due to quick clearance of the virus and a lack of reinfection. The most slowly 

acquired pathogens were Nosema apis, Nosema ceranae, Nosema bombi, 

Slow bee paralysis virus - Rothamsted strain (SBPV-R) and Deformed wing 

virus - type B (DWV-B). SBPV-R and DWV-B have previously been detected at 

low levels in B. terrestris (Fürst et al. 2014; McMahon et al. 2015) though both 

studies combined estimates for DWV-A and DWV-B for their prevalence 

reporting. SBPV-R has been found at considerably higher levels in both B. 

terrestris and other bumblebee species (Fürst et al. 2014, Chapter 3). The fact 

that B. terrestris can be heavily infected with both SBPV-R and DWV-B implies 

that the lack of infection in this study is due to the local rarity of the viruses. 



!  105

Two of the more commonly detected viruses in the study, HPLV34 and BQCV, 

were detected in our colonies before they were placed into the field. We cannot 

confirm whether the colonies were infected upon arrival, or whether they 

acquired the infection from pollen in the laboratory feeding procedure. Extensive 

infection with HPLV34 in breeding facilities would be unsurprising, as it is both a 

recently discovered virus (Cornman et al. 2012; Shi et al. 2016) and had never 

previously been described in bumblebees and is therefore unlikely to have been 

detected or tested for. Common BQCV infection would be more surprising, 

given that it consistently reported infecting bumblebees (McMahon et al. 2015; 

Peng et al. 2011; Zhang et al. 2012) and has documented pathological effects in 

honeybees (Doublet et al. 2015). Irrespective of the origin of the infection before 

the colonies were placed into the field, it does appear that additional infections 

of these viruses were gained in colonies that were truly uninfected during the 

control period, where our sample size was larger giving us more ability to detect 

rare pathogens. 

4.5.2 Pesticide Effects 

While we found no conclusive evidence of bees reducing their feeding rate 

when fed on clothianidin contaminated sugar water relative to bees fed on 

uncontaminated sugar water, this effect has been previously been reported in 

the literature, but only at higher concentrations of clothianidin (Kessler et al. 

2015). The potential effect sizes of the pesticide-associated increase in the 

pathogen acquisition rate in the study range from functionally non-existent to 

highly biologically significant. The modal effect size represents a small positive 

shift in the rate of pathogen uptake relative to the non-pesticide exposed control 

group of approximately a 6th of the total increase due to time. Qualitatively 

similar estimates of the pesticide effect were given irrespective of whether 

pesticide was treated as a factorial treatment effect or the dose itself was 

directly used. The small modal size of the effect is consistent with our 

hypothesis that if there was a visible effect at field realistic pesticide levels, it 

would be small. Low doses of pesticide, even when there are no other options 

for feeding would likely be capable of being quickly detoxified (Cresswell et al. 

2014), assuming the detoxification rate for clothianidin is similar to that of 

imidocloprid. The effect size that we estimated may differ slightly from the real 
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effect size that an intense clothainidin oilseed rape bloom might bring about. We 

assumed that bees had no other choice than to feed on the contaminated sugar 

water, but in a field setting, there are likely to be other flowers in the 

environment during a bloom of a pesticide treated crop, which could lead to a 

reduction in the amount of pesticide consumed. On the other hand, we did not 

add any clothianidin to the pollen that the bees consumed, which would bias our 

estimate downward, given that other neonicotinoids are often found at similar 

concentrations in pollen as in nectar (Carreck and Ratnieksi 2014). 

A secondary prediction is that the effect would be strongest at the first timepoint 

after the exposure, i.e.14 days. We expected this for four reasons. Firstly, the 

amount of stored sugar water still contaminated with the experimentally 

administered pesticide will decrease over time. Secondly, the bees will have 

longer to recover from the initial effects of direct exposure. Thirdly, there will be 

more newly emerged bees in the colony that never experienced the original 

pesticide exposure. Finally, non-pesticide exposed bees will have longer to 

acquire infections, meaning that if the effect is a change in rate leading to the 

same final prevalence, the effect will be less visible later in the experiment. 

When treating timepoints as statistically independent, we find weak evidence of 

this, with day 14 having a noticeably larger estimated interaction with the 

pesticide treatment but due to the imprecision with which the later timepoint 

pesticide interactions were estimated, this effect could not be confirmed. This is 

consistent with the hypothesis that there should be a pesticide effect of 

decaying size over time, but is it purely indicative given the low ability to detect 

effects within the experimental period, due to the lack of replication. 

4.5.3 Conclusion 

In this study, we found evidence supporting a small to intermediate increase in 

the rate of pathogen acquisition in bumblebee colonies stressed with a pulsed 

exposure to a field realistic concentration of the neonicotinoid pesticide 

clothianidin. Given previous data on pathogen-pesticide interactions, all effects 

were of the expected sign, but the data does not provide evidence that the size 

of the increase in risk of infection is large enough to be biologically meaningful 

at field realistic levels of clothianidin, as the effect size estimate varies from 

large to insignificantly small. The measured increase in the rate of infection 
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under pesticide exposure means that it is potentially important, however, a 

considerably larger study longitudinal study at multiple locations would be 

required to determine the general relevance neonicotinoid pesticides on the 

uptake of pathogens into wild populations.  
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Chapter 5 - Between-host fitness landscape correlation drives multiple 

outcomes in the evolution of multihost digital parasites 

David J. Pascall and Lena Wilfert 
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5.1 Abstract 

The evolution of multihost parasites is complicated by the fact that they partition 

their time across multiple host species. These host species will represent 

different environments from the perspective of the parasite, leading to 

incongruity between the fitness landscapes provided by each host. We used a 

simple simulation model to evolve digital parasites in two host species under a 

variety of different degrees of fitness landscape correlation. We also varied 

epidemiologically important parameters such as the contact rate between hosts 

and the presence or absence of an adaptive immune system. We found that the 

rate of adaptation was considerably higher in two-host systems relative to one-

host systems, and that increasing correlation between the fitness landscapes 

led both to increased generalism in the evolved digital parasites and reduced 

diversity. These results are consistent with previous literature on the evolution of 

multihost parasites and provide good evidence of the importance of between 

host fitness landscape correlations in the driving of the dynamics of the 

evolution of multihost parasites. 

5.2 Introduction 

Multihost parasites face a complex evolutionary environment as they spend 

time, and therefore evolve, in multiple host species, either at different stages of 

their lifecycle or after cross-species transmission. Any two hosts of the same or 

different species, present distinct challenges for a parasite. These challenges 

are brought about by the parasite facing a different environment in each host 

due to, for instance, host genetics (Carpenter et al. 2012; Longdon et al. 2011) 

or microflora (Brotman et al. 2014; Sekirov et al. 2008). These different 

environments will likely also cause selective differences in the parasites of 

individual hosts, an extreme example being the extensive local adaptation that 

occurs within an infected individual in long term HIV infection (Bordería, 

Codoñer, and Sanjuán 2007). From the perspective of the parasite, the 

environment provided by two hosts of the same species will be more similar 

than that provided by two hosts of different species. As such, it is unsurprising 

that divergent selection between host species has been observed (Bedhomme, 

Lafforgue, and Elena 2012; Turner and Elena 2000; Vale et al. 2012). This 
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divergent selection is likely, in part, driven by incongruences between the fitness 

landscapes experienced by parasites between host species. The degree of this 

divergence or convergence in fitness landscapes is expected to strongly 

influence the outcome of the evolution of a parasite over time, with parasites 

preferentially host-switching to species that have correlated fitness landscapes 

(Longdon et al. 2014). Highly divergent landscapes should lead to specialisation 

within a parasite population, while convergent landscapes would lead to 

generalism, as there is no associated cost to being capable of infecting multiple 

host types (Gandon 2004).  

This argument implicitly assumes that the host itself evolves at a much slower 

rate than the parasite, so coevolutionary dynamics are unimportant relative to 

the ecological dynamics driven by cross-species transmission. If the hosts were 

coevolving with the parasite, the adaptive landscape experienced by the 

parasite on each host would themselves change over time (Burmeister, Lenski, 

and Meyer 2016), which may favour or disfavour generalism, depending on the 

precise nature of the change. The assumption that the host evolves at a much 

slower rate than the pathogen is likely to be true  for viruses, as they tend to 

have extremely short generation times, on the order of minutes (Yarwood 1956), 

with RNA viruses also having similarly high mutation rates (Sanjuan et al. 2010). 

This combination should meet the requirement that host evolution occur at a 

different rate to pathogen evolution, in most metazoan hosts.  

We expected the amount of genetic variation present in the population to be 

determined by the degree of correlation between the host fitness landscapes, 

along with the degree of specialism. Fluctuation in environmental conditions has 

long been theorised to be a mechanism for maintaining diversity in natural 

populations (Haldane and Jayakar 1963). This theory has developed a large 

empirical backing (reviewed in Kassen (2002)). The effect of fluctuation comes 

about through different variants being selectively favoured in the different 

environmental conditions, and the extensive examples of antagonistic pleiotropy 

between hosts are reviewed in Bedhomme, Hillung and Elena (2015). In 

addition to host-switching, the host immune system can act as a fluctuating 

environmental condition for a parasite. Immune systems that exhibit 

immunological memory provide long-lasting specific rather than general 
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protection, and have been recorded in highly divergent groups of species, from 

both jawless and jawed vertebrates (Flajnik and Kasahara 2009), to insects 

(Pham et al. 2007; Sadd and Schmid-Hempel 2006), to bacteria (Barrangou et 

al. 2007). In this study, we envision a situation in which fine strain differences 

can be detected by the immune system, and immunity can arise to each one 

separately. With such an adaptive immune system in both hosts, a pathogen 

transmitting between host, species faces a fitness landscape fluctuating on two 

scales. There are large systematic fluctuations between species, driven by the 

between-host differences in the environment experienced by the parasite, and 

local fluctuations within-species dependent on the frequency of the variants of 

the parasite, the strength of the immune system, and the length of the 

immunological memory.   

