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Abstract 

The Water Framework Directive requires reduced environmental impacts from 

human activities and for the assessment of the non-market benefits of pollution 

remediation schemes. This policy shift has exacerbated the research problems 

surrounding the physical, social and economic consequences of the relationship 

between land use and water quality. This research seeks to quantify the major 

socio-economic and environmental benefits for people which may arise as 

riverine pollution is reduced. To achieve these aims this research integrates 

primary data analyses combining choice experiment techniques with 

geographical information system based analyses of secondary data concerning 

the spatial distributions of riverine pollution. 

Current knowledge on the microbial quality of river water, measured by faecal 

indicator organism (FIO) concentrations and assessed at catchment scale, is 

inadequate. This research develops generic regression models to predict base- 

and high-flow faecal coliform (FC) and enterococci (EN) concentrations, using 

land cover and population (human and livestock) variables. The resulting models 

are then used both to predict FIO concentrations in unmonitored watercourses 

and to evaluate the likely impacts of different land use scenarios, enabling 

insights into the optimal locations and cost-effective mix of implementation 

strategies. 

Valuation experiments frequently conflate respondents’ preferences for different 

aspects of water quality. This analysis uses stated preference techniques to 

disaggregate the values of recreation and ecological attributes of water quality, 

thereby allowing decision makers to better understand the consequences of 

adopting alternative investment strategies which favour either ecological, 

recreational or a mix of benefits. The results reveal heterogeneous preferences 

across society; specifically, latent class analysis identifies three distinct groups, 

holding significantly different preferences for water quality. 

From a methodological perspective this research greatly enhances the ongoing 

synthesis of geographic and economic social sciences and addresses important 

policy questions which are of interest to a variety of stakeholders, including 

government departments and the water industry.  
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Introduction 

Research imperative 
The European Union (EU) Water Framework Directive (WFD) (EU, 2000) and its 

daughter directives, the revised Bathing Waters Directive (rBWD) (EU, 2006a) 

and the Shellfish Waters Directive (EU, 2006b), set out rules to halt deterioration 

in the status of EU water bodies. The WFD was adopted by the EU on 22 October 

2000 with the requirement that the ‘good ecological status’ of groundwater and 

surface waters (rivers, lakes, transitional waters, and coastal waters) be achieved 

by December 20152. ‘Ecological status’ is an expression of the quality of the 

structure and functioning of aquatic ecosystems associated with surface waters 

(classified in accordance with guideline parameters contained within Annex V of 

the WFD). 

The policy framework replaced piecemeal EU and national legislation and 

introduced novel features to protect and enhance aquatic ecosystems, including: 

the establishment of planning and management of waterbodies at river basin 

district level; shifting emphasis from the assessment of water quality solely in 

terms of traditional limit-value approaches to chemical composition, to a more 

holistic assessment of the quality of the biological community, the hydrological 

characteristics and chemical characteristics of waterbodies; encouraging 

sustainable use of a renewable resource and widening public participation in 

water resource planning (Environment Directorate General, 2005). 

The WFD was (and still is) extremely ambitious in its scope. For example, 

integrated river basin planning was adopted to facilitate characterisation and 

assessment of impacts on river basin districts, environmental monitoring, the 

setting of environmental objectives and the design and implementation of the 

programme of measures needed to achieve them (JNCC, 2010). The challenges 

of implementing the WFD were (and still are) immense, and, unsurprisingly, the 

December 2015 target for achieving ‘good ecological status’ was not met. In 

2012, it was estimated that 53% of EU waterbodies were either ‘good’ or would 

                                            
2Transposition into UK law occurred through the following regulations: The Water Environment 
(Water Framework Directive) (England and Wales) Regulations 2003 (Statutory Instrument 2003 
No. 3242) for England and Wales; the Water Environment and Water Services (Scotland) Act 
2003 (WEWS Act) and The Water Environment (Water Framework Directive) Regulations 
(Northern Ireland) 2003 (Statutory Rule 2003 No. 544) for Northern Ireland. 
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potentially be good (European Commission, 2012). In the UK the situation was 

worse: in 2011, 37% of UK surface waterbodies were assessed under the WFD 

as being at least of ‘good’ status. In 2016, the proportion had fallen to 35% (JNCC, 

2016). Catchments are complex systems, which vary widely across the UK 

depending on geology, weather patterns and land use. This complexity makes it 

difficult to identify and monitor pollution sources, particularly in large catchments 

containing urban, industrial and agricultural activities. Initial classifications of UK 

water quality data were largely based on ‘best available knowledge’: it is likely 

that the decline to 35% can, in part, be attributed to the collection of additional 

data, rather than an actual decline in water quality (Houses of Parliament 

Parliamentary Office of Science and Technology, 2014). 

We see that the policy shifts from assessing water in terms of its chemical 

composition in favour of its ecological quality has exacerbated the research 

problems surrounding the physical, social and economic consequences of 

modified relationships between land use and water quality (Kay et al., 2007a). 

Consequently, there are gaps in the research literature at all stages. 

Policy now requires that the microbial quality of river water, measured by faecal 

indicator organism (FIO) concentrations, is to be assessed at catchment scale, 

rather than the previous method of point-source effluent quality regulation. This 

change encompasses the quantification and management of diffuse sources of 

microbial pollution derived from the farming community in addition to urban point 

sources (Kay et al., 2006a). Riverine microbiological water quality has not been 

systematically measured as part of previous regulatory monitoring programmes. 

Consequently, modelling of microbial water quality has been sporadic and is 

underdeveloped, particularly at catchment scale (Kay et al., 2007a). 

One important motivation for the implementation of the WFD appears to be the 

creation of non-market social benefits such as improved provision of, and 

opportunities for, open-access recreation (Articles 4, 9 and 11 of the WFD) (EU, 

2006). It is well reported that improvements in the quality of river water raises 

non-market benefit values, particularly in terms of increased opportunities for 

recreational use, but valuation experiments frequently fail to distinguish between 

respondents’ preferences for the ecological or recreational aspects of water 



 

26 
 

quality improvements, so that their trade-off is poorly understood (Bateman et al., 

2011; Ferrini et al., 2014). 

This thesis addresses these related themes within three substantive chapters. 

The first two chapters describe the construction and application of transferable 

models capable of accurately predicting microbial pollution concentrations in UK 

rivers, thus enabling insights into the optimal locations and cost-effective mix of 

implementation strategies for the delivery of WFD induced environmental 

improvements. The third chapter seeks to quantify the major socio-economic and 

environmental benefits for people which may arise if ecological and/or microbial 

river pollutants are reduced and considers the distributional and equity 

implications of alternate strategies for WFD implementation, including the spatial 

differentiation of policies. 
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Aims and objectives of the thesis 
The following is a summary of the aims and objectives of this research. Detailed 

descriptions of the iterative steps required to fulfil these aims are provided in each 

chapter. While undertaking exploratory research it is natural to encounter 

methodological difficulties and identify potential refinements or entirely new 

research questions. Where this has been the case, the issues are discussed fully 

within the relevant chapter. 

Some of the most successful catchment-scale FIO modelling has been 

undertaken using linear regression techniques to model relationships between 

GM FIO concentrations recorded at monitored sites and land use within their 

catchments, using variables such as the proportions of grassland and built-up 

land as proxies for key sources of faecal pollution. Such work has been primarily 

based on individual catchment studies (Crowther et al., 2003; Kay et al., 2005a). 

The aim of the first chapter is to extend this latter approach by (i) investigating 

whether improved models, that can predict base- and high-flow FIO 

concentrations across the UK, might be achieved by augmenting the predictor 

variables to include both direct measures of the key FIO sources (i.e., human 

population and livestock density data) and factors that may affect source strength 

and the mobilisation, transport, die-off and sedimentation of FIOs within 

catchments (e.g., volume of runoff, soil hydrology and catchment size); and (ii) 

assess the extent to which models developed by combining data from discrete 

UK catchment studies, sampled at different times and under different antecedent 

weather conditions, are truly generic and transferable across the UK. 

The second chapter utilises the models produced in Chapter 1 to develop the 

regression modelling approach. The strengths and weaknesses of the generic 

models are assessed, using a range of land use and population change 

scenarios. The aims are to assess the effectiveness of the FIO models as (i) cost 

effective diagnostic tools capable of aiding source apportionment, (ii) assess 

water quality in terms of EU rBWD and WHO microbial water quality assessment 

categories, (iii) assess the relative effectiveness of a selection of microbial 

pollution remediation strategies, by quantifying the likely impact on riverine FIO 

concentrations following the implementation of land use policy measures 

designed to reduce livestock stocking densities (iv) at a range of spatial scales. 
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UK valuation studies typically assess WFD benefits in ways that conflate the 

value of ecological improvements with the value of microbial pollution reduction, 

therefore assessing water quality as a single attribute of preference (Bateman et 

al, 2011; Glenk et al., 2014). The main aim of the research in Chapter 3 is to 

further the knowledge on non-market valuation of river water by disaggregating 

the values people derive from ecological and microbial aspects of river water 

quality. Given the link between microbial quality and recreational river use, an 

investigation is conducted into how the values for these distinct attributes of river 

water quality differ over people who (i) engage with the river in different ways 

(rowers, swimmers, anglers) and (ii) who live at different distances from the river. 

The investigation is undertaken using a stated preference, forced choice discrete 

choice experiment (DCE), with discrete attributes for ecological and recreational 

water characteristics. 

To achieve the above aims this research uses innovative integrated primary data 

analyses combining socio-economic survey techniques with geographical 

information system based analyses of secondary data concerning the spatial 

distribution of water resources, pollution emission sources and population 

characteristics. As such, it is a contemporary and highly interdisciplinary 

approach combining natural and social sciences. 

  



 

29 
 

Thesis overview 
The substantive chapters refer to diverse research literatures and utilise 

disparate research methodologies. For this reason, the chapters are deliberately 

self-contained: each contain detailed reviews of the relevant research literature 

and each provides the details of the research methodologies used within that 

chapter. This introduction continues with a summary of the three chapters, 

followed by a statement of the novelty and contribution to knowledge of the thesis. 

The research field of catchment microbial dynamics has been rapidly expanding 

due to the adoption of the WFD and its paradigm shift towards the integrated 

management of recreational water quality through the development of drainage 

basin-wide programmes of measures (Kay et al., 2006a). However, this has led 

to significant data gaps, due in part to a lack of funding. To meet WFD 

requirements, data are needed on FIO concentrations in rivers to enable the more 

heavily polluted to be targeted for remedial action. But due to the paucity of FIO 

data for UK rivers, especially under high-flow hydrograph event conditions, there 

is an urgent need by the policy community for generic models that can accurately 

predict riverine FIO concentrations, and thus inform integrated catchment 

management programmes. 

Chapter 1 reports the development of regression models to predict base- and 

high-flow faecal coliform (FC) and enterococci (EN) concentrations for 153 

monitoring points across 14 UK catchments, using land cover, population (human 

and livestock density) and other variables that may affect FIO source strength, 

transport and die-off. This research brings innovation to riverine faecal indicator 

modelling in several ways. Firstly, it remodelled existing catchment studies using 

consistent data, enabling a meta-analysis which successfully developed 

transferable predictive models, based on land use type. These models offer levels 

of explanation consistent with comparable research (e.g. Kay et al., 2005a). 

Secondly, although previous modelling has traditionally relied on land use 

variables as proxies for sources of faecal pollution, this research successfully 

pioneers the application of human population density and livestock population 

density as explanatory variables. These models offer superior levels of 

explanation of the sources of riverine FIO pollution and they represent the first 

transferable generic FIO models to be developed for the UK which incorporate 



 

30 
 

direct measures of key FIO sources (namely human and livestock population 

data) as predictor variables. Statistically significant models are developed for 

both FC and EN, with greater explained variance achieved in the high-flow 

models. Both land cover and, in particular, population variables are significant 

predictors of FIO concentrations; with r2 maxima for EN of 0.571 within the land 

cover model and 0.624 within the population model. The third innovation is the 

development of a transfer methodology, enabling the models to predict for actual, 

or simulated, levels of human or livestock population in hydrological catchments. 

This allows the generic models to be applied, with confidence, to other UK 

catchments, both to predict FIO concentrations in unmonitored watercourses and 

also to evaluate the likely impact of different land use/stocking level and human 

population change scenarios. 

Chapter 2 begins by outlining the application of the FIO models to quantify 

geometric mean (GM) FC and EN concentrations for base- and high-flow during 

the summer bathing season in the (largely unmonitored) Humber River Basin 

District, and provides Quantitative Microbial Risk Assessment estimates for the 

same, using World Health Organisation (WHO) and EU water quality guidelines. 

Because the FIO models incorporate explanatory variables which allow the 

effects of policy measures which influence livestock stocking rates to be 

assessed, empirical analyses are then made of the differential effects of seven 

land use management and policy instruments (fiscal constraint, production 

constraint, cost intervention, area intervention, demand-side constraint, input 

constraint, and micro-level land use management), all of which can be used to 

reduce riverine FIO concentrations. These assessments are conducted at a 

range of spatial scales, e.g. River Basin District, sub-catchment and at the level 

of individual hydrological response units (HRU). These analyses provide insights 

into FIO source apportionment and the spatial differentiation of land use policies 

which could be implemented to deliver river quality improvements. All of the policy 

tools are estimated to reduce FIO concentrations in rivers but this research 

suggests that the installation of streamside fencing in intensive milk producing 

areas may be the single most effective land management strategy to reduce 

riverine microbial pollution. 
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The benefits transfer method is advantageous in that it can be used to estimate 

economic values for environmental services by transferring available information 

(e.g. welfare estimates) from studies that have already been completed into other 

locations or contexts. Cost-benefit analysis in decision-making frequently makes 

use of benefit transfer for several reasons; it may be too expensive to undertake 

a full survey to collect primary data at the new site and there may be too little time 

to conduct an original valuation study, yet some measure of benefits is required. 

The research within chapters 1 and 2 is not an economic transfer (although it 

shares equivalent motivations), instead those chapters report the construction 

and application of transferable models that can be used to predict FIO 

concentration in unmonitored watercourses. The methodology employed in their 

construction shares many of the underlying principles of benefit transfer. The FIO 

models are underpinned by empirical primary data which is combined with readily 

available secondary data (i.e. land cover and population (human and livestock) 

variables). The resulting models are then applied to secondary data to predict 

FIO concentrations in unmonitored watercourses and evaluate the likely impacts 

of different land use scenarios. 

The transferable FIO models reported within this thesis do share some of the 

disadvantages of economic benefit transfer models. There are limitations in 

scientific soundness: the transfer estimates are only as good as the methodology 

and assumptions employed in the original studies. It is advantageous that the 

procedures used by CREH for collecting primary data (i.e. water samples and 

enumerating FIO concentrations) from catchment studies were standardised. 

This primary data, coupled with standardised land use data surfaces and 

population profiles for catchments, has enabled a consistent meta-analysis of FIO 

data. However, the CREH datasets underpinning the models may be limited in 

terms of their temporal availability, catchment characteristics and geographic 

range. These factors (and other idiosyncrasies of the transfer methodology) may 

cause transfer errors and reduce the models’ relevance to new contexts. Such 

limitations are discussed in greater detail within chapters 1 and 2. 

Due to the commercially sensitive nature of the datasets used to construct the 

FIO model, the research covered in the first two chapters is subject to the data 

restrictions detailed in Appendix I. These restrictions prevent the FIO models’ 
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parameters from being published, as this could enable the unauthorised 

operationalisation of the FIO models. Consequently, this thesis focuses upon the 

mapped outputs from the models and the relationships between the sources of 

FIOs and riverine FIO concentrations are described in terms of directional 

responses rather than quantified parameters. 

Assessments of potential WFD investments (e.g. for disproportionate cost 

extensions) typically require that non-market environmental benefits, such as 

improved ecological quality and greater opportunities for open-access river 

recreation are assessed within economic cost-benefit frameworks (Görlach and 

Pielen, 2007; Eftec, 2011). Recent UK valuation studies tend to assess WFD 

benefits in ways which conflate ecological improvements with the value of 

recreational gains (see for example Bateman et al. (2011), Doherty et al. (2014), 

Hanley et al. (2005, 2006) and Metcalfe et al. (2012)). The research within the 

third chapter seeks to disentangle these sources of value, thereby allowing 

decision makers to understand the consequences of adopting alternative 

investment strategies which favour either ecological, recreational or a mix of 

benefits. This is both feasible and necessary since, contrary to common 

conception, these facets of water quality can be uncorrelated (Haygarth et al., 

2005). 

The analysis used stated preference discrete choice experiment (DCE) methods 

to disaggregate the values respondents hold for recreational and ecological 

characteristics of river water quality. Face-to-face surveys presented 

respondents with choices across a range of future water quality scenarios for the 

River Yare in Norfolk, differentiated in terms of the river’s ecological and 

recreational quality attributes and hypothetical remediation costs. The CE 

featured a D-efficient experimental design3 (Ferrini and Scarpa, 2007) that 

differentiated between respondents’ socio-economic and trip characteristics, and, 

of those respondents who identified as recreational users, captured a wide variety 

                                            
3 The combination of attributes and levels used on choice cards was derived following the D-
efficient design strategy. D error is the determinant of the variance covariance matrix of the 
conditional model and is directly linked to parameters precision. D error was 0.306965. An 
alternative efficiency measure is the A error, which considers the trace of the variance-covariance 
method. A error in this design was 1.631721. The parameters precision is higher when these 
efficiency measures are closer to 0. 
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of recreational activities (e.g. rowing, swimming and angling). Both conditional 

logit (CL) and latent class (LC) analyses identified a number of significant 

preference predictors, including respondents’ spatial relationships to the river and 

their socio-economic characteristics. 

The willingness to pay estimates derived from the CL modelling revealed clear 

differences in preferences between respondent types. The non-specialised 

respondents (i.e. bankside visitors and non-visitors from the general public) hold 

higher values for improved ecological quality, rather than recreational 

enhancements. Similar preference orderings, but at higher levels of willingness 

to pay, were revealed by anglers. However, other specialised users, such as 

swimmers and rowers, prioritise recreational over ecological improvements. 

Other preference predictors were identified, including a clear distance decay in 

values away from the sites of any proposed investment. 

LC modelling confirmed three significant classes of respondents and two 

significant socio-economic variables (number of environmental memberships 

held by the respondent and distance from the river) helping to define class 

membership. The results reveal heterogeneous preferences across the 

respondents; a majority preferring ecological over recreational improvements, 

while a substantial minority hold opposing preference orderings. The analysis 

also revealed a third group who have relatively low values for either form of river 

quality enhancement. Post-estimation results predict the likelihood of 

respondents’ class membership and help identify class members’ socio-

economic characteristics. 

Results were found to be stable over the alternative choice models estimated, 

confirming the significant heterogeneity in water quality preferences identified 

across the different groups. As such the research demonstrates that the non-

market benefits which may accrue from different types of water quality 

improvements are nuanced in terms of their environmental impacts, their 

potential beneficiaries and, by inference, their overall value and policy 

implications. 

The topic of this thesis was conceived before the UK government’s decision to 

hold a referendum on EU membership. Consequently, the thesis was designed 
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primarily to research the physical, social and economic consequences 

surrounding the relationship between land use and water quality from the 

perspective of the WFD. It is pertinent to state that the research presented in this 

thesis (e.g. modelling faecal pollution in UK rivers in response to land use change 

and quantifying the socio-economic and environmental benefits for people if 

riverine pollution levels are altered) can easily be decoupled from the legislative 

imperatives of the WFD. 

The decision to leave the EU, providing the UK does indeed leave the EU, may 

potentially result in legislative changes in the mid- to long-term. Depending on the 

shape of future legislation, this research may, conversely, have greater relevance 

as UK policymakers become tasked with modifying legislation to suit an altered 

political and economic climate. The potential shape of the UK’s post-Brexit water 

policy, and the implications for the value of this research, are discussed in a 

postscript. 
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Research outcomes and contributions made to the fields of study 
Previous studies of individual catchments have used regression models based 

on relationships between GM FIO concentrations recorded at monitored sites and 

land use within their subcatchments. The work in Chapter 1 extends this 

approach by augmenting the predictor variables to, for the first time, include direct 

measures of key FIO sources (i.e., human population and livestock density data) 

and various factors (catchment size, runoff and soil hydrology) that may affect 

source strength and the mobilisation, transport and die-off of FIOs. Furthermore, 

the work pioneers the development of transferable generic models by combining 

data from 14 different catchment studies across the UK. By combining data from 

all 14 studies, which have a wide geographical distribution across UK and 

encompass a wide range of weather conditions, the effects of the temporal factors 

are minimised and the inter-catchment errors reduced. The resulting land cover- 

and population-based models can be employed, with some confidence, in UK 

catchments both to predict base- and high-flow FC and EN concentrations in 

unmonitored watercourses and to evaluate the likely impact of different land 

use/stocking level and human population change scenarios. 

Chapter 2 develops a transfer methodology which allows the models to predict 

FIO concentrations in unmonitored UK watercourses. This enables the models to 

provide a cost-effective diagnostic tool capable of identifying and predicting the 

sources and spatial distributions of microbial pollution. By developing and 

incorporating human and livestock FIO sources as explanatory variables these 

models can be used to help apportion the responsibility for microbial pollution 

between the water industry and the agricultural sector. This research highlights 

issues of spatial scale surrounding the delivery of land use policy measures: the 

models can be used at a range of spatial scales, capable of expansion up to the 

scale of the UK, and are capable of identifying non-compliant HRUs which may 

benefit from micro-scale BMPs. The regression modelling approach developed 

here, by enabling spatially sensitive FIO function transfers, can inform integrated 

catchment management programmes, as required by the WFD. 

The work in chapters 1 and 2 makes a valuable contribution to the field of 

catchment microbial dynamics. It is of great benefit to the policy and land 

management communities as it enables insights into the optimal locations and 
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mix of implementation strategies for the delivery of WFD induced environmental 

improvements. The research also contributes to the emerging international 

debate on the use of farm best management practices and policy instruments to 

reduce FIOs and agricultural diffuse pollution (e.g., Bateman et al. (2006a), 

Chadwick et al. (2008), Monaghan et al. (2008), Helming and Reinhard (2009), 

Hutchins et al. (2009), Maringanti et al. (2009) and Oliver et al. (2009)). 

The underlying rationale of Chapter 3 is that, given resource constraints, a focus 

on identifying and improving those river sites which yield the largest net benefits 

is entirely justified. This in turn requires estimates of the benefits of improvements 

to set against costs, and this analysis reveals the importance of key parameters 

(such as type of water quality attribute, respondent type and their distance from 

the proposed improvement) in determining those benefits.  

As previous UK research has tended to conflate the value of ecological 

improvements with the value of recreational improvements, it is evident that 

decision-makers might target the ecological quality of water with little 

consideration of the impact on the recreational quality and vice versa. This is 

problematic if we don’t know fully understand the contribution to value of each 

attribute. This research provides answers to this policy question by presenting 

two complementary models (CL and LC), that examine different aspects of the 

same data to disentangle and identify respondents’ preferences for ecological 

and microbiological river water quality. 

The research also ascertains how preferences for water quality characteristics 

differ across different types of recreational users’. The hypotheses of 

heterogeneity in preferences among the general public’s WTP values is also 

confirmed. Respondents’ perceptions of water quality are incorporated into the 

analyses of the data to provide welfare measures. The WTP measures derived 

from this research reveal clear differences in preferences between respondent 

groups, and so, from a policy perspective, enhances the ability of the policy-

maker to more fully understand potential non-market benefits, in particular arising 

from improvements to the microbial quality of water, and thus produce more 

accurate cost-benefit analyses. 
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This research demonstrates that the non-market benefits that may accrue from 

different types of water quality improvements are nuanced in terms of their 

environmental impacts, their potential beneficiaries and, by inference, their 

overall value and policy implications. This information allows decision makers to 

better understand the consequences of adopting alternative investment 

strategies that favour either ecological or recreational improvements, or a mix of 

benefits, as these trade-offs were previously poorly understood. 

While each of the empirical chapters provide novel contributions in their own right, 

it is their cumulative contribution against which should be judged. Taken together, 

these analyses link natural sciences, geographical analyses and economic 

valuation concerning related aspects of water quality. It is this interdisciplinary 

approach which is the hallmark of a contemporary natural capital approach to 

integrated analysis and decision making, and, as such, it is hoped that this thesis 

makes a significant contribution. 

The challenges facing the field of catchment microbial dynamics have expanded 

rapidly in recent years. This thesis cannot fill all of the knowledge gaps, but we 

see a logical progression through the thesis. Chapters 1 and 2 examine the 

relationships between land use and microbial pollution. The methodology 

developed here is a significant advance and shows that FIO function transfers 

are theoretically possible. Chapter 3 develops a methodology for valuing change 

in microbial pollution for a range of respondent types. WFD compliance seems 

likely to yield spatial variation not just in the distribution of the implementation 

costs but also in the benefits of FIO reduction and in the willingness to pay (WTP) 

for river improvements.  

The natural extension to the research presented here is to produce a spatially 

explicit valuation of the non-market benefits and WTP arising from FIO reduction 

and, within a cost benefit framework, to assess the relative cost effectiveness of 

different remediation strategies, such as those introduced in this paper. Analyses 

of this nature will be essential when assessing the optimum spatial differentiation 

and implementation of land use policies. 

From a methodological perspective, the research within this thesis enhances the 

ongoing synthesis of geographic and economic social sciences. This work also 
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addresses important policy questions which are of interest to a variety of 

stakeholders including government departments and agencies, the water 

industry, consumer groups and, importantly, the general public. 

To avoid the contents of this thesis simply becoming a dusty tome on the author’s 

supervisor’s shelf, concerted effort has been made to disseminate this research 

as widely as possible via publications, conference presentations and press 

releases. Research output is detailed in Appendix II. 
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1 Chapter 1: Generic Modelling of Faecal Indicator Organism 

Concentrations in the UK 

1.1 Introduction 
The EU Water Framework Directive (WFD) (2000) established a framework for 

the protection of inland, transitional and coastal waters (Environment Directorate 

General, 2005). It placed a legal requirement on the UK’s water regulators to 

manage pollution to achieve ‘good ecological status’. 

Good ecological status is defined in Annex V of the Water Framework Directive 

in terms of the quality of the biological community (i.e. the composition and 

abundance of aquatic flora, invertebrate fauna and fish fauna), the 

hydromorphological elements supporting the biological elements (i.e. the quantity 

and dynamics of water flow or the structure and substrate of the river bed), and 

the chemical characteristics (i.e. oxygenation and nutrient conditions) impacting 

upon the biological elements (EU, 2000). Nutrient pollution (e.g. phosphates and 

nitrates from farm fertilisers and phosphates from washing detergents) can cause 

algae to grow in rivers which, in turn, reduces the oxygen available for aquatic 

flora and fauna. 

One important motivation for the implementation of the WFD appears to be the 

improved provision of, and opportunities for, open-access recreation (Articles 4, 

9 and 11 of the WFD). Microbiological water quality, relevant for human health 

(and the quality of open-access recreation such as paddling, swimming or 

boating), is largely determined by faecal pollution (i.e. harmful bacteria, viruses 

and other infectious microorganisms), typically from livestock and/or human 

waste via wastewater treatment works. It is this aspect of river water quality that 

the first two chapters of this thesis addresses. 

Bacterial/microbiological water quality is not specifically addressed in the WFD 

but the revised Bathing Water Directive (rBWD) (EU, 2006a) and Shellfish Water 

Directive (EU, 2006b), which complement the WFD, contain strict microbiological 

standards using faecal coliform (FC) and intestinal enterococci (EN) faecal 

indicator organisms (FIOs) as surrogates for infection risk in designated protected 

areas, such as bathing waters and shellfish harvesting areas (Edberg et al., 2000; 

IGES, 2008). 
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The use of FIOs as a measure of the safety of drinking water has a long history. 

In the 1890s many of the primary human pathogens were identified and 

categorized (Edberg, 1998). Concurrently, it was realised that public health 

protection required a cost effective indicator of faecal pollution, to avoid the 

expense of testing drinking water for all known pathogens. E. coli was chosen as 

the preferred biological indicator of water treatment safety for several reasons: it 

is universally present in the faeces of humans and mammals, is present in large 

numbers, is readily detectable by simple and inexpensive methods and would not 

multiply appreciably once voided into the environment (Prescott and Winslow, 

1915). However, due to methodological deficiencies (e.g. it required several days 

and a number of subcultures in order to identify the bacterium), E. coli surrogates 

such as the FC test were developed (Eijkman, 1904). FC are considered to be 

present specifically in the gut and faeces of mammals and E. coli is a major 

species within the FC group. 

Transmission of pathogens that can cause ill-health in recreational water is 

analogous to waterborne disease transmission in drinking water (WHO, 2003). 

As with drinking water quality, in both marine and freshwater studies of the impact 

of faecal pollution on the health of recreational water users, several faecal index 

bacteria have been used for describing water quality because they behave 

similarly to other harmful faecally derived pathogens (Prüss, 1998). 

Whilst FC correlates well with health outcomes in freshwater, there are difficulties 

using it as an FIO in marine water because it is thought that some of its 

constituent index bacteria, in particular E.coli, may die off more rapidly in sea 

water than in freshwater, resulting in higher concentrations of harmful pathogens 

in seawater when index organism densities are identical (WHO, 2003). Such 

difficulties are discussed further in Chapter 2. One FIO that correlates well with 

health outcomes for both marine and freshwater is EN (Prüss, 1998).  

The International Organization for Standardization (ISO, 1998) has defined EN 

as an appropriate FIO for use in both fresh and salt water environments. 

Alongside the adoption of both FC and EN as suitable FIOs by the EU, the United 

States Environmental Protection Agency (USEPA, 2012) has adopted EN and E. 

coli for fresh water, EN for marine water, and EN has been adopted by the WHO 
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as the most suitable health criterion for both marine and freshwater environments 

(WHO, 2003). 

Microbial pollution remediation is central to the WFD strategy for water quality 

improvements (Kay et al., 2007a). Under the WFD, EU member states are also 

legally required to design and implement catchment scale ’programmes of 

measures’ to manage non-compliant sources of microbiological pollution that 

could cause non-compliance of bathing and shellfish-harvesting waters with 

microbial standards (EU, 2000; Kay et al., 2006a). 

The policy shift from assessing water in terms of its chemical composition in 

favour of its ecological quality (Bateman et al., 2006a) has caused unease among 

water regulators as, in the past, there has been little effort to measure the 

microbiological quality of our water (Kay et al., 2007a). Indeed, there are many 

within the research community who feel that policy is running ahead of the 

capabilities of water quality science (Chadwick et al., 2008). Despite this, it is 

acknowledged by the policy and management communities that significant 

reductions in diffuse agricultural pollution and substantial improvements to waste 

water treatment (WWT) infrastructure are required to achieve WFD compliance 

targets (Wither et al., 2005). There has been success in reducing pollution. Ofwat, 

the UK water industry regulator, is highly effective in compelling water companies 

to make WWT improvements, with over £5.5 billion invested on environmental 

schemes between 2005-10 (Ofwat, 2008). Record levels of rBWD compliance 

were achieved in 2006 (Defra, 2008a), but despite these improvements to WWT 

infrastructure and changes to farming methods leading to reductions in WFD non-

compliance, many Environment Agency (EA) pollution monitoring sites continue 

to record high levels of FIO pollution, particularly from agricultural sources 

(Crowther et al., 2001; Aitken, 2003). 

To drive further improvements to water quality, accurate data is needed to more 

accurately define faecal indicator organism concentrations and fluxes in 

individual rivers and streams. This will allow the magnitude of the problems in 

non-compliant rivers to be assessed, enabling heavily polluted waters to be 

identified and marked for priority remedial action. Accurate data is also required 
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to assess the effectiveness of measures which have previously been 

implemented to reduce riverine pollution. 

Given the legal requirements of the WFD, and the clearly defined knowledge gaps 

in current FIO modelling, there is an urgent imperative from the research and policy 

communities for generic transferable models that can accurately predict base- and 

high-flow FIO concentrations across the UK to better inform integrated catchment 

management programmes. One such programme, the Catchment hydrology, 

Resources, Economics and Management (ChREAM) project (Bateman et al., 

2006a) required a transferable model capable of predicting riverine FIO 

concentrations. ChREAM also specified that such a model must be achieved 

within a standardised data framework, to enable full integration with other aspects 

of ChREAM land use and hydrological modelling. 

This is quantitative theory-building exploratory research approached from the 

positivist standard view of science, as defined by Robson (2002). This chapter 

describes the design and construction of transferable models capable of 

accurately predicting microbial pollution concentrations in UK rivers, using 

nationally available data. The models developed here were subsequently 

reported in Crowther et al. (2011). 

Following a review of contemporary FIO modelling and a statement of the 

research aims and objectives, the development of the datasets underpinning the 

transferable generic models is reported. Land use profiles have been synthesized 

from the Centre for Ecology and Hydrology (CEH) Land Cover Map 2000 

(LCM2000) and the Ordnance Survey (OS) Meridian2 map (NERC, 2008a; 

Ordnance Survey, 2008) in order to combine their best features and minimise 

their inaccuracies. Previous FIO models have typically described ordinal, rather 

than cardinal, change within land use categories, i.e. they have recognised that 

an area is inhabited by humans, but revealed nothing about the concentration of 

humans within that area. For this reason, this research introduces innovative 

population density variables, derived from readily available national land use data 

(i.e. the ONS decennial census for England, Scotland and Wales (Office for 

National Statistics, 2001a and 2001b) and the June Agricultural Survey (EDINA, 

2008a), to characterise the distributions of humans and a range of livestock types. 
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It was hypothesised that the creation of quantitative variables, that describe the 

distribution and population density patterns of humans and livestock within a 

catchment, may yield accuracy improvements over the simple binary designation 

of land use employed in previous research, e.g. improved characterisation of the 

populations of potential FIO sources may lead to improved estimates of FIO 

concentrations in rivers. The accuracy and suitability of these enhanced datasets 

is assessed. The chapter then describes the meta-analyses which remodelled 

FIO data, obtained during fifteen Centre for Research into Environment and 

Health (CREH) catchment scale studies, into generic land use and population 

based models capable of predicting FIO concentrations. Results from these 

models are reported and the models’ suitability as transferable generic models is 

assessed. The chapter closes with a discussion which identifies the limitations, 

and provides potential improvements, to the research design. 
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1.2 A review of contemporary faecal indicator organism modelling 
The research field of catchment microbial dynamics has been rapidly expanding 

due to the adoption of the WFD (IGES, 2008). Such is the importance of the field 

to the successful implementation of the WFD, Haygarth et al. (2005) have gone 

so far as to describe the policy imperative to understand catchment microbial 

pollution concentrations and fluxes as “the new challenge of the 21st century”. 

Despite the research field being of national and international importance, 

significant data gaps exist that hinder efforts to characterise riverine microbial 

pollution. These data gaps are now identified and the efforts to address them 

discussed.  

The sources of river pollution are varied spatially. Much of our riverine microbial 

pollution comes from diffuse agricultural sources (Bateman et al., 2006a; 

Haygarth et al., 2005; Horsey, 2006) but urban point sources of pollution, such 

as wastewater treatment works (WwTW), account for substantial pollution 

discharges into rivers; particularly during periods of high rainfall when aging (and 

often inadequate) wastewater infrastructures overflow due to their inability to 

process high volumes of wastewater. It has been estimated that point source 

discharges from WwTWs can contribute significant proportions of the total 

phosphorus load in UK rivers, with significant increases in concentrations 

downstream from WwTWs under high-flow conditions (Young et al., 1999).  

The ecological and microbial aspects of water quality can be distinct and typically 

have unique pollution sources requiring different remediation strategies 

(Haygarth et al., 2005). Remediation, particularly of microbial pollution, requires 

the correct identification of pollution vectors (typically agricultural livestock waste 

or overflows from human WwTWs) to ascribe liability and enforce accountability. 

Remedial action is hampered by a lack of accurate FIO modelling (Stapleton et 

al., 2008), a shortage of empirical measurement of sewage overflows (Wither et 

al., 2005) and a lack of research into the effectiveness of different sewage 

treatment types (Kay et al., 2008a). In addition, many routine water quality 

monitoring programmes tend to be systematically flawed as they habitually 

sample during low flow (base-flow) conditions, rather than capture the full range 

of river discharge rates (Crowther et al., 2011). This shortage of accurate 

empirical data leads to flawed assessments of the magnitude of high-flow FIO 
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concentrations from both diffuse and point sources (Mattikalli and Richards, 

1996; Kay et al., 2005a; Kay et al., 2008a). The lack of basic data on hydrological 

fluxes is disturbing. The mass movement of FIOs from urban sources is typically 

associated with relatively short duration high rainfall events. For example, 

Stapleton et al. (2008) found that urban point source discharges were directly 

responsible for 90% of the total organism load to the Ribble estuary during high 

rainfall. This poses significant risks to human health as elevated microbial 

pollution causes unacceptably poor recreational water quality (Wither et al., 2005; 

Defra, 2008a). Microbiologically polluted water has been shown to have a dose-

response relationship with the risk of ill-health (i.e. the rate of infection among 

recreational users increases steadily with increasing concentrations of harmful 

microorganisms and, for a constant concentration of microorganisms, the rate of 

infection is higher for those recreational users who have higher exposure) (WHO, 

2003). The evidence used to calculate the dose-response relationship and the 

detrimental effect elevated microbial pollution concentrations can have on human 

health is discussed in Chapter 2. 

