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A B S T R A C T

The colour rendering index (CRI) and correlated colour temperature (CCT) of transmitted daylight through a
DSSC glazing is an essential parameter for building interior space comfort. Six small-scale dye-sensitized solar
cells (DSSCs) were fabricated by varying TiO2 electrode thickness, which offered luminous transmittance be-
tween 0.19 and 0.53. Below 0.5 transmittance, the CRI for this TiO2 electrode based DSSC glazing was less than
80. A strong linear correlation was found between CCT and CRI. The CRI of 53% transparent DSSC glazing had
only 2.7% lower CRI than 77% transparent double glazing and 72% transparent vacuum glazing.

1. Introduction

Buildings consume 40% of energy worldwide due to heating,
cooling and lighting (Sudan et al., 2015; Sudan and Tiwari, 2016, 2014)
load demand (Al Dakheel and Tabet Aoul, 2017; Hee et al., 2015).
Mitigation of this energy demand is possible by introducing new zero
energy building or retrofits the building envelope using energy efficient
material. Windows are the weakest part of a building as it allows 40%
of total building energy losses. Thus, replacing of low energy efficient
window with smart, energy efficient, adaptive glazing is essential
(Ghosh, 2014; Ghosh et al., 2017a, 2017b; Ghosh and Norton, 2017a).
Moreover, for retrofit application, replacement of windows is easier
than any other part of the building (Ghosh et al., 2016a, 2015).

Currently adaptive glazing systems are in research interest for
building window applications as they have potential of lighting demand
reduction of building and introduce comfortable daylight into space
(Jelle et al., 2012; Rezaei et al., 2017; Skandalos and Karamanis, 2015).
These glazing systems are mainly switchable (Ghosh et al., 2018a,
2018b; Ghosh and Mallick, 2018) and non-switchable (Ghosh et al.,
2016b, 2016c; Ghosh et al., 2018b). Switchable has potential to change
its transparency based on occupant demand and comfort (Ghosh et al.,
2016). However, for large-scale application this electrically switchable
glazing can increase the building switching energy demand (Ghosh
et al., 2016d). Photovoltaic (PV) glazing is advantageous over any other

smart adaptive glazing as they can control energy losses and generate
clean energy (Cuce, 2016; Ng and Mithraratne, 2014; Skandalos and
Karamanis, 2015).

In a PV glazing, PV devices are sandwiched between two glass panes
(Cuce, 2016; Favoino et al., 2015). These devices can be crystalline
silicon (Si) (Park et al., 2010), amorphous Si (Miyazaki et al., 2005),
CIGS (Wei et al., 2014), CdTe (Shen et al., 2016), perovskite (Cannavale
et al., 2017) or dye-sensitized type solar cells (DSSC) (Kang et al., 2013;
Yoon et al., 2011). Compared to other type of PV cells, DSSCs have
below attributes, which make them advantageous

• DSSCs are insensitive to environment contaminants, which offer
them to prepare under ambient temperature. Thus, easier fabrica-
tion process can be adopted such as roll-to-roll, which involves
continuous, low-cost manufacturing method to print dye-sensitized
solar cells on flexible substrates (Gong et al., 2017, 2012; Grätzel,
2003).

• DSSCs work even in low light conditions. Thus for northern latitude
area where diffuse sun lights are majority over direct sunlight, DSSC
based windows are excellent choice for building applications (Gong
et al., 2017, 2012; Grätzel, 2003; Sharma et al., 2017; Upadhyaya
et al., 2013).

• DSSCs are superior than a-Si:H based PV as the transparency can be
increased by making use of highly transparent photoanodes and
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counter electrodes. Selecting proper dyes for these devices can
provide low eye sensitive factor (Kumara et al., 2017; Richhariya
et al., 2017; Shalini et al., 2015).

• DSSCs have positive temperature effect (Berginc et al., 2007; Parisi
et al., 2017).

DSSCs were first reported by O’Regan and Grätzel in 1991 (O’Regan
and Gratzel, 1991) and the maximum efficiency of 13% was recorded in
2014 (Mathew et al., 2014). The recent progress of DSSC offers it to
consider for glazing applications. Fig. 1 shows the different components
of a typical liquid electrolyte DSSC for glazing application.