Parasites evolve over discreet fitness landscapes, due to the underlying 

discreteness of the genetic code. This discreetness imposes a limit on the areas 

of the fitness landscape that are accessible from a particular position. A large 

theoretical literature has built up on evolution across discreet fitness landscapes 

in the single static case (reviewed in de Visser and Krug (2014)). One of the 

most important parameters is the ruggedness of the underlying landscape. A 

rugged landscape has many local optima, where the fitness is less than the 

maximum on the landscape, but higher than the fitnesses of all variants one 

mutational step away. The degree of ruggedness of real fitness landscapes is 

an open empirical question, but the assumption of a smooth landscape leading 

to a single peak is highly unrealistic and evidence is mounting that high levels of 

epistatis may be the norm (Cervera, Lalić and Elena 2016; Stern et al. 2017). 

House-of-Cards landscapes, where the fitnesses within the landscape are 

uncorrelated, are also generally unrealistic given the high levels of redundancy, 

both at the protein and genetic code level, but less so than smooth fitness 

landscapes (Cervera, Lalić and Elena 2016). Theory suggests that adaptive 

walks on highly rugged landscapes tend to be short (Kauffman and Levin 1987), 

as a single lineage will quickly evolve by hill climbing to a local optimum and 

become stuck. However, empirical work with replicate populations of Tobacco 

etch virus suggests that actually getting stuck on a local optima may be a rare 

occurrence in reality, even on highly rugged landscapes (Cervera, Lalić and 

Elena 2016). Fluctuation between fitness landscapes may allow escape from 
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local optima (Cervera, Lalić and Elena 2016; Cheetham 1993), as incomplete 

correlations between the fitness landscapes will mean that a local optimum on 

one landscape is unlikely to be a local optimum on the other. This may 

potentially allow pathogens evolving across multiple hosts to adapt faster than 

those in single hosts. 

Based on this prior work, we had several assumptions about the effects of 

evolution across multiple hosts. When fitness landscapes between hosts are 

positively correlated, generalism should be favoured, as variants with high 

fitness on one host on average have high fitness on the other host. Directly 

following from this, increasing correlations between hosts should decrease the 

variation in the pathogen population as specialist variants are outcompeted by 

generalist variants. Evolution should occur more quickly when a pathogen is 

transmitting between two hosts than when it is transmitting in one, as the 

second host allows escape from local optima on the first. The presence of an 

adaptive immune system should increase the diversity, and by increasing the 

diversity, interact synergistically with evolution across two hosts to increase the 

rate of adaptation. To test these hypothesises, we simulated a highly-abstracted 

model of pathogen evolution via hillclimbing across an uncorrelated discrete 

fitness landscapes within an epidemiological framework, with and without the 

presence of an adaptive immune system. 

5.3 Methods 

All modelling was done in R version 3.3.2 (R Core Development Team 2016). 

Functions from the packages MASS (Venables and Ripley 2002), stringi 

(Gagolewski 2017), gtools (Warnes, Bolker, and Lumley 2015), plyr (Wickham 

2011), fdrtool (Klaus and Strimmer 2015) and BiasedUrn (Fog 2015) were used 

in the modelling procedure. 

The general modelling structure is as follows, specific departures from this 

general model will be noted in their specific sections. One thousand hosts are 

generated and placed into grid of a defined size. The only host traits are the 

species, infection status and immunity profile. All possible sequences of ten 

nucleotides in length are generated, and assigned a within-host reproduction 
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rate in the host species from a probability distribution. These represent the 

parasites. Ten hosts are infected with ten random sequences. Each model 

iteration, hosts are randomly placed onto the grid. Hosts that are placed in the 

same location are able to interact and can infect one another. The probability of 

infection is predefined. For simplicity, we do not assume a trade-off between 

within host reproduction rate and transmission probability, and the parasite is 

assumed to be avirulent. Each model iteration, every host has the chance to 

clear any infection with a defined probability. When a host clears an infection, it 

gains that strain in its immunity profile (if an adaptive immune system is being 

modelled).  

Each iteration, after all hosts have been placed, and clearance and infection 

have occurred, every pathogen sequence is given the chance to evolve. A 

random sequence one mutational step away from the current sequence is 

generated and the fitnesses are compared between the resident and mutant 

strains. Following nearly neutral theory (Ohta 1992), the probability that the 

mutant strain replaces the resident strain is 1-e-s/1-e-sN, where in this case N is 

the presumed within-host viral effective population size, set to 5x104 as a 

realistic figure, following work from the HIV literature (Maldarelli et al. 2013; Seo 

et al. 2002). We assume that the replacement is immediate to avoid tracking the 

relative frequencies of variants within a host. The model was run for 200 

iterations, and then summary statists were generated. 

Within-host reproduction rates were generated from uniform (0,1), standard 

halfnormal distribution, and gamma (1,1) distributions. These all provide within 

landscape correlations of 0. Multiple distributions were used to test for strong 

dependences of the results on the distribution of fitnesses across the 

landscape. While zero fitness variants are commonly observed in nature 

(Cervera, Lalić and Elena 2016), we did not add more variants with fitness 0 

into the model than were generated at random. 

The general modelling algorithm is provided in psuedocode below. For each 

parameter combination, the models were run 10 times and all results were 

stored. To enable simple analysis, two experiments were run. Experiment 1 

explored the effect of varying the infection and clearance probabilities, the 
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number of hosts and the presence and absence of an adaptive immune system. 

Experiment 2 explored the effects of varying the contact rate between the two 

host species, and varying the correlation of the fitness landscapes between the 

two host species with the presence or absence of an adaptive immune system. 

Models that could be generated both from the combinations of variables in 

Table 5.1 and in Table 5.2 were run 20 times (10 in each Experiment). For 

analysis, all models with the same parameter values were included, and as a 

result, some models had sample sizes of 10 while a minority had sample sizes 

of 20.  
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its = number of model iterations = 200 

s = (new genotype fitness/resident genotype fitness)-1 

preplace = 1-e-s/1-e-sN 

generate 1000 hosts; 

generate 2000 spaces for hosts to interact in; 

generate every possible nucleotide string of 10 base pairs; 

assign each nucleotide string a fitness drawn from a probability distribution; 

infect 10 random hosts with 10 random sequences; 

for (i in 1:its) { 

 for (q in 1:hosts) { 

  place a host on space 

  determine if any other hosts share that space based on a draw 

from a binomial distribution with the number of draw representing the number of 

unplaced hosts and the probability of sharing being the number of spaces with 

no assigned hosts this iteration; 

  allow all selected hosts to clear any current infections with 

probability pclear; 

  allow all selected hosts to infect one another with probability pinf  if 

the genotype of the infecting strain has a higher within host fitness and 

probability 0 if it has a lower or equal within host fitness; 

  correct host iterator for the number of placed hosts so hosts are 

not placed twice; 

 } 

 for (e in 1:infected hosts) { 

  randomly generate a new nucleotide sequence of Hamming 

distance 1 from the currently infecting genotype; 

  allow the new genotype to replace the current genotype with 

probability preplace; 

 } 

 save the number of infected hosts, number of variants, and fitness 

distribution of variants; 

} 
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5.3.1 Experiment 1 – Models 1-4 

5.3.1.1 Model 1 – One Host Adaptation 

This model followed the schema defined above. The models were run for all 

combinations of parameter values in Table 5.1, excepting those where pclear 

exceeded pinf to filter out the uninteresting cases where the infection is simply 

lost. 

Table 5.1 Parameter combinations used in Experiment 1 

5.3.1.2 Model 2 - One Host Adaptation with Immunity 

This model follows the structure of Model 1, but with the addition of an adaptive 

immune system. A simple (perfect) adaptive immune system is modelled by the 

addition of a rule that once a host clears an infection, the probability of infection 

for that genotype in that host becomes 0. Without host death, this will eventually 

lead to complete immunity in hosts, so this assumption is only valid for a short 

timescale. Models were run for the same set of parameter values as Model 1. 

5.3.1.3 Model 3 - Two Host Adaptation 

The model follows the same structure as Model 1, but with two host species. 

Instead of 1000 hosts of one species, instead there are two species each of 500 

hosts. There is no preferential association with conspecifics. Fitness landscapes 

for each host are uncorrelated both within and between hosts, using the same 

probability distributions as the single host case. The model was run with the 

same combination of parameter values as Model 1. 

  

5.3.1.4 Model 4 - Two Host Adaptation with Immunity 
This model is a combination of Model 2 and Model 3. Two hosts were set up in 

the same way as Model 3, with an adaptive immune system as modelled as in 

Model 2. The model was run with the same combination of parameter values as 

Model 1. 

Fitness Landscape 
Distributions pinf pclear

Uniform (0,1) 0.05 0.01

Standard half-normal 0.1 0.05

Gamma (1,1) 0.3 0.1

0.5 0.3
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5.3.2 Experiment 2 - Model 5 

5.3.2.1 Model 5 - Two Host Adaptation with Correlated Between Host 

Landscapes and Differential Contact Rates 
This model has the same basic structure as Model 4. However, correlated 

fitness landscapes were generated between host species using a multivariate 

Gaussian copula with the desired correlation, then transforming the 

corresponding correlated uniform variables to the relevant distribution (Nelsen 

2013). These distributions were correlated uniform, gamma and standard 

halfnormal distributions with the same marginal distributions as those given 

above. Differential contact rates between the host species were modelled by 

weighting of probabilities of conspecific versus heterospecific contact. This was 

done by use of random draws from the univariate Wallenius’ noncentral 

hypergeometric distribution, which describes the probability distribution of z 

draws from a set of two finite pools, with biased selection probabilities, as 

described by the odds of selecting the first type relative to the second (Chesson 

1976). Both increased and decreased within-species contact rates relative to 

random mixing were included to account for both gregarious species on the one 

hand and predator-prey or symbiotic interactions on the other. For these models 

pinf was fixed at 0.3 and pclear was fixed at 0.05. Models were run for all 

combinations of parameter values in Table 5.2. 

Table 5.2 Parameter combinations used in Experiment 2 

5.3.3 Summary Statistics 
For all models, the following summary statistics were generated; the number of 

model iterations until the viral fitness in host 1 reached the 99.9th quantile of the 

underlying distribution, the number of unique variants circulating in host 1 at 

Fitness Landscape 
Distributions Correlation Odds of conspecific versus 

heterospecific contact

Uniform (0,1) -0.9 0.1/0.9

Standard Half-normal -0.5 0.25/0.75

Gamma (1,1) 0 0.5/0.5

0.5 0.75/0.25

0.9 0.9/0.1
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iteration 200, the variance in fitness of viral strains across all hosts of host 1 at 

iteration 200 and the number of hosts of host type 1 infected at iteration 200. 