Microbial pollution from diffuse sources is also elevated under high-flow 

conditions. Kay et al. (2008a) found that FIO concentrations and discharge 

volumes typically increase by an order of magnitude in rural catchments under 

high-flow conditions. This c.100-fold increase in export coefficients is due to a 

range of factors, not limited to the increased run-off of faecal material from 

agricultural land or the increased mobilisation and transport of FIOs due to 

increased turbidity within watercourses (Wilkinson et al., 2006). 

The investigative monitoring of thousands of discharge sites for the presence of 

FIOs presents an expensive logistical challenge for the regulator as it is simply 

infeasible to measure pollution concentrations at every location (Environment 

Agency, 2008a). Because of this, there is a real and necessary requirement for 

cost-effective diagnostic tools capable of predicting microbial pollution sources 

and distributions. Although a range of statistical methods have been developed 

and used to model riverine pollution (Fraser et al., 1998; Tian et al., 2002; Vinten 

et al., 2004; Lawler et al., 2006) they are not without inaccuracies or 

disadvantages when applied to modelling FIOs. Watershed modelling tools such 

as Hydrological Simulation Program Fortran (HSPF) (Bicknell et al., 1997; 
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Donigian et al. 1995), Simulated Catchments (SIMCAT) (Warn, 1987) or Soil and 

Water Assessment Tool (SWAT) (Gassman et al., 2007). are frequently used to 

assess nutrient or sediment loadings in watercourses. The use of these systems 

to reliably model FIOs in watercourses is restricted by the poor availability of 

empirical data with which to parameterise or assess the accuracy of modelled 

results (Crowther, 2011). The Scotland and Northern Ireland Forum for 

Environmental Research (SNIFFER) screening tool has been useful for 

identifying and characterising diffuse pollution, providing insights into the sources 

of FIO pollution and enabling FIO export coefficients for catchments to be 

determined (SNIFFER, 2006a and 2006b). However, SNIFFER does not 

characterise both base- and high-flow FIO concentrations and the accuracy of 

SNIFFER’s predicted export coefficients, in common with the previous tools, has 

not been evaluated against data from monitored catchments. 

Another approach to catchment-scale FIO modelling has been to use linear 

regression techniques to model relationships between the geometric mean (GM) 

FIO concentrations recorded at monitored sites and the dominant land use 

characteristics within the catchments draining into those monitored sites; e.g. the 

proportions of grassland or built-up land act as proxies for the key sources of 

faecal pollution.  

This approach allows the correlations between FIO concentrations and land use 

types to be examined and water quality maps to be generated. By examining the 

locations of anomalous standardised residuals revealed by the spatially 

referenced regression models it is possible to identify pollution sources in need 

of remediation (Crowther et al., 2001; Kay et al., 2007b). 

This methodological approach to FIO modelling has proved to be a cost effective 

exploratory tool to predict microbial concentrations both within and at 

subcatchment outlets (Crowther et al., 2003; Kay et al., 2005a). Another 

advantage of the regression modelling approach is that the costs of obtaining 

empirical data are minimised. Research by Crowther et al. (2001) proved it is 

possible to investigate and predict FIO concentrations in coastal water by 

combining only secondary data sources. Similar FIO studies have obtained good 

results with a minimum of primary data (Wither et al., 2005). However, desktop 
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studies that rely on secondary data are not without complications. These 

complications are now discussed. 

FIO studies have shown that land use is a statistically significant determinant of 

microbial concentrations in rivers. Spatial variations in water quality closely reflect 

the distributions of developed land, meaning that urban land, with its associated 

sewage outflows, is one of the most critical sources of microbial pollution 

(Crowther et al., 2003). Unfortunately, inaccuracies in remotely sensed data can 

cause land-use misclassification. A comparison of the CEH LCM1990 (NERC, 

2008b) with field survey data has revealed marked discrepancies in that map, 

particularly in the urban land use category (Kay et al., 2005a). A similar 

comparison of the CEH LCM1990 with OS 1:50,000 maps revealed substantial 

misclassification of urban and woodland areas in the Ribble catchment (Kay et 

al., 2005a). Misclassification also occurs within agricultural land use categories. 

The problem is in part caused by the light reflectance values of similar surfaces. 

For example, mapping software may misclassify bare rock as urban areas (CEH, 

2008a). The methods used to rectify these errors are not without their own 

inaccuracies. During one correction exercise, mapped areas of built-up land 

extracted from OS 1:50,000 maps systematically underestimated urban land 

(Stapleton et al., 2006). 

If uncorrected, misclassification can cause significant systematic errors, 

particularly in heavily urbanized catchments. Some misclassification can be 

corrected manually by reclassifying the seventeen pre-defined CEH land use 

classes into a reduced number of principal land use categories. The accuracy of 

land use classification can also be further improved by using the most current 

data sets, such as the LCM2000 (Kay et al., 2005a) which offers accuracy 

improvements over its predecessor, the Land Cover Map of Great Britain 

(LCMGB). For example, procedures were developed and incorporated within the 

LCM2000 for segmenting satellite images to produce vector outlines (Fuller et al., 

2005) and the LCM2000 also incorporates upgrade improvements in structure, 

thematic detail and associated metadata (Smith and Fuller, 2002). 

Despite the restricted availability of primary empirical data, and the difficulties 

associated with the use of secondary data, successive generations of desktop 
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studies have tended to predict FIO concentrations with increasing accuracy (Kay 

et al., 2005a; Stapleton et al., 2008). Since 1995 CREH have been assembling 

an empirical database of enumerated FIO concentrations and accurate runoff and 

discharge data for catchments. This database is continuing to expand and 

develop. As of 2010, FIO concentration and export coefficient data have been 

collected from 205 sampling points across 15 process based catchment studies. 

One of the most recent modelling exercises undertaken by CREH combined and 

reanalysed those datasets within a meta-analysis to improve characterization of 

FIO fluxes within those catchments and assess the effectiveness of different 

sewage treatment types (Kay et al., 2008a). 

The ChREAM project examined the agricultural costs and key non-market 

benefits associated with the introduction of the WFD and considered the impacts 

of alternative implementations of that policy in terms of its impact upon rural land 

use and the farming sector (Bateman et al., 2006a). These impacts will involve 

geographically varied changes in land use patterns and water quality. This large-

scale study enabled collaboration with experts in the field of catchment microbial 

dynamics based at CREH and enabled limited access to CREH’s commercially 

sensitive FIO concentration and export coefficient database. As previously 

mentioned, ChREAM required a generic transferable model capable of predicting 

riverine FIO concentrations using standardised data surfaces, enabling 

integration with other aspects of ChREAM land use and hydrological modelling. 

The meta-analysis reported in Kay et al. (2008a) was calculated using the 

disparate data sources detailed in Table 6 and had not been assessed for its 

ability to predict FIO concentrations in other catchments. Consequently, that 

model could not meet ChREAM requirements. To achieve full integration with all 

aspects of ChREAM land use modelling it was necessary to reanalyse the CREH 

datasets using standardised data surfaces and standardised predictor variables. 

In addition to the creation of standardised data surfaces from which CREHs 

primary FIO concentration and export coefficient database could be remodelled, 

this research also aimed to extend the regression modelling approach by 

investigating whether improved models might be achieved by including human 

population and livestock density data as direct measures of the key FIO sources 
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as previous CREH research has relied solely upon ordinal change within land use 

categories. 

Other independent variables that are known to affect FIO source strength, 

mobilisation, transport, die-off and sedimentation within catchments (e.g., volume 

of runoff, soil hydrology and catchment size) have also been incorporated within 

the meta-analyses reported here. This has resulted in comprehensive generic 

and transferable models which can be used to predict FIO concentrations in UK 

rivers. 
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1.3 Aims and objectives 
The overall aim of this chapter is to produce a transferable generic model capable 

of accurately predicting EC and EN FIO concentrations in unmonitored UK rivers 

at both base- and high-flow during the summer bathing season. 

In doing so, it will also attempt to meet the following objectives: 

 Produce standardised land use variables, synthesised from the CEH 

LCM2000 and Ordnance Survey (OS) Meridian 2 maps, and apply the 

Centre for Ecology and Hydrology (CEH) land use classification system 

(grouping land into seven principal land use categories, so that the 

resultant datasets integrate with other aspects of ChREAM land use 

modelling). This synthesis of the OS Meridian2 and CEH LCM2000 maps 

may better represent the extent of built-up areas, providing accuracy 

improvements over existing land cover maps. 

 Standardise the Centre for Research into Environment and Health (CREH) 

land use data to achieve consistent land use classification across previous 

CREH FIO studies. This standardisation may yield welcome accuracy 

improvements when producing the generic FIO models, but is also crucial 

in facilitating the full integration of the FIO modelling with other facets of 

the Catchment hydrology, Resources, Economics and Management 

project (ChREAM) land use and water quality modelling. 

 Assess the accuracy of the standardised land use variables against CREH 

field survey land use data. 

 Create a method by which decennial national census data may be 

interpolated to catchment areas. Incorporate that human population 

density variable into the FIO models. This innovation may explain the 

significance of human FIO discharges better than existing urban land use 

variables. 

 Incorporate livestock population density variables into the FIO models for 

the first time. This may lead to a richer understanding of the distribution 

and importance of diffuse and point sources of pollution from agriculture. 

 Identify, interpolate to catchment areas and incorporate additional 

datasets, with nationally available coverage (e.g. soil temperature or 
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Standard Percentage Runoff (SPR)), which may help to explain riverine 

FIO concentrations. 

 To produce accurate digital catchment boundary files for CREH 

catchments, where necessary. 

 CREH catchment studies will be calibrated and integrated to produce 

transferable models (using stepwise multiple regression techniques), 

capable of accurately predicting riverine FIO concentrations. 

 Assess the relative performance (with reference to R2 values) of land-use-

based, population-density-based and all-variable FIO models. 

 The transferability of the FIO models will be assessed via out-of-sample 

testing. 
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1.4 Methods 

1.4.1 Study catchments 

The primary empirical datasets of enumerated FIO concentrations and run off 

export coefficients used within this research are derived from monitoring 

undertaken between 1995-2005 in the 14 CREH catchment studies detailed in 

Table 4. Their locations are shown in Figure 1. The 15th catchment, Haverigg, 

was used to evaluate the transferability of the generic models. 

Figure 1: locations of CREH catchment studies 

 

Locations of the 14 study catchments (1–14, as detailed in Table 4) used within the modelling 
data set. The Haverigg catchment (15) was used for model evaluation. 

Each of the studies detailed in Table 4 were conducted during the summer 

bathing season as they were aimed at improving understanding of bathing water 

compliance. To increase the robustness of the present modelling, only sites that 

met the following criteria were included: (1) Due to the relatively low resolution of 

livestock census and soil hydrology data only subcatchments with area ≥ 5 km2 

were included; (2) < 50% of land within the subcatchment is located upstream of 

lake and/or reservoir outlets. The reason for this is discussed below; (3) To 

produce accurate characterisation of FIO concentrations across different 
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discharge conditions, ≥ 5 samples of FIO data must be available for both base- 

and high-flow at each sampling location; (4) river discharge records must be 

available; and (5) land within the subcatchments had not been subject to 

programmes of measures (e.g. riparian fencing and buffer strips) aimed at 

reducing FIO loadings. The data from the 153 base-flow sites and 134 high-flow 

sites which meet these criteria and were subsequently used to model base- and 

high-flow faecal coliform (FC) and intestinal enterococci (EN) concentrations 

during the summer bathing season, are shown on Table 4. 

 

Table 4: water sampling points from previous CREH studies used in the 

present study 

Study Catchment 
Year 

Sampled 

Number of water sampling 
locations 

Base-flow High-Flow 
1 Holland Brook 1998 10 10 
2 River Ribble 2002 37 37 
3 Staithes Beck 1995 6 2 
4 Lake Windermere 1999 3 3 
5 River Leven/Crake 2005 16 16 
6 Sandyhills 2004 4 4 
7 Troon coastal inputs 2000 1 1 
8 Killoch Burn 2004 1 14 
9 River Irvine/Garnock 1998 23 23 

10 Ettrick Bay 2004 1 1 
11 River Nairn 2004 8 8 
12 Afon Ogwr 1997 14 14 
13 Afon Nyfer 1996 17 2 
14 Afon Rheidol/Ystwyth 1999 12 12 
 Total number of sampling sites 153 134 

 

There are combined sewage overflows (CSOs) and wastewater treatment works 

(WwTWs) within many of the subcatchments. Consequently, the FIO 

concentrations recorded within those subcatchments reflect inputs from a range 

of both point and diffuse sources. 

1.4.2 Water sampling and FIO enumeration methods 

The procedures used by CREH for collecting water samples and enumerating 

FIO concentrations were largely standardised. Aseptic water sampling 

programmes, devised to collect samples at both base-flow and high-flow, were 

carried out at the EA sampling point network, where possible (Kay et al., 2008a). 
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Temporary staff gauges were used at any location where EA telemetry data was 

unavailable. High-flow periods were defined by standard base-flow separation of 

the hydrograph record for the nearest hydrometric station (Kay et al., 2005a). FC 

and EN concentrations were enumerated following industry standard membrane 

filtration methods (Environment Agency, 2000; HMSO, 1994; Kay et al., 1994). 

The discharge monitoring, base-/high-flow separation, water sampling and 

microbial analysis are discussed in detail in Kay et al. (2008a). The variables 

relating to base-flow runoff (m3 km−2 h−1), high-flow runoff (m3 km−2 h-1) and total 

runoff (m3 km−2 h−1) are derived from actual runoff data collected during the 

individual studies. 

1.4.3 Outputs from lakes/reservoirs 

Because of sedimentation and die-off of microbial organisms within reservoirs 

and lakes, previous research has shown that watercourses issuing from such 

waterbodies typically have very low FIO concentrations which may poorly reflect 

land use, livestock stocking levels or wastewater discharges within the 

contributing catchment (Kay and McDonald, 1980). For this reason, the geometric 

mean (GM) FC and EN colony-forming unit (CFU) concentrations in watercourses 

issuing from reservoirs/lakes have been set to the values reported in Table 5. 

 

Table 5: GM FC and EN concentrations in waters issuing from lakes and 

reservoirs 

Organism Type 
GM concentrations (CFU 100 ml−1) 
Base-flow High-Flow 

FC 26 83 
EN 5 16 

 

These values are based on research conducted at the Nant-y-Moch, Cwm 

Rheidol, Fewston and Thruscross reservoirs and Lake Windermere (Kay, 1979). 

Subcatchments in which over 50% of land is located upstream of reservoir/lake 

outlets were excluded from the modelling data set. Where reservoir/lake outlets 

are fed by less than 50% of the total area of the subcatchment, it has been 

assumed that the volume of flow recorded at the subcatchment monitoring point 

consists of two components proportional to the area derived from the waterbody 

and the area derived from the rest of the subcatchment. 
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1.4.4 Catchment boundary data 

Twelve of the fifteen CREH catchment Hydrological Response Unit (HRU) 

boundary datasets had previously been georeferenced by CREH. Spatial 

boundaries corresponding with FIO relevant topographic features, such as 

reservoir outlets, were given precedence during that process specifically for the 

purpose of modelling FIOs. However, reservoir catchment boundaries were 

missing from the original CREH digital boundary files for the Windermere and 

Leven/Crake catchments and catchment boundaries for the Troon study (Wyer 

et al., 2001) were only available as 1:25000 paper maps. For this present study, 

catchment boundaries for the Windermere and Leven/Crake catchments were 

augmented to include the reservoir catchments and HRU boundaries for the 

Troon catchment were georeferenced using ArcMap 9.1 (ESRI Inc., 2005). 

The georeferencing process followed the usual procedure for georeferencing a 

raster dataset (ESRI Inc., 2006). In short, this involved identifying a number of 

well distributed locations in the unreferenced image and adding these as 

coordinate control points, then linking the known raster dataset positions to 

known positions in map coordinates. Once this had been achieved it was 

straightforward to digitise the HRU and reservoir boundaries using the editor tools 

in ArcMap. 

1.4.5 Construction of consistent data surfaces 

As the lack of a consistent mapping standard within previous CREH studies may 

create data inconsistencies within a meta-analysis of those studies, standardised 

data surfaces were required for this research. Table 6 describes the disparate 

land use data surfaces used within the individual CREH studies and the 

standardised data surfaces created to replace them. The data sources for the 

land use and population profiles were chosen specifically because they are 

readily available and have national coverage. Therefore, by using the 

methodologies described below, consistent profiles can be generated for the 

entire United Kingdom. 
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The next section of this chapter describes how the standardised land use 

variables were synthesised from the CEH LCM2000 and OS Meridian 2 maps 

(NERC, 2008a; Ordnance Survey, 2008). This is followed by a description of the 

construction of the human population density, livestock population density and 

Standard Percentage Runoff (SPR) for soil types variables, using the Office for 

National Statistics (ONS) decennial census for England, Scotland and Wales 

(Office for National Statistics, 2001a and 2001b), the June Agricultural Survey 

(EDINA, 2008a) and the Institute of Hydrology’s Hydrology of Soil Type (HOST) 

database (Boorman et al., 1995) respectively, within a spatially explicit 

geographical information systems (GIS) framework using ArcGIS 9.1 (ESRI Inc., 

2005). 

1.4.6 Land use data reclassification 

The purpose of this land use reclassification of CREH catchment areas was to 

produce accurate land use profiles of the number of hectares of each type of land 

cover in each HRU from which a meta-analysis of the CREH FIO data could be 

made. In addition to providing accuracy improvements over existing land cover 

maps, the reclassification scheme described here applies the CEH classification 

system which groups land into seven principal land use categories. These are 

urban/suburban, rough grazing, temporary/permanent grassland, woodland, 

arable/set aside, water and all other land. The ‘arable’ category can be subdivided 

and reclassified for other aspects of ChREAM land use modelling as necessary. 

Supplying CREH with standardised land use datasets, generated by the same 

method as for other aspects of the ChREAM project, enabled CREH FIO models 

to be fully integrated into all aspects of ChREAM land use modelling. 

By verifying Developed Land Use Area (DLUA) polygons from the OS Meridian2 

map (Ordnance Survey, 2008) and urban land use data from the LCM2000 

(NERC, 2008a) against OS 1:25,000 paper maps, the method described in Posen 

et al. (2011) was further developed so that the synthesis of the OS Meridian2 and 

CEH LCM2000 maps may better represent the extent of built-up areas. For 

example, although DLUA polygons tend to capture the outlines of large urban 

areas very well they occasionally misrepresent some aspects of urban land use, 

e.g. not capturing the full extent of urban sprawl in some newly-developed areas, 

or incorrectly identifying some very small settlements as DLUAs. In contrast, the 
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LCM2000 is good at capturing the extent of urban sprawl but also captures 

features that are not necessarily urban, such as quarries or motorway 

interchanges. The synthesis and proportional interpolation methods used to 

allocate land use data to subcatchments described here combines the best 

features from both maps while minimising their inaccuracies. 

1.4.7 Method of reclassifying the ‘urban’ total in the Land Cover Map 

2000 

Preparation of LCM 2000 data: 

1a, Using ArcGIS 9.1 (ESRI Inc., 2005) extract classes for ‘urban’ and ‘suburban’ 

from LCM 2000. Reclassify ‘urban’ and ‘suburban’ areas as 1, all other classes 

as 0. 

2a, Isolate densely urban areas from very small rural settlements using a focal 

statistics operation to clump groups of cells based on values ranging from 0 and 

1, where 1 = urban and 0 = rural, using a grid of 7*7 cells. The focal statistics 

operation assigns a value to each cell based on the values of surrounding cells, 

therefore cells surrounded by other cells of the same value will have a high value 

and vice versa. Assigning the ‘urban’ classification to Focal Statistics values > 

0.9 removes of all the LCM ‘urban speckles’ while preserving the true urban 

areas. Cells with values between 0.9 and 1 are reclassified as ‘urban’. Cells with 

values lower than 0.9 are reclassified as ‘all other land’.  

Preparation of OS Meridian2 data: 

1b, Use the ‘feature to polygon’ function to convert the DLUA layer to polygons. 

2b, Convert DLUA polygons to grid resolution (25m) and reclassify DLUA grid 

data. DLUA areas = 1, all other classes = 0. 

Merging and reclassifying the prepared LCM 2000 and OS Meridian urban data: 

3, Add together the grid layer LCM2000 urban areas (2a) and DLUA grid data 

(2b). The resulting ‘urban’ layer is assigned values of 1 for urban and 0 for all 

other land uses. 

4, Very small settlements, i.e. the remaining ‘speckles’ from LCM ‘urban’ 

categories, are now classified as ‘all other land’. Raster clumps are grouped into 
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regions. Regional groups > 80 cells are retained (value = 1), all those areas with 

a cell count < 80, corresponding to an area < 5ha., are classed as ‘all other land’ 

(value = 0). 

5, Occasionally small clumps of peripheral cells, that are clearly part of a larger 

urban area, separate from the urban area. To correct this problem, the original 

DLUA grid of Meridian defined urban areas, obtained at step 2b, is added to the 

output layer. 

6, The non-urban categories from LCM2000 are now reclassified into the 7 

principal categories used by CEH and consistent with ChREAM land use 

modelling. This reclassified layer is then mosaiced with the new ‘urban’ and ‘all 

other land’ categories. The reclassified ‘urban’ and ‘all other land’ categories take 

precedence over the previous ‘urban’ and ‘all other land’ categories and any 

resulting small gaps are classed as ‘all other land’. 

7, By cross-tabulating the HRU polygons with the CEH categories it is then 

possible to extract the number of hectares and the proportion of each land use 

type within each HRU. 

1.4.8 Assessing the suitability of the synthesised land use data 

This section of the chapter assesses the accuracy of the synthesised 

LCM2000/Meridian2 land use data surfaces produced during this research by 

comparing them against field survey data, collected by CREH, for the HRUs in 

six catchments. 

At the scale of individual sub-catchments, analysis revealed some discrepancies 

between the LCM 2000/Meridian2 and CREH datasets. Although the scatter plots 

in Figure 2 reveal errors in the correlation between the two data sets for the 

grassland and rough grazing categories, there is no clear evidence of systematic 

bias. 
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Figure 2: comparing the proportions of grassland and rough grazing 

obtained by CREH field survey data against those predicted by the 

synthesised LCM2000/Meridian2 maps 

 

CREH data based on field survey and supplemented by OS mapping (Crowther, 2008a) 

 

At sub-catchment scale the woodland category showed no significant differences. 

Paired sample t-tests suggested that the total area of urban land calculated by 

CREH in each sub-catchment is lower than that predicted by the synthesised land 

use data. These types of fine-scale discrepancies between the two datasets were 

not unexpected as the CREH field survey data was gathered at a much higher 

resolution than the LCM2000/Meridian2 data. 

Further analysis found that as spatial scale increases (and resolution becomes 

coarser) differences in land use patterns between the two datasets tended to 

converge. At catchment scale the LCM2000/Meridian2 dataset closely 

corresponds with the CREH field survey data, particularly for the Aberystwyth 

catchment, shown in Figure 3. 
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Figure 3: comparing the LCM 2000/Meridian2 data with CREH field survey 

data at catchment scale 

 

 

Despite the fine-scale differences at sub-catchment level, there are strongly 

significant (p<0.01) positive correlations between the land use categories across 

the two data sets at catchment scale, particularly for those land use categories 

(urban, grassland, rough grazing) that have been demonstrated to be significant 

sources of FIOs (see for example Kay et al, 2005a). Correlations between the 

datasets range from 0.814 for grassland to 0.938 for woodland. The correlation 

between the synthesised urban and the CREH urban is 0.894. 

In conclusion, despite some reservations about the accuracy of the synthesised 

urban total for individual sub-catchments when compared with the fine resolution 

data collected by CREH (which may cause slightly lower r2 values within the FIO 

models), the reclassified and synthesised land use data generated in this 

research is almost certainly fit for producing accurate land use profiles for use in 

larger scale modelling exercises. 

1.4.9 Human population data 

Urban land use is one of the single most important variables used in previous 

CREH FIO modelling (Kay et al., 2005a). However, areas such as retail parks 

and industrial complexes have relatively low population density but are classed 

as urban land. It was hypothesised that the creation of quantitative variables 

describing the distribution and density patterns of the human population within 

urban areas, at the resolution of individual HRUs, may yield accuracy 



 

62 
 

improvements over the simple binary designation of urban land use employed in 

previous research. 

Population profiles for each HRU were derived from the ONS decennial census 

for England, Scotland and Wales (Office for National Statistics, 2001a and 

2001b). 2001 was the most appropriate census year, being at the approximate 

mid-point of the period that the 15 catchment studies were undertaken. ONS 

Census data is available in a range of resolutions. Output Area (OA) data was 

chosen because it is the most detailed geographic level for which 2001 census 

data are available. Each OA has approximately 300 residents and, importantly, 

OA boundaries enclose as compact an area as possible (Office for National 

Statistics, 2005). Because population is not distributed evenly in space it was 

important to use the most spatially compact and detailed data available, in order 

to reduce errors when interpolating population. The rationale is that points close 

together in space are more likely to have more similar values than points further 

apart (Waters, 1997). It was anticipated that the larger the spatial area, the larger 

the interpolation errors would be. These interpolation errors were confirmed by 

preliminary investigations using coarse resolution Super Output Area (SOA) 

census data, which yielded less accurate results. 

1.4.10 Human population profile calculations 

1. Intersect OA shapefile (1) with the subcatchment HRU shapefile (2). Output = 

shapefile 3. 

2. Edit shapefile 3 attribute table. Create fields ‘oa_m2’ and ‘oa_ha’ for OA area 

values. Calculate ‘m2’, then ‘oa_ha’ as m2/10000. This calculates the area, in 

hectares, of each OA. 

3. Clip, then union shapefile 3 to the HRU shapefile (2). Output = shapefile 4. 

4. Edit shapefile 4 attribute table. Create and calculate fields ‘union_m2’ and 

‘union_ha’ for OA unioned polygon area values expressed in hectares. Create a 

field ‘proportion’ where ‘proportion’=‘union_ha’/‘oa_ha’. 

5. Add 2001 OA population data as a new layer. Join the population data to the 

shapefile 4 attribute table based on a common field i.e. ‘label’. Output = shapefile 

5. 
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6. Edit shapefile 5 attribute table. Create a field ‘polygon_population’ where 

‘polygon_population’=‘population’*‘proportion’. This calculates the proportion of 

OA population estimated to reside in the unioned polygon area. 

7. Dissolve shapefile 5. Sum ‘polygon_population’ based on the HRU shapefile 

(2) HRU ID field. This final step dissolves the unioned OA polygons into the HRU 

polygons and sums the population estimated to reside within each HRU. 

8. Population density for each HRU is obtained by dividing HRU population by 

HRU area. 

1.4.11 Livestock population data 

The proportion of grassland in agricultural catchments is a dominant predictor 

variable, particularly at high-flow (Crowther et al., 2002; Crowther et al., 2003; 

Kay et al., 2005a). However, the algorithms used by CEH to categorise grassland 

in the Land Cover Map also capture other areas of short grass (CEH, 2008a). 

Consequently, the land use category ‘grassland’ will include playing fields, golf 

courses and urban green spaces, all of which rarely contain dairy herds, the 

primary source of agricultural FIOs. The purpose of this classification exercise is 

to capture livestock types, populations and densities within HRUs. It is 

hypothesised that by quantifying livestock populations in this way, significant 

variables can be produced which will improve the accuracy of predictive FIO 

models. 

To integrate consistently with the land use and human population density 

variables described previously, a derivation of the previously described method 

has been use to generate livestock profiles for CREH catchment HRUs. 

Agricultural census data (Agcensus) from the June Agricultural Survey (EDINA, 

2008a) was used to generate these profiles. The livestock categories are dairy 

herd, beef herd, bulls, other cattle over one-year-old, other cattle under one-year-

old, sheep (which also includes goats, deer and horses), total pigs, indoor pigs, 

outdoor pigs, total fowl, indoor fowl and free-range fowl. It should be noted, as 

detailed in Table 7, that some of these categories were aggregated for modelling 

purposes. 
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Just as the smallest census enumeration units were used to minimize 

interpolation errors in the human population datasets, the smallest available 

Agcensus grid square resolution, 2km*2km, was used in these calculations for 

the same reason. 

Livestock populations fluctuate to a far greater extent than human populations, 

as animals are reared and slaughtered. Fortunately, unlike the decennial human 

census, the Agcensus is produced more regularly, often annually or biannually. 

Agcensus data corresponding to the year of the CREH catchment studies was 

used, where available, to minimize enumeration errors. There are several 

instances where the corresponding Agcensus year has not been used. There are 

two main reasons for this. Either there was no Agcensus that year, or the data 

within the census had been coarsely aggregated to preserve the confidentiality 

of individual farmers (EDINA, 2008b), as was the case for the England 2000 and 

Wales 1999 censuses. In these cases, the closest census year was used. Table 

6 shows the Agcensus year used to generate each of the livestock profiles. 

There were several other unavoidable sources of enumeration error caused by 

differences between individual Agcensus datasets. Data for bulls was unavailable 

on the census for Eng./Wales 1996. To rectify this the number of bulls was 

calculated as 4.4% of the ‘other cattle over one-year-old’, as this was the average 

proportion of bulls in other Agcensus years. Data for fowl was unavailable on the 

census for Eng./Wales 1997, so this variable was derived from the Eng./Wales 

1996 census data. Due to differences in agricultural policy the questionnaires 

used in England, Wales and Scotland occasionally differed slightly, which also 

led to minor inconsistencies in the data (EDINA, 2008b). 

1.4.12 Livestock population profile calculations 

1. Download relevant Agcensus data at 2km*2km resolution. 

2. Reclassify livestock data into the 8 main ChREAM livestock categories i.e. 

‘dairy herd’, etc. 

3. Centre the coordinates. The grid coordinates supplied with Agcensus data 

relate to the south west corner of each grid square. By adding 1000 to both 
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eastings and northings the grid coordinates then apply to the centre of the 

2km*2km squares. 

4. Divide the totals of the livestock categories by 4. 

5. Add Agcensus data to the project as a .dbf file (1). Display as x,y data. Add a 

1km * 1km mesh (2) to the project. Add the catchment shapefile (3) to the project. 

6. Intersect the mesh (2) with the catchment shapefile (3). Output = ‘mesh 

intersect’ (4). Edit ‘mesh intersect’ (4) attribute table. Create a field ‘mesh_ha’ 

and set field value equal to 100. (Each mesh square = 100 hectares). 

7. Spatially join the Agcensus .dbf file (1) to ‘mesh intersect’ (4). Give the 1km 

mesh the attributes of the point closest to its boundary. (Therefore, 4 * 1km 

squares at one quarter of the original livestock value equal the original livestock 

value.) Export as ‘livestock_mesh’ (5). 

8. Clip ‘livestock_mesh’ (5) by CREH catchment shapefile (3). Export as shapefile 

(6). Union shapefile (6) with CREH catchment shapefile (3). Export as shapefile 

(7). 

9. Edit shapefile (7) attribute table. Create fields ‘area_m2’ and ‘area_ha’. 

Calculate ‘area_m2’, then ‘area_ha’ as m2/10000. This calculates the area, in 

hectares, of each unioned area. 

10. Create a field ‘proportion’, where ‘proportion’ = ‘area_ha’/‘mesh_ha’. 

11. Create 8 new fields (i.e. ‘dairy population’, etc.) to calculate the proportion of 

each livestock category contained in each unioned area. Calculate ‘dairy 

population’ as ‘proportion’*‘dairy herd’. 

12. Dissolve shapefile (7) using the catchment shapefile (3) HRU identifier as the 

dissolve field. Set the statistics field to each of the eight livestock population fields 

i.e. ‘dairy population’, and the statistics type of each to ‘SUM’. The output will be 

the total populations of each of the eight livestock types contained in the areas 

demarcated by the shapefile (3) catchment HRU boundaries. Export the attribute 

table. 
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13. Edit the attribute table within a spreadsheet. Add four columns for the 

remaining ChREAM categories; ‘indoor pigs’, ‘outdoor pigs’, ‘indoor fowl’ and 

‘free-range fowl’. Set ‘indoor pigs’ and ‘outdoor pigs’ as 70% and 30% of ‘total 

pigs’ respectively. Set ‘indoor fowl’ and ‘free-range fowl’ as 90% and 10% of ‘total 

fowl’. These proportions are based on national averages calculated by the 

National Pig Association and Defra (Posen, 2008). 

1.4.13 Other variables that influence riverine FIO concentrations 

Following the calculation of human and livestock population profiles for each 

subcatchment, further independent variables on E. coli inputs were created using 

the data on E. coli production for different animal types in Jones and White (1984), 

where E. coli input = number of each livestock type (km−2) × mean E. coli output 

for each livestock type. Composite variables combining different livestock types 

and combining human population with livestock, were also created. 

Soil type, moisture content and moisture retention are known to affect FIO 

survival and, more importantly for the present study, their transport through the 

soil into receiving watercourses via hydrological processes (Deeks et al., 2005; 

Hagedorn et al., 1978; Jenkins et al., 1984). The use of one of the hydrological 

properties of soil, namely soil runoff, as an explanatory variable with national 

coverage, was explored. Data from the Institute of Hydrology’s HOST database 

(Boorman et al., 1995) at a grid-square resolution of 1*1 km was prepared, using 

the proportional procedures described previously, to calculate the mean SPR for 

each HRU. The SPR categories corresponded to those described in Table 4.17 

of Boorman et al. SPR is the percentage runoff derived from rainfall event data, 

adjusted to standard rainfall and catchment conditions, and averaged for a 

subcatchment. It was hypothesised that differences in soil runoff may help to 

explain riverine FIO concentrations. However, soil runoff was insufficiently 

significant to warrant inclusion in the models. Reasons for this are explored within 

the discussion of this chapter. 

There are many factors that affect FIO concentrations, mobilisation and die-off in 

soils and receiving watercourses. The aim of this research is to generate 

transferable predictive models using readily available data which has national 

coverage, and this requirement considerably narrows the types of data that can 
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be used. For example, micro- and small-scale processes that affect FIO survival, 

such as the localised effects of soil pH (Nichols et al., 1983) and antagonism by 

soil microflora (Gerba et al., 1975) must be excluded from this analysis as 

nationally available data is unavailable. 

There was one other macro-variable that was explored, soil temperature, but this 

was excluded from the meta-analysis following a preliminary investigation. This 

variable, and the reasons for its exclusion, is now discussed. 

It is widely reported that soil temperature affects FIO dieback rates (Filip et al., 

1988; Gerba et al., 1975). Soil Temperature data were sourced from the MIDAS 

database (Met Office, 2010) and prepared using the proportional procedures 

described above. The majority of the catchments used within this research are 

relatively small. Because of this there were only very small variations in mean soil 

temperatures across those catchments. Given that all of CREH’s FIO samples 

were collected during the narrow temperature range of the summer bathing 

season and that FIOs are known to be able to survive in a wide range of 

temperatures outside of the gut (Jones, 1999), it was apparent that coarse 

resolution soil temperature data would be an insignificant determinant of riverine 

FIO concentrations. Soil temperature, as an independent variable within this 

analysis, was rejected. 

1.4.14 Statistical analysis 

This section of the chapter describes the statistical methods used to produce the 

predictive models, discusses the rationale governing the selection of the predictor 

variables used to develop those models and describes the procedures used to 

assess the transferability of the models. 

The generic approach to FIO modelling uses stepwise selection multiple 

regression techniques to model the relationships between GM FIO 

concentrations at base- and high-flow (the dependent variables, y) and the 

various independent variables (x) listed in Table 7. These variables were entered 

into a Predictor Variable Matrix (PVM), the construction of which is described fully 

in the following chapter. Statistical analysis was undertaken using SPSS v15.0 

for Windows (SPSS Inc., 2006). 
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FIO concentrations in contaminated water have a normal distribution when log10 

transformed (Kay et al., 2005a). Therefore, log10 transformations were applied to 

those independent variables for which skewness exceeded 1.00. Because the 

data is transformed, the GM has a greater validity as a measure of central 

tendency than the more commonly used arithmetic mean (Bishop, 1966; Kay et 

al., 2008a). Both log10 transformations and the GM are typically used within the 

field of catchment microbial dynamics. For examples, see the analyses within the 

review of epidemiological studies on health effects from exposure to recreational 

water by Prüss (1998). FIO enumerations are expressed as CFU 100ml−I. The 

geometric mean (GM, calculated as: GM = 10x, where x = the mean of log10 

transformed values) concentration is used to characterise microbial water quality 

under base- and high-flow conditions for each sampling point. 