First ever DSSC glazing was fabricated by series connected 9 unit
(80× 80mm2 active area) solar cells which offered 60% average
transmission between 500 and 900 nm (Kang et al., 2003). Thermal and
optical characteristics of double glazed DSSC window were investigated
using WINDOW software where DSSCs were fabricated using green
(33% transparent) and red (28% transparent) dyes (Kang et al., 2013).
This glazing was able to reduce 60% entering solar heat gain. In an
another work, thermal, optical and electrical performance of DSSCs
inside a patented glass block were also investigated using COMSOL
Multiphysics, WINDOW and Zemax (Morini and Corrao, 2017).

Spectral power distribution (SPD) of solar radiation in the visible
range of 380–780 nm is considered as daylight. SPD of natural daylight
changes with local latitude, weather, season, time of day, air bound
dust and pollutant (Ghosh and Norton, 2017b). SPD of transmitted light
into the interior of a room influence the visual comfort and color per-
ception. Glazing transparency, thickness, solar heat gain coefficient and
overall heat transfer coefficient are the most common investigated
parameters while color properties such as correlated color temperature
(CCT) and color rendering index (CRI) evaluations are often over-
looked. Colour of transmitted daylight through glazing is an influential
factor on indoor comfort. Correlated color temperature (CCT) and color
rendering index (CRI) are the two major components to understand the
SPD of transmitted light through glazing (Davis and Grinthner, 1990;
Luo, 2011). CCT and CRI are the most aesthetic criteria as they show

whether the spectrum coming inside through the glazing is suitable for
occupant or cross the comfort level. They are used to characterize the
illumination quality of white light (D’Andrade and Forrest, 2004). Good
quality lighting is an important feature, as the quantity and quality of
lights are required for wellbeing, health, interpersonal relationships
and aesthetic taste (Bommel and Beld, 2004; Webb, 2006). CRI of a
glazing indicates the color of entering daylight into an interior before
and after placing a glazing. CRI values can be from 0 to 100 (Gunde
et al., 2005) where between 80 and 90 are considered to be acceptable
(Chain et al., 2001). CRI close to 100-represents true color perception
inside the building, thus, indicates perfect visual quality (Gong et al.,
2005; Niu et al., 2006). A CCT needs to be equivalent to that of a
blackbody source at temperatures between 3000 and 7500 K
(Hernández-Andrés et al., 1999). CCT offers to understand whether
light is neutral, bluish white or reddish white. CCT for various daylight
sources are listed in Table 1.

CCT and CRI evaluation for PV glazing is rare. CRI for semi-trans-
parent PV module using a-Si PV cells was the only reported work of PV
glazing (Lynn et al., 2012). No CCT values were calculated for this type
of glazing.

The spectrum of transmitted daylight into an interior space changes
due to the presence of DSSC glazing. CRI and CCT characterization of
DSSC glazing is required as these parameters assess human response to
colors (Ghosh and Norton, 2017b).

In this work, different thickness of DSSCs was realized to evaluate
luminous transmittance, CCT and CRI for the incoming daylight
through DSSC glazing. CCT and CRI of DSSC glazing were compared
with air filled double pane glazing and evacuated (vacuum) glazing.

2. Experiment

2.1. DSSC manufacturing

Six different titanium dioxide (TiO2) layers (as listed in Table 2)
were prepared for DSSCs using screen-printing method in order to
measure its solar to electrical efficiency and thermo-optical properties
for glazing applications at our solar energy lab, University of Exeter.
The thickness of the TiO2 electrodes was measured using Dektak 8

Nomenclature

CIE Commission Internationale de l’Eclairage
CCT correlated color temperature
CRI colour rendering index
D65 CIE standard illuminant
ΔEi color difference between the color coordinates determined

for the same test color samples illuminated by test and the
reference illuminants

i number of test color
Ri special color rendering index

ut, vt user coordinates system (UCS) or trichromatic coordinate
for test illuminant

Wt,i, Ut,i, Vt,i UCS chromaticity coordinates of test color samples
under test illuminant

Wr,i, Ur,i, Vr,i UCS chromaticity coordinates of test color samples
under reference illuminant

X, Y, Z CIE tristimulus values of test color samples
x, y chromacity coordinates of test illuminant
x λ y λ z λ( ), ( ), ( ) color matching functions of 1931 CIE 2°standard

observer

Fig. 1. Schematic illustration of a DSSC glazing. Entering visible light can be changed by
tuning TiO2 thickness, dyes and electrolyte.