Additionally, in the two-host models, the following statistics were generated; the 

total number of unique variants at iteration 200, the number of infected hosts of 

host type 2, and the proportion of unique variants that exceeded the marginal 

median fitnesses of their distributions in both host types. 

5.3.4 Statistical Analyses 

Any models with no infected hosts at iteration 200 were discarded. In all cases, 

90% highest posterior density intervals were calculated by the SPIn method (Liu 

et al. 2015). Highest posterior density intervals were used as central intervals 

will generally not include the mode of the posterior distribution if the most likely 

parameter value is 0. The 90% interval rather than the typical 95% interval was 

presented, both because 90% intervals are more stable than 95% intervals, as 

they rely on the lower and upper 5% of samples to estimate their position rather 

than the lower and upper 2.5% of samples (Stan Development Team 2016a). 

5.3.4.1 Rate of Adaptation 

5.3.4.1.1 Experiment 1 
The number of model iterations until a fitness equal to the 99.9th percentile of 

the underlying fitness distribution was achieved in host 1 was analysed using a 

proportional hazards survival analysis censored at 200 iterations using the ‘cph’ 

function from the package ‘rms’. A Bayesian analysis using the function 

‘survregbayes2’ from the package ‘spBayesSurv’, with a prior consisting of a 

mixture of 10 beta (1,1) distributions was attempted, but due to convergence 

issues the frequentist analysis was run instead. The model fitted was: 

Time till threshold fitness ~ pinfection + pclearance + Number of hosts + Fitness 

landscape distribution + Reinfection on clearance + pinfection:pclearance + 

Reinfection on clearance:pclearance + Reinfection on clearance:Number of hosts 

5.3.4.1.2 Experiment 2 

A survival analysis model censored at 200 iterations was also run for 

Experiment 2, again only using the model iterations until maximum observed 

fitness was achieved in host 1, as host 2 should behave the same way, by the 
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symmetry of the model. The same function was used as in the previous model. 

The model fitted was: 

Time till threshold fitness ~ Correlation between host landscapes +pconspecific + 

Fitness landscape distribution + Reinfection on clearance + Correlation between 

host landscapes:pconspecific 

5.3.4.2 Variation 

5.3.4.2.1 Experiment 1 
The factors influencing the number of viral variants present in the population at 

iteration 200 were analysed by a Poisson GLM square root link with an 

observation level random effect (OLRM), as a test Poisson GLM indicated 

overdispersion. A negative binomial GLM was also run as an attempt to correct 

for the overdispersion, but posterior predictive checks indicated that the OLRM 

provided a better fit to the observed data and 10-fold cross validation using the 

‘kfold’ function in the ‘loo’ package indicated no strong preference for the one 

model over the other, so the OLRM model is presented. The GLM was fitted in 

the package ‘rstanarm’, using the ‘stan_glmer’ function. Normal (0,10) priors 

were placed on the intercept and regression coefficients with a half-Cauchy (0, 

2.5) prior being placed over the standard deviation of the normal distribution of 

the random effect. The model fitted was: 

Number variants in host 1 ~ pinfection + pclearance + Number of hosts + Fitness 

landscape distribution + Reinfection on clearance + pinfection:pclearance + 

Reinfection on clearance:pclearance + Reinfection on clearance:Number of hosts 

5.3.4.2.2 Experiment 2 

A similar model was fitted for the Experiment 2 analysis, the same priors and 

functions were used. The model fitted was: 

Number variants in host 1 ~ Correlation between host landscapes + pconspecific + 

Fitness landscape distribution + Reinfection on clearance + Correlation between 

host landscapes:pconspecific 
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5.3.4.3 Generalism vs. Specialism 

5.3.4.3.1 Experiment 2 

We assayed the tendency for viruses to evolve towards generalism or 

specialism in the model by looking at the fitnesses of the variants present at 

iteration 200 over both hosts and comparing that to the median fitness of the 

fitness landscape. We defined a viral pathogen as a generalist, for this analysis, 

if it exceeded the median fitness on the fitness landscape in both hosts. For 

each model run, we assayed the number of generalists and specialists, then 

modelled the factors that lead to an increased probability of generalism versus 

specialism using a binomial GLM using a logit link with an observation level 

random effect to account for overdispersion, as implemented in by the 

‘stan_glmer’ function in rstanarm. A Normal (0,10) prior was placed over the 

intercept, with Normal (0,5) priors being placed over the regression coefficients 

and a half-Cauchy (0,2.5) prior being placed over the standard deviation of the 

normal distribution of the observation level random effect. The model fitted was: 

Proportion of variants exceeding the median on both fitness landscapes ~ 

Correlation between host landscapes + pconspecific + Fitness landscape 

distribution + Reinfection on clearance + Correlation between host 

landscapes:pconspecific 

5.4 Results 

5.4.1 Rate of Adaptation 

5.4.1.1 Experiment 1 - Host Number and Infection Probabilities 

Models that simulated evolution across two host species reached the 99.9th 

percentile of the fitness landscape much more quickly than those with one host 

species (χ2(2)=311.0, p<0.0001). Higher infection probabilities deceased the time 

until the 99.9th percentile of the landscape was reached (including all 

interactions: χ2(2)=192.1, p<0.0001), presumably due to higher infection 

probabilities leading to more hosts being infected simultaneously, allowing more 

variants to be generated per iteration. The rate of adaptation also changed 

depending the underlying distribution of the fitness landscape (χ2(2)=74.1, 

p<0.0001), with the uniform distribution showing the slowest rate of adaptation, 

the half-normal an intermediate rate and the gamma distribution showing the 
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fastest rate, see Fig 5.2 for the pattern in the correlation dataset. There was 

evidence that increasing the probability of clearance leads to a reduction in the 

rate of adaptation (including all interactions: χ2(3)=45.8, p<0.0001). However, the 

pattern indicates that the effect may well not be linear, with the highest rates of 

adaptation apparently occurring at intermediate clearance rates, see Fig 5.1. 

There was no evidence to suggest an effect caused by whether reinfection was 

possible after clearance (including all interactions: χ2(3)=2.6, p=0.46), nor any 

evidence to suggest interactions between the probability of infection and the 

probability of clearance (χ2(1)=2, p=0.16), the probability of clearance and 

whether reinfection was possible after clearance (χ2(1)=1.1, p=0.30) and the 

number of hosts and whether reinfection was possible after clearance (χ2(1)=1.4, 

p=0.24). 



!  122

!  
Figure 5.1 Curves showing the number of model iterations required to reach the 99.9th quantile 
of the fitness landscape for different numbers of host species, different infection probabilities 
and different clearance probabilities. 95% confidence intervals are provided for factors. 
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5.4.1.2 Experiment 2 - Correlation and Contact 

The different fitness landscape distributions provided effects consistent with 

Experiment 1 (χ2(2)=172.9, p<0.0001). Increasing both the correlation between 

the landscapes, and the levels of preferential host mixing with conspecifics lead 

to decreased rates of adaptation (Correlation: including all interactions: 

χ2(2)=221.4, p<0.0001; pconspecific: including all interactions: χ2(2)=	 85.28, 

p<0.0001), see Fig 5.2. However, when the correlation between landscapes and 

the degree of preferential host mixing with conspecifics were both high, there 

was a small ameliorative effect to the rate of adaptation (χ2(1)=4.9, p=0.027), 

see Fig 5.3. There was no evidence for an effect of whether hosts could be 

reinfected after clearance (χ2(1)=	1.64, p=0.199). 
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!  
Figure 5.2 Curves showing the number of model iterations required to reach the 99.9th quantile 
of the fitness landscape for different fitness landscape distributions, different between host 
fitness landscape correlations and probabilities of contact with conspecifics relative to 
heterospecifics. 95% confidence intervals are provided for factors. 
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!  
Figure 5.3 The distribution of number of model iterations required to reach the 99.9th percentile 
of the underlying fitness landscape by the probability of contact with conspecifics and the 
between host fitness landscape correlation.  

5.4.2 Variation 

5.4.2.1 Experiment 1 - Host Number and Infection Probabilities 

Evolution across two hosts lead to a large increase in the number of circulating 

variants (modal change: 5.963; 90% SPI: 5.631, 6.272). The size of this change 

was not dramatically affected by whether reinfection was possible after 

clearance (modal change: -0.256; 90% SPI: -0.676, 0.218). Evolution on 

halfnormal fitness landscapes showed roughly the same response as evolution 

over gamma distributed landscapes (modal change: 0.027; 90% SPI: -0.295, 

0.249), but evolution on uniform landscapes lead to reduction in the number of 

variants (modal change: -0.335; 90% SPI: -0.752, -0.206). There were dramatic 

changes in the number of circulating variants caused by different probabilities of 

infection and clearance. Increases in the probability of clearance lead to 

exceptionally large decreases in the number of variants (modal change: 

-39.961; 90% SPI: -54.571, -33.476). While increases in the probability of 

infection lead also to moderate reductions in the number of variants (modal 

change: -1.904; 90% SPI: -2.807, -0.606), there was a very large positive 

interaction between the probabilities of clearance and the probabilities of 

infection (modal change: 88.838; 90% SPI: 57.639, 109.862), which offsets the 
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effect of very high reductions in variation when the probability of clearance is 

high, if the probability of infection is also high. These three results must be 

interpreted carefully as the probability of clearance was never allowed to 

exceed the probability of infection, due to the inevitable loss of infection in that 

case. The reduction in variation caused by the probability of clearance 

increasing was more dramatic when reinfection with a lost variant was 

impossible (modal change: -12.095; 90% SPI: -19.546, -6.0394), presumably 

because mutation was not generating variation at a high enough rate to account 

for the build-up of resistance to variants present in the population. Preventing 

reinfection after clearance did not have a strong effect outside of its interaction 

with the probability of clearance (modal change: -0.160; 90% SPI: -0.594, 

0.269). 