As with previous FIO studies conducted by CREH (Crowther et al., 2001; 

Stapleton et al., 2008), relationships of the following form were generated: y = a 

+ b1x1 + b2x2 + … + bixi + e where a is the intercept (y at x = 0), b is the slope 

(change in y per unit change in x) and e is the random error term. The regression 

analysis in this study was parameterised as follows: independent variables with 

a variance inflation factor > 5 (i.e. tolerance, 0.200) were excluded to minimise 

multicollinearity (Rogerson, 2001); the level of significance for a predictor variable 

to enter a model was set at 0.05; the level of explained variance was assessed 

using the coefficient of determination (r2 adjusted for degrees of freedom, 

expressed as a percentage); and the normal probability plot of standardised 

residuals was examined to confirm the validity of each model. All statistical tests 

were assessed at the 95% confidence level (Crowther et al., 2011). 

Previous CREH studies have found ‘urban’ and ‘grassland’ land use variables to 

be significant FIO predictor variables. Logically, our a priori belief was that we 

could expect close correlation between land use and population variables, 

namely human with urban and dairy with grassland as land use variables are 

essentially surrogates explaining patterns of population due to their spatial 

relationships with those populations.  

Three sets of regression models were developed using the independent predictor 

variables detailed in Table 7, on p.70. These were (1) models using all variables 
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and, to avoid any occurrence of multicollinearity, models that used either (2) land 

cover or (3) population variables. In the last two cases only those variables that 

consistently offered significant explanation of the sources of FIOs were included. 

Specifying the models in these ways allowed the most parsimonious models to 

be identified and enabled the models to be integrated within the ChREAM and 

Land Use Allocation Model (LUAM) land-use change models, as will be reported 

in the next chapter (Fezzi et al., 2008; Jones and Trantor, 2008). 

1.4.15 Out of sample testing 

A programme of out-of-sample testing was undertaken to evaluate the extent to 

which the models are truly generic and transferable to other UK catchments 

(Bateman et al., 2009; Tashman, 2000). In order to minimise the effects of 

unexplained variance in the models, attention focused on the model that provided 

the highest level of explained variance. This model was re-run seven times with 

data for one of the seven catchment studies with ≥ 5 subcatchments omitted in 

turn, so that the hold-out sample was large enough to be representative (Nau, 

2005). 

The resulting models were then used to predict the GM concentration for 

subcatchments in the omitted catchments (termed “test catchments”), and the 

mean error (predicted–actual concentration) and mean absolute error (absolute 

difference between predicted and actual concentration) were calculated for each 

study catchment. The mean error provides a measure of whether a model is under- 

(+ve values) or over-estimating (−ve values) GM FIO concentrations within the test 

catchments. In cases where the mean error and mean absolute error have the 

same value, then the GM concentrations for all of the subcatchments in the test 

catchment are either over- or under-estimated. As a further independent check, 

this model was applied to three sampling points in a further catchment (the 

Haverigg catchment, Cumbria), which was monitored in 2008. 
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1.5 Results 
Results of differently specified models are now reported. First, the results of 

models that use a mix of all variables. These are followed by models that use 

only land-use variables and then models that use only population-based 

variables. Finally, results of transfer testing are presented. Descriptions of 

variables used in the modelling are presented below. 

Table 8: variables used within FIO modelling 

ALLCATTLE All cattle population density (no. km−2) 
ARABLE Arable land including set-aside (% of total subcatchment area) 
AREA Total subcatchment area (km2) 
DAIRY Dairy cattle population density (no. km−2) 
GRASSLAND Temporary/permanent grassland (% of total subcatchment area) 
GRSPR Standard Percentage Runoff, grassland only (%) 
HFRUNOFF High rainfall river runoff (m3 km−2 h-1) 
HUMAN Human population density (no. km−2) 
LFRUNOFF Low rainfall river runoff (m3 km−2 h−1) 
LSTOCKEC E. coli input: all livestock sources (CFU km−2 h−1) 
OTHCATTLE Non-dairy cattle population density (no. km−2) 
RGRAZING Rough grazing (% of total subcatchment area) 
SHEEP Sheep population density (no. km−2) 
TOTALEC E. coli input: humans and livestock sources (CFU km−2 h−1) 
TOTRUNOFF Total river runoff (m3 km−2 h−1) 
TOTSPR Standard Percentage Runoff, all land (%) 
URBAN Urban and suburban land (% of total subcatchment area) 
WOODLAND Woodland (% of total subcatchment area) 

 

1.5.1 All variable models 

The results, summarised in Table 9, show statistically significant (p < 0.05) base- 

and high-flow regression models for both FC and EN. 
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Table 9: summary of results of stepwise multiple regression models of 

relationship between log10 geometric mean FC and EN concentrations at 

base- and high-flow and all of the independent variables 

  Step Variable Sign of ba Adjusted r2 
Significance 

level (p) 
Base-flow models (n = 153) 
 Faecal coliforms (FC) 
  1 HUMAN + 0.363  
  2 DAIRY  + 0.418  
  3 ALLCATTLE −? 0.481  
  4 ARABLE +? 0.505  
  5 AREA +? 0.518 <0.001 
 Enterococci (EN) 
  1 URBAN + 0.294  
  2 DAIRY + 0.325  
  3 ALLCATTLE −? 0.369  
  4 ARABLE +? 0.394 <0.001 
High-flow models (n =134) 
 Faecal coliforms 
  1 DAIRY + 0.439  
  2 HUMAN + 0.595  
  3 TOTALEC + 0.631  
  4 OTHCATTLE −? 0.653 <0.001 
 Enterococci 
  1 DAIRY + 0.388  
  2 HUMAN + 0.598  
  3 TOTALEC + 0.632 <0.001 

? indicates that the sign does not conform with prior expectation. 

 

The levels of explained variance are higher in the two high-flow models than the 

base-flow models. In each case at least three independent variables were 

entered. With the exception of AREA, which is entered at Step 5 in the base-flow 

FC model, all the variables entered are either population- or land cover-related 

variables. Runoff during the study period and soil hydrology (SPR) were 

insufficiently significant to warrant inclusion in the models. 

Overall, the models are dominated by the population variables, particularly 

HUMAN and DAIRY, though some land cover variables are also significant. 

DAIRY is entered first in the high-flow models, whereas HUMAN or URBAN are 

entered at Step 1 in the base-flow models. For all of the more significant 

predictors the sign of the slope (b) value is consistent with prior expectations. 

However, some of the less significant variables (labelled “?” in Table 9) have 

unexpected effects. 
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1.5.2 Land cover based models 

Table 10 outlines four statistically significant regression models with URBAN and 

GRASSLAND being the only two variables entered. 

 

Table 10: results of stepwise multiple regression models of relationship 

between log10 geometric mean FC and EN concentrations at base- and 

high-flow and the land use variables 

  Step Variable Sign of b Adjusted r2 
Significance 

level (p) 
Base-flow models (n = 153) 
 Faecal coliforms (FC) 

  1 URBAN + 0.339  

  2 GRASSLAND + 0.388 <0.001 

 Enterococci (EN) 

  1 URBAN + 0.294  

  2 GRASSLAND# + 0.301 <0.001 
High-flow models (n =134) 
 Faecal coliforms 

  1 GRASSLAND + 0.316  

  2 URBAN + 0.540 <0.001 

 Enterococci 

  1 URBAN + 0.331  

  2 GRASSLAND + 0.571 <0.001 
# Only URBAN is entered with PIN = 0.05. In order to include GRASSLAND (the key agricultural 
FIO-source variable), PIN was relaxed to 0.12. (PIN represents the criteria for variable selection, 
i.e. the probability of the variable to enter the stepwise regression within SPSS (Probability IN). 

The default value is 0.05.) 
 

Rough grazing, the other potentially significant FIO source, proved insufficiently 

significant to be included. While these models inevitably have lower levels of 

explained variance than those including all potential predictors, it is notable that 

all the models generated using land cover variables conform to prior 

expectations, with both URBAN and GRASSLAND land cover types being 

significant. 

1.5.3 Population based models 

Within these models the composite variables LSTOCKEC and TOTEC were 

excluded in order to remove the inevitable overlap with the individual population 

variables. The results, shown in Table 11, highlight the importance of HUMAN 

and DAIRY, which are entered at Steps 1 and 2 in all four models. 
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Table 11: results of stepwise multiple regression models of relationship 

between log10 geometric mean FC and EN concentrations at base- and 

high-flow and the population variables 

  Step Variable Sign of b Adjusted r2 
Significance. level 

(p) 
Base-flow models (n = 153) 
 Faecal coliforms (FC) 
  1 HUMAN + 0.363  
  2 DAIRY + 0.418 <0.001 
 Enterococci (EN) 
  1 HUMAN + 0.290  
  2 DAIRY + 0.311  
  3 SHEEP −? 0.326 <0.001 
High-flow models (n =134) 
 Faecal coliforms 
  1 DAIRY + 0.439  
  2 HUMAN + 0.595  
  3 SHEEP + 0.622 <0.001 
 Enterococci 
  1 DAIRY + 0.388  
  2 HUMAN + 0.598  
  3 SHEEP + 0.624 <0.001 

? indicates that the sign does not conform with prior expectation. 

 

HUMAN is entered first in the base-flow models, whereas DAIRY is the key 

variable at high-flow. SHEEP is also entered at Step 3 in three of the models: with 

a positive b value in the two high-flow models, though with a counter-intuitive 

negative b value (for EN) at base-flow. The levels of explained variance are 

notably higher in the high-flow models.  

SPR values for individual soil types in the UK typically range between 2 – 60%. 

There was much less variation in CREH subcatchments at the resolution of 

1*1km. As we can see in Table 12, the mean SPR for the individual catchments 

ranges between 24.1 – 57.7%, with a mean for all catchments of 40.2%. 
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Table 12: mean SPR of CREH subcatchments 

Catchment Mean SPR (%) within subcatchments 
Holland Brook 41.3 
Ribble 41.4 
Staithes Beck 38.7 
Lake Windermere 45.2 
River Leven/Crake 37.4 
Sandyhills 39.6 
Troon coastal inputs 24.1 
Killoch Burn 37.3 
River Irvine/Garnock 44.0 
Ettrick Bay 40.9 
River Nairn 38.0 
Afon Ogwr 40.2 
Afon Nyfer 36.2 
Afon Rheidol/Ystwyth 41.7 
Mean SPR 40.2 

 

1.5.4 Inter-study transfer errors 

Transfer errors were investigated for the high-flow, population-based EN model, 

since this had the highest level of explained variance of the more parsimonious 

land cover- and population-based models4. 

 

Table 13: inter-study transfer errorsa in the high-flow population-based EN 

model 

Study catchment testedb Mean errorc 
(log10 CFU 100ml−1) 

Mean absolute errord 
(log10 CFU 100ml−1) 

1 Holland Brook  0.4975 0.4975 
2 River Ribble −0.1883 0.2985 
5 River Leven/Crake −0.0513 0.2215 
9 River Irvine/Garnock  0.6227 0.6227 

11 River Nairn  −0.2126 0.3059 
12 Afon Ogwr  0.0417 0.2116 
14 Afon Rheidol/Ystwyth  0.4609 0.4912 
 Mean  0.1672 0.3784 

a Determined by deriving a model with data for the tested study catchment omitted and using 
the resulting model to predict the geometric mean concentration for subcatchments in the 

omitted study; bOnly study catchments with ≥ 5 subcatchments with valid high-flow data were 
included, see Table 4; cMean of predicted–actual log10 EN concentrations for each of the 

subcatchments in the study catchment being tested; d Mean of absolute difference between 
predicted and actual log10 EN concentrations for each of the subcatchments in the study 

catchment being tested. 

                                            
4 Other models were not assessed. The high-flow population-based FC model has a very similar 
explained variance (r2=0.622) so it is likely that transfer errors for that model will be broadly similar. 
Transfer testing was not undertaken on the base-flow population-based models. It is 
acknowledged that transfer errors may differ in those models. The remaining models (i.e. those 
using land use variables) were not assessed, as those models were inferior to the population-
based models and were not used within the transfer analyses reported in Chapter 2. 



 

76 
 

 

The results in Table 13 reveal inter-study variability that is not accounted for by 

the model. Only the Leven/Crake and Ogwr studies have mean errors close to 

zero. For the Holland Brook, Irvine/Garnock and Rheidol/Ystwyth studies the 

models based on the other study catchments tend to overestimate the actual EN 

concentrations that were recorded (mean errors: 0.4975, 0.6227 and 0.4609 log10 

CFU 100ml−1, respectively); whereas for the Ribble and Nairn studies the models 

tend to underestimate actual EN concentrations (mean errors: −0.1883 and 

−0.2126 log10 CFU 100ml−1, respectively). 

 

Figure 4: plot of actual high-flow log10 GM EN concentration against 

predicted values using the population-based model reported in Table 11, 

with values from those studies showing clear +ve or –ve anomalies from 

transferability testing (Table 13) identified. 

 

 

The mean absolute error recorded is 0.3784 log10 CFU 100ml−1, with values 

ranging from 0.2116 (Ogwr) to 0.6227 (Irvine/Garnock) log10 CFU 100ml−1. The 

pattern in these results is closely reflected in the plot of predicted against actual 

high-flow EN concentrations based on the overall model, shown in Figure 4. 

Application of the model to the three sites in the Haverigg catchment produced a 
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mean error of −0.1810 log10 CFU 100ml−1 (ranging from −0.0513 to −0.2467 log10 

CFU 100ml−1). It should be noted that inter-study transfer errors will tend to be 

greater where levels of explained variance in the models are lower, notably in the 

base-flow models. 

A linear assessment of transfer errors fitted very badly (i.e. was an inappropriate 

functional form). Figure 4 shows a log10 transformed plot of the values predicted 

by the high-flow GM enterococci population based model (reported in Table 11) 

versus actual GM enterococci concentrations. The models underperform when 

predicting outliers: the model is tending to over-predict very low concentrations 

and under-predict very high concentrations. The primary reason for this is 

because the models are compiled using data from several river sites (each of 

which have differing ambient characteristics), which impacts on the fit of predicted 

concentrations. This transfer error may result in less accurate predictions of 

extreme values, but does not prevent the models from predicting generalised 

patterns of pollution or identifying potential ‘pollution hotspots’ that may require 

further investigation. A more sophisticated non-parametric approach to model 

construction may have resulted in more accurate predictions but this option was 

not explored as the parsimonious nature of the parametric approach provides 

tractable models which aids model transfer.  

The models reported here represent the first generic transferable models which 

can be used to predict FIO pollution across unmonitored UK watercourses. They 

are the first models for which any transferability testing has been undertaken (so 

transfer errors cannot be directly compared to previous research): e.g. the 

Scotland and Northern Ireland Forum for Environmental Research (SNIFFER, 

2006) screening tool provides insights into FIO export coefficients for catchments 

(in only Scotland and Northern Ireland, not elsewhere within the UK) but does not 

provide a basis for characterising base- and high-flow FIO concentrations 

separately, and the SNIFFER export coefficient calculations have yet to be fully 

evaluated against out of sample tests or data from monitored catchments. The 

immediate predecessors to this research – the meta-analyses conducted by 

CREH and reported in Kay et al. 2008a and 2008b – did not provide any 

assessment of transferability (e.g. out of sample analyses). Both of the Kay et al. 

studies are qualitatively different from this research. Kay et al. 2008a is not 
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directly comparable as it focused exclusively on FIOs from sewage and treated 

effluents (i.e. no FIOs from agricultural sources). Comparison with Kay et al. 

2008b is not possible as it focused on the significance of differences in FIO export 

coefficients (cfu km-2 h-1) between base-flow and high-flow river flow conditions. 

Furthermore the results of Kay et al. 2008b are somewhat obfuscated by 

examining the relationship between overall (i.e. base and high flow) FC export 

coefficients whereas within this research base- and high-flow are modelled 

separately and FIOs are expressed as concentrations (CFU 100ml-1), not export 

coefficients. 
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1.6 Discussion 
All of the regression models clearly identify both humans and livestock as key 

FIO sources within catchments. It should be noted that some FIOs from both 

sources, especially particle-attached FIOs, may be deposited on the stream bed 

under base-flow conditions and re-suspended at times of high-flow. The FIO 

concentrations reported are therefore derived from both newly entrained and 

newly added organisms into the water column. Indeed, a significant proportion of 

the elevated concentration at high-flow may well be from the stream bed as 

increased water velocities increase water turbidity, entraining deposited 

sediments and the stream-bed store of FIOs (Wilkinson et al., 2006). 

Under base-flow conditions human sources (as reflected in the HUMAN and 

URBAN variables) are more important than livestock sources in accounting for 

the observed variance in FC and EN concentrations. Indeed, the DAIRY or 

GRASSLAND variables that are entered at Step 2 in the base-flow regression 

models provide only very limited additional explanation. This suggests that 

sewage-related sources are dominant at base-flow, with relatively little FIO input 

from agricultural sources. The former will be largely treated effluents from 

WwTWs, which generally have much lower FIO concentrations under base-flow 

conditions than high-flow (Kay et al., 2008a). The relatively low levels of explained 

variance in the base-flow models probably reflects the fact that in this ‘black box’ 

modelling, no account is taken of the nature of the effluent quality discharged by 

individual WwTWs, which varies with the type of treatment (Kay et al., 2008a); 

and also that the URBAN and HUMAN data for individual subcatchments will 

poorly reflect the magnitude of sewage effluent inputs to the subcatchment 

watercourses in cases where WwTWs serving a significant proportion of the built-

up area are located downstream of the monitoring point (i.e., sewage is exported 

out of the subcatchment for treatment). It is also interesting to note that the 

HUMAN and URBAN variables provide very similar levels of explained variance, 

which suggests that, for the purpose of catchment-scale modelling, built-up land 

is a relatively good proxy for human population. 

At high-flow both human and livestock sources assume importance, with the latter 

generally being the more dominant. Under such conditions some untreated 

sewage from combined sewerage overflows or overflows from WwTW storage 
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tanks is likely to be discharged to watercourses, and the quality of treated 

effluents from many WwTWs will be reduced due to more rapid transmission 

through the plant (Kay et al., 2008a). The importance of human sources is 

evidenced by the inclusion of URBAN and HUMAN as key variables in the various 

high-flow models. 

The general importance of livestock sources at high-flow is reflected in the land 

cover-based models by the prominence of GRASSLAND, which is entered first 

for FC and makes a major contribution to the explained variance achieved for EN 

(Table 10). This is in keeping with previous studies which have shown that the 

dominant sources of FIOs at high-flow tend to be of agricultural origin (Stapleton 

et al., 2008). It should be noted that the GRASSLAND land use category 

comprises all temporary/permanent grassland, other than that which is mapped 

as rough grazing. As such it encompasses quite a wide range in terms of quality 

and productivity, extending from very fertile lowland pastures, which tend to be 

dominated by dairy farming, up to quite high altitudes in some subcatchments, 

where beef and sheep production systems tend to dominate. Because of this, 

GRASSLAND is simply a proxy variable for the more intensive areas of livestock 

production. Consequently, land cover data, as are traditionally used in FIO 

modelling, inevitably have limited explanatory power and potential for scenario 

modelling. By incorporating livestock density data, the present study provides 

insight into the relative significance of different production systems. Of the various 

livestock variables used in the modelling (Table 7), DAIRY emerges consistently 

as the key variable, with levels of explained variance that are consistently higher 

than GRASSLAND. In the case of the high-flow FC models, for example, the 

DAIRY has an r2 value of 0.439, compared with 0.316 for GRASSLAND, which 

clearly highlights the importance dairy farming systems (cf. beef cattle and sheep) 

as a FIO source. This presumably reflects the high intensity of most dairy farming 

operations, which tend to be largely confined to the better land in the lowlands; 

the concentration of animals close to farm buildings for milking; and the storage 

and disposal to land of large quantities of waste (mostly in form of slurry) from 

yard areas and indoor winter housing–all of which pose potential pollution risks 

in terms of both diffuse sources (e.g., faeces voided directly in fields and 

slurry/manure applications to land) and point-source pollution (e.g., runoff from 
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farmyards and milking parlours, slurry stores and manure heaps). By contrast, 

beef and sheep systems are not so confined to the better land, are often less 

intensive, and generate smaller amounts of waste for disposal. Sheep may, 

however, be present in quite large numbers in some catchments, both in areas 

of temporary/permanent grassland and rough grazing. They therefore represent 

a potentially significant FIO source, and this is reflected in SHEEP being entered 

at Step 3 with a +ve b value in both high-flow population-based models (Table 

11). On the basis of these results, the design and implementation of measures to 

address FIO pollution from agricultural sources should be targeted initially on 

areas of dairy production. 

Several non-source variables (Table 7) were included in the all-variable 

modelling. These relate to three catchment characteristics that may affect source 

strength and the mobilisation, transport, die-off and sedimentation of FIOs within 

catchments, namely: runoff volume, soil hydrology and catchment size. 

Volume of runoff during the study period may be an important factor since, during 

prolonged periods of wet weather, certain FIO sources (especially those 

associated with diffuse sources, such as animal faeces in fields and stream 

source contributory areas) will tend to become depleted. It might be anticipated, 

therefore, that a period of high-flow will tend to be associated with higher FIO 

concentrations if preceded by a long spell of dry weather than if it followed a 

relatively wet period. Due to differences in weather conditions between the 6–8 

weeks of each of the 14 catchment studies, there is very marked inter-

subcatchment variability in runoff volumes (e.g., TOTRUNOFF: range, 3.94–

211.88 m3 km−2 h−1) (Table 7). In the case of soil hydrology, in subcatchments 

with more poorly drained soils (i.e., with a higher mean SPR) there will likely be 

more surface runoff per unit rainfall and hence increased mobilisation and 

transport of FIOs from land to adjacent watercourses, which may well lead to 

increases in FIO concentrations. In the present study the SPR for both the 

subcatchments as a whole (TOTSPR: range, 22.47–59.41%) and for the areas 

of permanent/temporary grassland (GRSPR: range, 18.38–58.44%) were used 

as predictor variables (Table 7). Catchment size may also be an important factor, 

since the opportunity for die-off of FIOs along watercourses as a result of 

exposure to UV light is increased within larger catchments as a result of the 
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greater length of channel flow. This is particularly likely under base-flow 

conditions when flow velocities, water depth and turbidity are all at a minimum, 

thereby maximising UV exposure. The 153 subcatchments used in the modelling 

range in size (AREA) from 5.01–1,013.18 km2 (Table 7). 

Despite the marked inter-subcatchment variability of runoff volume, soil hydrology 

and catchment area, only AREA was entered in any of the models, and that with 

a (counter-intuitive) +ve b value in the base-flow FC model (Table 9). Clearly, 

controlled experimental studies are needed to assess more fully the effects of 

these factors and any interaction effects between them. Given that these 

variables were either insignificant or produced a counter-intuitive b value, 

interaction effects were not explored further during this research. On present 

evidence, it would seem that their role in affecting FIO concentrations in 

watercourses at the regional and national scales is minor compared with 

differences in human population density, stocking levels and associated land use 

types (URBAN and GRASSLAND), –i.e. those factors that relate directly or 

indirectly to the key FIO sources. 

The out-of-sample testing reveals some degree of inter-study variability in the 

model evaluated, and this will inevitably tend to be greater in models with lower 

levels of explained variance, notably the base-flow models. This is not 

unexpected and is likely to be attributable to a combination of both inter-

catchment and temporal factors. The former reflect systematic differences 

between the catchments affecting the sources, survival and mobility of FIOs that 

are not accounted for by the variables in the final regression models (i.e., the 

unexplained variance). For example, there may be inter-catchment variations in 

livestock farming facilities and management practices that limit the extent to 

which key predictor variables such as GRASSLAND and DAIRY provide a 

measure of FIO sources. Also, soil hydrology (as outlined above) seems likely to 

account for some degree of inter-catchment variability, but its influence is not 

sufficiently strong to be included in the all-variable models; and other factors that 

were not included as potential predictor variables (e.g., temperature and 

topography) are likely to have a similar effect. The temporal factors, on the other 

hand, reflect the fact that the individual studies were undertaken over 6–8 week 

monitoring periods with markedly contrasting weather conditions, both before and 
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during the studies; and at different times during the bathing season, which could, 

for example, affect FIO source strength in grazed fields as a result of the 

progressive accumulation over the summer months of faeces from dairy cattle 

(which are housed over winter). Volume of runoff during the individual study 

periods, which was considered most likely to be the key temporal factor, was 

included in the predictor variable set, but, as with soil hydrology, was not 

sufficiently significant to be entered in the all-variable models. 

The strength of the present models lies in the fact that they are based on a FIO 

database that has extensive geographical coverage (land use, climate, 

topography, soils, etc.) and encompasses a wide range of weather conditions 

during the individual monitoring periods. Some of the inter-study transfer errors 

are inevitably quite high, and these are partly attributable to temporal factors. 

Clearly, by combining the data from all 14 catchment studies the effects of the 

temporal factors are minimised and the inter-catchment errors reduced. The 

resulting land cover- and population-based models developed in the present 

study can therefore be applied with some confidence for predicting base- and 

high-flow GM FC and EN concentrations during the summer bathing season in 

UK watercourses with catchments areas between 5 and approximately 1,000 

km2. While the lower size threshold is determined by the level of resolution of the 

available agricultural census data, the upper limit simply reflects the size of the 

larger catchments used in the present modelling. 

By combining the predicted GM FIO concentrations with discharge data, the 

contribution that an individual rivers/streams makes to overall FIO loadings to 

coastal waters can be estimated. 

The models can also be used to evaluate the likely impact of different land 

use/stocking level and human population change scenarios, as might result from 

the implementation of measures designed to reduce FIO loadings, or reforms in 

agricultural policy/funding, as reported in Hampson et al. (2010). 
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1.7 Conclusions 
In order to meet European WFD requirements there is an urgent need for 

transferable models that can accurately predict base- and high-flow GM FIO 

concentrations in UK watercourses. Previous studies of individual catchments 

have successfully developed regression models based on relationships between 

GM FIO concentrations recorded at monitored sites and the land use type within 

their subcatchments. The present study has extended this approach by 

combining data from 14 different catchment studies within a meta-analysis to 

develop generic models and augmenting the predictor variables to include direct 

measures of key FIO sources (i.e., human population and livestock density data) 

and various other factors (catchment size, runoff and soil hydrology) that may 

affect FIO mobilisation, transport and die-off. 

Statistically significant base- and high-flow regression models have been 

developed for both FC and EN, with levels of explained variance consistently 

higher in the latter models. Population variables (notably HUMAN and DAIRY) 

generally provide higher levels of explained variance than the land cover 

variables. Under base-flow conditions human, sewage-related, sources are 

dominant, whereas livestock sources tend to assume greater significance at high 

flow, with dairy farming systems (cf. beef cattle and sheep) being particularly 

important sources. Neither runoff, soil hydrology or catchment size were 

significant predictor variables. In the more parsimonious land cover or population-

based models, developed for ease of transferability to other UK catchments, 

relatively high levels of explained variance were achieved for all of the high-flow 

models, with adjusted r2 values ranging from 0.540 (land use model for FC, Table 

10) to 0.624 (population model for EN, Table 11). 

A programme of out-of-sampling testing on the high-flow EN model indicated 

some degree of inter-study variability, which is likely attributable to a combination 

of: (i) inter-catchment factors, which reflect systematic differences between the 

catchments that affect the sources, survival and mobility of FIOs that are not 

accounted for by the variables in the models; and (ii) temporal factors, which 

reflect the fact that the FIO monitoring was undertaken under different weather 

conditions and at different times during the summer bathing season. However, it 

is argued that by combining data from all 14 studies, which have a wide 
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geographical distribution across UK and encompass a wide range of weather 

conditions, the effects of the temporal factors are minimised and the inter-

catchment errors reduced. 

The resulting land cover- and population-based models can be used, with some 

confidence, in UK catchments to predict base- and high-flow FC and EN 

concentrations in unmonitored watercourses and to evaluate the likely impacts of 

different land uses, livestocking levels and human population change scenarios. 

In so doing, these models help provide valuable insights into the key sources of 

FIOs at catchment scale and can therefore help inform the development of 

policies and the prioritisation of investments to reduce microbial pollution, given 

that a mix of cost-effective regional and site specific policy remediation strategies 

will be required to achieve the highest reductions. This theme is further explored 

in the next chapter. 

1.7.1 Limitations and potential improvements to the research within 

Chapter 1 

The data in several of the CREH catchments are nested and consequently violate 

the Gauss-Markov assumption of no autocorrelation within the residuals 

(Gujarati, 2003). As they stand the models are misspecified. Although not 

traditionally used in FIO studies, multi-level modelling techniques have been used 

within the field of epidemiology to develop models which explicitly incorporate 

hierarchies or levels within which data is clustered (Goldstein, 1995; Duncan et 

al., 1993). These methods may be appropriate given the nested properties of the 

catchment data and may enable models to be developed which control for 

contextual effects within catchments. 

The majority of CREH catchment studies have been undertaken in rural 

catchments and tend to underrepresent highly populated urban areas. Therefore 

the data underpinning the models may cause systematic inaccuracies when the 

models are used to extrapolate to areas of very high population density. 

The assessment of transfer errors reported in this chapter was performed in two 

ways: firstly, the high-flow population-based EN model was re-run seven times 

with data for one of the seven catchment studies with ≥ 5 subcatchments omitted 

in turn, so that the hold-out sample was large enough to be representative. 



 

86 
 

Secondly, the model was applied to three sampling points from the Haverigg 

catchment (a catchment from which no empirical data was used to construct the 

models). Although transfer errors were assessed for the high-flow population-

based EN model, transfer errors in the other models were not assessed. Future 

improvements to this research could include analyses of transfer errors in the 

other models, to assess the ways in which transfer errors may differ across 

models (i.e. population-based vs. land use-based) and across flow rates (i.e. 

high-flow vs. base-flow). Further improvements to the testing of transfer errors 

could include using the models to assess FIO concentrations at alternative 

monitored watercourses and comparing predicted vs. actual values. Ideally, 

transfer errors for watercourses within the Humber RBD should be assessed and 

alternative watercourses should be subject to a wide range of site-specific 

geographic and climatic conditions (ideally including watercourses in the south 

and east of the UK and in highly urbanised areas, as these locations are 

underrepresented in the models) to test how well the models perform at different 

locations. Transfer testing should also be undertaken at different times during the 

year to assess temporal variability as the majority of the data underpinning the 

models was collected during the summer bathing season. 

The models may not show the best association between water quality and the 

impact of humans. There are two main sources of error in the models that are 

associated with the vagaries of the sewerage network. Firstly, errors are 

introduced because the models cannot account for sewage being piped across 

HRU boundaries and this has the potential to cause large errors in FIO 

enumeration. Within the models FIO discharges are always attributed to the 

originating HRU, but, in reality, this does not always happen. For example, the 

Minworth sewerage treatment works processes the sewage from 2.5 million 

people, the majority of which is piped from Birmingham via the Black Country 

Trunk Sewer system (Severn Trent Water, 2005). These transboundary flows 

cause the models to overestimate concentrations emitted from source HRUs (i.e. 

Birmingham) and underestimate concentrations in receiving HRUs (Minworth). 

Secondly, the models fail to recognise the relative efficiency of different sewage 

treatment types. Tertiary wastewater treatment methods are more effective than 

secondary or primary methods (WHO, 2003; Kay et al., 2008a) and this impacts 
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on riverine FIO concentrations. These errors may be reduced by identifying the 

sewage infrastructure catchment areas, discharge points and treatment types, 

and then incorporating this additional data into the models. The EA database of 

discharge sites may be a potential source of some of the required data (Harley, 

2008). 

There are a number of other variables that could be explored in an attempt to 

explain more of the variation in the models. For example, a composite variable, 

based on human population density and urban land use area, could be used. This 

approach is used by the Office for National Statistics when trying to minimize the 

misclassification of electoral districts (2002). A similar composite of dairy and 

grassland could be created, where the grassland variable is adjusted for the 

number of cattle present. 

It has been calculated that E. coli 0157 is endemic within 1-15% of UK dairy 

herds, with distinct regional variations in infection rates (Jones, 1999). By 

incorporating data on the locations where E. coli is endemic, the variables for E. 

coli inputs used within this research may be improved. 

The ability of the riverine environment to assimilate microbial pollution is poorly 

understood. Many organisms have remarkable survival rates (Burton et al., 1987; 

Ogden et al., 2002) and precise characteristics of their entrainment and 

deposition are unknown (Wilkinson et al., 2006). Turbidity has been positively 

correlated with FIO concentrations (Wilkinson et al., 1995; Lawler et al., 2006), 

as have other factors such as gradient, slope shape, stream proximity, soil 

moisture (Fraser et al., 1998), FIO inactivation, transportation through soils 

(Vinten et al., 2004), temperature and in-stream mobilization (Tian et al., 2002). 

If these variables could be generated, on a consistent national scale, they may 

warrant further investigation and possible inclusion in the models described here. 
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2 Chapter 2: Predicting Microbial Pollution Concentrations in 

UK Rivers in Response to Land Use Change 

2.1 Introduction 
The previous chapter introduced the shift towards the integrated management of 

recreational water quality through the development of drainage basin wide 

programmes of measures, prompted by the Water Framework Directive (WFD) 

(EU, 2000). The WFD and its daughter directives, the revised Bathing Waters 

Directive (rBWD) (EU, 2006a) and the Shellfish Waters Directive (EU, 2006b), 

have increased the need for cost-effective diagnostic tools capable of accurately 

predicting riverine faecal indicator organism (FIO) concentrations and fluxes (Kay 

et al., 2007a and 2008b). The last chapter described the construction of models 

designed to fulfil that requirement. This chapter demonstrates several ways in 

which those generic regression models can be applied: to predict riverine FIO 

concentrations within unmonitored watercourses, to produce a Quantitative 

Microbial Risk Assessment (QMRA) of the water within those watercourses and 

to quantify the likely impact on FIO concentrations (and health risk) following the 

implementation of hypothetical land use policy measures designed to reduce 

faecal pollution. These assessments are made at both River Basin District (RBD) 

and catchment scale. 

This chapter begins by outlining, in terms of health impacts and external 

economic costs, the need for models capable of apportioning the sources of 

excessively high FIO concentrations in watercourses. The literature review then 

examines the dose-response relationship between FIO concentrations and ill-

health, before providing a critique of the capabilities and limitations of QMRA, a 

statistical tool used to numerically simulate and improve estimations of the risk of 

ill health from the use of recreational water contaminated with faecal pollution 

(Pond, 2005). 

Following a statement of the aims and objectives, the methodology section 

describes in detail the methodology used to transfer the model to the Humber 

RBD and a sub-catchment scale example is used to illustrate how the models are 

applied. An overview of the mathematical and conceptual structures of the 
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econometric and linear programming models used to generate land management 

scenario data is also provided. 

The results are in two sections. Firstly, the FIO models are used to predict FIO 

concentrations in the Humber River Basin District during base- and high-flow 

conditions, in the summer bathing season, 2004. The resulting patterns of 

microbial pollution are presented and interpreted. The EU and the WHO provide 

slightly different guideline values for recreational water quality. Nevertheless, the 

models used within this research produce results compatible with both: QMRAs 

(guided by WHO compliance values) for different land use change scenarios in 

the Humber RBD are undertaken and the impact on water quality of those 

scenarios is also examined with reference to the EU guideline values. 

Secondly, and because the FIO models incorporate explanatory variables which 

allow the effects of policy measures which influence livestock stocking rates to 

be assessed, the effects of seven land use management and policy instruments 

(fiscal constraint, production constraint, cost intervention, area intervention, 

demand-side constraint, input constraint, and micro-level land use management) 

are modelled. All of these scenarios are qualitatively very different from one 

another but all have the potential to reduce microbial pollution in rivers. An 

assessment is made of the relative effectiveness of these microbial pollution 

remediation strategies. 

The discussion examines the results. This is followed by the conclusions which 

highlights some of the challenges faced by the policy and management 

communities in devising suitable strategies to reduce riverine microbial pollution. 

The conclusion also contains a discussion identifying some of the limitations of, 

and provides suggestions for potential improvements to, the research design. 

As this chapter demonstrates, the diagnostic tool reported here can provide 

significant insights which aid microbial source apportionment and help to identify 

watercourses at elevated risk of pollution. 
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2.2 Literature review 
Given the relevance of the literature review in the previous chapter, this review is 

specific in its focus and, in order to remain concise and relevant, it briefly 

discusses the issues relevant to each of the three main tasks (health risk 

assessment, FIO source apportionment and land use scenario modelling) 

covered within this chapter. 

Unidirectional FIO discharges impose a variety of uncompensated external costs 

on a variety of downstream users (Pearce and Turner, 1990). These costs include 

the degradation of recreational water quality and drinking water supplies and 

unacceptably high levels of pollution received by shellfish harvesting waters. 

Microbiological pollution is potentially best prioritised in terms of its health impacts 

and external economic costs (Larsen and Ipsen, 1997). Microbiological pollution 

can cause a variety of illnesses ranging from nausea and diarrhoea to, very 

occasionally, more serious illnesses which can, very rarely, result in death.5. 