Table 1
Correlated color temperatures for various daylight sources of Washington DC USA
(Mardaljevic, 2014).

Daylight source CCT

Sunlight – sunrise or sunset 2000 K
Sunlight – one Hour After Sunrise 3500 K
Sunlight – early Morning 4300 K
Sunlight – late Afternoon 4300 K
Overcast sky 6000 K
Summer skylight 9500–30,000 K
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Advanced Development Profiler. Prepared TiO2 electrode was placed on
top of platinum counter electrode to make sandwich type DSSCs. The
working electrodes and the corresponding devices were prepared ac-
cording to the (Ito et al., 2008; Senthilarasu et al., 2012).

Steps involved are shown in the flow-diagram:

Fig. 2 shows six fabricated DSSCs for glazing applications. Solar to
electrical conversion efficiency was measured using indoor solar si-
mulator and I-V tracer. To achieve different transparency of DSSCs,
electrode thickness was varied as shown in Table 2.

2.2. Spectrometer measurement & luminous transmission calculation

The transparency of the devices was measured using a UV–VIS–NIR
spectrometer (PerkinElmer, Lambda 1050) which provides highly pre-
cise transmittance. Transmittance was measured at a step of 1 nm in a
wavelength range between 380 nm and 780 nm. The color rendering
properties of a glazing were calculated from the spectra measured by a
UV–Vis–NIR spectrophotometer.

Luminous transmittance values τv are given by (En, 2001)

=
∑

∑
τ

D λ V λ τ λ λ

D λ V λ λ

( ) ( ) ( )Δ

( ) ( )Δ
v

380 nm
780 nm

65

380 nm
780 nm

65 (1)

where τ(λ) is the spectral transmittance of DSSC glazing, D65(λ) is the
spectral power distribution of CIE standard illuminant D65, V(λ) is the
photopic luminous efficiency function of the human eye and
Δλ=10 nm. Fig. 3 shows the photopic eye sensitivity to light wave-
length. The maximum sensitivity is in the green spectral range at
555 nm, where V (λ) has a value of unity, i.e. V (555 nm)=1.

3. Evaluation of CRI and CCT

To evaluate color properties of the DSSC glazing, method re-
commended by CIE 13.3-1995 was followed. Color is perception and
not possible to measure with any equipment (Lynn et al., 2012). At first
CCT was calculated. Color matching functions corresponding to sensi-
tivity of human eye and spectral power distribution of the wavelength
dependent transmitted light were used to identify the CCT. For color
rendering index evaluation, 1931 CIE chromaticity coordinates of test
color samples were evaluated followed by determination of 1964 CIE
UCS chromaticity coordinates (Wt,i

∗; Ut,i
∗; Vt,i

∗). Resultant color shift

was investigated to find out special color rendering index (Ri) which
offered general color rendering index (CRI). All calculations were
processed using MATLAB 8.5.

Step 1 for CCT evaluation: The tristimulus values X, Y, Z indicate
the three color perception of human eye response. They also indicate

how much red, blue and green are in the color. This XYZ color system
was established in 1931 and referred as 1931 2°CIE standard observer
(CIE 15, 2004; CIE Publication, 1988). Tristimulus values X, Y and Z of
transmitted light through DSSC glazing can be calculated from the
measured SPD transmittance, D65 spectral power distribution and the
color matching functions as shown in Fig. 4 (CIE Publication, 1988).