5.4.2.2 Experiment 2 - Correlation and Contact 
The modal estimate of the intercept of the number of variants on the latent scale 

was 12.638, representing a posterior predictive mode of 102 variants for a 

datum with average values for all continuous covariates and a gamma 

distributed fitness landscape. Uniform (modal change: -0.595; 90% SPI: -0.695, 

-0.433) and half-normal (modal change: -0.127; 90% SPI: -0.258, -0.003) 

distributed fitness landscapes lead to fewer variants than evolution on gamma 

distributed landscapes. The number of variants was strongly negatively 

associated with the degree of correlation between the fitness landscapes of the 

two hosts, with a modal change of -7.674 (90% SPI: -7.797, -7.485) on the 

latent scale. Increasing propensity for contact with conspecifics had a 

moderately smaller negative effect on the number of variants present (modal 

change: -5.070; 90% SPI: -5.234, -4.886). A positive interaction on the same 

scale as the original effects was found between the correlation and propensity 

for contact with conspecifics with a modal size of 5.564 (90% SPI: 5.261, 

5.779), see Fig 5.5. Contrary to expectations, the number of variants decreased 

appreciably when hosts could not be reinfected after clearance, relative to the 

case in which reinfection with the same strain was possible (modal change: 

-0.840; 90% SPI: -0.949, -0.736), see Fig 5.4. 



!  127

!  
Figure 5.4 The distribution of the number of variants at model iteration 200 with and without 
reinfection being possible 
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!  
Figure 5.5 The distribution of number of variants at model iteration 200 by the probability of 
contact with conspecifics and the between host fitness landscape correlation. 

5.4.3 Specialism vs. Generalism 

By far the largest effect on the degree of generalism exhibited by the variants 

present at the end of the simulation was the degree of correlation between the 

fitness landscapes, with a per unit change in correlation providing a modal 

3.891 (90% SPI: 3.758, 3.895) change in the latent variable. There is an effect 

of the underlying fitness landscape, with half-normal landscapes providing a 

small modal increase of 0.061 (90% SPI: 0.017, 0.095) in the value of the latent 

variable relative to gamma landscapes, and uniform landscapes providing a 

larger modal shift of 0.226 (90% SPI: 0.186, 0.264) relative to gamma 

landscapes. Preventing reinfection upon clearance of a strain provided a very 

small positive increase in the propensity for generalism in variants (modal 

change: 0.034; 90% SPI: 0.006, 0.069), potentially as generalist variants when 

rare were not removed from the population due to a build-up of resistance. As 

predicted by theory, increasing the degree of preferential contact with 

conspecifics decreased the probability of generalist variants existing the 

population (modal change: -0.429; 90% SPI: -0.493, -0.360). This change is 

relatively small, representing a maximum shift on the probability scale of around 

than 0.1, assuming that the initial probably is near 0.5. An imprecisely estimated 

interaction between the degree of correlation in the fitness landscape and the 
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probability of contact between conspecifics was found, with the reduction in 

generalism due to highly preferential interaction with conspecifics being reduced 

when the correlation between the fitness landscapes across hosts is high 

(modal change: 0.151; 90% SPI: 0.021, 0.270). 

5.5 Discussion 

Using a simple model, we have shown that evolution on a fluctuating House of 

Cards-like fitness landscape increases the rate of adaptation relative to a stable 

landscape. Fluctuating fitness landscapes are experienced by all parasites to 

some degree, as the precise make up of hosts differs even within species. 

However, hosts that are of the same species must, on average, have a more 

highly correlated fitness landscape than hosts that are of different species, 

given the existence of host barriers.  

5.5.1 Specialism, Generalism and Fitness Landscapes 

As expected in this simple case, the degree of correlation between the fitness 

landscapes in the different hosts has significant impact on the outcome of the 

evolutionary process, at least over the short timescales considered here. High 

correlation of the fitness landscapes between hosts corresponds to the case 

where there is no real cost to adapting to both host species, as regions of the 

sequence space that provide high fitness in one host, on average, provide high 

fitnesses in the other, i.e. cross-adaptation occurs. This means that two of the 

main genetic mechanisms thought to be important in driving specialism in 

pathogens would not apply: antagonistic pleiotropy (Fry 1996) and mutation 

accumulation (Kawecki 1994). The non-applicability of mutation accumulation is 

more a function of the modelling procedure than any biological factors, as we 

did not directly model a set of mutations without selective value. Some sites will 

have fitnesses close to other sites at random, but, as in this model evolution is 

occurring over House-of-Cards-like landscapes, mutations are uncorrelated and 

the effect of a mutation in one background is independent of that mutation in 

another background, i.e. epistasis is maximal. Therefore, there is no population 

of sites in which mutation does not change the underlying fitness, or change it in 

such a small way to be inappreciable to selection, in all backgrounds. As such, 

variants that are neutral on one host but advantageous on the other, a 
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requirement of mutation accumulation (Kawecki 1994), are highly unlikely to 

occur in this model. Antagonistic pleiotropy fundamentally assumes a negative 

correlation structure over regions of the fitness landscapes between hosts, with 

a proportion of mutations having effects of directly opposing signs between 

species. By manipulating the correlation between the fitness landscapes 

directly, we changed the average area of the fitness landscape that exhibits 

antagonistic pleiotropy, and this had the expected effect of decreasing the 

number of realised variants that had high fitnesses on both hosts when the 

correlation was low, and increasing the number of variants with high fitnesses 

on both hosts when it was high. 

Given an adaptive walk on a paired set of landscapes with negative correlation, 

maintaining high fitness on both hosts provides a double challenge. Firstly, by 

definition, sequences with high fitness on both hosts are rare, but secondly, 

even if one is found, maintaining position at that site is difficult, as the site is 

unlikely to be optimal for either host species. Therefore, long adaptive walks in 

either species are likely to push the sequences away from the section of the 

sequence space that provides cross-adaptation. This has been repeated 

observed in viral experimental evolution studies (Crill, Wichman, and Bull 2000; 

Remold et al. 2008). The empirical results therefore suggest that the rate of 

cross-species transmission should be an important parameter determining the 

degree of specialism versus generalism observed in the viral population. Our 

model, consistent with other modelling literature on the generalism-specialism 

divide (Gandon 2004), agrees with this empirical finding. We manipulated the 

rate of cross-species transmission by adjusting the contact rate between host 

species. When the probability of conspecific interactions increased relative to 

heterospecific interactions, fewer variants of high fitness on both host species 

were observed, consistent with the theory that adaptive walks in one species 

were driving sequences away from regions of high fitness in both.  

The statistical interaction between the degree of preferential contact between 

conspecifics and the correlation in fitness landscapes between hosts on the 

degree of generalism exhibited by variants observed in the model follows 

directly from the facts noted above. Long adaptive walks on a single host 

species lead to reductions in fitness on the linked host species. High 
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correlations between fitness landscapes reduce the region of the sequence 

space that exhibits high fitness on one host and low fitness on the other. 

Therefore, an adaptive walk on a highly positively correlated fitness landscape 

is likely to lead to a lower average change in fitness on the other host than a 

walk of an equivalent length on a anticorrelated landscape. This drives the 

observed statistical interaction, the expected change in generalism driven by 

preferential interaction between conspecifics depends on how correlated the 

underlying fitness landscapes are. 

5.5.2 Variation and Rate of Adaptation 

Variation is increased when there are two host types, presumably because 

divergent fitnesses of the same genotype between hosts exert selection after 

between-host transmission. When a parasite switches from one host to the 

other, the fitnesses are unlikely be to aligned for the reasons discussed above, 

when there is no correlation between the landscapes adaptive walks in one host 

push sequences away from regions of the fitness landscape providing 

coadaptation, so the variant, when transmitted into the new host species, 

moves away from the (potentially adapted) sequence in the original host. 

Fitness change on environment switch has been noted repeatedly in both 

pathogens, such vesicular stomatitis virus (Remold et al. 2008), and non-

pathogens, such as Pseudomonas fluorescens evolving in low quality media 

(Buckling et al. 2007). This also explained the dramatic increase in the rate of 

adaptation seen in two-host systems versus one-host systems in this model. 

Simulations of adaptive walks in House-of-Cards landscapes indicate that the 

average walk length to a local optimum is short (Kauffman and Levin 1987). In 

elitist implementations, where a lower fitness sequence cannot replace a higher 

fitness sequence, this represents a dead end. In our implementation and others 

like it (Heredia et al. 2017), there exists a non-zero probability of fixation of a 

non-optimal sequence through drift effects, so given a long enough time horizon 

populations can escape from fitness optima. However, this is unlikely to be 

important in short run-time simulations such as ours, so a sequence becoming 

trapped at a local optimum is still likely to be a common occurrence.  

A second host provides a pathway to escape a local optimum in the first, as 

noted by Cheetham (1993), with regards to fluctuating environments generally, 
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and Cervera, Lalić and Elena (2016), specifically in the pathogen evolution 

case. Because the rank correlation in fitness between the two hosts is not 

complete, a local optimum in one host is unlikely to represent a local optimum in 

another, so cross species transmission allows escape. When a cross-species 

transmission event occurs, the sequence can evolve down a new path from the 

position it starts on in the second host, then when cross-species transmission 

back to the original host occurs, the sequence will have escaped the local 

optimum. This results in a dramatic increase the in the rate of adaptation, and 

explains the considerably higher proportion of two host runs relative to one host 

runs reaching the 99.9th percentile of the fitness landscape.  

The underlying distribution of the fitnesses across a landscape also strongly 

influenced the rate of adaptation. This is likely due to the adaptation strategy 

chosen for the model, where the fixation probability is a function of the fitness 

difference between the resident and mutant sequences. The three distributions 

used to generate the fitnesses have very different tails. The uniform distribution 

used here was bounded at 1, meaning as the adaptation process proceeds, the 

difference between the current fitness and next highest fitness value must go 

towards 0. This means that probability of replacement converges to the neutral 

fixation probability as higher fitness values are achieved. This effect does not 

occur with the gamma or half-normal landscape distributions, as these 

distributions are unbounded to the right. The forcing of the probability of 

replacement towards the neutral fixation probability likely leads to the observed 

reduction in the rate of adaptation in the uniform distribution relative to the 

others. This theory about the form of the replacement probability being the 

cause of the differences between fitness landscapes is consistent with the 

gamma distributed fitness landscape having a higher rate of adaptation than the 

half-normal distributed landscape, as the variance of the gamma distribution is 

higher. So, on average the distance between variants will be higher, leading to 

higher acceptance probabilities.  