Illnesses arising from exposure to polluted bathing water have large associated 

healthcare costs, estimated at an annual $12 billion globally (Shuval, 2003). 

Dwight et al. (2005) estimated a public cost of $3.3million per year as a result of 

illnesses acquired from localized contaminated water at just two Californian 

beaches. In the UK, Mourato et al. (2003) calculated that c.1.3 million excess 

cases of gastroenteritis each year may be attributable to poor bathing water 

quality. 

The positive correlation between microbial concentrations in recreational water 

and increased ill health has been established through epidemiological studies of 

recreational water and its adverse effects on recreational users (Kay et al., 1994; 

US EPA, 2003; WHO, 2003). Such studies support the idea that the rate of 

infection and disease among recreational users increases steadily with 

increasing concentrations of harmful microorganisms within a dose-response 

relationship (Ferley et al., 1989; Fleisher et al., 1996; Kay et al., 1994; Prüss, 

                                            
5 The Centers for Disease Control and Prevention (CDC) maintain the Waterborne Disease and 
Outbreak Surveillance System for collecting and reporting waterborne disease and outbreak 
related data. During the 2001-2002 reporting year 65 waterborne disease outbreaks associated 
with recreational water were reported by 23 US states. These 65 outbreaks caused illness among 
an estimated 2,536 persons; 61 persons were hospitalized, eight of whom died (CDC, 2004). 
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1998)6. The UK Randomised Controlled Trials (UKRCT) for gastroenteritis (Kay 

et al., 1994) and acute febrile respiratory illness (Fleisher et al., 1996) were the 

two key studies identified by the WHO as providing the most accurate and 

unbiased data from which to compile the Guidelines for Safe Recreational Water 

Environments (2003). Both studies found significant dose-response relationships 

between EN and ill health and the slopes of the dose-response curves in both 

studies were broadly consistent. Following those trials, the WHO adopted 

intestinal enterococci (EN) concentrations as the most suitable health criterion for 

both marine and freshwater environments (WHO, 2003) and the EU adopted FC 

and EN concentrations as the main parameters to measure compliance with the 

rBWD (Environment Agency, 2008b; EU, 2006a). 

Table 14: EU Bathing Water Directive inland water quality compliance 

values (EU, 2006a) 

 Water Quality Classification 
Organism  Excellent* Good* Sufficient** 
EN (CFU 100 ml−1) 200  400 330 
FC (CFU 100 ml−1) 500 1000 900 

Notes: * based on 95th percentile compliance, ** based on 90th percentile compliance. 
Guidelines based on geometric mean values of EN concentration are unavailable. It is 

acknowledged that the geometric mean values calculated in the FIO models do not correspond 
exactly with percentile values. 

 

This research is guided by both the WHO and the EU rBWD compliance values. 

A range of scenarios are modelled in order to examine how land use changes 

have the potential to improve the quality of river water quality. These scenarios 

are assessed with reference to the EU compliance values shown in Table 14. 

But, as those values have no associated health risk, the QMRAs performed within 

this chapter refer to the WHO QMRA compliance parameters, described below. 

QMRAs are used to predict infection or illness rates from given concentrations of 

particular pathogens, assumed rates of ingestion and the most appropriate dose-

response models for the population exposed (Haas et al., 1999). However, due 

to the limited empirical data upon which the WHO guideline values are based, 

there are four key areas in which data is lacking, each of which are now briefly 

                                            
6 i.e. the rate of certain enteric and respiratory infections and disease among bathers, compared 
with unexposed non-bathers, increases steadily with increasing concentrations of indicator 
microorganisms of faecal pollution. 
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discussed. It is acknowledged that each of these issues have the potential to 

affect the validity of the QMRA results presented later within this chapter. 

For ethical reasons the subjects of the UKRCT were healthy adult volunteers (Kay 

et al., 2004a). Diseases that are normally mild can have severe outcomes in 

susceptible sub-populations, e.g. those with weakened immune systems, the 

infirm, the elderly or young, pregnant women, etc. (Carr and Bartrum, 2004). 

Several studies suggest that illness rates are higher for children (Cabelli, 1983), 

the elderly and the infirm (Prüss, 1998). Consequently, the WHO guidelines may 

systematically underestimate risks to these groups. 

To simulate bathing conditions the subjects in the UKRCT studies bathed for a 

minimum of ten minutes and during that period immersed their heads three times 

(Kay et al., 1994). Although broadly representative of the actions performed when 

bathing, this does underestimate the risks associated with increased time in the 

water or higher risk activities. There is a growing body of evidence that longer 

exposure to polluted water leads to increased probability of illness (Bradley and 

Hancock, 2003). Philipp et al. (1985) and Dwight et al. (2004) found significantly 

higher rates of ill health in snorkel swimmers and surfers. Similarly, Fewtrell et al. 

(1994) found that health risks decrease with lower exposure, and lower risk, 

recreational activities. 

This next limitation has the potential to introduce a significant systematic error 

into the accuracy of freshwater QMRAs based on the WHO guidelines. Dufour 

(1984) suggested that the risk of ill health from sea water bathing may be twice 

that of freshwater bathing. A comparison of the data produced by Kay et al. (1994) 

and Ferley et al. (1989), although using different methodologies, suggests that 

illness rates are five times higher in sea water. One explanation is that some 

FIOs, particularly E. coli, may die off more rapidly in sea water than in freshwater, 

resulting in higher concentrations of harmful pathogens in seawater when FIO 

densities are identical (WHO, 2003)7. If this is the case then the application of 

guidelines derived for seawater would result in lower rates of illness in freshwater 

users. This phenomenon is acknowledged within the rBWD (EU, 2006a), which 

                                            
7 The use of FIOs as surrogates for the presence of other harmful microorganisms is discussed 
in Chapter 1. 
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provides inland water quality parameters that are twice as high as coastal water 

parameters. 

The fourth limitation of the WHO QMRA guidelines concerns the mathematical 

form of the dose-response relationship used by the WHO, shown in Figure 5. 

Figure 5: dose-response relationship in the 1994 sea-bathing trials (Kay et 

al., 2004a) 

 

The solid line represents the mathematical form of the dose–response relationship. The 
dotted line represents the functional form used in the derivation of the WHO Guideline 

values. 

The maximum concentration of EN detected in the UKRCT was 158 CFU 100 

ml−1 (2.198 log10 CFU 100 ml−1) (Kay et al., 1994). To avoid extrapolating the 

dose-response curve into areas of no data, the WHO guidelines assume that the 

excess probability of ill health (0.388) remains constant above the level of 158 

CFU 100 ml−1 (i.e. above the level of the dotted line), rather than continue to 

increase as the mathematical relationship suggests (Kay et al., 2004a). This 

assumption may lead to gross underestimates of the risks posed by highly 

contaminated water. For a full explanation of the probability density function of 

the disease burden assessment method please see Kay et al., 2004a. 

Because of the relative scarcity of evidence in the four areas described above, 

the WHO adopted a single series of microbial values, for both coastal and fresh 

water, irrespective of the type of recreational activity. These values are shown in 

Table 15. 

  



 

94 
 

Table 15: microbial water quality assessment categories and associated 

probability of gastrointestinal illness (WHO, 2003) 

Water quality 
assessment 

category 

95th 
percentile 
value of 

enterococci 
per 100 ml 
(rounded 
values) 

Basis of derivation 
Estimated risk of 

gastroenteritis per 
exposure 

A 
very good 

< 40 

This value is below the no-
observed-adverse-effect level 

in most epidemiological 
studies 

<1%. An average 
probability of  

1 case in 100 exposures 

B 
good 

41-200 

The 200/100 ml value is above 
the threshold of illness 

transmission reported in most 
epidemiological studies that 
have attempted to define a 
lowest-observed-adverse-

effect level 

1-5%. An average 
probability of  

1 case in 20 exposures 

C 
fair 

201-500 

This level represents a 
substantial elevation in the 
probability of all adverse 

health outcomes for which 
dose–response data are 

available 

5-10%. An average 
probability of  

1 case in 10 exposures 

D 
poor 

> 500 
Above this level, there may be 
a significant risk of high levels 
of minor illness transmission 

>10%. There is a greater 
than 1 in 10 chance of 

illness per single 
exposure 

 

The WHO classification underpins the QMRA assessments undertaken in this 

research because, in contrast to the rBWD classification, the WHO guidelines 

contain clearly defined health risks. This alone lends greater policy relevance to 

the QMRA results as it provides a greater degree of quantification upon which 

policy makers can make more informed decisions. 

Despite ongoing improvements to wastewater treatment facilities in the UK, 

noncompliance with microbial guidelines still occurs at many designated bathing 

and shellfish sites, particularly after high rainfall when there are increased 

emissions of untreated sewage from combined sewer overflows or wastewater 

storm tanks (Crowther et al., 2001). As water companies increasingly treat 

sewage to higher standards, it may be argued by the water industry that a greater 

proportion of non-compliance may, in the future, be attributable to the agricultural 

sector (Chadwick et al., 2008). 
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Poor agricultural practices have the potential to contaminate watercourses with 

enteric microorganisms, a proportion of which are pathogenic to humans, and this 

potential is exacerbated within intensively farmed catchments (Crowther et al., 

2001; Oliver et al., 2007). Pollution of water sources by agricultural wastes such 

as cattle slurry has been a major problem in the UK and accounted for 28% of all 

agriculturally related water pollution incidents between 1987 and 1989 (MAFF, 

1991). However, the results of the models developed in the previous chapter 

demonstrated that the water industry and the agricultural sector are both 

responsible for FIO emissions. Failure to comply with the water quality 

parameters of the WFD may result in infraction proceedings being instigated by 

the European Commission (Kay et al., 2005b) so there is a growing need for the 

UK regulator to correctly identify FIO sources and apportion liability to either 

human or agricultural sources. As was discussed in the previous chapter, sources 

and concentrations of FIOs are dependent on a complex interplay of factors, 

which creates uncertainty when attempting to apportion liability for faecal pollution 

sources. 

Progress has been made in apportioning liability for FIOs, and other potentially 

harmful pathogens found in watercourses, to agricultural or urban sources using 

regression modelling (e.g. Kay et al., 2005a; Crowther et al., 2011) and microbial 

source tracking techniques (e.g. Stapleton et al., 2007a). 

Microbial source tracking is a forensic technique used to identify the source (i.e. 

human, bovine, etc.) of microbial pollution in watercourses. Methods rely on the 

identification of signature molecules (markers) such as DNA sequences of host-

associated microorganisms. Several techniques are available, e.g., the 

identification of F+RNA coliphage groups (types II and III are predominantly 

human and types I and IV are animal-associated) (Havelaar et al., 1990), or the 

genomic analysis of bacteroidetes to identify the presence/absence of specific 

genotype markers (i.e. bovine CF128 and human HF183) (Bernhard and Field, 

2000). The field of microbial source tracking has advanced and expanded 

considerably over the last two decades (see, for example, the reviews by 

Harwood et al. (2014) and Shanks et al. (2016)). However, such analyses are 

time consuming and typically used for small-scale applications: they would be 

prohibitively expensive and impractical at catchment scale. 
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Regression modelling has been a useful tool for identifying potential pollution 

‘hotspots’ and modelling spatial trends at the catchment or subcatchment scale. 

By incorporating livestock and human population density variables into 

regression models, the predictive models used in this research yield accuracy 

improvements which may help inform the identification of FIO sources in the 

environment. For example, by identifying trends in the distribution of FIOs, the 

models could be used as a starting point to inform more intensive empirical 

microbial source tracking investigations that determine whether the ‘sterol 

fingerprint’ of faecal pollution is of human or animal origin (Leeming et al., 1996). 

Cuttle et al. (2007) have identified 44 different methods of controlling diffuse 

pollution from agriculture. The effects of many of these, i.e. maintain or enhance 

soil organic matter levels, cannot be estimated by this research. However, the 

dairy and human population variables do lend themselves to modelling the 

potential effects of different levels of livestocking, human population change or 

alterations to wastewater treatment infrastructure. 

By altering the values of the explanatory variables used within the FIO models, 

hypothetical land use change scenarios can be simulated to assess the potential 

impacts on riverine FIO concentrations. For example, if the impact of a 20% 

reduction in dairy cattle were to be assessed, the dairy stocking density 

parameter of each target HRU would be reduced by 20% within the model: an 

HRU which previously had 100 dairy cows per km2, for the purposes of the 

scenario modelling, would be assumed to have 80 cows per km2 and the effect 

of this change on riverine FIO concentrations can be assessed. The land use 

management and policy instruments modelled in this research are discussed 

further within the methodology. 

The models used here were developed to inform the Catchment, Hydrology, 

Resources, Economics and Management (ChREAM) project (Bateman et al., 

2006a). The construction of the models was reported in Crowther et al. (2011) 

and the scenario analyses are detailed in Hampson et al. (2010). As these models 

are based on readily available data with national coverage, they are capable of 

accurately predicting base- and high-flow FIO concentrations nationally 

(Crowther et al., 2011). As such, the modelling approach presented here is of 
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great benefit to the policy and land management communities when planning 

basin wide or national programmes of measures. 
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2.3 Aims and objectives 
This chapter utilises the models produced in Chapter 1 with the aim of fully 

exploring the strengths and weaknesses of the generic models, using a range of 

land use and population change scenarios. The aims are to assess the 

effectiveness of the FIO models as (i) cost effective diagnostic tools capable of 

aiding source apportionment and (ii) assess the effectiveness of different pollution 

remediation strategies, (iii) at a range of spatial scales. 

In doing so, the following objectives are necessary: 

 Develop a transfer methodology, capable of expansion up to the scale of 

the UK, from which the FIO models can estimate FIO concentrations in 

watercourses. 

 Generate human and livestock population profiles for Humber catchments. 

 Create a theoretical sampling point network and a Predictor Variable 

Matrix (PVM) for the Humber RBD, from which predictions can be made. 

 Predict baseline base- and high-flow FIO concentrations of EC and EN 

FIO indicators within the watercourses of the Humber RBD, for the 

summer bathing season 2004. 

 By altering the values of the explanatory variables, generate datasets for 

hypothetical land-use and population change scenarios (20% decrease in 

dairy livestock; 1.4% increase in human population; Mixed effects: 20% 

decrease in dairy livestock with a 1.4% increase in human population and 

5% improvement in wastewater treatment efficiency). Simulate and assess 

the potential impacts of those scenarios on base- and high-flow FIO 

concentrations of EC and EN FIO indicators within the watercourses of the 

Humber RBD, for the summer bathing season 2004. 

 Map water quality in terms of EU rBWD inland water quality compliance 

values for baseline base- and high-flow FIO concentrations of EC and EN 

FIO indicators within the watercourses of the Humber RBD, for the 

summer bathing season 2004. 

 Assess and compare the estimated baseline EC and EN concentrations in 

the Humber RBD with the rBWD compliance water quality categories and 

compare those baseline estimates against the three land use change 

scenario detailed above. 
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 Produce QMRAs (using WHO microbial water quality assessment 

categories) for the baseline base- and high-flow EN concentrations in the 

Humber RBD and for base- and high-flow EN concentrations for the three 

land use change scenario detailed above. Compare the effects of the risks 

to human health arising from the simulations. 

 Assess the impact on riverine FIO concentrations across the Humber RBD 

if the UK government were to adopt a nutrition driven food policy. 

 Assess the relative effectiveness of a range of remediation strategies 

(Taxing fertilizer by £50/tonne; ESA designation in Aire; Increase milk 

quota cost by £20; Reduce dairy stocking by 20%; Reduce fertilizer 

application by 20%; Installation of stream bank fencing) against the 

baseline high-flow FC estimate, at subcatchment scale (Aire 

subcatchment). 

 Simulate and map the reductions in high-flow FC concentrations resulting 

from stream bank fencing erected in intensive milk producing HRUs in the 

Aire subcatchment. 
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2.4 Methods 

2.4.1 Outline of the method for generating the generic FIO model 

To summarise the key findings of the previous chapter, the statistical models 

used here predict geometric mean (GM) FC and EN concentrations under both 

base- and high-flow conditions using human and livestock population density 

data as explanatory variables. These population based models represent the first 

transferable generic FIO models to be developed for the UK to incorporate direct 

measures of key FIO sources (namely human and livestock population data) as 

predictor variables. Under high-flow conditions, which are the critical times in 

terms of FIO loadings in watercourses (due to a combination of increased FIO 

concentrations and volumes of flow), levels of explained variance of up to 62.2% 

have been achieved for FC and up to 62.4% for EN (see Table 16). Both 

discharge volumes and FIO concentrations are approximately an order of 

magnitude higher at high-flow and, in line with previous studies (Wither et al., 

2005; Kay et al., 2008a), high-flow models show a greater level of explanatory 

power for both FC and EN. 

 

Table 16: the models used to predict FC and EN at base- and high-flow 

within the transfer exercise, QMRA assessments and scenario modelling. 

River 
discharge 

type 
Intercept 

Primary 
Coefficient 

Secondary 
Coefficient 

Tertiary 
Coefficient 

r2 
(Adj.) 

GM faecal coliforms (FC) (Log10 CFU 100 ml−1) 

High-flow +** +Log10Dairy/km2** +Log10Human/km2** +Sheep/km2** 0.622 

Base-Flow +** +Log10Human/km2** +Log10Dairy/km2** - 0.418 

GM enterococci (EN) (Log10 CFU 100 ml−1)  

High-flow +** +Log10Dairy/km2** +Log10Human/km2** +Sheep/km2** 0.624 

Base-flow +** +Log10Human/km2** +Log10Dairy/km2* - 0.311 

Notes: +/- indicates the sign of the coefficient. ** indicates strong significance at p<0.01, * = 
significance at p<0.05. All coefficients have low standard errors and high t-values. Values of 

beta coefficients are confidential, see Appendix I for details. 
 

At high-flow the FC and EN models are dominated by dairy sources. Previous 

studies have shown that the dominant sources of FIOs at high-flow tend to be of 

agricultural origin when large quantities of manure or slurry are washed off fields 

and farmyard hardstandings into rivers (Stapleton et al., 2008). The quantity of 
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human derived FIOs is also elevated at high-flow but discharges and spills are 

dependent on the capacity and efficiency of waste water treatment works 

(WwTWs). In contrast, humans are the most significant source of FIOs at base-

flow (Table 16). This is probably due to constant background inputs from 

WwTWs. A full account of the development of the FIO models underpinning this 

analysis is described in the previous chapter and reported in Crowther et al. 

(2011). 

2.4.2 Study areas 

One change prompted by the WFD was the introduction of the River Basin District 

(RBD) planning system to enable integrated catchment management strategies. 

Given that the FIO models used here were expressly developed to predict FIO 

concentrations in watercourses for which detailed FIO sampling has not taken 

place, the transfer site for the present study is the Humber RBD which covers 

26,000km2 from Birmingham to the North York Moors (Appleton, 2008). This is 

the largest RBD in the UK, draining 28% of the land surface of England into the 

North Sea via the Humber estuary. Varied physical landscape characteristics 

coupled with diverse livestock farming operations and extremes of human 

population density make the Humber RBD an ideal case study area within which 

to predict riverine FIO concentrations at RBD scale. 

The FIO models have also been used to predict FIO concentrations at the 

smaller, subcatchment scale. For these assessments the Aire subcatchment of 

the Humber RBD has been used. The Aire subcatchment covers 1100km2 and is 

an ideal case study for smaller scale applications of the FIO models, as the River 

Aire passes through three distinct land use types before its confluence with the 

River Calder in the Aire Calder subcatchment (Environment Agency, 2010a). The 

River Aire rises from the relatively clean waters of the Malham Tarn glacial lake 

in the southern Yorkshire Dales before receiving livestock derived FIOs as it flows 

through areas of intensive dairy farming to the west and south of Skipton. Further 

downstream the river receives large quantities of FIOs from the WwTWs serving 

the urban conurbations of Bradford and Leeds (CaBA, 2016). The relative scale 

of the Aire subcatchment and the Humber RBD are shown in Figure 6. 
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Figure 6: locations of the Humber River Basin District and the Aire 

subcatchment 

 

 

2.4.3 Humber catchment boundary data 

The Humber catchment boundary polygons were supplied to the ChREAM project 

(Bateman et al., 2006a) by the Centre for Ecology and Hydrology (CEH). They 

were produced using a hydrological digital terrain model, based on a 50 m grid 

interval (NERC, 2009). To be consistent with other aspects of ChREAM 

modelling, the spatial information defining Hydrological Response Unit (HRU) 

boundary polygons used in this study are configured so that the major Humber 

subcatchments have an EA river monitoring point at their outlet (Hutchins, 

2008a). As the generic FIO models cannot be applied to tidal areas the Humber 

Estuary subcatchment has not been modelled. 
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2.4.4 Theoretical sampling points 

To conduct the transfer exercise a network of theoretical sampling points is 

devised. Within the context of this research the term ‘sampling point’ simply 

means a location on the river network at which predictions of FC or EN 

concentrations are made. Sampling sites are ‘theoretical’ in that they do not 

correspond spatially with the locations of the actual EA river monitoring network 

sites. There are several reasons why this is both necessary and desirable, which 

are now discussed.  

The EA river monitoring network does not correspond with the boundaries of the 

smaller HRUs within the Humber RBD (Hutchins, 2008b). In this respect, the use 

of actual EA monitoring locations would have been limiting because the FIO 

models require that HRU sample points can only be located at their downstream 

exit as sample points must include all water draining from that HRU. Fortunately, 

the use of empirical EA sampling data (or the actual locations of EA monitoring 

stations) was unnecessary for the present modelling exercises because actual 

river discharge data is not required for the models to function: the FIO models 

themselves are underpinned by discharge data and are calibrated to predict GM 

FIO concentrations for both base- and high-flow antecedent runoff conditions 

(Crowther, 2008b). The fact that discharge data from EA monitoring stations was 

not needed provided greater flexibility when choosing the locations of sampling 

points. Subsequently, a network of 613 theoretical water sampling points, 

capturing data from 988 HRUs from the 18 subcatchments within the Humber 

RBD, was devised to achieve a balance between two main sampling objectives. 

The first requirement was for an evenly distributed network of sample points along 

the length of the main rivers to provide an overview of water quality as it becomes 

progressively aggregated downstream. The second sampling objective targeted 

tributaries upstream of the confluence with the main rivers to capture diverse 

variability in water quality relating specifically to those tributaries. 

The sampling scheme can be adjusted to meet specific sampling objectives as 

required in the future. For example, if there was a need for intensive sampling in 

urban tributaries the sampling network can be amended to accommodate this. 
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2.4.5 Livestock and human population data 

Human and livestock population data for each of the HRUs within the Humber 

RBD were constructed using the methods described in the previous chapter. 

2004 was used as the base year for two reasons. Firstly, this was the most recent 

year for which agricultural survey data were available at the time that the 

modelling was undertaken and, secondly, 4 of the 15 CREH catchment datasets, 

underpinning the FIO models, use water quality data from 2004 (see Table 4 in 

Chapter 1) and, within the meta-analysis, 6 of the 15 CREH catchment sites use 

livestock populations derived from 2004 agricultural survey data (see Table 6 in 

Chapter 1). Table 17 shows the variables used to calculate human and livestock 

population profiles. 

 

Table 17: data sources used in the transfer analysis and scenario 

modelling 

Study area 

Number of 
theoretical 
sampling 

points 

Agricultural 
census data 

used for 
livestock 

enumeration 

Census year 
used for 

population 
enumeration 

Humber RBD 613 England 2004 2001 

 

2.4.6 Transfer methodology 

A transfer methodology enabling the models (Table 16) to quantify predicted 

riverine FIO concentrations in the UK employs the same algorithms used to 

generate the models. The only difference is that the predictor variable matrices 

(PVMs) of the models use empirical FIO concentrations to calculate model 

parameters, whereas the transfer PVMs use the models’ parameters to predict 

FIO concentrations. The next section of this chapter provides a worked example 

to comprehensively describe how the transfer methodology is applied. 

2.4.7 An overview of the subcatchment used within the worked example 

Figure 7 shows Humber’s Upper Swale catchment. The catchment contains 12 

HRUs. Minor tributaries to the River Swale have been omitted for clarity. The 

headwater is in HRU 2 in the west and the river exits the catchment via HRU 11 

in the east. The catchment contains 5 sample points, numbered 0-4. Sample point 
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0 is relatively close to the headwater and sample point 4 is at the catchment exit. 

Within Figure 7 we see that HRU 1 contains a major tributary which passes 

through a reservoir8 immediately before its confluence with the Swale. Sample 

point 2 is located at the reservoir exit, above the confluence of the two rivers.  

Figure 7: map of the Upper Swale catchment, used within the example. 

Relevant topographic features and the locations of the theoretical sample 

points are shown 

 

 

The PVM is composed of three tables: (1) an HRU data table, (2) an aggregation 

table and (3) a sample point data table. Each of the three tables for the worked 

example are now described. 

2.4.8 The example subcatchment’s HRU data table 

Table 18 shows the example’s HRU data table. The table shows the predicted 

numbers of humans and dairy livestock within each HRU and the area of each 

HRU. The table also provides a column which shows the proportion of each HRU 

that drains into a reservoir. The issues surrounding FIO attenuation rates due to 

reservoir catchments are discussed within Section 1.4.3 in Chapter 1. If an HRU 

contains a reservoir the population values for that HRU and the area of the HRU 

are adjusted to account for the attenuation of FIOs by that reservoir (Stapleton 

                                            
8 In order to provide a simple illustration of the way in which reservoir catchments are treated 
within the PVM a hypothetical reservoir was added into the catchment. This exemplar attenuates 
FIOs from 100% of the water emitted at the HRU exit sampling point, enabling a straightforward 
calculation of predicted FIOs. 
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and Kay, 2007b).If 100% of the HRU drains into the reservoir (as is the case with 

HRU 1), the human and dairy populations of that HRU are reduced to zero to 

simulate FIOs from those sources being attenuated by the reservoir. If the 

reservoir is higher up in the HRU, so that 50% of the area of the HRU drains into 

the reservoir, the population values are reduced by 50% to simulate the removal 

of 50% of human and dairy FIOs. This method is subject to interpolation errors, 

but, as reservoirs are typically in upland areas of low population density, the 

errors that do arise tend to be negligible. The area of the HRU is also adjusted: if 

100% of the watercourses within the HRU drain through the reservoir, the non-

reservoir area is set to zero (e.g. HRU 1 in Table 18). If 50% of the HRU drains 

into the reservoir, the size of the HRU is reduced by 50%. 

Table 18: the example PVM HRU data table 

HRU 

Populations 
% of HRU 
draining 

into 
reservoir 

Populations adjusted 
for reservoirs 

non-
reservoir 

area 
(km2) 

exiting 
the HRU 

Human Dairy Human Dairy 

1 322 76 100 0 0 0 
2 540 60 0 540 60 151.47 
3 30 8 0 30 8 5.83 
4 89 135 0 89 135 13.38 
5 452 29 0 452 29 73.37 
6 111 45 0 111 45 15.22 
7 320 57 0 320 57 5.61 
8 89 108 0 89 108 15.57 
9 192 18 0 192 18 16.30 

10 243 32 0 243 32 42.88 
11 162 102 0 162 102 7.43 
12 38 62 0 38 62 11.28 

 

2.4.9 The example subcatchment’s aggregation table 

The aggregation table is shown in Table 19. It simply tells us which HRUs drain 

into each sample point. So, by examining Table 19, it can be seen that HRU 2 

drains into sample point 0; HRUs 2 - 7 and 9 drain into sample point 1, and so 

on. Sample point 4 at the subcatchment exit contains data from all 12 HRUs in 

the subcatchment. 
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Table 19: the example PVM aggregation table 

Sample point HRUs aggregated within each sample point 
0 2 
1 2, 3, 4, 5, 6, 7, 9 
2 1 
3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

 

2.4.10 The example subcatchment’s sample point data table 

Table 20 shows the third, and final, PVM data table: the sample point data table. 

This table takes the data for each HRU (Table 18, HRU data table) and 

aggregates that data into each sample point according to the aggregation rules 

defined by the aggregation table (Table 19).  
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The first column displays the sample point. The next two columns show the 

aggregated total populations within each sample point. The next two columns 

indicate the proportion of the aggregated land area that is either reservoir or non-

reservoir. The next two columns adjust the populations according to the impact 

of reservoirs, based on the rules described above. Note that the populations of 

sample points 2, 3 and 4 have all been adjusted to compensate for the water 

emitted from the reservoir in HRU 1, which enters the sampling network at 

Sample Point 2. The adjusted human population in the entire catchment is 2266 

and the adjusted dairy population is 654. The next column aggregates the non-

reservoir area of the catchment draining into each sample point. The total non-

reservoir area of the entire catchment is 358.32km2. The next two columns 

convert the adjusted human and livestock populations of non-reservoir areas into 

population densities, expressed as Log10 densities per km2 (e.g. 

LOG10((540/151)+1) for the human population for Sample Point 0).  

The next three columns provide the model’s intercept term and coefficients 

(anonymised within this example), from which predictions of the coliform 

concentrations of non-reservoir areas can be made. 

The regression equation used to predict FIO concentrations takes the following 

form9: 

Y (log10 CFU 100 ml−1) = Intercept + (b human*log10human/km2) + (b 

dairy*log10dairy/km2). 

Equation 1: the regression model used to predict FIO concentrations 

 

Y for each sample point is displayed in the next column. The next column shows 

the linear value for non-reservoir watercourse coliform concentrations expressed 

as CFU 100 ml−1, transformed from the log10 value (e.g. 637 CFU 100 ml−1 at 

Sample Point 0). 

                                            
9 Although the quantified parameters are not published within this thesis (or within peer reviewed 
journal articles) due to their commercially sensitive nature, they have been seen by the examiners 
of this PhD. The reasons for this confidentiality are discussed in the Author’s declaration. 
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Coliform concentrations emitted from reservoirs are now calculated. Reservoir 

FIO output concentrations are determined depending on FIO type and river flow 

conditions. Reservoir output values used in this research are reported in Table 5. 

For this example the value for high-flow FC is used (i.e. 83CFU 100 mL−1). 

The final column provides the total FIO concentration, derived from a mix of 

reservoir and non-reservoir sources (i.e. (proportion of non-reservoir land*non-

reservoir output)+(proportion of reservoir land*reservoir output)). For Sample 

Point 4, at the subcatchment exit, this is (0.943*2069)+(0.057*83), or 1955CFU 

100 mL−1. 

As mentioned previously, providing that each sampling point is at the exit of an 

HRU, the sampling scheme can be adjusted to meet specific sampling objectives. 

Within the example, sample point 0, in the headwater, and sample point 2, in a 

tributary, provide more diverse results than those obtained from the progressively 

aggregated sampling points 1, 3 and 4 along the main river. There is no reason 

why sampling points could not, for example, have been created at the exits of 

different HRUs, in order to capture the FIO concentrations within tributaries to the 

Swale, if that were the sampling objective. 

2.4.11 Outline of methods for generating data for land use management 

strategies 

The PVMs make predictions of FIO concentrations in the Humber RBD using 

human population and livestock population variables. These independent 

variables can be adjusted, as required, to estimate FIO concentrations for a 

variety of land use scenarios at both base- and high-flow. 

Cuttle et al. (2007) propose a 1:1 reduction in FIO emissions resulting from policy 

measures to reduce dairy cattle stocking density rates. To assess the impact of 

a 20% reduction in dairy livestock, the dairy population of all HRUs was reduced 

by 20%. The riverine FIO concentrations which may arise are modelled. 

According to the Ministry of Agriculture, Fisheries and Food (MAFF) (2000) many 

farms are over-fertilizing. In line with Defra (2004), a 20% cut in all fertilizer 

application is assumed across all farming activities, including all grassland fields. 

By impacting on grassland productivity, this measure is designed to encourage 



 

111 
 

producers to switch away from dairy farming to more extensive activities. 

Assumptions within this scenario are based on the changes in livestock 

populations associated with a 20% cut in fertilizer application: the expected 

change in dairy livestock numbers is -8.98% and sheep numbers is -10.00% 

(Defra, 2004). The parameters in the FIO models are adjusted accordingly (i.e. 

for all HRUs, dairy livestock populations are reduced by 8.98% and sheep are 

reduced by 10%). As Cuttle et al. (2007) indicate, this measure might prompt 

increases in manure applications but, as in their analysis, this possibility is not 

considered here. 

To model the change in riverine FIO concentrations due to changes in human 

population, the human populations within each HRU entered into the model are 

adjusted as required. 

Farm profits are determined by a variety of fixed factors (e.g. physical 

environment); input costs (e.g. fertilizers); output prices (e.g. milk price); 

subsidies and taxes (e.g. single farm payment); and other factors (e.g. 

expectations). A highly flexible model, described in detail in Fezzi and Bateman 

(2009), was estimated and used to generate changes from baseline livestock 

populations in the Environmentally Sensitive Area (ESA), fertilizer tax and milk 

quota scenarios. Agricultural Census data was combined with data from the Farm 

Business Survey to provide agricultural land use and livestock numbers (EDINA, 

2008a). Environmental and climatic variables, policy determinants and input and 

output prices were then added. The profit (π) function associated with the optimal 

land allocation can be expressed as: 

 

Equation 2: the profit (π) function associated with the optimal land 

allocation 

 

Where p is a vector of output prices, w is a vector of the input prices, z is a vector 

of other fixed factors, l is the vector of h land use allocations, with L the total land 

available. 
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ESAs were introduced in 1987 to safeguard and enhance areas of particularly 

high landscape, wildlife or historic value. ESA payments encourage switching to 

extensive grassland types such as permanent grassland and rough grazing 

(Natural England, 2009a). Within this scenario the effects of designating the 

entire Humber RBD as an ESA is modelled. It is acknowledged that the ESA 

scheme has been replaced by Higher Level options of the Environmental 

Stewardship Scheme (Lobley and Potter, 1998): the focus here is on the use of 

the ESA concept as an area intervention. 

The econometric model (Equation 2) underpinning the fertilizer tax scenario 

predicts that an increase in fertilizer price by £50/tonne decreases the optimal 

shares of nutrient-intensive activities. This encourages producers to switch away 

from intensive activities (e.g. dairy farming) to more extensive activities, such as 

rough grazing. 

The EU milk quota scheme was introduced in 1984 to reduce the imbalance 

between supply and demand for milk and milk products. It controls milk 

production and stabilizes milk prices for both consumers and producers. It is 

acknowledged that milk quota entitlements were withdrawn in 2015: the milk 

quota is used purely as an example of a quantity restriction policy. It is 

hypothesized that the additional cost to the farmer of raising the price of the EU 

milk quota will discourage milk production and the FIO model is used to predict 

the impact on riverine FIO concentrations arising from the adjusted dairy stocking 

levels generated in the econometric model. 

Farm best management practices (BMPs) can significantly reduce the delivery of 

FIOs to watercourses and have the potential to be effective and cost efficient: 

Meals (1996) observed 70% reductions in FIOs from dairy sources after BMPs 

were adopted. By preventing livestock from voiding directly into watercourses it 

has been demonstrated that stream bank fencing, as a micro-level policy, is 

highly successful at reducing microbial pollution received by watercourses 

(Larsen et al., 1994; Oliver et al., 2007) and may be more beneficial than simply 

reducing the stocking density of livestock (Vinten et al., 2004). 

To simulate the effect of stream bank fencing (erected a minimum distance of 

2.13 m from watercourses) attenuating FC in runoff from fields and other farmyard 
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sources, a 95% reduction in dairy and sheep derived FC concentrations entering 

watercourses is modelled, in line with Larsen et al. (1994). These reductions are 

applied to the parameters of the FIO model in those HRUs in the Aire 

subcatchment having dairy cow densities above 25 per km2, as this threshold 

captures the region of intensive dairy farming (near Keighley) to the west of the 

Aire (outlined in red on Figure 20)10. 

The Nutritionally Driven Food Policy scenario investigates the effect on riverine 

FIO levels of the adoption by the UK population of a healthier diet, e.g. one 

consistent with Department of Health Guidelines on healthy eating (RELU, 2009). 

While not strictly a measure designed to reduce diffuse pollution, adoption of this 

policy would see large reductions in milk (42.2%) and mutton and lamb (28.2%) 

consumption (Jones et al., 2009) with the positive consequence of reducing 

microbial pollution discharged to watercourses. The dairy and sheep populations 

in this scenario are generated using the Land Use Allocation Model (LUAM), 

which models the decoupling of production from support payments under the 

reformed EU Common Agricultural Policy and the dietary change-inspired 

reduction in demand for milk and sheep products. The LUAM is constructed using 

the General Algebraic Modelling System (GAMS) software package (GAMS 

Software GmbH, 2008) and the methodology underpinning the LUAM is fully 

described in Jones and Tranter (2008). 

The mathematical structure of the LUAM is that of an ordinary linear programming 

model, shown in Equation 3. 