∑=X D λ τ λ x λ λ( ) ( ) ( )Δ
380 nm

780 nm

65
(2)

∑=Y D λ τ λ y λ λ( ) ( ) ( )Δ
380 nm

780 nm

65
(3)

∑=Z D λ τ λ z λ λ( ) ( ) ( )Δ
380 nm

780 nm

65
(4)

Chromacity coordinate (x, y) can be calculated by below equation

=
+ +

=
+ +

x X
X Y Z

y Y
X Y Z

and

CCT was calculated from McCamy’s equation (McCamy, 1992)

= + + +CCT n n n449 3525 6823.3 5520.333 2 (5)

where = −
−n x

y
( 0.3320)
(0.1858 ) and x, y chromacity coordinate

Step 2 for CRI calculation
For CRI evaluation tristimulus values of the light transmitted by the

glazing and reflected by each of eight test colors (i= 1 to8) are given by
where test color are defined by their spectral reflectance β λ( ).i

∑=X D λ τ λ β λ x λ λ( ) ( ) ( ) ( )Δt i i,
380 nm

780 nm

65
(6)

∑=Y D λ τ λ β λ y λ λ( ) ( ) ( ) ( )Δt i i,
380 nm

780 nm

65
(7)

Table 2
Fabricated DSSC based on different electrode thickness and electrical conversion effi-
ciency.

Device name TiO2 layer thickness (µm) Electrical conversion efficiency (%)

L2 3.5 2.51
L3 6 4.49
L4 8 5.02
L5 10 5.93
L6 12 5.15
L7 14 3.24

Fig. 2. Fabricated six DSSC and exploded view of one DSSC.
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∑=Z D λ τ λ β λ z λ λ( ) ( ) ( ) ( )Δt i i,
380 nm

780 nm

65
(8)

Trichromatic coordinates ut and vt for the transmitted light were
determined from

=
+ +

=
+ +

u X
X Y Z

v X
X Y Z

4
15 3

and 6
15 3t t (9)

Each test color for the light transmitted and then reflected by the
test color i is thus given by

=
+ +

=
+ +

u
X

X Y Z
v

X
X Y Z

4
15 3

and
6

15 3t i
t i

t i t i t i
t i

t i

t i t i t i
,

,

, , ,
,

,

, , , (10)

Trichromatic coordinate correction after distortion by chromatic
adaptation is provided by

′ =
+ −

+ −
u

10.872 0.8802 8.2544

15.518 3.2267 2.0636
,t i

c
c

d
d

c
c

d
d

,

t i

t

t i

t
t i

t

t i

t

, ,

, ,
(11)

Fig. 3. Standardization curve of eye sensitivity to wavelength of light (CIE 15, 2004).

Fig. 4. The spectral response of the color matching functions x λ y λ z λ( ), ( ), ( ).

Fig. 5. Normal-hemispherical spectral transmittance of DSSC cells. Transmission was compared with AM 1.5 solar spectrum. Only the visible part of the spectrum [380–780 nm] is
relevant for this work.
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′ =
+ −

v 5.520
15.518 3.2267 2.0636
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t
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t
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(12)

where ct and dt for transmitted light and ct i, and dt i, for each light
transmitted and then reflected by test color are calculated from

= − − = + −c u v
v

d v u
v

4 10 , 1.708 0.404 1.481
t

t t

t
t

t t

t (13)

=
− −
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4 10
,
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Colour space system ∗W ,t i,
∗Ut i, ,

∗Vt i, are given by

⎜ ⎟= ⎛
⎝

⎞
⎠

−∗W
Y

Y
25

100
17t i

t i

t
,

,
1/3

(15)

= ′ −∗ ∗U W u13 ( 0.1978)t i t i t i, , , (16)

= ′ −∗ ∗V W V13 ( 0.3122)t i t i t i, , , (17)

The total distortion (color difference between the color coordinates
determined for the same test color samples illuminated by test and the
reference illuminants) EΔ i is determined from

= − + − + −∗ ∗ ∗ ∗ ∗ ∗E U U V V W WΔ ( ) ( ) ( )i t i r i t i r i t i r i, ,
2

, ,
2

, ,
2 (18)

The special color rendering index Ri for each color sample is given
by

= −R E100 4.6Δi i (19)

The general color rendering index (CRI) is thus given by

∑=
=

CRI R1
8 i

i
1

8

(20)

Table 3
Luminous transmission of different DSSC glazing.