Contrary to our stated hypothesis, the presence of a highly efficient adaptive 

immune system capable of completely blocking reinfection with a strain lead to 

a clear reduction of diversity in the two-host case, despite the fact that the lack 

of cross-immunity between strains would be expected to lead to stable 
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coexistence (Gupta 1998). While the selection between strains may be such as 

to overpower this effect (Cobey 2014), it would not be expected to reverse it.  

5.5.3 Conclusion 

With a simple model explicitly evolving a population of digital organisms across 

a defined sequence space, we find strong evidence that positive correlations 

between fitness landscapes between hosts represent a strong driver of 

generalism, and that the rate of contact between host species is also important. 

We find that evolution in multiple hosts increases diversity, with degree of 

increase dependent on the degree of correlation between the environments. 

The rate of adaptation is found to be dramatically increased when evolution 

occurs across multiple environments. This is likely due to the ability of 

sequences caught on local optima of the fitness landscape on any one host to 

escape these optima through cross-species transmission. The results 

generated here are consistent with previous literature on the topic, and this 

simple stereotyped model adds weight to the already strong empirical and 

theoretical literature on the evolution of generalism, and generation of diversity 

in heterogeneous environments.  
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Chapter 6 - General discussion 
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6.1 A synopsis of the results 

The aim of this thesis was to explore the factors that explain the distribution and 

diversity of multihost pathogens in bumblebees with special focus on their 

viruses. Bumblebees are an important part of the pollinator community, 

providing pollination services, such as buzz pollination, which other pollinators 

are inefficient at (Heinrich 2004). Despite this, remarkably little is known about 

their diseases in the wild. This thesis explored both the factors that lead to 

infection of bumblebees in the wild and the diversity of pollinators that 

bumblebees are infected with. Chapter 2 described a series of new multihost 

pollinator viruses and used them to investigate the effects the evolutionary 

history of hosts and pathogens on the current distribution of disease in a natural 

multi-host mutli-parasite system. Chapter 3 studied four of the viruses found in 

Chapter 2 in more detail looking at their diversity and factors that predict their 

prevalence in the wild. Chapter 4 presented evidence that the use of 

neonicotinoid pesticides may be leading to greater infection in exposed 

individuals by increasing their susceptibility to disease. Chapter 5 explored the 

impact of evolution across correlated fitness landscapes of the type 

experienced by multihost parasites using digital organisms. 

6.1.1 Chapter 2 - Evolution of host range: The prevalence of novel 

bumblebee viruses is explained by both host and pathogen phylogenies 

Previously, only one virus has been initially discovered in bumblebees, which 

was unnamed (Clark 1982). However, viruses discovered in other species are 

frequently found in bumblebees (Levitt et al. 2013; McMahon et al. 2015; Singh 

et al. 2010). In Chapter 2, I described and confirmed by PCR 18 new 

bumblebee viruses, as well as describing bioinformatic evidence of the potential 

existence of 19 more. As some of these 19 may constitute multiple contigs from 

the same virus, we do not report them as separate viruses. In assessing group 

level prevalence by PCR, I find considerable differences in the levels of host 

usage across the viruses. Some viruses, such as River Luinaeg virus, and 

Allermuir Hill viruses 1, 2, and 3 are almost completely limited to one, two or 

three hosts, while others, such as Castleton Burn virus and Gorebridge virus 

are found at intermediate frequencies in all hosts. Large variations in the degree 

of generalism between pathogens are common, for instance compare the 
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extreme generalism of rabies virus (Lembo et al. 2007) to the near completely 

host limitation of hepatitis virus A to humans and non-human primates (Purcell 

and Emerson 2001). Interestingly, at least within the bees, strong host barriers 

are rarely observed, and these highly-limited cases represent the exception 

rather than the norm. However, the normal caveats about attempting to 

determine host range from point prevalence data apply, in that a non-detection 

from a single sample is not strong evidence of absence from a species. 

I used the novel viruses to assess the extent to which the bumblebee-virus 

infection network is explained by the relatedness of the hosts and parasites. 

Most interaction studies are plagued with the issue of false negatives (Poulin et 

al. 2016), biasing estimates of parameters. In a manner similar in concept to 

Walker et al. (2017), I attempted to control for this by directly including the 

sampling uncertainty in a non-standard link function, hopefully rendering the 

results robust to this bias. I showed that related hosts are infected by similar 

sets of viruses, related viruses infect similar sets of hosts and that related hosts 

are infected by related viruses. A large proportion of the variance in infection 

was due to phylogenetically-correlated effects, which is consistent with the 

literature on host shifts, where related hosts are often found to share pathogen 

assemblages (e.g. Hadfield et al. 2014; Waxman et al. 2014). This is often 

thought to be due to biased-host switching. However, the fact that related viral 

sequences were found in different host species in Chapter 3 indicates that 

these host shifts are occurring on ecological rather than evolutionary 

timescales. I therefore believe that prevalences are correlated between related 

species by either the shared environment from the perspective of the parasite 

causing cross-species transmission to occur more efficiently, or by preferential 

mixing between related bee species at flowers driven by phylogenetically-

correlated flower preferences (Goulson, Lye, and Darvill 2008; Harmon-Threatt 

and Ackerly 2013). Effects of the relatedness of viral species on their host 

assemblages are less commonly observed, potentially because they are less 

commonly tested for. In this case, a small effect of viral relatedness on the 

degree of sharing of host assemblage was observed, implying that some aspect 

of conserved viral physiology leads to more or less efficient reproduction in 

certain host species. A similarly sized coevolutionary interaction was also 
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observed indicating that related hosts tend to have similar prevalences of 

related pathogens. 

6.1.2 Chapter 3 - The ecological predictors of viral infection in wild 
bumblebees 

I performed an exploratory study to investigate the abiotic predictors of 

bumblebee infection using a subset of novel virus from Chapter 2 as well as two 

previously known viruses that infect bumblebees in the wild: Acute bee paralysis 

virus and Slow bee paralysis virus. Previously, the only factor that had be 

shown to be predictive in wild bumblebee infection was the presence of 

sympatric managed bees (Fürst et al. 2014). I acquired prevalence data at the 

individual level of four of the novel viruses and tested for their associations with 

daily average maximum temperature, solar radiation, vapour pressure, wind 

speed and precipitation during the months of sampling. As infection is likely to 

come about though physical contamination of flowerheads (Graystock, Goulson, 

and Hughes 2015; McArt et al. 2014), these abiotic factors were chosen as 

either they had been reported in being important in the inactivation of viruses in 

the environment in other studies (temperature, vapour pressure, solar 

radiation), or in bumblebee foraging behaviour (wind speed, precipitation). This 

analysis showed that River Luinaeg virus was positively associated with 

increased rainfall, even after strong regularisation of the posterior distribution to 

account for the fact that the number of site-level covariates was greater than the 

number of sites assayed. The model also indicated there were strong 

associations between the probability of infection with River Luinaeg virus and 

Loch Morlich virus even after accounting for environmental covariates, location 

and host species. I expected rainfall to decrease prevalence but the results 

showed the opposite, although, the results are consistent with high precipitation 

being a signal of a harsh environment. Condition-infection correlations have 

been reported in other species (e.g. bank voles (Beldomenico et al. 2008)), and 

as a reduction in foraging time caused by frequent rainfall could feasibly put the 

colony into a state of starvation, increasing its susceptibility to disease. The 

cause of the River Luinaeg virus-Loch Morlich virus association is uncertain, 

though I personally favour an explanation of facilitation between the viruses 

through one or the other’s actions leading to coinfection (Eswarappa et al. 2012; 

Pedersen and Fenton 2007). I favour this explanation predominately due to the 
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flaws in the other possible explanations in this case. The association does not 

appear to seem to represent a general immunosuppression, as there was no 

correlated increase in infection with Mayfield virus 1 and Mayfield virus 2. And 

the viruses are not likely to be replication deficient (López-Ferber et al. 2003), or 

satellite viruses of one another, as both occur in single infections. 

I also show that the diversity of the novel viruses found is greater than that of 

the previously known bee viruses: Acute bee paralysis virus (ABPV) or Slow 

bee paralysis virus (SBPV). ABPV was lacking in diversity that of the 38 

sequences sampled, there were no detectable genetic differences. Both ABPV 

and SBPV were also at high prevalence in the sampled populations. I believe 

the most parsimonious explanation in this case, is that there was a strong 

bottlenecking event that removed diversity followed by an epidemic in these 

species, similar to the outbreak of Dengue in Singapore described by 

Hapuarachchi et al. (2016). However, the results could also be consistent with a 

selective sweep associated with a highly fit new viral variant causing an 

epidemic. A possible argument against this is that sampling in 2015 found 

roughly equivalent prevalences of SBPV in Scottish Bombus terrestris 

populations (Manley 2017), implying that the prevalences were not unusually 

high during sampling. As between sampling year sequences were not 

generated for SPBV and ABPV, it is impossible to tell whether a different strain 

dominates in different years, or the same strains become prevalent every year. 

A randomisation test indicated that, after accounting for phylogenetic 

uncertainty, Mayfield virus 1 variants assorted non-randomly with host species, 

with the set of sequences designated Clade A preferentially assorting with B. 

terrestris individuals, and Clade B showing a lack of B. terrestris infection. 