Maximize: Z = cx 
subject to: Ax ≤ b 

x ≥ 0 

Equation 3: the linear programming model underpinning the LUAM 

 

Where Z is the objective function given as the scalar product of c and x vectors, 

b is the resource endowment and input availability vector, c is the vector whose 

                                            
10 The Aire subcatchment contains 47 HRUs. Mean dairy cattle density for the Aire is 12.85 per 
km2 (range within the HRUs = min 0 per km2 – max 42.18 per km2). 9 of the 47 HRUs had mean 
values above 25 per km2. The locations of those HRUs correspond closely with the region of 
intensive dairy farming near Keighley (Agbotui et al., 2014). 



 

114 
 

elements are returns and costs, and x is the output vector. A is the matrix of 

input/output coefficients (aij) representing the amount of input i required per unit 

of output (j). 

In this scenario livestock populations predicted by a ‘reference run’, defined by 

the economics of production and the market and the policy environment observed 

in 2006, are compared against livestock populations predicted by the ‘scenario 

run’, which also assumes that the work of changing people’s diets in line with the 

UK Food Standards Agency (2009) guidelines has been completed. 

As the FIO models cannot be applied to tidal areas, the Humber estuary 

subcatchment is excluded from the analysis. ArcGIS v.9.3 (ESRI Inc., 2008) and 

Microsoft Office Excel 2007 (Microsoft Corporation, 2006) are used to generate 

and map predicted FIO concentrations for all scenarios. 

The results of the transfer function, QMRAs and scenario modelling are now 

reported. 
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2.5 Results 
The results are reported in three sections. These are summarised in Table 21. 

Table 21: list of modelling results 

Figure or 
Table 
number 

Pathogen 
type 

Output scale Flow type Notes/scenario type 

Section 1: Transfer to the Humber River Basin District 
Figure 8 FC Humber RBD base-flow Transfer exercise 
Figure 9 FC Humber RBD high-flow Transfer exercise 
Figure 10 EN Humber RBD base-flow Transfer exercise 
Figure 11 EN Humber RBD high-flow Transfer exercise 
Section 2: Scenario models examining rBWD compliant sites and QMRA results 
Table 22 both Humber RBD both Changes to FIO concentrations 
Figure 12 FC Humber RBD high-flow 20% decrease in dairy livestock 
Figure 13 EN Humber RBD base-flow 1.4% increase in human population 

Figure 14 FC Humber RBD high-flow 

Mixed: 20% decrease in dairy 
livestock, 1.4% increase in human 
population and 5% improvement in 

WwTW efficiency 

Figure 15 both Humber RBD both 
rBWD compliance following 

scenarios 1-3 
Figure 16 EN Humber RBD base-flow QMRA 
Figure 17 EN Humber RBD base-flow QMRA 
Figure 18 EN Humber RBD high-flow QMRA 

Figure 19 FC Humber RBD high-flow 
Adopting the nutrition driven food 

policy 
Section 3: Assessments of water quality at subcatchment scale 

Figure 20 FC Aire catchment high-flow 
Stream bank fencing in HRUs with 

high dairy cow populations 

Table 23 FC Aire catchment high-flow 
Relative effectiveness of different 

remediation strategies 

 

The first section reports the results of the transfer exercise, providing predictions 

of FC and EN concentrations in the Humber RBD during summer 2004, for both 

base- and high-flow river conditions. 

The results in section two primarily examine the impact on water quality at RBD 

scale in response to three simple scenarios. These are: (scenario 1) a 20% 

decrease in dairy livestocking density, (scenario 2) a 1.4% increase in human 

population, and to demonstrate the ability of the models to model simultaneous 

changes to more than one independent variable, (scenario 3) a mixed scenario 

which applies three changes to the independent population variables: a 20% 

decrease in dairy livestock, a 1.4% increase in human population and a 5% 

improvement in WwTW efficiency. The effect these scenarios have on the water 

quality of the Humber RBD in terms of rBWD compliance and the change in risk 

to human health are assessed. The last assessment within section two examines 
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the impact on the microbial quality of the watercourses of the Humber RBD, if the 

UK government were to adopt a nutrition driven food policy. 

To highlight the versatility of the FIO models, the third section of the results moves 

from macro scale assessments of the water quality across the Humber RBD to 

more focussed assessments of changes in water quality within only the Aire 

subcatchment in response to a range of pollution remediation strategies. Within 

this section the relative effectiveness of several different remediation, including 

stream bank fencing is assessed. 

2.5.1 Section 1: results of the transfer to the Humber River Basin District 

This section describes the results of the transfer exercise predicting FIO 

concentrations in the Humber RBD during summer 2004. The four maps, shown 

in Figures 8 - 11, represent estimated concentrations of FC and EN during 

summer 2004 at base- and high-flow. Green and orange labels represent the 

sample points predicted to comply with rBWD ‘Excellent’ and ‘Good’ water quality 

categories, shown on Table 14. 

  



 

117 
 

Figure 8: predicted FC concentrations (CFU 100 ml−1) in the Humber RBD 

under base-flow conditions, summer 2004 
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Figure 9: predicted FC concentrations (CFU 100 ml−1) in the Humber RBD 

under high-flow conditions, summer 2004 
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Figure 10: predicted EN concentrations (CFU 100 ml−1) in the Humber RBD 

under base-flow conditions, summer 2004 
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Figure 11: predicted EN concentrations (CFU 100 ml−1) in the Humber RBD 

under high-flow conditions, summer 2004 
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A cursory inspection of the maps (Figures 8 – 11) confirms that the transfer 

methodology appears to work well at the RBD scale of application. The two main 

trends shown on the maps are in line with previous research: FC concentrations 

are roughly an order of magnitude higher than EN concentrations and high-flow 

concentrations of both organisms are roughly an order of magnitude higher than 

base-flow concentrations. At high-flow no sites comply with the rBWD ‘Good’ 

water criteria. 

There are large variations in the spatial distributions of FIO concentrations. As 

the patterns are broadly similar on all of the four transfer maps, regardless of FIO 

type or flow conditions, the following discussion applies to all four maps, unless 

indicated otherwise. 

The two lowest concentrations of FC and EN, at both base- and high-flow, are 

found at the Knipton Reservoir tributary in the south-east of the Lower Trent 

subcatchment, and the Derwent Reservoir tributary in the north of the Derbyshire 

Derwent subcatchment. The rivers Ure, Wharfe and Upper Swale, rising from the 

Yorkshire Dales in the north-west of the Humber RBD and the tributaries to the 

Yorkshire Derwent (Seph, Dove, Severn, Hodge Beck), rising from the North York 

Moors have the lowest FIO concentrations. At base-flow, long stretches of these 

rivers comply with the rBWD ‘Excellent’ and ‘Good’ categories on Table 14. All of 

these rivers and tributaries have the same two characteristics in common: low 

human and low dairy population density. 

In the absence of any major settlements, and with very low density dairy farming, 

the River Derwent has the lowest concentration of FIOs as it flows into the 

Humber Estuary via the Barmby Derwent subcatchment. It has ‘Good’ water 

status, in terms of base-flow EN contamination, along its entire length. 

The highest FIO concentrations emitted into the Estuary subcatchment are from 

the rivers Don, Aire and Trent. Base-flow rBWD compliant sites are rare along 

these rivers, confined only to headwaters. Aggregated concentrations in the River 

Aire are raised by the presence of high dairy populations in two HRUs in the west 

of the subcatchment, before receiving large human FIO inputs as it passes 

through first Bradford then Leeds. Similarly, the River Don is loaded with human 
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FIO inputs from Sheffield and the neighbouring Rotherham before its confluence 

with the River Dearne. 

The 13 sample points with the highest density dairy populations are found in the 

Dove and Upper Trent subcatchments. These correspond closely with the 10 

highest base-flow FC concentrations and the 14 highest high-flow EN 

concentrations. 

The most polluted river stretch in the Humber estuary is the River Trent between 

Stoke-on-Trent and its confluence with the River Sow. This stretch, in addition to 

receiving FIO inputs from some of the highest dairy concentrations, also receives 

very high human inputs from its headwaters near Stoke-on-Trent. Although the 

south and south-east of the Dove subcatchment has high density dairy farming, 

the FIO concentrations in the River Dove are lower than the River Trent because 

it does not have the high density human inputs found in the Stoke-on-Trent 

stretch. 

Twenty-seven of the thirty most densely populated human areas are in the Tame 

subcatchment, more specifically within Birmingham. As these areas typically 

have near zero dairy populations they receive virtually no FC or EN from 

agricultural sources during high-flow conditions (Dairy being the most significant 

source of FC and EN at high-flow, according to the models on Table 16). 

Therefore the concentrations of agricultural EN and FC are noticeably lower in 

Birmingham than in the intensive dairy farming areas of the Upper Trent, 

particularly the tributary rivers Sow and Penk in the south-west of the 

subcatchment. 

In contrast, the base-flow EN map, Figure 10, reveals that two of the tributaries 

to the Tame, the Rea and the Cole, in the south-east of Birmingham, have very 

high EN concentrations under base-flow. This is in line with predictions from the 

base-flow EN model, on Table 16, which has human density as its most 

significant source of FIOs. This phenomenon is obvious in Birmingham, but with 

closer inspection it can be seen that all major urban areas, particularly Stoke-on-

Trent and Leicester, are responsible for elevated levels of EN at base-flow. 



 

123 
 

The Lea Marston purification lakes, on the border of the Tame and Mid-Trent 

subcatchments, are effective at reducing base-flow FIO concentrations (Martin 

and Brewin, 1994; Environment Agency, 2004). Base-flow EN concentrations, 

Figure 10, are reduced considerably, to the level of rBWD ‘Good’ status, as they 

pass through Lea Marston. Although the Lea Marston lakes are discussed in 

detail in the final chapter, suffice to say here that engineered purification schemes 

make tangible improvements to downstream water quality at base-flow. The FIO 

reductions achieved at Lea Marston are largely responsible for diluting the high 

levels of FIOs in the River Trent at its confluence with the Tame in the east of the 

Mid-Trent catchment. This is noticeable on all four maps. 

2.5.2 Section 2: predicting changes in FIO concentrations in response to 

land use change scenarios 

The results of three simple scenarios are now considered. These are: (scenario 

1) a 20% decrease in dairy livestocking density; (scenario 2) a 1.4% increase in 

human population; and to demonstrate the ability of the models to model 

simultaneous changes, a mixed scenario which applies three changes to FIO 

sources: a 20% decrease in dairy livestock, a 1.4% increase in human population 

and a 5% improvement in WwTW efficiency (scenario 3). 

For simplicity each of these three scenarios assume a blanket application of the 

amended FIO inputs across the Humber RBD. It is acknowledged that any 

changes to dairy herd size are unlikely to be proportional across space, that 

human population increases are unlikely to be uniformly distributed but will 

probably be concentrated into the main urban areas (RERC, 2007) and that any 

improvements to WwTW infrastructure are likely to be targeted into areas that 

would produce the most cost effective improvement. 
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Table 22: predicted changes to maximum and mean FIO concentrations 

within the Humber RBD, in response to land use change scenarios 

Pathogen type Flow conditions 
Percent change in pathogen concentration 

Maximum Mean 
Scenario 1: a 20% reduction in dairy livestock within the Humber RBD 
FC High-flow -13.72 -11.76 
EN High-flow -11.96 -10.23 
FC Low-flow -11.37  -9.69 
EN Low-flow  -6.79  -5.77 
Scenario 2: a 1.4% increase in human population 
FC High-flow   0.43   0.42 
EN High-flow   0.48   0.47 
FC Low-flow   0.60   0.59 
EN Low-flow   0.58   0.57 
Scenario 3: a 1.4% increase in human population, a 20% decrease in dairy livestock 
and a 5% improvement in WwTW efficiency 
FC High-flow -14.67 -12.74 
EN High-flow -13.06 -11.37 
FC Low-flow -12.76 -11.11 
EN Low-flow  -8.2  -7.20 

 

Although the spatial patterns of water quality in response to each scenario is very 

similar, regardless of flow rate or pathogen type, the magnitude of the changes 

in water quality is different for each flow rate or pathogen type within each 

scenario. Table 22 shows these differences. 

The greatest FIO reductions in scenarios 1 and 3 occur under high-flow 

conditions. FC reductions are typically 1.5% higher than EN reductions at high-

flow and 4% higher at base-flow. Note that for all scenarios and all models the 

distribution of values is highly skewed towards the maximum, particularly in 

scenario 2. This is in part due to the fact that there are very few zero values, or 

values close to the minimum. Those that do exist have been generated by sample 

points containing high proportions of reservoir catchment. 

Rather than report four output maps for each scenario (corresponding to the 

results of each of the four models), the results of the FC high-flow model are 

reported for both the change to livestocking density and the mixed scenario 

(Figures 12 and 14), as it is the model which provides the highest level of 

explanation (Table 16). The results of the base-flow EN model, applied to model 

an increase in human population (Figure 13), are reported as humans are the 

most significant source of FIOs at base-flow and this model may better describe 



 

125 
 

the relationship between increased human FIO outputs and riverine EN 

concentrations. The changes in water quality are displayed in quantiles. 

Scenario 1 simulates a livestock destocking option, proposed by Cuttle et al. 

(2007). FIO concentrations are predicted to reduce significantly because of the 

measure. A 20% decrease in dairy cattle results in mean high-flow reductions 

across the Humber RBD of 11.76% and 10.23% for FC and EN respectively, 

shown on Table 22. 

Figure 12 shows that areas of intensive dairy farming, such as those found along 

the rivers Penk and Sow in the Upper Trent subcatchment, or the rivers Hamps 

and Chumet in the Dove subcatchment, respond particularly well to compulsory 

destocking, with FC reductions along these rivers of c.13.5%. 

Urban areas, particularly urban headwaters, i.e. Birmingham and Stoke, and 

areas with sparse dairy populations, such as the Upper Swale and Wharfe 

subcatchments, respond less well, with below average FIO reductions. 

By applying the FIO models at RBD scale pollution hotspots can be identified: 

two HRUs in the headwaters of the Aire which are densely populated with dairy 

livestock, respond well to the destocking, with FIO reductions in the top quantile. 

These high reductions are progressively diminished, particularly as the Aire 

passes through Bradford and Leeds, until, at the confluence with the Calder, the 

reductions are close to the mean. 
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Figure 12: predicted reductions in FC concentrations in response to 

scenario 1, a 20% reduction in dairy livestock within the Humber RBD, 

summer 2004, high-flow conditions. 
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Figure 13: predicted increase in EN concentrations in response to 

scenario 2, a 1.4% increase in human population within the Humber RBD, 

summer 2004, base-flow. 
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Figure 14: predicted decrease in FC concentrations in response to 

scenario 3, a 1.4% increase in human population, a 20% decrease in dairy 

livestock and a 5% improvement in WwTW efficiency within the Humber 

RBD, summer 2004, base-flow. 
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The human population of the Humber RBD was predicted to grow by 1.4% 

between 2004 and 2015 (Appleton, 2008) and the impact on predicted riverine 

EN concentrations is shown in Figure 13. This scenario assumes no changes in 

WwTW efficiency, i.e. WwTWs process the increased quantities of human waste 

proportional to their current rate of efficiency. 

Table 22 shows that the small human population increase results in a small 

increase in riverine FIO concentrations across the Humber RBD, typically around 

0.5% for both FC and EN. There is a strong correlation between riverine FIO 

concentrations and human population density. Figure 13 shows that the highest 

EN increases occur in the urban conurbations and the lowest increases are in the 

remote upland areas. Increases in EN concentrations occur within a very narrow 

range: 90% of base-flow EN concentrations increase by 0.57 - 0.60%. 

In addition to a 20% reduction of FIOs from dairy sources, the third scenario 

effectively reduces human inputs by 3.6%, as the increased FIO concentrations 

arising from human population increase (+1.4%) are cancelled out by a 

hypothetical improvement to WwTW efficiency (-5.0%). 

The distribution of predicted FIO reductions in scenario 3, shown on Figure 14, is 

very similar to scenario 1, shown on Figure 12. Table 22 shows that the improved 

WwTW enables the scenario 3 FIO reductions to be approximately 1% higher 

than the reductions bought about by scenario 1 at high-flow, and 1.5% higher 

than at base-flow. 

As the results of each of these three scenarios show, despite a blanket 

application of the scenarios across Humber, not all areas respond equally to the 

land use changes. This indicates that spatially differentiated policies could be 

implemented to maximise the return on different land use management strategies 

in different areas. 

2.5.3 The effect of land use change on rBWD and WHO compliance 

Figure 15 shows the number of change in the number of sample points that 

comply with each of the rBWD water quality classifications at base-flow following 

implementation of scenarios 1-3. Changes are compared against estimates of the 

number of FC and EN compliant sites in 2004 (shown in brackets in Figure 15). 
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Scenarios 1 and 3 produce slight improvements in the number of rBWD compliant 

sites. For example, the number of ‘Excellent’ EN sites is predicted to rise by 9 

sites, from 65 sites in 2004 to 74 sites in 2015, if scenario 3 were to be 

implemented. The number of ‘Excellent’ FC sites rises from 17 sites in 2004 to 

21 sites under scenario 3. Scenario 2 results in one less FC ‘Excellent’ site and 

one less EN ‘Good’ sites. 

Figure 15: projected rBWD compliant sites in response to the proposed 

land use change scenarios 

 

 

The implementation of the scenarios do little to improve the vast majority of 

sample points to rBWD standards of water quality. After implementing scenario 3 

the mean EN concentration across the Humber RBD, at base-flow, only improves 

from 627 CFU 100 ml−1 to 581 CFU 100 ml−1 , still above the threshold of 400 

CFU 100 ml−1  necessary for a site to be considered ‘Good’ under the rBWD.  

So far the results have shown that water quality in the Humber RBD is generally 

poor and continues to be poor despite the three simple land use change 

scenarios. The next results assess the water quality of the Humber RBD in terms 

of its risk to human health. 
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Figure 16: results of a QMRA of ill health due to EN contamination in the 

Humber, base-flow, summer 2004 
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Figure 16 shows the predicted water quality and associated probability of 

gastrointestinal illness due to enterococci contamination during 2004, under 

base-flow conditions. Only the tributaries flowing from the Derwent and Knipton 

reservoirs are classed as Grade A. 63 sites have Grade B water quality. These 

sites are predominantly in the north-west of the catchment, along the upper 

reaches of the rivers Ure, Wharfe and Upper Swale. Long stretches of the Rye 

and Hodge Beck have ‘Good’ water quality before their confluence with the 

Yorkshire Derwent. 205 sampling points have Grade C water quality. The entire 

length of the River Wreake, in the Soar subcatchment, is in this category, as are 

long stretches of the Lower Swale, the Nidd, the Ouse and the Derwent in the 

Barmby Derwent subcatchment. Over half of all sampling points, 344, are in 

Grade D. These rivers have poor water quality and present the most serious risk 

of gastroenteritis. Almost the entire length of the River Trent has Poor water 

quality, as do virtually all urban rivers and rivers passing through areas of 

intensive dairy farming. 

Figure 17 shows that the small improvements to water quality, bought about by 

implementing scenarios 1 or 3, result in small improvements to the risk of ill-

health. Scenario 3 results in 8 more sites at Grade B, 5 more sites at Grade C 

and 13 fewer sites categorised as Grade D. Scenario 2 results in a slight increase 

in the risk of ill health, with one site reclassified from Grade C to Grade D. 
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Figure 17: comparing the effects of the land use change scenarios on 

microbial water quality at base-flow 

 

The microbial quality of water in the Humber RBD during high-flow is poor. 

Estimates for 2004 suggest that 613 of the 614 sample points were classified as 

Grade D, with one site, near the Knipton and Derwent reservoir, classified as 

Grade C. Scenarios 1 and 2 produce no change in classification. Implementing 

Scenario 3 results in one other sample point near the Knipton and Derwent 

reservoir being reclassified as Grade C. All of the remaining 612 sample points 

remain in Grade D, regardless of the water improvements brought about by land 

use changes.  

2.5.4 Demand side constraint: adopting a nutrition driven food policy 

The final assessment at RBD scale reported within this section is a demand side 

constraint on FIO inputs caused by the UK government adopting a nutrition driven 

food policy. Figure 18 shows that the largest reductions to riverine FC are 

predicted to occur in the upland areas (e.g. the Yorkshire Dales and the 

Pennines) to the west of the RBD, with dairy numbers (and consequent FIO 

concentrations) typically maintained or rising slightly in some HRUs (e.g. the 

Lower Trent, the River Soar and the River Don) in the east - possibly as 

production is transferred to lowland areas. 
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The LUAM also projects a drive to fewer producers rearing higher yielding dairy 

animals in larger herds. This is reflected in Figure 18, as areas of intensive milk 

production in the Upper Trent, Aire and Dove subcatchments experience 

relatively low reductions to herd size and riverine FC concentrations. 
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Figure 18: reduction in FC concentrations following adoption of the 

nutrition driven food policy 
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2.5.5 Section 3: the relative effectiveness of different remediation 

strategies within the Aire subcatchment 

The remaining results focus almost exclusively on the results of the high-flow FC 

model, unless indicated otherwise. The section opens with an overview of the 

impacts of a range of remediation strategies at RBD scale, within the Humber 

RBD, before assessing their relative effectiveness at subcatchment scale within 

the Aire subcatchment (see Table 23, p.138). 

2.5.6 Fiscal constraint: taxing fertilizer by £50/tonne 

Although the econometric model (Equation 2) underpinning this scenario predicts 

that an increase in fertilizer price decreases the optimal shares of nutrient-

intensive activities (which convert to low biomass yield land uses such as rough 

grazing), the increased price produces only a small predicted decrease in dairy 

livestock numbers, with average reductions in riverine FC concentrations 

(predicted in the high-flow FC model) of 1.9% distributed relatively uniformly 

across the Humber RBD. 

2.5.7 Area intervention: designating the Humber RBD as an 

Environmentally Sensitive Area 

The econometric modelling predicts important land use transformations, which 

lead to complex patterns of FIO reductions. ESA designation is predicted to 

significantly reduce the number of dairy cows, which are substituted by less 

intensive units, such as beef cows and, particularly, sheep. The high-flow FC 

model suggests that this shift leads to slight increases in sheep-derived FIOs in 

the upland HRUs of the Upper Swale and Ure subcatchments, but these 

increases can be offset against reduced dairy cow derived FIOs as economically 

marginal dairying operations are ceased. This area intervention produces 

average FC reductions in the Lower Swale, Nidd Ouse and Naburn Ouse of 25-

30% and mean reductions in FC concentrations of 9.5% across Humber. 

Intensive dairying in the Upper Trent, Dove and Aire subcatchments see only 

modest improvements from implementation of this policy. 
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2.5.8 Cost intervention: raising the price of the EU milk lease quota by 

£20 

The high intensity dairying regions of the Aire, Dove and Upper Trent 

subcatchments do not see high reductions in FIOs for a measure designed 

specifically to put pressure on milk production. The larger producers in these 

areas enjoy greater efficiencies of scale and are more likely to weather the 

increased transaction costs associated with the milk quota price rise. 

Economically marginal producers in the Lower Swale, Nidd Ouse, Naburn Ouse 

and Soar subcatchments appear most affected by this policy, which leads to 

relatively high reductions in dairy cow derived FC concentrations in these regions. 

Increasing the price of the milk quota achieves mean reductions in FC 

concentrations of 6.4% across Humber. 

2.5.9 Production constraint: reducing dairy cattle stocking rates by 20% 

A 20% decrease in dairy cattle numbers results in mean high-flow reductions of 

11.7% for FC across Humber. Areas of intensive dairy farming, such as those 

found in the Aire, Upper Trent and Dove subcatchments, respond particularly well 

to compulsory destocking, with FC reductions along some sections of these rivers 

of c.13.5%. 

2.5.10 Input constraint: reducing fertilizer application by 20% 

The patterns of FC reductions predicted by the FIO model within this scenario are 

very similar to those achieved by dairy cattle destocking, described above, but 

the policy measure is less effective at reducing FIO concentrations: the measure 

is predicted to result in mean high-flow reductions of 7.9% for FC across the 

Humber RBD. However, this scenario does not fully account for potential real-

world behaviour: Dairy farmers may increase manure applications to compensate 

for reduced fertilizer application, thus maintaining grassland productivity and FIO 

emissions, but this possibility is not considered here: the impact of the input 

constraint is applied uniformly across space. 

The effects of the above land use intervention scenarios provide modest 

improvements in FC concentrations within the Aire subcatchment, described on 

Table 23, ranging from 1.66% to 11.58%, with a mean improvement of 7.6% 

immediately downstream of the high intensity dairy region.  
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Table 23: comparison of the effectiveness of the remediation strategies in 

the Aire subcatchment at high-flow 

Remediation measure 

Predicted FC 
concentration 

(1000 CFU 100ml-1) 
exiting dairy 

region 

Percent 
reduction from 

baseline 
concentrations 

exiting dairy 
region 

Predicted FC 
concentration 

(1000 CFU 100ml-1) 
at subcatchment 

outflow 

Percent 
reduction from 

baseline 
concentrations 

at 
subcatchment 

outflow 
Baseline prediction, 

high-flow, 2004 
93 - 118 - 

Taxing fertilizer by 
£50/tonne 

91 1.66 117 1.4 

ESA designation in Aire 84 8.99 108 8.6 

Increase milk quota cost 
by £20 

87 5.74 100 5.02 

Reduce dairy stocking 
by 20% 

82 11.58 105 11.23 

Reduce fertilizer 
application by 20% 

84 9.96 109 7.62 

Installation of stream 
bank fencing 

38 58.59 77 34.69 

 

Taxing fertilizer produces small reductions in livestock numbers across the Aire 

subcatchment, resulting in a 1.4% reduction of FC concentrations at the 

subcatchment exit. Designating the Aire subcatchment as an ESA is predicted to 

reduces dairy livestock populations in the more economically marginal areas in 

the north-west of the subcatchment. This results in mean predicted reductions of 

FC concentrations of 8.6% at the subcatchment exit. This is below the mean 

reduction for the Humber as a whole (9.5%). Similarly, raising the price of the EU 

milk lease quota by £20, results in FC reductions of 5.02% at the subcatchment 

exit. This is also less than the mean reductions in FC concentrations of 6.4% 

within the Humber RBD. 

Blanket applications of policy interventions may not be the best approach towards 

reducing emissions of FC in the high intensity dairy regions within the west of the 

Aire subcatchment. The large-scale operations in that area enjoy greater 

efficiencies of scale, are better able to weather increased transaction costs, and, 

consequently, maintain the sizes of their dairy herds. For this reason, compulsory 

dairy livestock destocking applied uniformly across all areas of the Aire 

subcatchment, including the areas of intensive dairy operations, results in a 

predicted reduction of 11.23% in FC at the subcatchment exit. This intervention 
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policy is more effective, but may be accompanied by a considerable loss of 

revenue to those intensive producers. 

Rather than interventions designed to reduce FIO emissions via reductions in 

dairy herd size and dairy population densities, interventions designed to manage 

faecal waste (i.e. prevent waste from entering watercourses) may be more 

appropriate. The next scenario examines the impact of installing stream bank 

fencing within the areas of high intensity dairy operations in the Aire 

subcatchment. 

2.5.11 Micro-level land use management: stream bank fencing 

This micro-level scenario applies the high flow FC model (Table 16) to the Aire 

subcatchment only. With stream bank fencing, erected only within the intensive 

dairy regions (outlined in red in Figure 19), there are marked reductions in FC 

concentrations downstream (see Figure 19 and Table 23). There are predicted 

reductions in FC concentrations of 58.59% immediately below the improved area 

and 34.69% at the subcatchment outflow in the east. This targeted intervention 

is predicted to be far more effective at reducing riverine FIO concentrations than 

the less focussed blanket policies described above 
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Figure 19: reductions in high-flow FC concentrations resulting from 

stream bank fencing erected in intensive milk producing HRUs 
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2.6 Discussion 
The majority of the results in Table 23 show trivial improvements in riverine water 

quality for measures which could potentially result in large reductions in farm 

income or destabilise fragile local communities in economically marginal upland 

areas. Some of the more aggressive macro policies outlined here (e.g. raising the 

price of milk quota or designating Humber as an ESA) may result in the 

concentration of milk production into large enterprises, exacerbating localised 

microbial pollution concentrations. 

It is acknowledged that not all microbial burden to land is of equal mobility or 

persistence (Jones, 1999) and there is still uncertainty surrounding the 

effectiveness of riparian buffer strips (Kay et al., 2007a). In a recent review (Kay 

et al., 2012), vegetated buffer strips were found to have a median FIO attenuation 

rate of 90%, which provides some confidence in the 95% rate of attenuation 

attributed to streamside fencing within this research. Likewise, the results of 

empirical research conducted at Brighouse Bay found that the installation of FIO 

remediation measures, principally stream side fencing, helped to reduce riverine 

FC fluxes by 66.3% at high-flow (Kay et al., 2007b). Although the Brighouse study 

was vulnerable to the potential, but unquantified, effects of seasonality, the FC 

reduction achieved at Brighouse is comparable to the 58.59% reduction in FC 

concentrations, due to streamside fencing, predicted by this research (Table 23). 

Stream side fencing may be a low-cost high-yield strategy. This micro-level land 

management strategy greatly exceeds the reductions achieved by the other 

policy instruments at the subcatchment outflow (see Table 23, p.138). 

In terms of improving the water quality of UK rivers the majority of the policy 

measures investigated here have relatively low impact on reducing FIO 

concentrations. The models predict that both faecal indicators greatly exceed EU 

guidelines for inland water quality, in Annex I of the Bathing Water Directive 

(2006a), at both flow rates. To reduce mean riverine FIO concentrations to 

mandatory levels (e.g. 400 CFU 100 ml−1) would require unattainable short-term 

improvements to WwTWs and politically impossible changes to the farming 

sector. Indeed, extreme measures would be required to make significant 

reductions to the risk of ill health at the theoretical Humber RBD sampling points. 

If all dairy farming ceased and the sewage infrastructure was improved to be 
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100% efficient, only then would base-flow water quality improve to Grade A. Even 

with these extreme measures, high-flow water quality could not improve beyond 

Grade C due to unexplained sources of FIOs contained within the intercept terms 

of the FIO models on Table 16. 

Previous research estimated that 10% of WwTW plants would have to fit tertiary 

treatment systems by 2015 at enormous financial cost (Wither et al., 2005; Water 

Industry Network Wales, 2007). Even after investments on this scale, catchments 

have still been found to be non-compliant due to diffuse agricultural FIO sources 

(Crowther et al., 2001; Aitken, 2003). The 2001-02 foot and mouth outbreak 

produced statistically significant reductions in FIO concentrations (Stapleton et 

al., 2003), but farm incomes and rural communities were seriously jeopardised. 

Reduction in farm incomes will critically limit the adoption of widespread 

destocking (Cuttle et al., 2007). 

This research highlights issues of spatial scale surrounding the delivery of land 

use policy measures. Although large scale integrated catchment management 

strategies have been successfully implemented abroad for several years (Heinz, 

2003; US EPA, 2007) both the Rural Economy and Land Use Programme (RELU) 

and Defra are keen to stress local adaptation and innovation in land management 

policy implementation. Chadwick et al. (2008) highlight the need for farmers to 

target their efforts efficiently, per individual circumstances. There is also a 

requirement for the assessment of environmental trade-offs from different land 

management practices to enable farmers to develop effective micro-level 

mitigation strategies. 

Clearly a balance between an optimal level of legislation, an efficient level of 

pollution and a spatial differentiation of land use policies needs to be devised. 

The results of the transfer exercise show that very few sites within the Humber 

RBD comply with EU standards or WHO recreational water criteria. The 

interpretation of the legislation is crucial to the implementation of pollution 

remediation strategies. 

FIOs are typically extremely concentrated in rivers (as opposed to FIOs at coastal 

bathing sites, which are significantly diluted by large volumes of seawater), and 

as a consequence, there are very few inland sites designated as fit for bathing. 
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Only 11 of the 574 designated bathing water sites monitored by the EA are inland 

freshwater sites (Harley, 2008), none of which are in the Humber RBD (Defra, 

2008b). 

Annex I of the rBWD (EU, 2006a) allows deviation from compliance parameters 

during ‘short-term pollution’ events which typically last no longer than 72 hours. 

The vast majority of high-flow events fall into this category and could, in theory, 

be exempted. 

With regard to non-compliance at base-flow, as no sites in the Humber RBD are 

designated as either bathing or shellfish harvesting sites (Defra, 2008b; Harley, 

2008), it may be argued that, firstly, there is no legal requirement for 

improvements under the rBWD and SWD directives (EU 2006a and 2006b); and, 

secondly, to make improvements in Humber would not be the best use of scarce 

resources when there are officially designated sites elsewhere in need of 

remediation. 

The WFD states that emissions should be as low as practicable, or rather, to 

comply with ‘good’ ecological status water quality should deviate only ‘slightly’ 

from normal conditions (EU 2000; Blacklocke et al., 2006). Furthermore, WFD 

compliance need not incur excessive, or disproportionate, implementation costs 

(Turner, 2007). The WFD provides no precise definitions of what constitutes 

‘slight deviation’ or ‘excessive costs’. Either are open to interpretation. 

Efficient levels of pollution must be found. Economic theory tells us that the 

socially optimal level of pollution is achieved where the marginal external cost to 

society caused by each unit of pollution equals the per unit marginal abatement 

cost faced by the firm (Pearce and Turner, 1990). Pollution discharge rates, 

external costs and abatement costs are not evenly distributed throughout 

England and Wales. Different rivers are subject to spatially disparate 

concentrations of microbiological pollution arising from variable rates of inputs 

from human and livestock sources. Abatement costs are inconsistent due to a 

range of factors including variable costs for different remediation methods (e.g. 

purification lagoons, tertiary ultraviolet wastewater treatment). External costs vary 

depending on the type and severity of the pollution. Different types of recipient 

lose welfare in different ways (e.g. reduced profits for commercial shellfish 
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harvesting companies or a loss of non-market welfare for recreational users such 

as anglers and rowers). Each of these factors impede the calculation of the 

socially optimal level of pollution or the calculation of costs and benefits arising 

from WFD compliance. Although cost effectiveness analysis is often used when 

compliance targets must be met, it neglects the value of the benefits that may 

arise from WFD implementation (Blacklocke et al., 2006; Lawlor et al., 2007). 

Pearce (1998) suggested that the directives on bathing water and drinking water 

would not pass a CBA. The WFD appears to fall into the same category. CBA 

studies are inconclusive and conflicting, in part due to the difficulties of quantifying 

non-market benefits (Whitelegg, 1993; Turner et al., 1994). For example, a report 

to the Scottish Executive (2002) estimated net benefits in Scotland arising from 

implementing remediation measures designed to comply with the WFD, whereas 

a similar study, conducted in England by Defra, estimated net costs of £530million 

per year, with over half of those costs falling on water companies (Water Industry 

Network Wales, 2007). The cost of pollution remediation is then passed onto 

household water bills (Haygarth et al., 2005): 2009 saw an average 5.8% 

increase in household water bills across England and Wales (BBC, 2008). It 

remains to be seen if proposed river improvements represent excessive or 

disproportionate costs to consumers. 

WFD compliance seems likely to yield spatial variation not just in the distribution 

of the benefits of FIO reduction but also in the willingness to pay (WTP) for those 

improvements. The models produced in this research predict that improved water 

quality reduces the risk of ill health. Although many studies show an higher WTP 

to avoid increased ill health (EFTEC, 2002; Ready et al., 2004), the limited CBA 

evidence available suggests that preferences for health benefits alone may not 

justify WwTW investments (Kay et al., 1999). For example, water bills payers 

typically demonstrate higher preferences for more tangible benefits, such as 

odour reduction and a reduced risk of drains overflowing (Dwr Cymru, 2005; 

Scottish Water, 2004). 
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2.7 Conclusions 
These are the first generic FIO models to be developed for the UK to incorporate 

direct measures of key FIO sources (namely human and livestock population 

data) as predictor variables (Crowther et al., 2011) and this research has 

pioneered the development of a transfer methodology which enables the models 

to predict FIO concentrations in unmonitored UK watercourses. 

The following conclusions can be drawn from this research: 

 The models used in this research provide a cost-effective diagnostic tool 

capable of identifying and predicting the sources and spatial distributions 

of microbial pollution. 

 By incorporating human and livestock FIO sources as explanatory 

variables these models can be used to help apportion the responsibility for 

microbial pollution between the water industry and the agricultural sector. 

 The regression modelling approach, by enabling spatially sensitive FIO 

function transfers, can inform integrated catchment management 

programmes, as required by the WFD, and offer insights into the optimal 

cost-effective mix of remediation strategies. 

 The models can be used at a range of spatial scales and are capable of 

identifying non-compliant HRUs which may benefit from micro-scale 

BMPs. 

Integrated basin-wide planning solutions must be developed to reduce the flux of 

microbial pollution to receiving waters, and an optimal mix of regional and site 

specific policy measures will be required in order to achieve the highest 

reductions. This chapter has demonstrated that transferable models of FIO 

concentrations may prove to be extremely cost effective diagnostic tools, helping 

to not just identify the spatial distribution of FIO sources (e.g. areas of high dairy 

livestock density) but to also make predictions of FIO concentrations in adjacent 

watercourses following a range of policy scenarios. The models offer real insights 

into the optimal cost-effective strategies for the delivery of WFD induced FIO 

remediation measures.  