Device
name

TiO2 layer
thickness (µm)

Efficiency [%] Luminous transmission (%)
(380–780 nm)

L2 3.5 2.51 53
L3 6 4.49 50
L4 8 5.02 44
L5 10 5.93 37
L6 12 5.15 25
L7 14 3.24 19

Fig. 6. (a) Variation of CCT and CRI with transmission, (b) correlation between CCT and CRI for different DSSC cells for glazing application.
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4. Results & discussion

4.1. Luminous transmittance of DSSC

Fig. 5 shows the normal-hemispherical transmittance of the six
different DSSC glazing samples. Luminous transmission was calculated
using Eq. (1). Table 3 summarises the luminous transmission for dif-
ferent DSSC glazing. Number of dyes attached to the thick electrode is
higher than thin electrode, which absorb higher amount of light and
introduce low transmittance (Yoon et al., 2011). However, no linear
relation was found between DSSC transmission and efficiency. Too
thick TiO2 layers (samples L6 11.9 µm, and L7 13.6 µm) increase the

length of the electron pathways, and thus decrease fill factor, open
circuit voltage and in extreme cases even short circuit current
(Desilvestro, 2008) which reduce the overall electrical efficiency of the
solar cell.

4.2. CCT and CRI for DSSC glazing

Fig. 6a shows the variation of CCT and CRI with transmission and
Fig. 6b illustrates the correlation of CCT and CRI for different trans-
parent DSSCs by varying electrode thickness. CCT was calculated using
Eq. (5) and CRI was calculated from Eq. (20). Different CCT and CRI
values for different DSSC glazings are listed in Table 4. A strong linear
correlation was found between CCT and CRI for DSSC glazing. It can be
concluded that higher achievable CRI also offers higher CCT. For indoor
light condition, a CCT from 3000 K to 5300 K and CRI of more than 80
are generally required (D’Andrade and Forrest, 2004). To realize a high
CRI, a DSSC should have an enough broad spectral coverage, but it
leads to a high CCT, which is not suitable for indoor comfort. L2 (3.5 µm
thick electrode) and L3 (6 µm thick electrode) devices offer better CRI
and CCT compared to other layers.

Table 4
CRI and CCT values for different electrode thickness of DSSC glazing.

Device name CRI CCT (K)

L2 93 5449.96
L3 88 5038.53
L4 77 4142.72
L5 74 4004.13
L6 59.74 3230.87
L7 59.67 3226.09

Fig. 7. (a) Normal-hemispherical spectral transmittance in the visible (380–780 nm) range, (b) comparison of CCT and CRI for DSSC (53%), vacuum glazing and double-glazing.
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4.3. CCT & CRI comparison of DSSC with vacuum and double glazing

Fig. 7a shows the normal hemispherical transmission of 53%
transparent DSSC glazing, double and vacuum glazing. Vacuum glazing
consists vacuum between two glass panes and potential to reduce heat
loss in northern climatic conditions (Ghosh et al., 2016c, 2017c).
Double-glazing is a widely available glazing technology for building
window applications (Chow et al., 2011; Gil-Lopez and Gimenez-
Molina, 2013). Thus, these two glazing systems were considered in this
work to compare the behaviour of adaptive DSSC glazing. Presence of
low emission coating in the double and vacuum glazing influenced to
decrease transmission after 600 nm whereas DSSC showed increasing of
transmission after 600 nm. Fig. 7b indicates the CCT and CRI for 53%
transparent DSSC, 72% transparent vacuum glazing and 78% trans-
parent double-glazing. DSSC glazing has 45% less transmission com-
pared to double glazing and 35% less than vacuum glazing, however,
CRI only compromise 2.7% less compared to both glazing. It indicates
that CRI depends more on the wavelength dependent spectral values
than one single transmittance value. Table 5 shows the CCT and CRI for
these three different types of glazings.

5. Conclusions

CCT and CRI for DSSC glazing were calculated. Different trans-
parent DSSCs were fabricated using different TiO2 electrode thickness.
It was found that 53% and 50% transparent DSSC offered achievable
CRI and CCT. Results of 53% transparent DSSC was compared with
vacuum and double-glazing. Vacuum and double-glazing, which have
higher transparency than DSSC, offered only 2.7% higher CRI and CCT
values near to overcast sky. DSSC glazing is a potential device as it
offers small-scale clean electricity with amicable light color for occu-
pant. 53% transparent DSSC offered best CRI and CCT, however, 37%
transmission offered best efficiency. It can be concluded that DSSC
glazing higher than 50% transparent is a potential glazing system for
new or retrofit window, as they possess allowable CRI and CCT.
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