Sampling of the Clade A was not intense enough to determine whether 

sequences infecting other Bombus species are also present in it at intermediate 

frequencies, but falling within the clade was one Bombus lucorum infecting 

variant, so there is some degree of cross species transmission, even within that 

set of variants. Interestingly, this could imply that Mayfield virus 1 actually 

consists of two phenotypically different, but genetically similar strains, one 

which is a psuedospecialist on B. terrestris and one that is a generalist all 

infected species engaging in frequent cross-species transmission.  
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6.1.3 Chapter 4 - Pulsed pesticide exposure may increase the rate of 

pathogen uptake in Bombus terrestris bumblebees 

Chapter 4 investigated the effect of field realistic doses of the neonicotinoid 

pesticide clothianidin on the update of pathogens from the environment by B. 

terrestris workers in order to determine whether pesticides are likely to be 

having a major effect on the distribution of pesticides in the wild. Pesticide 

studies in the past have illustrated negative effects on survivorship (Doublet et 

al. 2015), and other infection endpoints (Di Prisco et al. 2013; Vidau et al. 2011) 

when the pesticide is coincident with infection. We found that exposure to a 

pulse of neonicotinoid at field realistic levels provides small increases to the rate 

of infection in exposed colonies. 

6.1.4 Chapter 5 - Between-host fitness landscape correlation drives 

multiple outcomes in the evolution of multihost digital parasites 
In Chapter 5, I developed and applied a highly stereotyped model of the 

evolution of avirulent digital organisms across a multihost fitness landscape. I 

explored how evolution over a fluctuating fitness landscape with and without an 

immune system capable of immunological memory would affect the rate of 

adaptation, the propensity for generalism and the amount of variation 

generated. I find that parasite diversity increases in cases when the probability 

of infection is high, and therefore there is large stable infected host population. 

Additionally, parasite diversity is higher with low interspecific contact, in 

multihost relative to single host infections, and with low correlations in the 

fitness landscapes between host species. The results from the model align with 

expectations from other theoretical studies either directly, or by analogy. 

Fluctuation in environmental conditions is known to maintain variation (reviewed 

in Kassen 2002). Lower rates of interaction between host species result in lower 

rates of cross species transmission. The displacement from a fitness optimum 

by cross-species transmission appears to be the main driver of the generation 

of variation in the system, so correspondingly reduced rates of cross species 

transmission lead to less genetic variants being maintained. This displacement 

on cross-species transmission also appears to increase the rate of adaptation 

by displacing the variants from local optima and allowing the adaptive walk to 

continue consistent with work by Cheetham (1993) and Cervera et al. (2016). 
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6.2 Implications and open questions  

The discovery of a new set of multihost viruses of bumblebees increases our 

understanding of the viral biodiversity present in this important group, which has 

value in and of itself. However, there are also practical benefits. The transfer of 

managed bumblebee colonies around the world is leading to increased disease 

transmission between distant areas (Goka, Okabe, and Yoneda 2006; 

Graystock et al. 2013). The discovery of these viruses will allow breeding 

facilities to add them to their routine testing in order to minimise the spread of 

disease to non-exposed wild populations. As these viruses are only known from 

bumblebees, this also allows studies to be performed where bumblebee viruses 

are experimentally infected into honeybees to help determine what the risk 

might be if a bumblebee virus emerged into the managed honeybee population.  

The implication that exposure to field realistic doses of pesticide increases 

susceptibility to a broad suite pathogens has potentially important implications 

for agriculture and conservation. While a moratorium on the use of 

neonicotiniods such as clothianidin has been issued in the EU, they are still 

commonly used in other countries, and this common practice might be 

contributing to the ongoing declines in bumblebee populations (Williams and 

Osborne 2009). The size of the effect could not be accurately estimated in 

Chapter 4, and clearly this is a very important parameter both for the 

epidemiology of bumblebee disease, and for conservation purposes. If the 

effect is small, then it is likely insignificant in the face of factors like land-use 

changes (Vanbergen and the Insect Pollinators Initiative 2013) and the direct 

impact of pesticides themselves on colony growth and output (e.g. Whitehorn et 

al. 2012). However, given that the possibility exists that the effect is large, 

further studies should be performed in order to quantify the risk. 

The model I presented in Chapter 5 came to conclusions broadly similar with 

the literature on evolution in heterogeneous environments. Given the 

importance of epistasis between landscapes in the evolution of RNA viruses 

(Elena, Solé, and Sardanyés 2010), an extension of the model to handle 

virulent pathogens may give interesting results. Especially as the literature on 

virulent pathogens makes very different predictions about the maintenance of 

diversity (e.g. Sasaki 2000).  
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6.3 Conclusion 

This thesis has investigated the factors influencing the diversity and distribution 

of multihost viruses in bumblebees. Chapter 2 described a new collection of 

bumblebee viruses, and use these viruses to show that evolutionary histories of 

the hosts and parasites have impacts on prevalence in the wild. Chapter 3 

showed that abiotic factors may affect the distribution of infection across space, 

and that there is considerably less diversity in ABPV and SBPV than is present 

in the novel viruses tested. Chapter 4 found that field realistic doses of the 

neonicotinoid pesticide clothianidin likely increase susceptibility to infection with 

a wide panel of infectious agents. Chapter 5 used a simple model of evolution 

across fitness landscapes to show that, consistent with theory, cross-species 

transmission is likely to increase the rate of adaptation, increase variation and 

at high rates of switching promote generalism. In conclusion, there are a 

complex array of factors that influence the diversity and distribution of 

bumblebee viruses in natural communities, and we found evidence for viral 

genetics, host genetics, the weather and pesticides all playing a role. 
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Appendices 

Chapter 2 Appendix 

Table A2.1 Locations of sites where bees were collected. 

Table A2.2 The number of bees in each pool and their species. 

Location Lat Long

Dalwhinnie 56.935 -4.245

Edinburgh 55.921 -3.179

Glenmore 57.166 -3.696

Gorebridge 55.826 -3.046

Iona 56.328 -6.406

Ochils 56.158 -3.88

Pentlands 55.796 -3.404

Staffa 56.436 -6.341

Stirling 56.149 -3.916

Pool ID Species Sample Size Location

BO Bombus bohemicus 10 Gorebridge, the Ochils, the Pentlands and Glenmore

C1 Bombus cryptarum 10 Ochills

C2 Bombus cryptarum 10 Ochills

C3 Bombus cryptarum 5 Iona, the Ochils and the Pentlands

C4 Bombus cryptarum 8 Gorebridge and Edinburgh

DIV Mixed 7 Gorebridge, Staffa, the Ochils and the Pentlands

H1 Bombus hortorum 10 Gorebridge

H2 Bombus hortorum 10 Gorebridge

H3 Bombus hortorum 10 Gorebridge

H4 Bombus hortorum 10 Gorebridge

H5 Bombus hortorum 10 Gorebridge

H6 Bombus hortorum 6 Gorebridge

H7 Bombus hortorum 7 Gorebridge

H8 Bombus hortorum 7 Stirling, Glenmore and Dalwhinnie

H9 Bombus hortorum 11 Iona

J1 Bombus jonellus 10 Stafa

J2 Bombus jonellus 10 Stafa

J3 Bombus jonellus 5 Iona and Staffa

J4 Bombus jonellus 10 Glenmore

J5 Bombus jonellus 10 Glenmore

J6 Bombus jonellus 10 Glenmore
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J7 Bombus jonellus 5 Dalwhinnie and Glenmore

L1 Bombus lucorum 10 Stirling and the Ochils

L2 Bombus lucorum 10 Stirling and the Ochils

L3 Bombus lucorum 10 Gorebridge

L4 Bombus lucorum 10 Gorebridge

L5 Bombus lucorum 10 Gorebridge

L6 Bombus lucorum 10 Gorebridge

L7 Bombus lucorum 10 Gorebridge

L8 Bombus lucorum 10 Gorebridge

L9 Bombus lucorum 10 Gorebridge

L10 Bombus lucorum 10 Gorebridge

L11 Bombus lucorum 8 Gorebridge

L12 Bombus lucorum 10 Edinburgh

L13 Bombus lucorum 10 Edinburgh

L14 Bombus lucorum 10 Edinburgh

L15 Bombus lucorum 10 Stirling, the Ochils and the Pentlands

L16 Bombus lucorum 10 Iona, the Ochils and the Pentlands

L17 Bombus lucorum 2 The Ochils

L18 Bombus lucorum 10 Edinburgh

L19 Bombus lucorum 10 Edinburgh

L20 Bombus lucorum 2 Edinburgh

LA1 Bombus lapidarius 11 Gorebridge

LA2 Bombus lapidarius 8 Gorebridge

LA3 Bombus lapidarius 8 Edinburgh

LA4 Bombus lapidarius 7 Stirling and the Ochils

M Bombus monticola 10 Glenmore, the Ochils and the Pentlands

MA Bombus magnus 11 Iona, the Ochils and Glenmore

P1 Bombus pascuorum 10 Stirling

P2 Bombus pascuorum 10 Ochills

P3 Bombus pascuorum 9 Iona, Staffa and the Pentlands

P4 Bombus pascuorum 10 Ochills

P5 Bombus pascuorum 10 Ochills

P6 Bombus pascuorum 10 Ochills

P7 Bombus pascuorum 8 Stirling

P8 Bombus pascuorum 10 Ochills

P9 Bombus pascuorum 5 Ochills

P10 Bombus pascuorum 10 Edinburgh

P11 Bombus pascuorum 10 Edinburgh

P12 Bombus pascuorum 10 Edinburgh

P13 Bombus pascuorum 10 Edinburgh

P14 Bombus pascuorum 10 Edinburgh
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P15 Bombus pascuorum 5 Edinburgh

P16 Bombus pascuorum 10 Gorebridge

P17 Bombus pascuorum 10 Gorebridge

P18 Bombus pascuorum 10 Gorebridge

P19 Bombus pascuorum 10 Gorebridge

P20 Bombus pascuorum 10 Gorebridge

P21 Bombus pascuorum 10 Gorebridge

P22 Bombus pascuorum 10 Gorebridge

P23 Bombus pascuorum 5 Gorebridge

PR1 Bombus pratorum 10 Edinburgh

PR2 Bombus pratorum 10 Edinburgh

PR3 Bombus pratorum 9 Edinburgh

PR4 Bombus pratorum 10 Gorebridge

PR5 Bombus pratorum 8 Gorebridge, Stirling and the Ochils

T1 Bombus terrestris 10 Stirling and the Ochils

T2 Bombus terrestris 10 Gorebridge

T3 Bombus terrestris 10 Gorebridge

T4 Bombus terrestris 10 Gorebridge

T5 Bombus terrestris 10 Gorebridge

T6 Bombus terrestris 10 Gorebridge

T7 Bombus terrestris 10 Gorebridge

T8 Bombus terrestris 10 Gorebridge and Edinburgh

T9 Bombus terrestris 10 Edinburgh

T10 Bombus terrestris 10 Edinburgh

T11 Bombus terrestris 10 Edinburgh

T12 Bombus terrestris 10 Edinburgh

T13 Bombus terrestris 10 Edinburgh

T14 Bombus terrestris 10 Stirling and the Ochils

T15 Bombus terrestris 10 Stirling and the Ochils

T16 Bombus terrestris 5 Stirling and the Ochils

T17 Bombus terrestris 10 Gorebridge

T18 Bombus terrestris 10 Gorebridge

T19 Bombus terrestris 8 Gorebridge

T20 Bombus terrestris 10 Edinburgh

T21 Bombus terrestris 10 Edinburgh

T22 Bombus terrestris 6 Edinburgh

T23 Bombus terrestris 10 Gorebridge

T24 Bombus terrestris 10 Gorebridge

T25 Bombus terrestris 10 Gorebridge

T26 Bombus terrestris 10 Gorebridge
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Table A2.3 The PCR conditions for all reactions. Conditions code are given below the table. 