The different policy measures explored here may have unacceptable adverse 

consequences: compulsory destocking may have undesirable adverse impacts 
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on farm incomes; farmers may circumvent restrictions on fertilizer application by 

applying manure to maintain grassland productivity (and herd size); adoption of 

the Nutrition Driven Food Policy may result in localised increases of FIO 

emissions as producers concentrate milk production into productive lowland 

areas. Results suggest that the installation of stream-side fencing may be the 

simplest and most practical policy measure. The installation of streamside fencing 

in areas of intensive milk production may be one of the most effective, targeted 

policy measures in reducing riverine FIO concentrations: The high-flow FC model 

predicts 58.6% reductions of FC immediately downstream of the high intensity 

dairy regions in the Aire subcatchment. BMPs have the potential to be effective 

and cost efficient. Dickson et al., (2005) observed a 40% reduction in high-flow 

FIO concentrations in the Brighouse catchment after the installation of BMPs. 

Meals (1996) found BMPs capable of reducing FIOs from dairy sources by up to 

70%. 

In conclusion, this work goes some way towards addressing an important 

knowledge gap which is of interest to a variety of stakeholders including other 

researchers, government agencies, the water industry, consumer groups and, 

most importantly, the general public. This research contributes to the emerging 

international debate on the use of farm best management practices and policy 

instruments to reduce FIOs and agricultural diffuse pollution e.g. Bateman et al. 

(2006a), Chadwick et al. (2008), Monaghan et al. (2008), Helming and Reinhard 

(2009), Hutchins et al. (2009), Maringanti et al. (2009) and Oliver et al. (2009). 

2.7.1 Limitations and potential improvements to the research within 

Chapter 2 

The River Tame catchment covers an area of 1,400 km2 and includes the north 

east of the Birmingham conurbation, containing 1.8 million people (Crabtree et 

al., 1999). The Tame then flows through the Lea Marston purification lakes before 

its confluence with the Trent. These purification lakes are over 43 hectares in 

area and retain the water for up to 12 hours, allowing pollutants to settle out of 

the water. Even during storm conditions up to 90% of solids are retained (Martin 

and Brewin, 1994). As a result, downstream water quality is significantly improved 

under both base- and high-flow conditions (Environment Agency, 2004). 
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Engineered schemes are also extremely effective in reducing FIO concentrations 

at base-flow. Perkins and Hunter (2000) report the constructed wetland at Crow 

Edge sewage treatment plant as being 85-94% efficient at removing FIOs. 

Thurston et al. (2001) and Vrhovsek et al. (1996) claim over 98% efficiency for 

the constructed wetlands at the Pima County Constructed Ecosystems Research 

Facility and the Gradisce Constructed Wetland respectively. At high-flow the 

efficiency of reservoirs and purification lakes becomes much reduced. During wet 

weather the Tame continues to have a severe impact on water quality in the Trent 

(Crabtree et al., 1999). 

Each impoundment situation is complex and detailed knowledge is required to 

calculate FIO concentrations. In line with the above literature, and based on the 

declared twelve-hour retention time, a predicted 90% reduction of FIOs at Lea 

Marston under base-flow conditions is not unreasonable (Kay, 2008c). The 

dominant mechanism of pathogen removal at Lea Marston is via particle-bound 

sedimentation. During high-flow conditions contaminated water is retained for 

shorter periods, sedimentation is reduced and the increased flow rate can cause 

resuspension and entrainment of pathogens (Crabtree et al., 1999; Upadhyay, 

2002). For these reasons, a conservative estimate of the effectiveness of the 

purification lakes is 25% efficiency at high-flow (Kay, 2008c; Woods et al., 1984). 

Therefore, for the modelling exercises in Chapter 2, the PVM set the purification 

efficiency of the Lea Marston lakes at 90% efficiency during base-flow conditions 

and at 25% efficiency at high-flow. 

However, the current method of using the models’ predictor variable matrices 

(PVM), to estimate FIO concentrations emitted from reservoir catchments may 

be inaccurate. CREH’s work has previously focussed on small rural catchments, 

with small proportions of land occupied by reservoir catchments. Errors in 

predictions of FIO concentrations may increase with reservoir catchment size or 

become unacceptably large in catchments dominated by reservoirs (cf. the rules 

governing the selection of study catchments in Chapter 1), or in catchments 

where engineered reservoirs are designed specifically to reduce riverine 

pollutants. 
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One solution to this issue will be to reconfigure the data matrix to more accurately 

reflect reduced FIO concentrations at reservoir outlets. This adjustment may be 

straightforward: it may be more accurate to use empirical data for pathogen 

concentrations at the reservoir exit (where such data exists), then adjust 

predictions of downstream FIO concentrations accordingly. The problem then 

becomes one of setting the rate of reduction at reservoir locations where 

empirical data are unavailable. Large reservoirs are very efficient (approaching 

100%) at removing FIOs. Small reservoirs are less efficient. It may be possible to 

develop rules governing the efficiency of reservoirs based on factors such as 

reservoir size, river flow rate and the length of time the river is impounded. 

Anomalies in the discharge routes of rivers affect the ability of the models to 

predict FIO concentrations. An example was encountered during this research: 

during base-flow the Upper Derwent catchment discharges via the Derwent but 

at high-flow excess water is artificially discharged to the coast via Sea Cut, an 

entirely different route (Crowther, 2008c). If anomalies such as this are 

uncorrected, the PVM would make inaccurate predictions. Further, more detailed 

knowledge of the vagaries of the river network is necessary to prevent this 

problem. 

A natural extension to the research presented in this thesis would be to use actual 

river discharge data to enable the models to provide estimates of FIO export 

coefficients (number of organisms discharged per unit time), in addition to 

estimates of the concentrations of FIOs. River discharge data is available from 

the CEH National River Flow Archive for over 1300 gauging stations nationwide 

(2008b). The HRUs used within this research are consistent with those used 

within the ChREAM project and, as discussed in chapter 2, discharge data is only 

available for the main catchments within the Humber RBD. Discharge data is not 

available for all of the HRUs within the RBD. For those cases where river 

discharge data are unavailable, it would be possible to estimate base-flow 

discharges using the method described by Gustard et al. (1992). 

The generic modelling approach is general enough to be implemented in a variety 

of empirical contexts. Chapter two demonstrated this by generating predictions 

of FIO concentrations using the datasets produced by the ChREAM (Bateman et 
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al., 2006a) and LUAM (Jones and Trantor, 2008) research groups. Climate 

change will affect land use and livestock farming patterns and this in turn will 

redistribute microbial pollution sources. Preliminary work to model the effects of 

climate change on riverine pollution distributions in Humber has been undertaken 

(Fezzi et al., 2015) and the FIO models can be applied to those datasets to 

assess the impact of climate change on microbial pollution concentrations. 

WFD compliance seems likely to yield spatial variation not just in the distribution 

of the implementation costs but also in the benefits of FIO reduction and in the 

WTP for river improvements. The natural extension to the research presented 

here is to produce a spatially explicit valuation of the non-market benefits and 

WTP arising from FIO reduction and, within a cost benefit framework, to assess 

the relative cost effectiveness of different remediation strategies, such as those 

discussed in Chapter 2. Analysis of this nature will be essential when assessing 

the optimum spatial differentiation and implementation of land use policies. 

Spatial differentiation of land use policies are required to maximise benefits and 

minimise costs. The models presented here are capable of identifying non-

compliant HRUs, such as the two HRUs situated along the upper Aire, discussed 

in Chapter 2. These areas may benefit from small scale, cost effective BMPs, 

such as installing fencing to prevent livestock accessing streams (Oliver et al., 

2007). At a larger scale, integrated catchment management strategies have been 

successfully implemented overseas for many years (Heinz, 2003; US EPA, 

2007). The increased uptake of holistic strategies is widely recommended and 

encouraged (UKTAG, 2005; Kay et al., 2006b; Turner, 2007). Effective catchment 

management schemes have been proven to prevent pollution to raw water and 

generate cost savings by minimising water treatment costs (Andrews and Zabel, 

2003). The models produced in this research can be used to identify the optimal 

locations for engineered pollution remediation schemes capable of large scale 

improvements. With the modifications to the PVM reservoir calculation, discussed 

above, the models may provide improved predictions of downstream water quality 

improvements. 
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3 Chapter 3: River Water Quality: Who Cares, How Much and 

Why? Using Choice Experiment Methods to Elicit 

Preferences for River Water Quality 

3.1 Introduction 
The Water Framework Directive (WFD) requires substantial improvements to the 

quality of Europe’s waters so that the ‘good ecological status’ of surface waters 

is achieved (EU, 2006a). One important motivation for the implementation of the 

WFD appears to be the creation of non-market social benefits, such as improved 

provision and opportunities for open-access recreation (see Articles 4, 9 and 11 

of the WFD (Environment Directorate General, 2005)). For this reason, from a 

policy perspective, it is necessary to correctly identify and adequately measure 

the benefits of water quality improvements, as it is estimated that non-market 

values may represent significant components of water quality improvements 

(Hanley et al., 2006; Martin-Ortega and Berbel, 2010). The legislation recognises 

the crucial role of economics in its requirement that member states assess the 

social and non-market benefits of measures designed to achieve ‘good ecological 

status’. 

Previous research has demonstrated that poor water quality burdens society with 

substantial economic costs (Dodds et al., 2008; Pretty et al., 2003). Although 

early estimates suggest that the costs of implementing remediation programmes 

may be prohibitively expensive (Wither et al., 2005), the financial costs of 

remediation must be offset against the (often non-market) benefits of that 

remediation. Policymakers must also consider the spatial differentiation of 

pollution concentrations and costs of suitable land use policies and remediation 

strategies which could be implemented to deliver river quality improvements 

(Hampson et al., 2010). Even relatively inexpensive, cost-effective, remediation 

strategies to maintain sparsely populated headwaters at ‘good ecological status’, 

in subcatchments such as the River Ure in the Yorkshire Dales, may be 

disproportionate to the benefits created – particularly if those subcatchments are 

too remote to enable meaningful improvements in benefit values. Conversely, 

more heavily polluted rivers, such as the River Aire flowing through Bradford and 

Leeds, may require prohibitively expensive or technically infeasible remediation 
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measures despite the potential for large benefit gains in terms of increased use 

values. The terminology within the WFD acknowledges such issues and allows 

derogations (article 4, par. 4, 5, 7) where remediation is either technically 

infeasible or where remediation costs are disproportionate to the benefits gained 

(EU, 2000). Under such circumstances technical infeasibility may justify 

extending the deadline for achieving ‘good ecological status’ up to 202711. 

Disproportionate costs may trigger more achievable targets, such as a 

requirement for an ‘acceptable ecological state’. Assessments of potential WFD 

investments, particularly for disproportionate cost extensions, require that costs 

and benefits are assessed within an cost-benefit framework (EFTEC, 2011; 

Görlach and Pielen, 2007). Interdisciplinary research on these highly contested 

issues is being undertaken across the EU (Balana et al., 2011; Galioto et al., 

2013; Molinos-Senante et al., 2011; Postle et al., 2004). 

In addition to the non-market benefit values of improved water quality there are 

other benefits which arise from improved water quality. These benefits, although 

quantifiable, are not necessarily easy to identify or calculate. The following 

paragraphs outline two examples. 

Forced closures of recreational facilities, due to poor water quality, are 

commonplace nationwide. The UK’s premier freshwater sports venue, the 

National Water Sports Centre on the River Trent, periodically suffers closures and 

revenue losses due to poor water quality (Robinson, 2015). Leisure activities are 

regularly curtailed on the Yare (the present case study area) due to poor water 

quality. During the summer of 2015 triathlon competitions and swimming activities 

at Whittingham Outdoor Education Centre had to be cancelled due to the health 

risks created by toxic blue-green algal blooms (Lines, 2014). These financial 

                                            
11 According to article 4.4.of the WFD, time extensions for achieving ‘good status’ or ‘good 
potential’ of water bodies shall not be longer than two planning cycles beyond 2015. As a 
consequence the year 2027, the deadline of the third WFD planning cycle, is currently the final 
date for achieving ‘good status’ or ‘good potential’. The only current exemption is if natural 
conditions are the reason for not achieving the objective. This means that Member States will 
have to decide whether they can realistically expect to achieve ‘good status’ or ‘good potential’ 
for the respective water bodies by 2027 or, if not, to set less stringent objectives according to 
article 4.5 of the WFD (European Commission CIRCABC, 2016a). Discussions on post-2027 
arrangements are ongoing (European Commission CIRCABC, 2016b). 
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losses due to poor water quality can seriously affect the viability of smaller 

recreational clubs and the social and cultural networks which they support. 

The dose-response relationship pertaining to illness from contaminated 

freshwater is poorly understood (Fewtrell et al., 1992) and recreational users are 

frequently faced with a choice between an unquantified (but real) health risk or 

forgoing their recreational activities. Gastro-enteric illnesses such as the ‘Trent 

Tummy’ are recognised conditions among recreational users at the National 

Water Sports Centre. Unfortunately, due to necessity, the risk of ill health caused 

by microbiologically polluted water is often downplayed or regarded by rowers 

and swimmers, across the UK, as an unfortunate by-product of undertaking their 

recreational activities (Heron, 2014). Remediation of riverine pollution yields 

reductions in ill-health, the number of working days lost due to that ill health and 

reductions in the costs of medical treatment for those experiencing severe ill 

health. 

Benefits arising from pollution remediation may be intangible and, consequently, 

overlooked. It may be argued that derogations on grounds of excessive costs 

should not proceed without comprehensive assessments of environmental and 

socio-economic benefits. Stated preference valuation techniques have a long 

history of use within environmental economics to model preferences for 

environmental change and previous research has explored the willingness to pay 

for pollution remediation within a cost-benefit framework (Bateman et al., 2006a; 

Glenk et al., 2011; Metcalfe et al., 2012; Van Houtven et al., 2007).  

However, previous analyses of the benefits arising from pollution remediation 

systematically overlook the distinction between the ecological and microbial 

quality of river water. Within UK research, economic valuation studies have 

typically assessed WFD benefits in ways which conflate ecological improvements 

with the value of recreational gains and, therefore, assess water quality as a 

single attribute of preference (Bateman et al., 2011; Ferrini et al., 2014). This 

practice must be revised in order to correctly ascertain the true values people 

hold for different attributes of water quality. Most river visitors are not specialised 

users (e.g. anglers, swimmers or boaters), but those who walk along river banks 

for recreation. Although visitors directly benefit from ecological improvements (i.e. 
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improved odour, clearer water, less algae, a greater range of flora, fauna, birds 

and fish to enjoy, etc.), this research explores the hypothesis that respondents 

may hold values for the improved recreational opportunities arising from microbial 

pollution remediation, quite separate from their values for ecological water quality 

improvements. 

To summarise, this research is motivated by the obligation imposed by the WFD 

to fully identify and understand the benefits of riverine pollution remediation. It 

aims to further the knowledge on non-market valuation of river water quality by 

examining the relative importance of ecological or recreational water quality 

improvements. This research has both academic and policy relevance. Decision 

makers require detailed information about the spatially differentiated non-market 

benefits obtainable via ecological, recreational or a mix of water quality 

remediation schemes. It is hypothesised that the non-market benefits relating to 

each type of remediation offer heterogeneous values and, in order to optimise the 

value of an investment in water quality, efficient investment must be informed by 

the various factors that influence value. There is little reason to invest if there is 

no little or no benefit to that investment, or if that investment would be better 

directed elsewhere. Improving the accuracy and availability of data pertaining to 

the relative values of the different types of non-market benefits is a strong 

motivation for this research. Academically, this work extends the research 

literature by disaggregating the values respondents hold for the ecological and 

recreational attributes of water quality using appropriate research methodologies. 

From a policy perspective this research enhances the ability of the policy-maker 

to more fully understand, calculate and incorporate potential benefits and, thus, 

produce more accurate cost-benefit analyses. 

To begin, the literature is reviewed to provide an overview of the legislative 

imperatives to incorporate meaningful assessments of all costs and benefits into 

pollution remediation strategies. The economic valuation methods typically used 

to assess non-market benefits are discussed, with attention given to the 

advantages and disadvantages of stated preference techniques; in particular 

conditional logit (CL) and latent class (LC) model specifications, the modelling 

approaches used within this research. Typical socio-economic and cultural 

differences between respondents, which can produce preference heterogeneity, 
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are identified and discussed. The literature on water quality information is 

discussed. More specifically, the way in which water quality information has 

previously been used to underpin water quality characteristics presented as 

choice information within valuation experiments. The literature review closes with 

an overview of the relevant findings from the Catchment hydrology, Resources, 

Economics and Management (ChREAM) project, the predecessor to this 

research. 

An overview of the research challenges, the hypotheses and objectives of this 

research is then provided. This is followed by a summary of the case study area 

within which this research is conducted. The principles guiding the design of the 

survey and survey instruments are then discussed. The choice experiment 

design, choice attributes and attribute levels are presented, followed by the 

rationale for the recruitment of respondents. The modelling strategies used, 

namely CL and LC analyses, are discussed before the results of the research are 

presented. 

The results section opens with an overview of the results from a pilot study and 

a discussion of the summary statistics of the main survey data. CL models, results 

and willingness to pay (WTP) estimates are presented and discussed. This is 

followed by the presentation and discussion of the results, WTP estimates and 

postestimation statistics obtained using a LC modelling approach. 

The research findings are discussed followed by concluding comments set within 

the context of the academic interest and policy relevance of those findings. The 

chapter concludes with an overview of the limitations of this research and 

explores avenues for future research identified throughout the course of this work. 
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3.2 Literature review 
Cost effectiveness analysis and cost benefit analysis are the two main methods 

adopted for economic assessment under the WFD. Cost benefit analyses help 

guide the planning and management communities into channelling resources into 

the remediation projects that yield the greatest gain in net benefits to society. This 

is particularly useful where alternative policies, or remediation strategies, exist or 

where financial resources are limited (Field, 2008; Turner et al., 1994). 

Typically money is used as the unit of measurement, enabling the 

commodification of the services which the natural environment provides (Perman 

et al., 2003). Unfortunately it is often difficult to apply accurate values to some 

costs or benefits, particularly the external unpriced effects of environmental 

losses caused by pollution, or the non-market benefit values associated with 

projects designed to improve non-market public environmental assets (Bateman 

et al., 2011; Turner et al., 1994; Whitelegg, 1993). Furthermore, even where a 

market price does exist, it may often only represent an approximation of value 

(Boardman et al., 2014). 

Official UK guidelines state that costs and benefits, however difficult to monetize, 

must not be ignored but must be “quantified where possible and meaningful” 

(H.M. Treasury, 2003). Without quantification, potential benefits can only be 

described qualitatively. Reliance on qualitative data may negatively influence 

policy relevance as policymakers tend to overlook the qualitative, preferring 

instead the (often) simpler quantitative forms of assessment and communication 

in order to address complicated questions about the nature and significance of 

the problem to be addressed (Gysen et al., 2006). 

A range of quantitative economic valuation techniques have developed over time 

to monetise preferences regarding environmental costs and benefits (Bateman 

et al., 1993; De Groot et al., 2006; Hanley et al., 2009). Choosing the most 

appropriate valuation technique requires a consideration of the nature of the 

environmental goods to be measured (Bateman et al., 2011). The economic 

valuation of environmental resources typically takes two main approaches: 

revealed or stated preference. These valuation methods, their usefulness and 

limitations, and some of the issues arising from their use which may impact upon 
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this present research, will now be discussed. There is a growing literature 

providing detailed analyses of environmental valuation techniques, e.g. Bateman 

et al. (2001), Birol et al. (2006), Carson (2000) or Champ et al. (2012). 

One approach used to measure respondents’ preferences for an environmental 

resource is to reveal their preferences from an analysis of their behaviour. 

Revealed preference techniques have a long history. Hotelling (1949) proposed 

an assessment of the non-market value of parks using an assessment of the 

respondent’s travel costs. Hotelling’s suggestion stimulated research in revealed 

preference valuation methods, leading to the development of hedonic pricing 

(Ridker and Henning, 1967) and travel cost (TC) (Clawson, 1959) valuation 

methods. 

Within the context of environmental valuation, hedonic pricing is used to estimate 

the economic values of environmental goods that directly affect market prices. It 

is most commonly applied to variations in property prices which reflect the value 

of localised environmental attributes such as urban trees, or access to 

watercourses (Malpezzi, 2003; Tyrväinen, 1997). Hedonic pricing may inform us 

of the localised effects that river water quality may have on property values. 

Unfortunately, it is unsuitable for this present research because it cannot inform 

us of differing benefit values beyond close proximity to the river. 

The basic premise of TC method is that the time and travel costs arising from a 

respondent’s real world behaviour in order to visit a site represent the price of 

access to the site. Much use has been made of TC to estimate the non-market 

use values of environmental resources, such as recreational fishing (Shrestha et 

al., 2002), or the preservation of environmentally vulnerable freshwater 

environments (Fleming and Cook, 2008). These values can be used within a cost-

benefit analysis (CBA) framework to assess the use values of the environmental 

resource. By definition, TC method cannot capture the values held by non-visitors 

(Parsons, 2003). 

We know non-visitors hold values for environmental goods. So, to quantify the 

values held by visitors and non-visitors we must take a stated preference 

approach to valuation. There are two main types of stated preference methods 

used where direct quantification of value is not possible or where there is no 
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observable respondent behaviour to measure: contingent valuation and choice 

experiments. These methods generate and quantify the non-market values held 

by respondents for environmental resources and these values can be used within 

a cost benefit framework to represent non-market benefit values. There is a 

considerable literature on stated preference techniques. For detailed critiques of 

the two methods please see, for example, Boxall et al. (1996) and Hanley et al. 

(2001). Here is an overview of the two techniques and their methodological 

advantages and disadvantages. 

Stated preference techniques also have a long history of use, dating back to 

suggestions made by Ciriacy-Wantrup (1947). Contingent valuation method 

(CVM), one of the earliest stated preference techniques, estimates the values 

held by an individual by directly asking that individual a question which involves 

paying for an improved environmental good. The respondent’s WTP to secure 

the improved good, or their willingness to accept (WTA) in compensation to forgo 

the improvement, can then be assessed from their answer (Pearce, 1998). CVM 

has a long history of use for deriving non-market values, which, as previously 

discussed, are essential components of the total economic value of 

environmental resources (Pearce et al., 2006). For example, Smith and 

Desvousges (1986) and Desvousges et al. (1987) carried out one of the seminal 

CVM studies to examine WTP for improved water quality in terms of its suitability 

for recreational use. Although the study was hypothetical, it produced meaningful 

and policy relevant results. CVM continues to have relevance and has been used 

on a wide range of large scale CBA exercises, e.g. to examine management 

issues surrounding water quality (Bateman et al., 2008) or losses from water 

pollution (Carson et al., 2003). 

A problem with the CVM approach is its reliance on the accuracy of the survey 

instruments used to present precise changes to water quality within a single 

choice question. This issue of informational accuracy has challenged 

researchers, particularly in situations where precise data on water quality 

standards has been unavailable (Kay et al., 1994). The reliance on accurate 

information, relating to a specific definition of water quality, is mitigated within the 

choice experiment (CE) approach. Louviere (1996) explained that choice 

experiments rely less on the accuracy of a single description of water quality (as 
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in CVM), but more on the comprehensive description of hypothetical situations. 

This is an important distinction, particularly when we consider the availability of 

accurate information relating to water quality standards, the respondent’s 

comprehension of the environmental issue, or the accuracy and accessibility of 

the survey instruments, all of which will be discussed shortly. 

Choice experiments typically use multiple choice sets comprised of different 

attributes, and different levels within those attributes, to present a series of 

hypothetical choice situations reflecting different states of the environment. The 

respondent is asked to choose their preferred alternative from each choice set 

and their choice reflects the trade-offs they make between the different attributes 

within each hypothetical scenario. When a price attribute is included within the 

choice set, probabilistic modelling enables the estimation of the marginal utility 

the respondent holds, in monetary terms, for each of the non-price attributes 

(Boxall et al., 1996; Hanley et al., 2006). This approach is of enormous value to 

policymakers as it allows the assessment of changes in the marginal values for 

different levels of the environmental good. The repeated sampling method central 

to choice experiments reduces the concerns of lower informational efficiency 

affecting the model structure, as is the case in CVM (Carson, 1991). 

Presenting the respondent with multiple choice sets also has the distinct 

advantage of providing the economist with rich information on intra-respondent 

preferences for different attributes, levels and scenarios. This is grounded in 

Lancaster’s (1966) conceptual framework, which assumes that respondent’s 

utility for a good can be decomposed into the attributes of that good. The format 

of choice experiments are also thought to minimise the incidence of yea-saying, 

protest bids or other strategic behaviours which can be encountered when using 

CVM (Bergstrom et al., 1989; Cummings et al., 1994; Hanley et al., 2001). For 

example, research by Day et al. (2012) compared the rate of positive responses 

using CVM and CE methods and found a significantly lower rate of positive 

responses, and, consequently, lower levels of yea-saying when using the CE 

method. 

These advantages over CVM have, in part, led to the increased adoption of 

choice experiment methods in water quality studies since the late 1990s 
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(Adamowicz, 2004). This trend has continued apace over the last ten years, with 

the method used to assess a diverse range of water quality issues including 

assessments of wetland conservation projects (Birol et al., 2006), multi-country 

assessments of benefit transfer in water conservation projects (Brouwer et al., 

2015), adaptations to river use (Andreopoulos et al., 2014), river restoration 

(Bliem et al., 2012), and improvements in river ecology (Hanley et al., 2006). 

Some of the issues (e.g. heterogeneous preferences) which may affect the 

accuracy of utility estimates, when using CE methods, are now discussed. The 

efforts to minimise the effects of these issues are discussed subsequently, within 

the section of this chapter which describes the experimental design. 

The two stated preference methods (CVM and CE) outlined above, belong to the 

family of methods associated with random utility theory (RUT) (Bennett and 

Blamey, 2001). A central tenet of RUT is homogeneity in respondents’ 

preferences. In reality, respondents are frequently imperfectly informed on, or 

differently motivated by, environmental issues. These differences introduce 

preference heterogeneity, inconsistent with RUT, into any subsequent 

probabilistic modelling of that choice data. There is considerable, and often 

heated (Weikard, 2002), debate surrounding the ability of CVM to accurately 

estimate non-market values as, due to their ethereal nature, the non-use 

component of non-market values can be highly subjective (Barbier, 1993). For 

example, Schultze et al. (1983) found the existence and preservation values held 

by respondents to be far higher than respondents’ use values. These 

heterogeneous differences in personal motivations can prove to be difficult to 

identify, classify and quantify. 

Another issue, particularly applicable to the calculation of the non-market benefits 

of river water quality improvements, is that of defining the spatial boundaries of a 

remediation project and estimating the number of potential beneficiaries (Bann et 

al., 2003; Brouwer et al., 2010). Errors in estimating the numbers of beneficiaries 

of an environmental change can compound errors in estimates of per-person 

WTP when aggregate values are calculated (Bateman et al., 2002). To minimise 

this problem researchers have increasing used geographical information systems 

to incorporate spatial variables into their research in order to assess and calculate 
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distance decay effects (Bateman et al., 2006b; Brainard et al., 2002). The UK 

Aquamoney project (Bateman et al., 2008) found that respondents’ WTP for river 

improvements decreased with distance. Georgiou et al. (2000) found a partial 

solution to the problem of defining spatial boundaries: they calculated both a 

distance-decay effect and a limited distance boundary for values relating to water 

quality improvements. By calculating the average WTP, adjusting for distance 

decay and spatial boundaries, then multiplying the averages by the number of 

people affected by the environmental change, analysts can then obtain an 

estimate of the total value placed on that environmental change (Moran, 1999; 

Turner et al., 1994). It is often the case that individual preferences and 

corresponding preference boundaries are heterogeneous across users and 

topographical locations. For example, Van Houten et al. (2007) identified 

significant heterogeneity across respondents’ WTP for environmental 

improvements, due to geographical factors, in their meta-analysis of US stated 

preference studies. 

There is a growing literature on non-market valuation methods to estimate 

respondent’s willingness to pay to avoid environmental health risks. Previous 

research has found that individuals who perceive greater environmental health 

risks are generally more likely to be willing-to-pay (and willing-to-pay more) for a 

given reduction in that risk. For example, Sukharomana and Supalla (1998) found 

that that an individual's WTP for groundwater improvements increased if their 

perception of risk was greater. Similarly, Georgiou et al. (1998) found that an 

individual's WTP for improvements in bathing water quality was strongly 

correlated with that respondent’s perception of the health risks associated with 

exposure to that polluted water. 

Georgiou et al. also found that an individual's WTP for improvements in bathing 

water quality was not only dependent on their perceptions of health risks but was 

also strongly correlated with their socio-economic status. Hunter et al. (2012), 

found that socio-economic factors, such as income or the number of 

environmental memberships held by the respondent, significantly influenced that 

respondent’s WTP for reducing toxic cyanobacterial blooms in recreational water. 

Hoyos, et al. (2009) found that age and cultural identity caused heterogeneous 

preferences with regard to recreational resources. 
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Within stated preference studies attribute non-attendance, where the respondent 

ignores an choice attribute, is found to occur frequently (Scarpa et al., 2009). 

Identifying and accurately treating process heterogeneity is necessary for 

accurate utility estimation as, left untreated, it significantly impairs the efficiency 

of coefficient estimates resulting in over- or under-estimates of the marginal WTP 

for specific attributes (Campbell et al., 2011). 

McFadden (1973) proposed modelling utility in terms of the characteristics of the 

choice alternatives, interacted with the attributes of the respondent. McFadden’s 

development, the CL model, is particularly suited to modelling choice behaviour, 

where the explanatory variables include attributes of the choice alternatives, e.g. 

water quality attributes or price, as well as respondents’ socio-economic 

characteristics, e.g. age or income. CL models are also useful when the number 

of combinations of choice alternatives are large, as is frequently the case within 

choice experiments. 

The assumptions of the CL model are that the error term is independent and 

identically distributed (IID) across observations, and is uncorrelated across 

options (Luce, 1959). As has been discussed, heterogeneity in the error term can 

frequently occur for a number of reasons within CL modelling. Researchers have 

sought methods to relax the strict assumptions of independence of irrelevant 

alternatives (IIA), such as the assumption of homogeneity. Accounting for 

heterogeneity within random utility based models is necessary in order to 

estimate efficient unbiased models of respondents’ preferences (Boxall and 

Adamowicz, 2002; Yatchew and Griliches, 1985). Early approaches involved 

parameterizations of the scale factor in the random parameter logit (RPL) method 

(Layton, 1996; Train, 1998). Although these approaches incorporate 

heterogeneity, it has been argued that they are poorly suited to explaining the 

sources of that heterogeneity (Boxall and Adamowicz, 2002). 

The differences between the mixed logit (MXL) family of models are sometimes 

unclear within the literature. McFadden and Train (2000) clarify that mixed logit 

is the family name of the different types of models (e.g. RPL, error component 

logit (ECL) and LC), used to reflect heterogeneity in preferences. Mixed logit 

reflects the fact that the choice probability is a mixture of logits with a specified 



 

162 
 

mixing distribution and the term ‘mixed logit’ encompasses any interpretation that 

is consistent with the functional form (Train, 1999). There are different 

specifications and corresponding advantages across the family of MXL models; 

their commonality arises in the integration of the logit formula over the distribution 

of unobserved random parameters (Revelt and Train, 1998). MXL models are a 

generalization of standard logit that do not exhibit the restrictive IIA property and 

explicitly account for correlations in unobserved utility over repeated choices by 

each respondent (Revelt and Train, 1998). 

The ECL interpretation is amenable to the analysis of complex substitution 

patterns. (Department for Transport, 2014). The RPL interpretation allows the 

data considerable freedom to directly reveal the form of any inherent taste 

variation, without recourse to any particular segmentation (Green and Hensher, 

2003). In their most basic form, RPL models provide a mean with a distribution 

around that mean (i.e. estimates of the first and second moments, the mean and 

standard deviation) of tastes across the population of interest. The preferences 

of all respondents are variable along a continuous range. The mixing distribution, 

G, may come from a continuous parametric family, such as multivariate normal or 

log normal, or it may have a finite support. When G has finite support, MXL models 

are also called LC models (McFadden and Train, 2000). LC reveals allows 

segmentation for distinct classes (groups) of respondents. Although preferences 

vary across classes, the heterogeneity of preferences is smaller within classes; 

the segmentation provides a more precise estimation of the preferences held by 

class members. Although LC is less flexible, in that it approximates the underlying 

continuous distribution with a discrete one, it does not require the analyst to make 

specific assumptions about the distributions of individual heterogeneity (Green 

and Hensher, 2003). 

Both RPL and LC offer alternative ways of capturing unobserved heterogeneity 

and other potential sources of variability in unobserved sources of utility12. The 

different methods are a matter of taste, but some specifications of MXL can 

produce clusters of results which can be difficult to interpret and it can be difficult 

to identify which error components to include in a MXL specification (Brownstone, 

                                            
12 For a more complete discussion on MXL please see McFadden and Train (2000) and for the 
technical differences between RPL and LC, please see Green and Hensher (2003). 
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2001; Department for Transport, 2014). LC analysis can be used to overcome, or 

minimise, these difficulties and is now discussed further. 

LC analysis has a history of being used within market research. McFadden (1986) 

proposed the integration of choice information with socio-economic and 

attitudinal/psychological information to create latent variables in order to 

understand choice behaviour. Revealing latent attitudinal data in this way can 

provide significant opportunities to enrich economic analysis (Boxall and 

Adamowicz, 2002). The underlying assumption is that a respondent’s behaviour 

within a CE is a manifestation of their underlying latent preferences (Morey et al., 

2006). These latent attitudes can enable the identification of otherwise 

unobservable subgroups, or classes, within a sample of respondents and LC is 

used to explain the choice behaviour of those different classes. 

Respondents within different classes will answer preference elicitation questions 

differently from one another due to their underlying latent characteristics. 

Although intra-class respondents may display relatively homogeneous 

preferences, the functional form of LC analysis places no restrictions on class 

membership probabilities, allowing for a wider range of preference heterogeneity 

within a class. This solves the limitations of IIA on the distribution of the 

preference parameters as there is no longer the assumption that parameters are 

normally distributed (Morey et al., 2006). 

There are other advantages of using a LC framework. CL model structure does 

not control for intra-respondent panel data but instead treats all unobserved 

factors across observations as independent and unique. This is a serious 

misspecification when a respondent is presented with multiple choice tasks, as 

commonly used within a CE format, as we would expect that respondent to be 

influenced by that same (latent) bundle of unobserved factors throughout the CE 

sampling process (Train, 1998). LC modelling neutralises this difficulty by 

retaining the data’s intra-respondent panel structure (Kemperman and 

Timmermans, 2006). 

To mitigate against process heterogeneity by recreational water users, Campbell 

et al. (2011) modelled data with suspected attribute non-attendance using a LC 
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framework, where classes were defined using LC rules that recognise the 

possibility of non-attendance to one or more attributes. 

There has been a growing acceptance of LC analysis within environmental 

economic analysis. Provencher and Moore (2006) use the method with choice 

data to understand the preferences of recreational anglers. Boxall and 

Adamowicz (2002) estimate latent preferences for wilderness recreation using 

attitudinal and choice data. Shonkwiler and Shaw (2003) use socio-economic and 

choice data in a LC framework to assess reservoir recreation. 

LC models are less computationally demanding than continuous mixture models 

and provide easy to interpret willingness to pay measure (Hess et al., 2011). So, 

from a policy perspective, LC analysis tends to be informative, yet simple to 

interpret (Scarpa et al., 2005) and it is conceptually appealing as it recognises 

that a population consists of subgroups distinguished from one another by their 

latent preferences which are shaped by their socio-economic characteristics and 

personal attitudes (Morey et al., 2006; Provencher and Moore, 2006). Knowing 

the attitudes of different groups helps environmental managers respond more 

appropriately to the preferences of those groups in relation to the environmental 

good being investigated. Moreover, LC method can identify subgroups which may 

be apathetic towards changes in the environmental good and, if such a group has 

been identified, LC method can estimate its size (Morey et al., 2006). 

As mentioned previously, economic valuation studies of changes to the quality of 

the natural environment are only ever as valid as the natural science data upon 

which they are based. Here the completeness and accuracy of the natural 

science data is reviewed, starting with the measurement of pollutants. 

This research focuses on the ecological and microbiological quality of the river’s 

water. Both parameters exhibit a dose-response relationship, whereby the higher 

the concentration of the pollutant, the higher the risk of damage to both human 

health or the wellbeing of the components of the riverine ecosystem. The 

ecological quality of water is linked to the loadings of potentially harmful 

chemicals within the water. Concentrations of nutrients such as nitrogen or 

phosphorous have long been known to be associated with the overall ecological 

health of the aquatic environment, with excess concentrations negatively 
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affecting the abundance of fish and other flora and fauna (Camargo and Alonso, 

2006; Carpenter et al., 1998; Correll, 1998; Van Houtven et al. 2007). Raised 

concentrations of nutrients may also cause toxic blooms of cyanobacteria to 

develop, creating an hazard to human health (Chorus et al., 2000; Pilotto et al., 

1997). Please see Chapter 2 for a discussion of the risk of ill health due to excess 

exposure to microbiological pollution. 

These, and other facets of the overall water quality span a continuum, from that 

which can easily be perceived (e.g. turbidity or algal growth), to characteristics 

imperceptible to human senses (e.g. dissolved oxygen content or concentrations 

of microbial organisms). These different aspects can be problematic because 

respondents are often heterogeneously and imperfectly informed about ambient 

environmental risks (Konishi and Coggins, 2008). Respondents’ perceptions of 

water quality may bear no resemblance to the actual water quality. Factors such 

as anecdotal evidence, which creates or reinforces a local reputation for water 

quality, may be more important determinants of respondents’ preferences than 

the actual water quality (Binkley and Hanemann, 1978; Happs, 1986). Langford 

et al. (2000) suggest that public perceptions of risks from polluted recreational 

waters can be explained by cultural theory. They argue that social constructions 

shape and form an individual’s worldview and influence their cognitive 

judgements about the magnitude and acceptability of risk. Without adequate 

information on water quality, personal, social or cultural misperceptions may bias 

respondents’ preferences and WTP estimates for environmental improvements 

or health risk reductions. 

Clearly, it is important to minimise respondents’ misperceptions of risk in order to 

minimise experimental error. To aid experimental accuracy, researchers have 

sought to produce objective water quality indices based on different combinations 

of scientifically quantified parameters based on expert judgment (Bouwes and 

Schneider, 1979). Unfortunately, providing the respondent with accurate 

information, on its own, is not enough. Green and Tunstall (1999) found that face-

value comprehension of the (often) complex choice information provided within 

non-market valuation experiments cannot always be taken for granted. Early 

stated preference experiments frequently presented the attributes of non-market 

goods to respondents as a table of values, but it has been found that respondents 
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can have difficulty evaluating numerical or categorical data within choice 

experiment options. Hibbard et al. (2002) found that respondents chose inferior 

options 45% of the time when presented with tabulated numerical data. When 

visual representations of the same data was presented to those same 

respondents, error rates fell to 16%. Willingness to pay for quality improvements 

depends upon the respondent’s ability to accurately perceive water quality 

changes. Researchers have sought to aid the comprehension of respondents by 

using water quality ladders to portray water quality information. 

Early stated preference experiments, such as Mitchell and Carson’s (1981) 

contingent valuation study of US water quality, have used derivatives of the 

Resources for the Future water quality ladder devised by Vaughan (1981). 

Vaughan consulted a number of sources, including the National Sanitation 

Foundation's water quality index (Booth et al., 1976), to devise a numerical index 

linking potential recreational water uses (swimming, game fishing, course fishing, 

boating) to minimum acceptable standards for five measurable water quality 

characteristics (faecal coliforms, dissolved oxygen, maximum biochemical 

oxygen demand, turbidity and pH). 

Mapping water quality characteristics onto water quality ladders can be 

problematic. Primary water contact is typically defined by activities, such as 

swimming, which involve full or partial immersion into the water, with a high 

possibility of ingesting water. Secondary activities, such as boating or angling, 

are defined by their reduced contact with the water and lower risk of ingesting 

water (Dorevitch et al., 2011). Whilst research has been undertaken to define 

safe microbial concentrations for primary contact activities (Kay et al., 1994; Kay 

et al., 2004b; Prüss, 1998), there are difficulties mapping values for safe 

secondary recreational use due to an ongoing lack of available epidemiological 

information (Cumming et al., 1986; Fewtrell et al., 1992; Stoner, 1978; US EPA, 

1986). Vaughan (1981) identified a tenuous link between 2000 faecal coliforms 

per 100ml as the upper limit at which water becomes unsuitable for secondary 

activities. The value appears to be based either on the National Technical 

Advisory Committee standards (1968) or linked to its historical use by several US 

states - even though there has been no agreement between states on the 

suitability of that figure (US EPA, 2003). The most recent guidelines issued by 
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the US EPA (2012) and the WHO (2003) are still unable to satisfactorily quantify 

safe microbial limits for secondary contact (US EPA, 2015). Despite the paucity 

of microbiological water quality data, standardised water quality parameters are 

increasingly used within water quality ladders, particularly for nutrient 

concentrations, or other factors (e.g. pH or maximum biochemical oxygen 

demand) which affect the ecological quality of the water. This increased 

standardisation enables the assessment of benefit transfers of utility values within 

economic valuation studies (Van Houtven et al., 2007). 

In the UK, the most recent DCE water quality studies include Hanley et al. (2005, 

2006), Glenk et al. (2011), and Metcalfe et al. (2012). Also of particular interest 

is a DCE, employing similar variables to the present study (i.e. water quality 

disaggregated into a series of ecological quality attributes and a recreational 

attribute), conducted in the Republic of Ireland by Doherty et al. (2014). 

Hanley et al. (2005) tested the impact of different price vectors on CE results for 

improvements from ‘fair’ to ‘good’ status in the ecological quality, aesthetic and 

bankside condition attributes of the River Wear in County Durham. Two CE 

designs were employed: Design A contained prices ranging from £2-24, Design 

B used lower prices, ranging from £0.67-£8. Although implicit prices were lower 

in the low-price sample than in the high-price sample (in some cases, by as much 

as 45% lower), they found that WTP did not vary significantly across the two price 

vectors suggesting robustness to the framing effects such vectors might induce 

in respondents. Further design details and estimates for pooled WTP are shown 

in Table 24. 

Hanley et al. (2006) extend their previous research to embrace both the Wear in 

County Durham and the river Clyde in Central Scotland. This extension allowed 

the authors to test the transferability of value estimates between these two rivers. 

While benefits transfer tests were rejected with preferences and values differing 

significantly across the two studies, other results suggest that river ecology 

provides the main driver of values; a similar result to that found in my own study. 

Hanley et al., also found significant preference heterogeneity within and across 

samples, observing that those living near the Clyde valued improvements to their 

local river more highly than people in Durham valued identical improvements to 
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their local river. Given this overall WTP was higher in the River Clyde sample 

compared to the River Wear sample (Table 24). For the River Wear, Hanley et al 

found that people placed insignificantly different values on the three attributes of 

river quality, whereas for the River Clyde, larger differences were found in 

attribute values, with aesthetic improvements being valued appreciably lower 

than either river ecology or bankside conditions. 

Glenk et al. (2011) describe the state of Scottish rivers and lochs and assess 

respondents’ preferences for the potential future status of these waterbodies. The 

attributes used in their DCE are descriptions of the potential status of the rivers 

and lochs. The levels for the attributes are varying quantities of the water bodies 

that will be at the achieved environmental standard by the end of the given time 

frame. They find WTP per household per year of £1.05 and £0.89 for rivers and 

lochs, respectively, for a 1% marginal improvement in water quality. These 

estimates for 1% marginal improvements are similar to those observed by 

Metcalfe et al., (see Table 24). 

Metcalfe et al. (2012) carried out a large-scale investigation of the value of the 

implementation of the WFD for all water bodies in the UK, employing a similar 

approach to that used by Glenk et al., e.g., the attributes used in their DCE are 

descriptions of the potential status of the water body in a number of years' time, 

with the levels for the attributes representing varying qualities of the rivers that 

will be achieved by the end of the time period. They assessed respondents’ 

preferences for the potential future status of rivers using multiple elicitation 

methods (a DCE and two forms of CV). Their DCE estimated WTP per household 

per year of between £0.36 and £0.95 for a 1% marginal improvement in river 

water quality. The value of a scenario in which 95% of rivers are brought from 

‘fair’ to at least ‘good’ ecological status by 2015 was found to vary from £30.70 to 

£76.20 per household per year via the DCE responses (see Table 24). 
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Table 24: prevailing DCE estimates of WTP for UK river water quality 

studies 

 Sample size Attributes  Design setting WTP (£) 
Hanley et 
al. 2005 

210 design 1,  
120 design 2  
(River Wear –
Durham) 

Ecology (good, fair) 
Aesthetics/litter (good, fair) 
Bankside condition (good, 
fair) 
Price (water bill):  
(design 1): 2, 5, 11,15, 24 
(design 2): 0.67, 1.67, 
3.67, 5, 8 

CNL-RPL 
2 choice task 
+status quo 
(8 choices) 

Pooled sample: 
Ecology £11.12 
Aesthetics £11.10 
Bankside £11.94 
(£/hh/yr/period to 
improve from fair to 
good) 

Hanley et 
al. 2006 
 

210 per each 
river - general 
population 
quota 
sampling 
(River Wear 
and River 
Clyde) 

Ecology (good, fair) 
Aesthetics/litter (good, fair) 
Bankside condition (good, 
fair) 
Price (water bill):  
2, 5, 11,15, 24 
 

CNL-RPL 
2 choice task 
+status quo 
(8 choices) 

River Wear: 
Ecology £12.19 
Aesthetics £12.07 
Bankside £12.67 
River Clyde: 
Ecology £38.70 
Aesthetics £28.57 
Bankside £42.99 
(£/hh/yr/period to 
improve from fair to 
good) 

Glenk et al. 
2011 

144 for each 
location - 
general 
population 
quota 
sampling 
(Scottish lakes 
and lochs) 

Rivers in 7 years: 
percentage of low, 
medium and high 
Lochs in 7 years: 
percentage of low, 
medium and high 
Price (water bill): 
5,10,20,40,50,75,100 
 

CNL-RPL  
2 choice task 
+status quo 
(8 choices) 

Rivers in 7 years: 
£1.05 
Lochs in 7 years: 
£0.89 
(£/hh/yr/ for 1% 
marginal 
improvement) 
 

Metcalfe et 
al. 2012 

1487 across 
50 sites 
general 
population 
quota 
sampling  
(Nationally) 

HighL8: proportion at high 
quality in local area in 8 
years 
HighN8: proportion at high 
quality nationally in 8 
years 
High20: proportion at high 
quality in local and 
national areas in 20 years 
Price (water bill): 
5,10,20,30,50,100, 200 
(levels were pivoted 
around the respondent 
local status quo levels) 

CNL-RPL 
2 choice task 
+status quo 
(7 choices) 

HighL8: £66.40 
HighN8 £76.20 
High20: £30.70 
(£/hh/yr/period to 
improve from fair to 
good) 
HighL8: £0.77 
HighN8 £0.95 
High20: £0.36 
(£ hh/yr for 1% 
marginal 
improvement) 

 

A common characteristic of the studies reported in Table 24 is the inclusion of a 

status quo option in the choice task. None of those studies sought to separate 

the microbiological/recreational component of water quality from the ecological 

attribute. 

Not undertaken within the UK, but of relevance to this study, is the DCE 

conducted by Doherty et al. (2014) in the Republic of Ireland. They observe that  

‘a consequence of focusing on just the ecological status of the water bodies being 

analysed is that the marginal value of a specific characteristic of a waterbody 

(e.g. the marginal value of a change in the recreational or aesthetic attribute) 

cannot be estimated.’ Within their research, they disentangle ecological water 

quality characteristics into aquatic ecosystem health, water clarity, bankside 
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condition and odour attributes. Although the study uses a status quo option, it 

does provide a disaggregated attribute to describe recreational water quality. The 

lowest valued attribute was associated with recreational access, a finding which 

echoes the results reported here. Their results suggest aggregate compensating 

surplus WTP per person per year of €129 for ‘good’ water quality. Their survey 

was generalised to apply to all water bodies (including rivers, lakes and the sea) 

in Ireland, rather than specific rivers. (i.e. including good levels of ecosystem 

health, clarity and odour, suitability for recreational use and having good bank 

condition). 

This literature review now closes with an overview of the predecessor to this 

present research, the ChREAM project (Bateman et al, 2006a). ChREAM used 

the water quality ladder proposed by Hime et al. (2009), which was developed 

using UK Technical Advisory Group ecological guidelines (2008). ChREAM also 

developed a stated preference choice experiment design to determine 

respondents’ preferences for different water quality levels. The CE attributes used 

were price and four water quality levels; Red as the baseline then, in ascending 

order of quality, Yellow, Green and Blue. When defining the four water quality 

levels the ecological and recreational components of water quality were 

conflated. The Red attribute level defined water with Low ecological and Low 

recreational quality: capable of supporting only a limited range of wildlife species, 

unable to support fish and unsuitable for swimming or boating. The Yellow water 

quality level defines water able to support a limited range of coarse fish (but no 

game fish) and an improved range of birds and other wildlife. Yellow water quality 

is suitable for boating, but continues to be unsuitable for swimming. Green water 

quality is suitable for a wide range of coarse fish (but still unsuitable for game 

fish), a wider range of other wildlife and is suitable for both swimming and boating. 

The Blue water quality level is composed of water with High ecological and High 

recreational quality attributes. It is suitable for the most complete range of wildlife, 

including course fish and pollution-sensitive game fish. Blue water is suitable for 

all recreational activities, including swimming and boating. For a comprehensive 

discussion of the water quality levels used in ChREAM please see Hime et al. 

(2009). 

  



 

171 
 

Table 25: coefficients derived from a CL model of data from a ChREAM 

survey of 1100 respondents in Leeds, UK. 

Choice Coefficient 
Standard 

Error 
P>z 95% Confidence Intervals 

Price -0.021 0.001 0 -0.022 -0.019 
Yellow  0.171 0.012 0  0.147  0.194 
Green  0.334 0.011 0  0.312  0.355 
Blue  0.439 0.012 0  0.416  0.461 
LL       -7271.68 
Pseudo r2     0.12 

 

Table 25 shows the complete and transitive results of a CL analysis using the 

ChREAM choice data collected from 1100 respondents in Leeds, UK13. With Red 

water quality as the baseline, respondents were more likely to choose an option 

with higher water quality and less likely to choose an option with increased price. 

Because the ChREAM CE design conflated the ecological and recreational 

aspects of water quality, it was not able to estimate which aspect of water quality 

respondents preferred, or provide WTP estimates for ecological or recreational 

water quality improvements independently of one another. 

3.2.1 The present research challenge 

This research will add to the academic literature by disentangling and identifying 

respondents’ preferences for the ecological and recreational aspects of river 

water quality, as the trade-offs between respondents’ preferences in this area are 

not well understood. To achieve this, the research builds upon the foundations 

laid by ChREAM. A new water quality ladder which separates ecological and 

recreational water quality into separate attributes is developed and applied. To 

the extent that people care about water quality, it is hypothesised that there are 

differences between the two water quality attributes that affect respondents’ 

values. 

This research also identifies and samples different types of recreational users to 

ascertain how their attitudes towards recreational and ecological water quality 

may differ. The impact different attitudes have on WTP values for water quality 

                                            
13 The parameters reported in Table 25 were obtained from a cursory exploration of a subsample 
of the ChREAM CE data. Although they illustrate the likely relationships between water quality 
parameters, their coefficient values may deviate from the final output arising from a full analysis 
of ChREAM data. 
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attributes is assessed. Socio-economic variables are used to explore the 

hypotheses that people from different economic, educational and cultural 

backgrounds have heterogeneous environmental preferences which affect their 

WTP values. Previous research indicates that respondents’ values for spatially 

fixed environmental goods fall as the distance to the location of the proposed 

improvement increases. This research incorporates spatially referenced data 

within a geographical information systems (GIS) framework (ESRI Inc., 2012) to 

help assess any differences in respondents’ WTP which may be attributable to 

distance decay. 

Respondents’ perceptions can be at odds with objective reality. This doesn’t 

mean that we should abandon any attempt to use public preferences within 

decision-making. Respondents are reasonably proficient at judging the more 

obvious aspects of water quality, e.g. turbidity, but are less able to assess the 

more obscure aspects of water quality such as microbial or nutrient loadings. 

Within this research uncomplicated and accessible survey instruments are 

developed, to provide respondents with information to assist their understanding 

of the water quality issues that are not immediately transparent to them, thus 

enabling them to make reasonable judgements of the same. 

CL and LC methods are used to analyse the data collected within the choice 

experiment. The next section of the chapter provides an overview of the aims and 

objectives. This is followed by the methods used, including the case study area, 

the development of the survey instruments, the experimental design and the 

modelling strategies. 
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3.3 Aims and objectives 
This chapter aims to further the knowledge on non-market valuation of river water 

quality by setting the question: “River water quality: who cares, how much and 

why?” To explore this question, there are a number of objectives to be met: 

 Fully examine the nature of the research problem by unpicking the various 

components of the question, e.g. Which aspect of water quality? What type 

of respondent? What valuation methods can be used to elicit respondents’ 

preferences (and ascribe monetary value to those preferences) for non-

market goods? What primary data may best categorise respondents’ 

motivations? 

 Design survey instruments compatible with the above, which also perform 

the secondary function of collecting a robust dataset suitable for future 

quantitative and qualitative reanalyses, potentially integrated within other 

aspects of ChREAM econometric analysis. 

 Develop a sampling strategy to reflect variation in preferences across key 

groups including non-visitors, non-specific visitors (e.g. those who use the 

areas around rivers for walking, picnicking, etc.) and specialist visitors (e.g. 

anglers, rowers, swimmers, etc.).Devise an efficient and parsimonious 

choice experiment. 

 Conduct a pilot survey and assess the viability of the survey design and 

survey instruments. 

 Conduct main survey interviews with identified respondents at a variety of 

locations and/or distances from the survey river in order to model spatial 

relationships. 

 Assemble data within a geographical systems framework. 

 Use CL and LC analytical techniques to identify and generate spatially 

explicit parsimonious models examining the relative importance to 

respondents of ecological or recreational water quality improvements on 

the River Yare in Norfolk, UK. 

 In comparing preferences for ecological or recreational water quality 

improvements, identify socio-economic variables which significantly affect 

respondents' choices. 
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 Derive respondents’ marginal willingness to pay (WTP) for ecological and 

recreational improvements for both CL and LC models. 

 Refer to primary data concerning respondents’ socio-economic 

characteristics to plausibly characterise respondents’ preference 

motivations. 
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3.4 Methods 

3.4.1 Case study area and catchment 

The survey was conducted in and around Norwich and East Anglia, in the United 

Kingdom. Figure 20 shows the survey area, the locations of respondents’ homes, 

the 20km survey stretch of the River Yare and the boundary of the Yare 

catchment. The River Yare was selected as the survey river, and as the case 

study for studying ecological and recreational values, for several reasons: the 

Yare catchment is predominantly rural, supporting agriculture and horticulture, 

but is prone to diffuse agricultural pollution from nutrients (primarily nitrates and 

phosphates). The catchment, which has a total area of 845km2, was designated 

as a Catchment Sensitive Farming priority catchment in 2006 (Natural England, 

2009b) and has been identified as a High Water Quality Priority Area for 

Catchment Sensitive Farming advice and Countryside Stewardship, as it fails to 

meet WFD targets (Natural England, 2016). Because of the difficulties of 

containing diffuse agricultural pollution on the Yare, the water quality is variable 

throughout the year. This is partly due to the farming cycle but other factors, such 

as rainfall, also contribute. The water quality is regularly monitored to ensure its 

compliance with water quality parameters and its suitability for recreational use 

(Lines, 2014). The Yare catchment also has difficulties meeting WFD quality 

targets due to point source pollution discharges from the water industry 

(Environment Agency, 2015a). The population of the Yare catchment is 

concentrated within the city of Norwich, a city of 210,000 inhabitants. Wastewater 

from the Norwich area is processed by the Whitlingham Sewage Treatment 

Works, near the village of Postwick, two miles to the south-east of the city, and 

discharged into the river downstream of the survey river stretch.  
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Figure 20: the survey area, survey river stretch and spatial distribution of 

respondents 

 

The River Yare rises to the east of the village of Shipdham in Norfolk, near the 

town of Dereham, and flows eastwards towards Norwich. The survey stretch of 

the river, which measures 20km (12.4miles) in length (highlighted in purple on 

Figure 20), flows to the south of Earlham, through Eaton and Cringleford villages 

before skirting Norwich to the south, flowing through Trowse before ending at the 

south of the village of Thorpe St. Andrew. Beyond Postwick the Yare becomes 

tidal, draining into the area known as the Broads. The Broads have the equivalent 

status of a national park, due to their unique habitats and over 90 sites have been 

designated as Sites of Special Scientific Interest (SSSI). Economically, the 

Broads are a popular destination for tourists, particularly for boating, as there are 

over 280km of navigable waterways. The Yare’s confluence with the North Sea 

is at Gorleston-on-Sea, near Great Yarmouth. 
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3.4.2 Survey instruments and choice experiment design 

The goal of stated preference research design is to obtain the most accurate 

parameter estimates of the variables of interest (Bennett and Blamey, 2001). To 

achieve this goal, this research is guided by the research design framework 

proposed by Perman et al. (2003) and the excellent advice on CE design in 

Bateman et al. (2002) Hensher et al. (2005) and Hess and Daly (2014). To follow 

best practice (Johnston et al., 2017), care was taken to reflectively develop all 

aspects of the survey instruments and design the survey’s implementation 

procedures to best maximize the validity and reliability of the resulting utility 

estimates. These issues are crucial in obtaining unbiased estimates which can 

add to the growing literature on non-market benefit valuation. 

Firstly, hypothetical future water quality scenarios were developed based upon 

the requirement for the UK to achieve compliance with the WFD. Increased 

domestic water bills were proposed as an hypothetical means of payment. The 

survey instrument was then used with a sample of 200 respondents, to 

adequately populate the possible combinations of the survey (Grafton et al., 

2004). The survey responses were analysed and used to generate compensative 

variation (CV)14 WTP estimates using CL and LC modelling strategies.  

However, before the discussion of the modelling strategies or results, this section 

discusses the following: the purpose of the survey and the questionnaire design; 

the CE design (including attribute selection, attribute levels and experimental 

design); the framing of the choice task; the graphical instruments (i.e. water 

quality ladders) used to help respondents compare the ecological and 

recreational attributes; the orthogonality inherent within the choice design (and 

choice sets providing examples of orthogonality); the rationale for respondent 

selection and the strategies used to recruit respondents. 

3.4.3 Questionnaire design 

The questionnaire was designed to disentangle and identify respondents’ 

preferences for ecological and recreational river water quality. Within the survey 

                                            
14 CV is the adjustment in income that returns the consumer to the original utility after an economic 
change has occurred. In the case of a positive economic change, CV is often referred to as the 
maximum a consumer is willing to pay in order to have the economic change happen. When there 
is a negative economic change, CV is the minimum the consumer needs in order to accept the 
economic change (Bateman and Turner, 1993). 
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instrument design the goal was to use simple language and graphics to portray 

complex information relating to ecological and microbial pollution, and provide 

respondents with accurate, unbiased information on different water options, 

choice outcomes and associated costs (the survey questionnaire and showcards 

are provided in Appendix III). Terms that respondents could easily comprehend 

were used throughout, as the majority of respondents were expected to have little 

or no prior knowledge of river water quality issues. 

These approaches were used to help minimise some of the limitations of stated 

preference experiments such as hypothetical bias, where respondents give 

misleading or poorly thought out answers because they believe the choice 

situation to be entirely hypothetical, and question framing bias, where the way in 

which the question is stated affects or influences the respondents’ responses. 

For a full discussion on these limitations of stated preference design, please see 

Bennett and Blamey (2001). A CE design was used to minimise ‘yea-saying’, 

where respondents try to make themselves look good by claiming they would pay 

at a higher rate than they actually would, and prevent other strategic behaviours, 

where respondents deliberately misrepresent their preferences, in order to 

influence the experiment (Bennett and Blamey, 2001; Bergstrom et al., 1989; 

Hanley et al., 2001). 

To reduce informational bias, each respondent was provided with almost exactly 

the same information from which to aid their choice decisions and that information 

was carefully considered to prevent excess information disclosure which can lead 

to inflated utility estimates (Samples et al., 1986). As far as possible the 

interviewer did not deviate in appearance or demeanour, to minimise interviewer 

variability and bias (Bailar et al., 1977). 

In addition to the considerations described above, the survey instruments were 

also designed to collect data which may be compatible with, and used to integrate 

into, the ChREAM dataset, enabling a future amalgamation and reanalysis of the 

two datasets. For this purpose, the survey included questions to capture data 

which could be used within travel cost and contingent valuation analyses (Ferrini 

et al., 2014). Within this present analysis the information collected from the TC 
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and CVM questions were used to generate socio-economic variables to produce 

comprehensive summary statistics and postestimation results. 

3.4.4 CE design 

Arguably, the most crucial part of this research was the design and execution of 

the choice experiment. To minimise the cognitive load on the respondents three 

attributes for the water quality scenarios were developed. The attributes and 

levels are shown in Table 26. Two attributes described the ecological and 

recreational aspects of river water quality and a third attribute, price, provided a 

metric from which respondents’ utility and willingness to pay could be assessed 

in monetary terms. Ecological quality had four levels ranging from Blue (the 

highest) to Red (the lowest). Recreational quality had three levels; High, Medium 

and Low. Price was composed of eight levels ranging from £0 to £100. 

Table 26: the attributes and levels used in the choice experiment design 

3 Attributes 
Ecological Quality Recreational quality Price (£ per household, per year) 

4 levels 3 levels 8 levels 
Blue Green Yellow Red High Medium Low 0 10 20 30 40 60 75 100 

 

The experimental design was devised by Professor Dan Rigby using NGene 1.1 

(ChoiceMetrics PTY Ltd, 2012a). The combination of attributes and levels used 

on choice cards (shown in Table 26) was derived following the D-efficient design 

strategy15. This strategy ensures that the choice cards’ combinations are 

orthogonal, balanced16, and maximize the parameter precision of a CL model17. 

In total 48 combinations were produced, which were arranged into four blocks of 

twelve choices, with each block presented to 50 respondents, for a total of 200 

                                            
15 The D-optimality criterion seeks to maximize the determinant of the information matrix or to 
minimize its inverse, the determinant of the variance–covariance matrix of the parameter 
estimators. D-optimal design has dominated the design literature for CEs because it performs 
well in parameter estimation prediction and it is easy to obtain (Kessels et al., 2006). Further 
details of D-efficient designs can be found in Ferrini and Scarpa (2007) and in the Ngene v.1.1 
manual (ChoiceMetrics PTY Ltd, 2012b). 
16 Orthogonality is a desirable property of experimental designs that requires strictly independent 
variation of levels across attributes, in which each attribute level appears an  equal number of 
times in combination with all other attribute levels. Balance is a related property that requires each 
level within an attribute to appear an equal number of times (Johnson et al., 2013). 
17 D error is the determinant of the variance covariance matrix of the conditional model and is 
directly linked to parameters precision. D error was 0.306965. An alternative efficiency measure 
is the A error, which considers the trace of the variance-covariance method. A error in this design 
was 1.631721. The parameters precision is higher when these efficiency measures are closer to 
0. The resulting design yields a higher efficiency level than those typically observed in the wider 
literature. 
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respondents. Each block was chosen at random and answered by 50 

respondents. 

3.4.5 Forced choice design with non-defined baseline water quality 

Presenting a baseline water quality and providing the respondent with a ‘status 

quo’ choice alternative were deliberately avoided for experimental reasons.  

A common characteristic of CEs is the inclusion of a constant level of 

environmental quality (the ‘status quo’) within the choice task and, within such 

studies, respondents could prefer the status quo to any proposed change. 

Defining the status quo in water quality studies is problematic as attributes vary 

according to river morphology, season, geographical location, etc. and 

encapsulating these variable components into a single fixed state may be overly 

restrictive. Furthermore, respondents are often heterogeneously and imperfectly 

informed and their perceptions of the ‘status quo’ may bear little or no 

resemblance to reality (Happs, 1986; Konishi and Coggins, 2008). This 

divergence can reduce the accuracy of welfare estimates: Poor et al. (2001) 

demonstrate the adverse impact of objective vs. perceived measures in valuing 

the water clarity of lakes in Maine. Given the potential discordance between 

objective status quo levels for water quality and respondents’ perceptions of the 

baseline water quality (discussed further below), and the variability in water 

quality along the survey river stretch, it was felt prudent to avoid rigidly defined 

‘business as usual’ water quality levels. 

More importantly, offering a status quo within the context of this study is not a 

real world option because changes to river water quality are necessary, there 

must be improvements. The WFD is compulsory and is forcing change via WFD 

programmes of measures. The absence of a status quo option reflects the reality 

of water management. This reality negates two of the main advantages of offering 

a status quo: that a status quo mimics a real-world market setting, wherein 

everyone is free not to buy and that it enables people to simply opt out (Krosnick 

et al., 2002). 

Forced choice designs have been used in other water CE studies where the 

status quo is no longer an option (Hensher et al., 2005; Rigby et al., 2010; Train 

et al., 2005). Welfare analysis is still possible as long as the current levels of the 
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attributes are included within the experimental design. The status (health) of the 

water environment of the River Yare, and its tributary rivers, was assessed by the 

Environment Agency in 2013 as being generally ‘moderate’ (Environment 

Agency, 2014). That assessment corresponds with the Green ecological and 

Medium recreational water quality attributes described below. 

Furthermore, research by Krosnick et al. (2002) has shown that a status quo 

option can enable respondents to provide ill-considered answers to survey 

questions. They suggest that, as appealing as offering a status quo response 

may be, doing so may lead researchers to collect less valid and informative data 

than could be done by omitting it; offering status-quo options may discourage 

some respondents from doing the cognitive work necessary to report the true 

opinions they do have. 

For the above reasons it was felt more appropriate, and more academically 

informative, to force respondents to choose between different levels of attributes, 

rather than allow them to opt into a status quo. 

Where the quality of a good varies, as is the case for river water quality, there is 

often a difference from the objective baseline water quality and the respondent’s 

perceived baseline for water quality (Ferrini and Scarpa, 2007). Previous 

research (e.g. Georgiou et al., 1998; Sukharomana and Supalla, 1998) has 

demonstrated that a respondent’s perceptions of water quality are correlated with 

that respondent’s WTP for water quality improvements. Different respondents 

have different perceptions of water quality. High frequency visitors may be better 

informed, whereas infrequent visitors may have differing perceptions of water 

quality, and, for those infrequent visitors, factors such as anecdotal evidence may 

be more important determinants of respondents’ preferences than the actual 

water quality (Binkley and Hanemann, 1978; Happs, 1986).  

For these reasons, an objective baseline for water quality was avoided so that a 

bias between the objective and perceived levels of water quality attributes was 

not introduced. Instead, within the survey, data on respondents’ perceptions of 

the ecological and recreational water quality at the survey river site, and rivers 

more generally, were collected (see Appendix III). If respondents queried the 

current water quality, the annual variability, discussed previously, was explained 
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to them and they were asked to reflect on their own experiences and perceptions 

of the river. Differences in perceptions across respondents are highlighted in 

Table 32. 

The approaches described above enable the analyst to have the freedom to 

calculate welfare in several ways and for various different scenarios: using the 

lowest water quality levels, by setting low ecological water quality and low 

recreational water quality as the baseline levels, to estimate preferences for sites 

where the current situation is objectively poor; the objective water quality, by 

setting Green ecological or Medium recreational water quality levels as the 

baselines, to correspond with EA water quality data (Environment Agency, 2014); 

or, as in Hynes et al. (2008), by using respondents’ perceptions of water quality 

as these provide a natural baseline from which to estimate welfare. It is 

hypothesised that estimates of WTP using respondents’ perceptions of water 

quality may differ from estimates using low water quality levels as the baseline. 

3.4.6 Ex-ante design measures to reduce hypothetical bias 

In stated preference valuation surveys, hypothetical bias can be defined as the 

difference between what a person indicates they would pay in the survey and 

what that person would actually pay. There are multiple ex-ante procedures that 

have been suggested to reduce hypothetical bias and enhance the validity of 

stated preference value estimates (Loomis, 2014). Cheap talk refers to the 

process of explaining hypothetical bias, and the tendency of respondents to 

inflate value estimates, prior to asking respondents valuation questions (Farrell 

and Gibbons, 1989; Lusk, 2003). However, the incentive properties of cheap talk 

are not clear and cheap talk does not always reduce value estimates (Murphy et 

al., 2005; Loomis 2014). Another ex-ante procedure involves the use of oath 

scripts, in which respondents are asked to sign a truth-telling oath. However, the 

ways in which oaths affect behavior are unclear. It has been suggested by 

Carlsson et al. (2013) that the primary function of the oath script is to increase 

respondents’ commitment and attention. 

Cheap talk and oath scripts were not used here. Johnston et al. (2017) believe 

that the most promising ex-ante approach to reducing hypothetical bias is a 

consequential design with a binding payment; Vossler et al. (2012) and Carson 
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et al. (2014) find that consequential choice alternatives encourage truthful 

preference revelation. The scenario presented to respondents here is not 

hypothetical: real-world consequential changes to water quality are coming via 

the WFD. The payment vehicle was presented as a hypothetical binding increase 

to the respondents’ annual domestic water bill, in response to the same. The 

payment vehicle corresponded with those used in previous studies on water 

quality improvements in public areas (Ferrini et al., 2014; Glenk et al., 2011). This 

approach was believed to be most appropriate as, in the UK, domestic water bills 

also include a sum towards improving wastewater services that, in turn, leads to 

improved river water quality. It was felt that respondents would view the policy 

scenario and the payment vehicle as consequential, thus aiding incentive 

compatibility (Herriges et al., 2010). 

3.4.7 The framing of the choice task scenario 

Respondents were introduced to the choice task with a scenario that new laws 

have been introduced to improve the quality of UK rivers and that any 

improvements to river water quality would incur costs. Respondents were 

reassured that the costs of improvements would be distributed equitably among 

all water users, including domestic, industrial and agricultural users. 

Respondents were told that an additional sum may be added to their annual 

domestic water bill as a contribution towards river water improvements. 

Each respondent was asked to choose between two different hypothetical future 

water quality states, each containing an ecological, a recreational and a payment 

option. To prompt the respondent to consider the distance, use and cost issues 

implicit within their choice decision, they were asked to consider how close the 

river is in relation to their home, whether they would benefit from any 

improvements and they were reminded that any additional money they would be 

willing to spend on their water bill could not be spent on other goods or services. 

3.4.8 Graphical instruments 

Technical descriptions were kept to a minimum. Instead, easily understandable 

graphics and images (water quality ladders) were used, where possible, to help 

respondents visualise and compare the ecological and recreational attributes. 

The four ecological water quality levels arranged in a water quality ladder, shown 
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in Figure 21, were described to respondents. The picture marked with a blue 

circle depicts a river of the highest ecological quality. The first symbol shows that 

Blue rivers are suitable for pollution sensitive game fish such as salmon and trout. 

The second symbol shows that the river is suitable for coarse fish, such as carp 

and chub while the last symbol shows that the river is suitable for all bird species. 

The image shows a wide variety of plants in and around the river, which had very 

clear water. 

The picture marked with a green circle represents a river of the second highest 

ecological quality which contains some ecological pollution. Within this scenario, 

pollution sensitive game fish cannot survive in the river (shown by a cross within 

the icon), but there is no reduction in coarse fish or birds. The variety of plants in 

and around the river is slightly lower but the water is still quite clear. 

The image with the yellow circle shows higher levels of ecological pollution, with 

no game fish and significantly fewer coarse fish. The variety of plants is lower 

and algae has substantially reduced the water clarity. There are still a number of 

birds. 

The final image, marked with a red circle, shows a river subject to the highest 

level of ecological pollution. It has no fish, few birds or water plants. There are 

large algal mats on the surface of the water and the water is very cloudy. 
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Figure 21: graphic used to depict the ecological water quality ladder 

 

Given the paucity of empirical epidemiological data, the survey did not include 

specific numerical illness thresholds. Instead, the types of illness and the risk of 

illness due to biological pollution was stated using simple language. Respondents 

were told that the more contact a person has with biologically polluted water, the 
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more likely it would be that they would get ill. For example, that someone 

swimming in the water has a higher risk of illness than a person in a canoe that 

only gets splashed with the water and that a person on the river bank, who has 

no contact with the water, has no increased risk of getting ill. Three attribute levels 

were generated using simple icons to define the three water quality levels in the 

recreational water quality ladder. These are shown in Figure 22. 

Figure 22: graphic used to depict the recreational water quality ladder 

 

The blue icons describe river water of a quality sufficient to be suitable for a given 

activity. Respondents were told that a river of the highest quality was suitable for 
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swimming and boating and the risk of illness was low. The second river has higher 

levels of microbiological pollution affecting recreational quality. This type of river 

has a higher risk of illness, and, although it is still suitable for boating, the red icon 

indicates that it is no longer suitable for swimming. The river with the lowest 

recreational quality has the highest risk of illness and isn’t suitable for swimming 

or boating. 