Primer Virus Sequence Conditions Reference

MV1Forward Mayfield virus 1 TATCCGCCGGCGT
AATCTTC

PCR 60 This study
MV1Reverse Mayfield virus 1 GGATCTGATCCGTA

GCGTGG

MV2Forward Mayfield virus 2 CGGCTGCGTTGCG
TAGTATA

T62 This study
MV2Reverse Mayfield virus 2 ACCTGCCGTGCTA

ACAAATA

AHV1Foward Allermuir Hill virus 1 TGGGGAAGGAATA
TTTGCAGGT

T62 This study
AHV1Reverse Allermuir Hill virus 1 GGCATCTTTGAAGA

TAACCTACGC

AHV2Foward Allermuir Hill virus 2 TGCTGGTGCTGAT
GTTACATCT

T62 This study
AHV2Reverse Allermuir Hill virus 2 TTCGAAACACAACT

GCAATACA

AHV3Foward Allermuir Hill virus 3 GGGGCTTCGGCTG
AATCTAG

PCR 60 This study
AHV3Reverse Allermuir Hill virus 3 TGCAAACAATTAGA

GTTGGCCA

MLVFoward Mill Lade virus TCTCGCAATCCATA
CGTACTTCA

T62 This study
MLVReverse Mill Lade virus CGTCAACAAGGTC

GTTTCTTCC

CBVForward Castleton Burn virus TTCTCTATCGAGCG
GCCTTG

T62 This study

CBVReverse Castleton Burn virus TGTGCTTCCATGTA
GGCGAA

SVForward Sheriffmuir virus GTTTTGACCAGCA
CCAGAGC

PCR 60 This study
SVReverse Sheriffmuir virus CCAGTTCGGGGTG

GCTAAAT

DVForward Dumyat virus CGGAGATAACGGA
GGTGTGG

T62 This study

DVReverse Dumyat virus GCAAGGAGACAAG
GCTCCTT

CMVForward Cnoc Mor virus TCAGCCGAATTAG
AATGTGTACA

T62 This study
CMVReverse Cnoc Mor virus GCGCTTTCGAATA

GATGCCT

ARVForward Agassiz Rock virus TGAATGGTAGGAG
CATGCGT

PCR 60 This study

ARVReverse Agassiz Rock virus TGTAGTAGATGCCT
GGGTTTGA

ELVForward Elf Loch virus GAACAAGCGCGAG
TGGAAAC

PCR 62 This study
ELVReverse Elf Loch virus TCGAGATTATCTGC

GTGGCC

CCVForward Clamshell Cave virus GGCCTCAAGGTAT
GTTGAATAACA

T62 This study
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PCR 62: 95°C 5:00, (95°C 0:15, 62°C 0:30, 72°C 0:45)x40, 72°C 7:00, 4°C 
PCR 60: 95°C 5:00, (95°C 0:15, 60°C 0:30, 72°C 0:45)x40, 72°C 7:00, 4°C 
T62: 95°C 5:00, (95°C 0:15, 62°C [minus 1°C per step] 0:30, 72°C 0:45)x10, (95°C 0:15, 52°C 0:30, 72°C 0:45)x30, 
72°C 7:00, 4° C 

Table A2.4 The genbank numbers IDs of the sequences used to build the host tree 

CCVReverse Clamshell Cave virus TGCACTTATTATCT
GCTGTCTTAGA

T62 This study

BBVForward Boghill Burn virus TGGATCACCTGAT
GGATTCCT

T62 This study
BBVReverse Boghill Burn virus TCGATCTCTCTGTG

AGTCTCTGT

BHVForward Black Hill virus ACATCTATGTGCTG
CAGCGA

T62 This study

BHVReverse Black Hill virus CCATGACCGTGTG
CTAGCAT

RLVForward River Liunaeg virus ACCAGGTGGAACT
CGTGTTT

PCR 60 This study
RLVReverse River Liunaeg virus GTACTCTGGACCT

TTGCCGT

LMVForward Loch Morlich virus AGTGGTGGAGATG
GAGACGA

PCR 60 This study

LMVReverse Loch Morlich virus CCACAGATACCAG
TGGCGTA

GVForward Gorebridge virus GGATAGATACACTA
AAGGATGCTAAAA

T62 This study
GVReverse Gorebridge virus ATTCGGTGCATCAA

GGAGCA

HPLV34Forward Hubei partiti-like 
virus 34

TGGCTTAGATTTAA
TGCTACGAT

T62 This study
HPLV34Reverse Hubei partiti-like 

virus 34
CCTCATAGCTCCAC

CAGTAACC

SBPV 774F Slow bee paralysis 
virus

GAGATGGATMGRC
CTGAAGG

T62 Lena Wilfert (pers 
comm)

SBPV 1698R Slow bee paralysis 
virus

CATGAGCCAKGAR
TGTGAA

ABPV 5088F Acute bee paralysis 
virus

CYATGGACACACC
CTATGTG

T62 Lena Wilfert (pers 
comm)

ABPV 6122R Acute bee paralysis 
virus

CGCCATTTTGCTAC
TTCTCC

16S 
ribosomal 
RNA gene

Cytochrome 
oxidase 
subunit I 
(COI) gene

Phosphoenol
pyruvate 
carboxykinas
e

Long-
wavelength 
rhodopsin

Elongation 
factor-1 
alpha gene

Arginine 
kinase gene

Bombus 
terrestris DQ788118.1 AY181170.1 EF050865.1 AF493022.1 DQ788288.1 AF492888.1

Bombus 
cryptarum DQ787995.1 AY181100.1 EF050855.1 AY739461.1 DQ788175.1 DQ788416.1

Bombus 
lucorum DQ788051.1 AY181120.1 EF050857.1 AF493021.1 DQ788225.1 AF492887.1

Bombus 
patagiatus DQ788078.1 AF279499.1 EF050862.1 AF493020.1 DQ788252.1 AF492886.1

Bombus 
lapidarius DQ788045.1 AY181115.1 EF050902.1 AF493005.1 DQ788219.1 AF492871.1
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Table A2.5 The genbank IDs of the sequences used to build the viruses tree. 

Bombus 
monticola DQ788064.1 AY181132.1 EF050848.1 AY739483.1 DQ788238.1 DQ788466.1

Bombus 
pascuorum DQ788077.1 AY181137.1 EF050932.1 AF493001.1 DQ788251.1 AF492867.1

Bombus 
hortorum DQ788024.1 AY181105.1 EF050999.1 AF492987.1 DQ788200.1 AF492853.1

Bombus 
pratorum DQ788087.1 AY181149.1 EF050819.1 AF493033.1 AF492966.1 AF492899.1

Bombus 
jonellus DQ788039.1 AY181113.1 EF050814.1 AY739473.1 DQ788214.1 DQ788446.1

Bombus 
bohemicus DQ787980.1 AY181181.1 EF050979.1 AF492992.1 AF492925.1 AF492858.1

Apis mellifera L06178.1 L06178.1

Episyrphus 
balteatus AY573115.1 KR262632.1

Drosophila 
melanogaster KY559386.1 KY559386.1

Anopheles 
dirus JX219731.1 JX219731.1

Bombyx mori KM875545.1 KM875545.1

Heliconius 
melpomene KP100653.1 KP100653.1

Allantus 
luctifer KJ713152.1 KJ713152.1

Philotrypesis 
pilosa JF808723.1 JF808723.1

Bombus 
magnus AY181123.1

Eristalis 
pertinax KX055520.1

Genbank ID Virus Negative Sense

NP_066241.1 ABPV 　

This study Allermuir Hill virus 1 　

This study Allermuir Hill virus 2 　

This study Allermuir Hill virus 3 　

JX045858.1 Aphid lethal paralysis virus 　

NC_032494.1 Beihai paphia shell virus 2 　

NC_032972.1 Beihai sobemo-like virus 8 　

YP_009336943.1 Beihai weivirus-like virus 17 　

YP_009337445.1 Beihai zhaovirus-like virus 4 　

JF423196.1 Big Sioux River virus 　

NC_003784.1 Black queen cell virus 　

This study Boghill Burn virus 　

NC_024297.1 Bovine astrovirus strain BAstV-
GX7/CHN/2014 　
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This study Castleton Burn virus 　

APG79015.1 Changjiang picorna-like virus 17 　

KY937971.1 Chronic bee paralysis virus 
segment 　

This study Clamshell Cave virus x

NC_003924.1 Cricket paralysis virus 　

AF188515.1 Cryphonectria hypovirus 3 　

JQ413340.1 Deformed wing virus A 　

AY251269.2 Deformed wing virus B 　

Unpublished, Lena Wilfert (pers 
comm) Deformed wing virus C 　

NC_004169.1 Drosophila x virus 　

This study Dumyat virus 　

This study Elf Loch virus 　

APT68154.1 Ganda bee virus x

This study Gorebridge virus 　

NC_003607.2 Helminthosporium victoriae virus 　

NC_032203.1 Hubei astro-like virus 　

NC_033015 Hubei chuvirus-like virus 3 　

APG78254.1 Hubei odonate virus 13 　

APG78322.1 Hubei partiti-like virus 34 　

APG77985.1 Hubei picorna-like virus 15 　

APG78030.1 Hubei picorna-like virus 57 　

YP_009336934.1 Hubei tombus-like virus 29 　

KX578271.1 Iflavirus sp. isolate VDV-2 　

NC_001916.1 Infectious pancreatic necrosis 
virus 　

KX421583.1 Israeli acute paralysis virus 　

NC_004807.1 Kashmir bee virus 　

HQ871931.2 Lake Sinai virus 1 　

HQ888865.2 Lake Sinai virus 2 　

KR021357.1 Lake Sinai virus 6 　

This study Loch Morlich virus 　

This study Mayfield virus 1 　

This study Mayfield virus 2 　

This study Mill Lade virus 　

AMO03223.1 Muthill virus 　

AF174533.1 Nodamura virus 　

M87661.2 Norwalk virus 　

This study River Liunaeg virus 　
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A2.6 Aggregate prevalence analysis 
Introduction and Methods 
A reanalysis of the data using an aggregated presence-absence matrix for each host-virus 
combination was performed during corrections. The methods used were the same as presented 
for the main text, excepting the changes outlined below: 

As a reduction to a presence-absence matrix removes the replication within host-virus 

combinations, both the effect of pool ID and spatial composition are no longer identified, so 
these were removed from the model. All other terms were maintained. A full phylogenetic 
uncertainty analysis was not performed, only the maximum clade credibility trees for the hosts 

and viruses were used. These trees were calculated using the median node heights. Only the 
model using both the positive and negative sense viruses was fitted, as this maximises the 
amount of data available to fit the model.  

The model fitted is shown below, where y’ is the value of the latent variable, i is the index of the 
data point, µ is the global mean of the latent variable, ε is a fixed unidentified error term and all 

other effects are estimated by partial pooling: 

y’i = µ + hosti + virusi + host phylogenetic effecti + virus phylogenetic effecti + host evolutionary 

assemblage effecti + virus evolutionary assemblage effecti + coevolutionary interactioni + ε 

Results and Discussion 
The reduction in the size of the dataset due to the aggregation meant that (even with the 
maximal data inclusion gained by the addition of the negative sense virus) there was not 

NC_001545.2 Rubella virus 　

NP_049374.1 Sacbrood virus 　

YP_003622540.1 SBPV 　

KY053857.1 Scaldis River bee virus x

AOF41423.1 Seattle Prectang virus x

This study Sheriffmuir virus 　

NC_001547.1 Sindbis virus 　

KJ556849.1 Tobacco ringspot virus isolate SK 　

KX578272.1 Varroa destructor virus 3 　

NC_033164.1 Wenzhou shrimp virus 10 　

NC_033300.1 Wenzhou shrimp virus 9 　

YP_009304995.1 Wuchang Cockroach Virus 1 x

NC_033764.1 Wuhan cricket virus 2 　

NC_033473.1 Wuhan insect virus 14 　

KX884291.1 Wuhan spirurian nematodes virus 
1 　

YP_009345041.1 Xinzhou nematode virus 1 　
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enough information left in the data to fit the model, and the model was not capable of 
converging with the weak priors provided. Given that aggregation constituted a loss of 
approximately 90% of the data, this is not a surprising outcome. While the model would be 

capable of converging to a posterior distribution if more informative priors were used, this would 
not be a justified approach considering the lack of certainty about what the correct parameter 
values should be a priori. 

As such, no conclusions can be drawn from this aggregate analysis. 

Chapter 3 Appendix 
Table A3.1 The PCR conditions for all reactions. Conditions code are given below the table. 

T62: 95°C 5:00, (95°C 0:15, 62°C [minus 1°C per step] 0:30, 72°C 0:45)x10, (95°C 0:15, 52°C 0:30, 72°C 0:45)x30, 
72°C 7:00, 4° C 

Chapter 4 Appendix 
Table A4.1 The PCR conditions for all reactions. Conditions code are given below the table. 

Primer Virus Sequence Conditions Reference

RLVForward River Liunaeg virus ACCAGGTGGAACT
CGTGTTT

T62 This study
RLVReverse River Liunaeg virus GTACTCTGGACCT

TTGCCGT

LMVForward2 Loch Morlich virus GCATGTGGCTCATT
TTTGTTCC

T62 This study
LMVReverse2 Loch Morlich virus AGTCCAGAGGAGA

AGCACAA

MayGenericForward Mayfield generic TGAGACAACTCGG
CCATGAC

T62 This study
MayGenericReverse Mayfield generic CTATGCCGATGGTT

TGCGTG

SBPV 774F Slow bee paralysis 
virus

GAGATGGATMGRC
CTGAAGG

T62 Lena Wilfert (pers 
comm)

SBPV 1698R Slow bee paralysis 
virus

CATGAGCCAKGAR
TGTGAA

ABPV 5088F Acute bee paralysis 
virus

CYATGGACACACC
CTATGTG

T62 Lena Wilfert (pers 
comm)

ABPV 6122R Acute bee paralysis 
virus

CGCCATTTTGCTAC
TTCTCC

Primer Virus Sequence Conditions Reference

MV1Forward Mayfield virus 1 TATCCGCCGGCGT
AATCTTC

T62 This study
MV1Reverse Mayfield virus 1 GGATCTGATCCGTA

GCGTGG

MV2Forward Mayfield virus 2 CGGCTGCGTTGCG
TAGTATA

T62 This study

MV2Reverse Mayfield virus 2 ACCTGCCGTGCTA
ACAAATA

AHV1Foward Allermuir Hill virus 1 TGGGGAAGGAATA
TTTGCAGGT

T62 This study
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AHV1Reverse Allermuir Hill virus 1 GGCATCTTTGAAGA
TAACCTACGC

T62 This study

MLVFoward Mill Lade virus TCTCGCAATCCATA
CGTACTTCA

T62 This study
MLVReverse Mill Lade virus CGTCAACAAGGTC

GTTTCTTCC

CBVForward Castleton Burn virus TTCTCTATCGAGCG
GCCTTG

T62 This study

CBVReverse Castleton Burn virus TGTGCTTCCATGTA
GGCGAA

SVForward Sheriffmuir virus GTTTTGACCAGCA
CCAGAGC

PCR 60 This study
SVReverse Sheriffmuir virus CCAGTTCGGGGTG

GCTAAAT

DVForward Dumyat virus CGGAGATAACGGA
GGTGTGG

T62 This study

DVReverse Dumyat virus GCAAGGAGACAAG
GCTCCTT

CMVForward Cnoc Mor virus TCAGCCGAATTAG
AATGTGTACA

T62 This study
CMVReverse Cnoc Mor virus GCGCTTTCGAATA

GATGCCT

ARVForward Agassiz Rock virus TGAATGGTAGGAG
CATGCGT

PCR 60 This study
ARVReverse Agassiz Rock virus TGTAGTAGATGCCT

GGGTTTGA

ELVForward Elf Loch virus GAACAAGCGCGAG
TGGAAAC

PCR 62 This study
ELVReverse Elf Loch virus TCGAGATTATCTGC

GTGGCC

CCVForward Clamshell Cave virus GGCCTCAAGGTAT
GTTGAATAACA

T62 This study
CCVReverse Clamshell Cave virus TGCACTTATTATCT

GCTGTCTTAGA

BBVForward Boghill Burn virus TGGATCACCTGAT
GGATTCCT

T62 This study
BBVReverse Boghill Burn virus TCGATCTCTCTGTG

AGTCTCTGT

GVForward Gorebridge virus GGATAGATACACTA
AAGGATGCTAAAA

T62 This study
GVReverse Gorebridge virus ATTCGGTGCATCAA

GGAGCA

HPLV34Forward Hubei partiti-like 
virus 34

TGGCTTAGATTTAA
TGCTACGAT

T62 This study
HPLV34Reverse Hubei partiti-like 

virus 34
CCTCATAGCTCCAC

CAGTAACC

ABPV_LF Acute bee paralysis 
virus

TGAAACGGAACAA
ATCACCA

PCR 57 Lena Wilfert (pers 
comm)

ABPV_LR Acute bee paralysis 
virus

TTCGCCAC 
CTTGTTAACTCC

SBPV611Roth_F Slow bee paralysis 
virus-Rothamsted

AGGTGAGGCTGCT
AATTCAAT

PCR 60 Lena Wilfert (pers 
comm)

SBPV789Roth_R Slow bee paralysis 
virus-Rothamsted

TCGAGACAAGCTC
CATAGACA
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PCR 62: 95°C 5:00, (95°C 0:15, 62°C 0:30, 72°C 0:45)x40, 72°C 7:00, 4°C 
PCR 60: 95°C 5:00, (95°C 0:15, 60°C 0:30, 72°C 0:45)x40, 72°C 7:00, 4°C 
T62: 95°C 5:00, (95°C 0:15, 62°C [minus 1°C per step] 0:30, 72°C 0:45)x10, (95°C 0:15, 52°C 0:30, 72°C 0:45)x30, 
72°C 7:00, 4°C 
PCR 57: 95°C 3:00, (95°C 0:15, 57°C 0:15, 72°C 0:30)x35, 72°C 7:00, 4°C 
PCR C: 95°C 1:00, (95°C 0:15, 56°C 0:15, 72°C 1:00)x40, 72°C 7:00, 4°C 
PCR N: 95°C 2:00, (94°C 0:30, 60.7°C 0:30, 72°C 1:00)x40, 72°C 3:00, 4°C 
PCR Niel: 94°C 5:00, (94°C 0:30, 56°C 0:45, 72°C 1:00)x40, 72°C 7:00, 4°C 
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PCR N Fries et al. [2]
Mnuniv-R Nosema ceranae GACTTAGTAGTAGC

CGTCTCTCT

Mnapis-F Nosema apis GCATGTCTTTGAC
GTACTATG

PCR N Fries et al. [2]

Mnuniv-R Nosema apis GACTTAGTAGTAGC
CGTCTCTCT

Mnbombi-F Nosema bombi TTTATTTTATGTRYA
CMGCAG
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CB_ITS1-R Crithidia bombi AGGAAGCCAAGTC
ATCCATCG
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