3.4.9 Orthogonality across choice attributes 

The survey script uses very simple language to portray the concept that living 

(microbiological) and non-living (e.g. chemical) pollutants have different and 

variable impacts on humans and the ecology of the environment. A table of 

pollution types and vectors (Showcard 5, Appendix III), simple descriptions of the 

impacts of faecal pollution on human health, the impacts of chemical pollution on 

ecological health (survey script, Appendix III) and graphical depictions of 

ecological and recreational water quality (e.g. the water quality ladders on 

showcards 6a and 6b, Appendix III), ensured that respondents understood that 

chemical and microbiological pollution can have independent sources and 

independent consequences. 

Microbiological pollution is not present in diffuse agricultural pollution from 

chemical fertilizers (e.g. nitrates or phosphates) or from phosphates from 

detergents. Similarly, aquatic flora and fauna are largely unaffected by faecal 

microorganisms derived from humans and livestock (e.g. shellfish are, 

themselves, largely unaffected by faecal organisms. If bacteria are present in the 

water they will build up in the shellfish tissue over time: bacteria can be 100 times 

more concentrated within the shellfish tissue than in the surrounding water (State 

of Maine Department of Marine Resources, 2016). The Shellfish Water Directive 

is not designed to protect the shellfish, per se, but rather to prevent the shellfish 

from causing ill-health to humans once harvested (EU, 2006b). 

It is acknowledged that some pollutants can have the same source but duel 

impacts, e.g. faecal waste can contain both microbiological and ecological 

pollutants (e.g. nitrogenous matter and phosphates) and both can be emitted from 

the same point source at wastewater treatment works. Indeed, phosphates 
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emitted from wastewater treatment works contribute to WFD non-compliance 

within the Yare Catchment (Environment Agency, 2015b). 

It is important to note that the research in this chapter primarily concerns itself 

with the disaggregation of the non-market benefits arising from recreational (with 

the emphasis on the reduced risk of ill-health from microbiological contamination) 

and ecological improvements, and not the identification of the sources of 

pollutants. To ensure a parsimonious experimental design and reduce the 

possibility of cognitive difficulty, there were also other pollutants and facets of 

water quality that were not included within the analysis (e.g. heavy metals or other 

industrial contaminants, pesticides, the impact of climate change, etc.). 

To illustrate the choice task, two of the choice sets used during the survey will 

now be examined. 

Figure 23: choice set 11 from block 3 

 

 

Choice set 11 from block 3, shown in Figure 23, provides the respondent with a 

choice between a future alternative, option A, which has High levels of ecological 

and recreational water quality at an additional cost to their annual water bill of 

£100, or option B, which has the lowest levels of water quality with no change to 

their annual water bill. Within this choice set, respondents are effectively asked 

to choose whether they are willing to pay for water quality improvements. 
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Figure 24: choice set 5 from block 3 

 

 

Choice set 5 from block 3, shown in Figure 24, demonstrates the orthogonality 

inherent within the CE design. This choice set presents the respondent with future 

water quality scenarios which contain little correlation between ecological and 

recreational water quality attributes. Within option A the respondent can choose 

the second lowest ecological quality with the highest recreational quality, with no 

change to their annual water bill. Option B enables the respondent to choose the 

highest ecological quality with the lowest recreational quality with an additional 

£10 on their water bill. Given that the cost attribute of this choice set has only a 

small difference between options, the respondent is effectively faced with a 

choice between high ecological quality or high recreational quality. 

3.4.10 Respondent selection 

The main aim of this research is to further the knowledge on non-market valuation 

of river water by disaggregating the values people derive from ecological and 

microbial aspects of river water quality. Given the link between microbial quality 

and recreational river use, respondents were carefully targeted to investigate how 

the values for these distinct attributes of river water quality differ over people who 

(i) engage with the river in different ways (e.g. rowers, swimmers, anglers) and 

(ii) who live at different distances from the river. There are a variety of sampling 

strategies available to the researcher. An online survey was not considered, as 
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that sampling method may have created problems of self-selection bias, 

preventing sampling objectives from being achieved. It was felt that face-to-face 

interviews, conducted by the PhD candidate, would be most appropriate to meet 

sampling objectives and also provide the candidate with a more complete 

understanding of the survey data (e.g. to better identify protesting respondents 

or identify (and assist) respondents who had cognitive difficulty with the 

questionnaire or survey tasks). In addition, face-to-face interviews can be flexible, 

enabling respondents to fully explore their responses to open-ended questions 

(e.g. Questions 22e, 23g in Appendix III) or provide other insights to the 

researcher. A single interviewer carried out all surveys to minimize informational 

bias caused by using different interviewers (Bailar et al., 1977). Table 27 shows 

the breakdown of the different types of respondents interviewed, before a brief 

discussion of why, how and where these respondents were recruited. 

Table 27: respondent type, recruitment method and respondent numbers 

Respondent type  Recruitment Method Number completing CE 
General public  door to door 139 
Rowers by appointment 10 
Swimmers  by appointment 5 
Experts  by appointment 7 
General public  at Whitlingham visitor centre 39 
Total number of respondents 200 

 

139 respondents were drawn from the general public, with care taken to sample 

from a range of different socio-economic backgrounds. The locations of 

respondents’ homes, within Norwich and East Anglia, are shown on Figure 20. It 

was particularly desirable to interview ‘hard to reach’ respondents (e.g. members 

of the general public who do not use or visit rivers for recreation, or the elderly 

and people on low incomes, who may not use or have access to the internet) and 

to interview such respondents at a range of distances from the survey river. It 

was felt that the most appropriate method of doing this was to use census data 

to identify the areas in which respondents from the general public (with a range 

of socio-economic characteristics) may be found, and then to canvas for those 

respondents door-to-door. Interviews were conducted morning, afternoon and 

early evening during weekdays and weekends, to collect data from respondents 

with different temporal availability and socio-economic circumstances. In each 

sampling location random survey routes were taken. This strategy was devised 
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to explore the hypotheses that people from different economic, educational and 

cultural backgrounds have differing viewpoints and preferences on how our rivers 

should be managed.  

Respondents were interviewed at a range of distances, 0.1-79.4km, from the 

survey river stretch to test the hypothesis that respondents who lived further from 

the river would be less willing to pay for water quality improvements. It was 

expected that the door to door respondents would primarily be a mix of casual or 

non-visitors. 

Recreational river users, with high levels of contact with the river water, were 

recruited from local recreation clubs. Rowers from Norwich Rowing Club and 

University of East Anglia Rowing Club and swimmers from Tri-Anglia Triathlon 

club were interviewed by appointment at times and locations convenient to them. 

Despite invitations being placed in their respective club newsletters, these 

respondents proved to be somewhat reticent about volunteering for the survey. 

Seven experts18, working locally in specialisms relevant to the different areas of 

interest19, were identified and kindly agreed to participate in the survey and to 

take part in semi-structured interviews to express their views on river water quality 

management. Importantly, this method of interviewing can enable the respondent 

to focus on topics of individual importance, rather than the researcher introduce 

(and promote discussion of) their own biases (Christie et al., 2008). The format 

also enables the researcher to form additional questions that occur to them during 

each individual interview, based entirely on each particular respondent’s 

engagement with aspects of the research topic (Watts and Stenner, 2005). Such 

interviews enabled the researcher to gain unique insights in the localised issues 

relating to river water quality and river recreation. Experts were interviewed by 

appointment either at their workplace or at a neutral location. Expert participants 

                                            
18 i.e. those, defined by Thompson (1966), who have expert knowledge due to their formal training 
or engagement, or who have a position of authority within society. 
19 These included people of theoretical interest from both public (e.g. local and national 
government) and private organisations, professionally engaged with maintaining and improving 
river water quality or directly implementing programmes of measures to improve local WFD 
compliance. Chairmen from local organisations representing the key recreational communities 
(i.e. angling, rowing and river swimming) were also interviewed. 
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were expected to be very familiar with the river stretch with a tendency, due to 

the nature of their work, to be highly knowledgeable high frequency visitors. 

Respondents from the general public, who do not use the survey river for rowing 

or swimming but instead enjoy non-contact activities such as walking or 

picnicking, were canvassed at the Whitlingham Country Park Visitors Centre, 

adjacent to the survey river. Whitlingham Country Park, to the south of Norwich, 

covers 35 hectares and is managed in a partnership between Whitlingham 

Charitable Trust and the Broads Authority (Bentley, 2014). Whitlingham offers 

recreation opportunities ranging from woodland walks to sailing, swimming and 

kayaking. The site also has a purpose built education centre. Respondents were 

selected at random and interviewed on-site during the park’s opening hours on 

weekdays and weekends. Respondents interviewed at Whitlingham were, by the 

very location of the interview site, expected to visit the river location for, at the 

least, non-water-contact riverside recreation activities. 

3.4.11 Modelling strategies 

The data obtained from the CE was analysed using CL and LC modelling 

approaches, both of which are now discussed. 

The CE approach relies on the assumptions that respondents have preferences 

that conform to standard expectations of rational behaviour, that they prefer 

options that maximise their utility and that their preferences are complete and 

transitive across the choice sets offered to them (Gale and Mas-Colell, 1978). 

A set of discrete choice models were estimated using CL models, as a starting 

point to ensure that the data were clean and that reasonable results were 

obtained (Boxall et al., 1996; Brey et al., 2007; Hausman et al., 1995). 

Within the CL framework, the indirect utility function for each respondent i (U) is 

comprised of two parts: an objective or deterministic element (V), which is usually 

specified as a linear index of the attributes (X) of the j different alternatives 

contained in the choice set, and a stochastic element (e), which represents the 

random error or unobservable influences on the respondent’s choice, shown in 

Equation 4 (Louviere et al., 2000). 
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Uij =Vij(Xij) + eij = bXij + eij 

Equation 4: the indirect utility function for each respondent within the CL 

model 

 

It is important to note that within a single choice occasion (T=1), the respondent’s 

utility is a function of alternative characteristics and individual characteristics. 

Within this dataset there are repeated observations per respondent. For 

simplicity, within the CL modelling T has been omitted. Subsequent LC modelling 

takes the panel structure of the data into account. 

The probability that respondent i prefers option g to the alternative option h, is 

expressed as the probability that the utility obtained from option g exceeds that 

of option h, as in Equation 5. 

P[(Uig>Uih)h≠g]=P[(Vig-Vih)>(eih-eig)] 

Equation 5: the probability of the utility of option g exceeding option h 

 

Error terms (eij) are assumed to be independently and identically distributed with 

a Weibull distribution (Nakagawa and Osaki, 1975), Equation 6. 

P(eij≤t)=F(t)=exp(-exp(-t)) 

Equation 6: the Weibull distribution of the error terms 

 

The distribution of the error term in equation 6 implies that the probability of the 

alternative g being preferred is expressed in terms of the conditional logistic 

distribution (McFadden, 1973), shown in Equation 7. 

𝑃(𝑈𝑖𝑔 > 𝑈𝑖ℎ, ∀ℎ ≠ 𝑔) =
 ( )

∑ ( )
  

Equation 7: McFadden’s conditional logistic distribution 

 

µ is a scale parameter, inversely proportional to the standard distribution of the 

error distribution. As this parameter could not be separately identified it was 
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assumed to be one. The model was then estimated using maximum likelihood 

procedures, with the log-likelihood function shown in Equation 8. The indicator 

variable, yij ,was 1 if respondent i chose option j and 0 otherwise (Hanley et al., 

2001). 

log 𝐿 =  𝑦𝑖𝑗 log 
exp (𝑉𝑖𝑗)

∑ exp(𝑉𝑖𝑗)
 

Equation 8: the log likelihood function of the CL model 

 

Socio-economic variables were included with choice set attributes in the X terms 

in equation 4, but as these are constant across choice occasions for each 

individual i, they were treated as interaction terms and interacted with the choice 

specific attributes. 

Within the linear utility model, marginal utility estimates were converted into WTP 

estimates for changes in attribute levels and welfare estimates were obtained for 

combinations of attribute changes. After parameter estimates were obtained, a 

WTP compensating variation welfare measure, conforming to demand theory, 

was derived for each attribute using the formula shown in Equation 9 (Hanemann, 

1984). Where V0 represents the utility of the initial state and V1 represents the 

utility of the alternative state, the coefficient of the price attribute, by, gives the 

marginal utility of price. 

𝑊𝑇𝑃 = 𝑏𝑦
−1 ln

∑ exp (𝑉𝑖
1)𝑖

∑ exp (𝑉𝑖
0)𝑖

 

Equation 9: the WTP compensating variation measure for each attribute 

 

The above formula can be simplified to the ratio of coefficients given in Equation 

10 where bc is the coefficient on any of the attributes, where the marginal WTP 

estimates are the negative of the ratio between the mean coefficients for each 

attribute and the mean coefficient of the payment attribute. 
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𝑊𝑇𝑃 =
−𝑏𝑐

𝑏𝑦
 

Equation 10: WTP derived from the ratio of coefficients 

 

Unfortunately, the CL model has several drawbacks (Luce, 1959). Repeated 

observations by the same respondent cannot be accommodated by the model, 

heterogeneity in preference cannot be properly addressed and correlation among 

alternatives cannot be estimated. Non-random effects were examined using the 

Lagrange Multiplier (LM) test (Breusch and Pagan, 1980; McFadden and Train, 

2000). The LM test uses artificial variables to verify heterogeneity in preferences 

and verify whether the distributional assumption on the error components is 

supported by data. Dropping the t-index for simplicity, the artificial variables can 

be obtained as shown in Equation 11. 

𝑧 = (𝑥 − 𝑥 ) , with 𝑥 = 𝑥 𝑃  

Equation 11: constructed artificial variables within the Lagrange Multiplier 

(LM) test 

 

where Pjn is the CL choice probability. The CL model in Equation 7 is re-estimated 

including the artificial variables and the null hypothesis of no random coefficients 

on attributes x is rejected if the coefficients for the artificial variables, tested using 

a Wald or Likelihood Ratio test, are significantly different from zero. (Brownstone, 

2001; Hensher and Greene, 2003). When the test fails to reject the null, the 

implication is that the CL assumption on the error term is inappropriate and other 

assumptions must be tested. An alternative model specification is LC, which 

overcomes CL limitations in addressing preference heterogeneity (Morey et al., 

2006) and repeated choices (Kemperman and Timmermans, 2006). 

Formally a LC model uses a probabilistic class allocation model and a CL model 

for the alternatives choice. Each respondent i belongs to class s with probability 

𝜋 , with 𝜋 ∈ (0,1) and ∑ 𝜋 = 1. The probability of respondent i belonging to 

class s is shown in equation 12,  
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𝜋 =
exp (𝛿 + 𝛾 𝑧 )

∑ exp (𝛿 + 𝛾 𝑧 )
 

Equation 12: the LC probabilistic class allocation model 

 

where s is a class specific constant, zi is a vector of individual socio-economic 

characteristics and s is a vector of the parameters to be estimated, which 

determines the probability of respondents belonging in class s. This term models 

observable respondent characteristics which may help to explain preference 

heterogeneity. 

Conditional on the probability of being in class s the probability of choosing option 

j among the J alternatives is equivalent to Equation 13, where 𝑏 is the vector of 

parameters and 𝑥 represents the attributes: 

𝑃(𝑦it = 𝑗|𝑏 = 𝑏) =
exp (𝑏 𝑥  )

∑ exp (𝑏 𝑥  )
 

Equation 13: the probability of choosing option j among the J alternatives 

 

The unconditional probability of choosing option j for respondent i for choice 

situation t=1 is shown in Equation 14. 

𝑃   (𝑗|𝑏 , … , 𝑏  ) = 𝜋 𝑃(𝑦i = 𝑗|𝑏 = 𝑏  ) 

Equation 14: the unconditional probability of choosing option j for 

respondent i for choice situation t=1 

 

Unlike continuous mixture MIXL models, LC does not require simulation 

techniques to estimate the model parameters. In common with CL, maximum 

likelihood procedures can be used. In cases of multiple choices (t >1) the log-

likelihood function is shown in Equation 15. 
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𝑙𝑛 𝐿 = 𝑙𝑛𝑃   𝑗 , … , 𝑗 𝑏 , … , 𝑏  = 𝑙𝑛 𝜋 𝑃 |  

Equation 15: the log-likelihood function within the LC model, in cases of 

multiple choices 

 

Once the model parameters are obtained the welfare estimates can be obtained 

as combinations of parameters. Following the welfare theory (Hanemann, 1984), 

the ratio of marginal utility of each attribute (k) and that of price (p) provides the 

willingness to pay measure of Equation 16. 

𝑊𝑇𝑃 = −
|

|
  

Equation 16: the WTP measure of the LC model 

 

The Krinsky and Robb (1986) method can be implemented to provide the 

confidence interval of the WTP measures and respondents’ individual class 

membership probabilities can be calculated using the method described in Morey 

and Thacher (2012). This method enables each respondent to be allocated to 

their most likely class using that individual’s conditional class-membership 

probabilities, which are based on their responses to the choice questions. From 

that data, postestimation results can be defined, informed by class members’ 

socio-economic characteristics. 

The choice setting deliberately avoided defining the current water quality level 

(status quo) and the survey collected information on perceived water quality. 

WTP was estimated in two ways: either Low ecological or recreational quality as 

initial water quality states, or, as in Hynes et al. (2008), by using respondents’ 

perceptions of water quality. At the individual level, the perceived water quality 

was considered and, where that respondent’s perception was equal to (or higher 

than) the proposed improvement, WTP was set to zero. The hypothesis of 

compensation was ignored (e.g. should we wish to improve the river from Low to 

Medium water quality, if the respondent’s perception was already Medium (or 

High), the improvement did not produce any benefit). The marginal WTP was 

registered for the other cases. 



 

198 
 

3.4.12 Pre-survey testing 

In order to assess the design of the survey instruments, confirm appropriate 

levels for the water quality attributes and ensure reasonable future water quality 

scenarios, a focus group and a pilot survey were performed. 

The focus group was used to help select reasonable levels for choice attribute 

and assess the overall clarity of the survey instruments. Minor changes to the 

survey were made where necessary, primarily to improve the clarity of the survey 

instruments. For example, following the focus group it was clear that some 

participants had difficulty understanding the verbal description of the different 

types of pollutants (contained within the ‘Pollution Information’ section of the 

survey script, see Appendix III). To remedy this, the script was altered slightly 

and a table (see Showcard 5, Appendix III) was created so that respondents had 

a graphical aid to assist their understanding of the different pollution types and 

sources. 

The survey design was further tested in a pilot survey, in which 20 respondents 

(10 male, 10 female, with a mean age of 50) participated. For sample 

representativeness, these participants were recruited from the primary target 

population (i.e. the general public) (Johnston et al., 2017). Their understanding 

of the subject and their responses to the questionnaire were assessed by the 

interviewer for signs of cognitive burden, fatigue or misinterpretation of questions, 

as these have been identified as potential issues in obtaining reliable CE data 

(Mazzotta and Opaluch, 1995; Swait and Adamowicz, 1996). The survey also 

included a question to enable respondents to report the level of cognitive difficulty 

they experienced while undertaking the survey tasks (see Question 21 of 

Appendix III). The pilot survey’s respondents reported that they were not overly 

taxed by the survey’s complexity: 8 respondents thought the choice task was 

fairly easy and 7 found it to be easy. 

A simple CL model on the pilot data was estimated using Stata 13.1 (StataCorp 

L. P., 2013). This model (presented in Appendix IV) was used to assess the 

general correctness of the pilot respondents’ responses and to highlight any need 

for adjustments to the experimental design before undertaking the main survey. 
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A priori expectations were that the results should be broadly similar to the 

ChREAM survey results, reported in Table 25. 

The CL analysis of the pilot data is now briefly discussed. Three coefficients, 

measuring respondents preferences for ecological quality (EQ), recreational 

quality (RQ) and price were generated. Coefficients for EQ and RQ were both 

positive, meaning that respondents were more likely to choose options containing 

higher levels of EQ and RQ. The strength of the coefficients relative to one 

another (0.725 against 0.646 respectively) suggested that respondents preferred 

higher ecological quality. Both water quality coefficients were highly significant 

(p=0.000). The coefficient for price was negative, meaning that respondents were 

less likely to choose an option containing increased price. The coefficient for price 

was statistically insignificant (p>0.102). Given the size limitations and exploratory 

nature of a pilot study, conventional 95% confidence intervals may be 

unrealistically stringent, i.e., 90% confidence intervals may be more appropriate 

(Hertzog, 2008).As the significance of price was very close to the 90% confidence 

interval, and as the confidence intervals in the dataset were wide (typical of a 

small dataset), it was felt that with a larger dataset the price coefficient would 

naturally become significant as the confidence interval became narrower.  

It is important to note that due to the small sample used within the pilot study, 

there is the possibility of making inaccurate predictions or assumptions on the 

basis of pilot data; although pilot study findings may offer some indication of the 

likely outcome of the main survey, they cannot guarantee this because, being 

based on small numbers, they do not have an accurate statistical foundation 

(Johnston et al., 2017; van Teijlingen and Hundley, 2001). Other than the 

insignificance of the coefficient for price, there were no other anomalies apparent 

within the pilot results. The pilot experiment produced results consistent with a 

priori expectations. 

The analysis of the accessibility of the survey and the complexity of the choice 

task, along with the results of the CL analysis, suggested that the survey 

instruments and CE design were fit for purpose within the main survey. 
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To avoid problems arising from selection bias or data contamination (Lancaster 

et al., 2004), respondents who participated in the pilot study were excluded from 

participating in the main survey. 
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3.5 Results 

3.5.1 Sample Representativeness 

The representativeness of the sample (in terms of income, age and gender) was 

compared against census data. The mean income of the sample was £28,400. 

This is slightly lower than the mean income (£30,000) for Norfolk inhabitants 

(Norfolk County Council, 2015a). The mean age of respondents was 51. This 

corresponds closely with the mean age (51.3) for Norfolk residents aged over 

1820 (Norfolk County Council, 2015b). The sample contains proportionally less 

males: 44% of the sample were male, compared with 49% for the region (Office 

for National Statistics, 2016). 8% of the sample were anglers, which corresponds 

closely with official estimates (9%) of the proportion of people who go freshwater 

fishing (Environment Agency, 2010b). The sample used here cannot be said to 

be entirely representative of the wider population. In terms of the purpose of the 

survey21, the sampling strategy necessarily oversampled river visitors (e.g. 

respondents interviewed at Whitlingham Visitor Centre), and also oversampled 

rowers and swimmers (7.5%), who account for less than 1% of the wider 

population (British Rowing, 2017). These types of respondents were deliberately 

oversampled to more accurately capture their preferences (i.e. generate data to 

adequately populate choice alternatives) and to test the theory that such 

respondents may hold subjective preferences distinct from those held by the 

public more generally. 

3.5.2 Fatigue and learning effects 

Criticisms against the repeated choice format employed within choice 

experiments are that respondents can become less engaged, or fatigued, by the 

number of choice tasks (Bradley and Daly, 1994) or that learning effects lead to 

changes in the respondent’s overall preference structure (Braga and Starmer, 

2005). The effects of learning or fatigue can become pronounced, particularly 

where many repeated choices are present. This CE employed 12 repeated 

choices. To test for learning or fatigue effects the results of a CL model on the 

                                            
20 Only people aged over 18 and who have responsibility for paying a domestic water bill were 
interviewed. 
21 e.g. to disaggregate the values different types of respondents, including a mix of river 
recreational users (such as rowers, swimmers, anglers), river visitors (who use the river for 
bankside activities such as walking, picnicking, wildlife watching), experts, and respondents from 
the general public, hold for the ecological and recreational aspects of water quality. 
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first 6 choices were compared against the same model on the last 6 choices, 

using a Chow test which tests whether the true coefficients in two linear 

regressions on different data sets are equal. Fatigue or learning effects are said 

to be insignificant if the parameters are statistically similar (Hess et al., 2012). A 

likelihood-ratio test, Prob. > chi2 = 0.11, reveals that at the 0.05 significance level 

the hypothesis that the parameters differ can be rejected. The Chow test 

suggests that there appear to be no fundamental issues in the data attributable 

to learning or fatigue effects. 

3.5.3 Dominance and consistency checks 

Each of the 4 choice blocks contained a dominated choice set (e.g. one option 

clearly dominated the other on all dimensions by containing superior levels for 

ecological and recreational water quality and lower price). Dominated options 

were deliberately included within the choice sets to enable consistency checks to 

assess rationality, engagement and protest behaviour (Burge and Rohr, 2004). 

Table 28: number of respondents making rational responses to dominated 

choice options 

Choice block Number of respondents Rational responses 
1 50 50 
2 50 48 
3 50 50 
4 50 49 

 

Of the 200 opportunities shown on Table 28, the dominant option was chosen on 

197 occasions. In interviews conducted after the completion of the survey, the 

three respondents who chose the dominated option gave reasonable 

explanations for their choice behaviour. All three essentially refused to choose 

recreational water quality suitable for swimming. One respondent didn’t want 

people swimming in rivers because they felt that people should use swimming 

pools if they want to swim. The second respondent felt that swimming in rivers is 

too dangerous (e.g. risk of accident or drowning). The third respondent was a 

volunteer conservation ranger at Whitlingham and expressed a preference to 

prevent swimming where possible. All three individuals exhibited good 

understanding of the purpose of the survey and gave the choice questions careful 

consideration. They were all retained within the sample to prevent selection bias 
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or to prevent the reduction of the statistical efficiency and power of the estimated 

choice models (Lancsar and Louviere, 2006). 

Non-trading choice behaviour occurs, especially in the case of labelled choice 

experiments, when a respondent always chooses the same alternative across 

choice sets (Hess et al., 2010). To detect for any place bias, the result of a Mann 

Whitney test (p>0.049) confirmed that the hypothesis of no significant difference 

in the choice alternative chosen by respondents cannot be rejected when the 

confidence level is 1% or lower than 5%. 

3.5.4 Summary statistics of attribute level selection 

The following three tables report the number (and proportion) of times each level 

of the three choice attributes were chosen. 

Table 29: distribution of ecological water quality level selection 

Ecological water quality level Red Yellow Green Blue Total 

Rejected 
985 
(82) 

563 
(47) 

515 
(43) 

337 
(28) 

2400 
(50) 

Accepted 
215 
(18) 

637 
(53) 

685 
(57) 

863 
(72) 

2400 
(50) 

Total for each level 
1200 
(100) 

1200 
(100) 

1200 
(100) 

1200 
(100) 

4800 
(100) 

Proportion (%) in brackets 

Within the ecological water quality attribute we see that respondents preferred to 

choose choice alternatives that contained higher levels of ecological water 

quality. For example, choice alternatives containing Blue ecological quality were 

selected 72% of the time when offered as an option within a choice set. Choice 

alternatives containing Red ecological quality were rejected on 82% of choice 

occasions.  

Table 30: distribution of recreational water quality level selection 

Recreational quality level Low Medium High Total 

Rejected 
1047 
(65) 

749 
(47) 

604 
(38) 

2400 
(50) 

Accepted 
553 
(35) 

851 
(53) 

996 
(62) 

2400 
(50) 

Total for each level 
1600 
(100) 

1600 
(100) 

1600 
(100) 

4800 
(100) 

Proportion (%) in brackets 
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We see a similar distribution of preferences for selecting the recreational water 

quality attribute. Choice alternatives containing High recreational quality were 

chosen 62% of the time when offered as an option within a choice set, whereas 

alternatives containing Low recreational quality were only selected 35% of the 

time. 

Table 31: distribution of price level selection 

Price (£) level 0 10 20 30 40 60 75 100 Total 

Rejected 
216 
(36) 

310 
(52) 

282 
(47) 

314 
(52) 

292 
(49) 

299 
(50) 

294 
(49) 

393 
(66) 

2400 
(50) 

Accepted 
384 
(64) 

290 
(48) 

318 
(53) 

286 
(48) 

308 
(51) 

301 
(50) 

306 
(51) 

207 
(35) 

2400 
(50) 

Total for each 
level 

600 
(100) 

600 
(100) 

600 
(100) 

600 
(100) 

600 
(100) 

600 
(100) 

600 
(100) 

600 
(100) 

4800 
(100) 

Proportion (%) in brackets 

Although the distributions for ecological and recreational water quality levels 

show consistent increases in the number of times progressively improved levels 

of each attribute are selected, the pattern of price level selection differs. Although, 

as we would expect, the lowest price level (£0) is consistently preferred and the 

upper level (£100) consistently rejected, we see a different pattern within the 

remaining range of price levels, where the different levels have been selected in 

roughly equal amounts. At face value it would appear that respondents took the 

opportunity to select improved levels of water quality attributes and felt the mid-

range of price levels contained within the bundle of attributes to be acceptable in 

obtaining improved water quality. This issue is discussed further within the 

limitations section of this chapter.  

3.5.5 Sample summary statistics 

Two hundred respondents were interviewed during the main survey using the 

sampling scheme described above. Of the 200 respondents there were 16 

anglers across the five main respondent categories. Descriptive statistics of the 

main socio economic characteristics of the sub-groups within the whole sample 

are reported in Table 32 on the following page. 
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Table 32: summary statistics of the main survey data 

 

Respondent type 

Total 
Public 

recruited 
door to 

door 

Rowers Swimmers 
Experts/ 

Management 
Community 

Public 
recruited at 
Whitlingham 

Park 

Number of respondents 139 10 5 7 39 200 

Class share (%) 69 5 3 4 19 100 

Mean age  51.7 31 49.4 48.6 53.5 51 

Gender (% male) 45.30 20 60 85.70 35.90 44 

Employment, income, education and environmental affiliation 

Employed (%) 40.30 50 80 85.70 46.10 44.5 

Environmental 
occupation (%) 

2.90 40 40 100 0 8.50 

Mean income (£1000’s) 24.1 33 57 52.7 35 28.4 

Degree level education 
or higher (%) 

42 60 100 57 46 46 

Mean number of 
environmental 
memberships  

0.35 1.4 1.6 0.86 0.59 0.51 

Anglers (%) 8 10 0 42 3 8 

Distance and trip information 
Mean distance the 
respondent lives from 
the Yare (kilometres) 

7.75 (8.61) 
4.86 

(3.77) 
1.83 (1.41) 3.57 (3.02) 11.24 (16.4) 7.99 

% respondents who 
visited the Yare in the 
last year 

39.7 100 100 100 94.9 57% 

Mean number of Yare 
trips in the last year 

9.8 (30.9) 
171.6 
(57.3) 

94.4 (68.2) 49.4 (39.1) 33.9 (69.0) 
26.1 

(57.6) 
Mean number of different 
activities undertaken at 
the Yare in the last year 

0.9 (1.3) 2.3 (0.8) 2.8 (0.7) 2.6 (1.9) 2.4 (1.2) 
1.4 

(1.4) 

Mean number of Yare 
trips in next year if water 
quality improvements 
made  

20.7 (48.7) 
171.6 
(57.3) 

130 (70.0) 92.7 (115.2) 43.2 (86.3) 
37.9 

(72.6) 

Respondents’ perceptions of current water quality (% of respondents)  

EQ blue 21 20 20 42.90 16 20.9 

EQ green 53 50 80 57.10 57 55.6 

EQ yellow 21 30 0 0 21.60 20 

EQ red 4 0 0 0 5.40 3.5 

RQ high 41 30 20 57 13 31 

RQ med 55 70 80 43 81 65 

RQ low 4 0 0 0 5 3 

Importance of issues when making choice decisions (% of respondents) 

Bill is important 62.5 40 40 57.1 69.2 62 

Distance is important  48 40 20 86 26 44 

Ecological quality is 
important  

94.9 100 100 100 94.9 95.5 

Recreational quality is 
important  

53.9 90 100 85.7 51.3 57.5 

Standard deviation in parenthesis 

The mean age of all respondents is 51. There is little variation from this mean, 

except within the rowers category, which has a mean age of 31. This average is 

lower because approximately half of the rowers were students sampled from the 
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local university rowing club. Forty four percent of the sample were male. Age and 

gender were insignificant determinants of choice preferences. 

Forty four percent of all respondents were employed full-time. The highest rates 

of full-time employment were in the management and swimmers categories, 

which had 85% and 80% respectively. 50% of rowers were employed full-time. 

Respondents recruited door to door had the lowest rate of full-time employment 

(40.3%). Forty six percent of respondents recruited at Whitlingham were 

employed full-time. Across the sample 8.5% of respondents were employed in an 

environmental occupation. All of the respondents in the management community 

had an environmental occupation, as did 40% of rowers and swimmers. In 

contrast, less than 3% of the respondents recruited door to door and none of the 

respondents recruited at Whitlingham had environmental occupations. 

Occupation and employment type were insignificant determinants of choice 

preferences. 

In addition to having the highest rates of employment, the expert and swimmer 

groups had the highest mean incomes at 52.7 and 57.0 thousands, respectively. 

These were far higher than the mean income for all respondents, which was 28.4 

thousands. The lowest mean income was held by the respondents interviewed 

door to door (24.1 thousands). The average income of the public interviewed at 

Whitlingham was 35.0 thousands and the average income of the rowers was 33.0 

thousands. As with age, it is probable that the mean income for the rowers was 

suppressed, as the majority of the student rowers had relatively low incomes. 

An average of 46% of all respondents had a degree level education. Whitlingham 

respondents (46%) and door to door respondents (42%) were close to the mean. 

Experts (57%), rowers (60%) and swimmers (100%) had higher than average 

numbers of respondents with degree level education. Educational type or 

academic attainment was not a significant determinant of respondents choice 

decisions. There was also no correlation (p=0.0) between educational type and 

income. 
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Figure 25: distribution of the distance respondents live from the closest 

point of the Yare 

 
Sample mean distance= 7.99km 

 

Figure 25 shows the skewed distribution of the distance from respondents’ homes 

to the nearest point of the River Yare. The effect of distance decay on willingness 

to pay was of considerable interest within this research. Despite being recruited 

at the survey stretch, the Whitlingham respondent group lived the highest mean 

distance from the Yare (11.24km). This average distance is positively skewed as 

several respondents (outliers) had travelled considerable distances to visit 

Whitlingham as their preferred recreation site. Respondents recruited door to 

door had the second highest average distance from the Yare (7.75km). Rowers 

(4.86km), swimmers (1.83km) and experts (3.57km) all lived less than the mean 

distance (7.99km) from the Yare. 

Within the survey questionnaire, respondents were asked a series of questions 

relating to their trip behaviour  over the year prior to the survey being administered 

(e.g. number of trips and types of activities undertaken on those trips). One year 

was chosen as a suitable period, as is standard with similar studies (e.g. Bateman 

et al., 2006a), to minimise recall bias22. 

                                            
22 Recall bias is a systematic error caused by differences in the accuracy or completeness of the 
recollections retrieved ("recalled") by study participants regarding events or experiences from the 
past (Raphael, 1987). 
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Self-reported trip frequency and trip activity data indicates widely different rates 

of visitation and numbers of activities undertaken by the different respondent 

groups over the last year. All of the swimmers, rowers and experts had visited the 

Yare in the last year. All but one of the respondents interviewed at Whitlingham 

visited the Yare (the sole exception was attending a meeting at the park's cafe). 

The lowest rate of visitation was found in the door to door respondent group, of 

which only 39.7% had visited in the last year. In addition to containing a large 

proportion of non-visitors, respondents interviewed door to door took the lowest 

number of trips (9.8), on average ,during the last year. Whitlingham respondents 

visited an average of 33.9 times. Experts visited an average of 49.4 times, just 

under once per week, although their trips were often work related. Rowers visited 

most frequently, 171.6 times, or just over three times a week. Swimmers took an 

average of 94.4 trips, visiting just under twice a week. Door to door respondents 

did the lowest number of different activities, 0.9 activities, on average, when they 

visited. The average number of activities undertaken by all respondents on their 

visits was 1.4. Rowers (2.8), swimmers (2.3), experts (2.4) and respondents 

recruited at Whitlingham (2.4), all participated in an higher than average number 

of different activities when they visited. 

Respondents provided estimates of the number of future trips they would take 

over the next year, if ecological quality and recreational quality were guaranteed 

to be high. 198 of the 200 respondents reported they would either visit more often 

or visit the same number of times. The two respondents who reported that they 

would visit less often provided rational reasons for their choices. Despite 

increased trip frequency across the sample as a whole, respondents’ estimated 

future use corresponds closely with their current patterns of use. Door to door 

respondents would still visit relatively infrequently, they estimated that they would 

visit 20.7 times over the next year, an increase of just under 11 trips per year. 

Whitlingham respondents stated they would visit 43.2 times in the next year, an 

increase of just 3 trips. This is a very small increase but it is worth considering 

that these respondents typically visit the Yare to enjoy non-contact activities (e.g. 

socialising, dog walking), which can be enjoyed irrespective of water quality. This 

suggests that water quality is not a strong determinant for their reason for visiting. 

Experts reported that they would visit an additional 43 times per year. In interview 
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it was revealed that the majority of this increase would be to undertake more 

leisure activities. Swimmers said they would visit an additional 36 times in the 

next year if improvements were made to guarantee high water quality. The 

majority of this increase would be to swim more frequently, as, at present, there 

are periods when blue-green algae concentrations are unacceptably high, 

preventing swimming at the site. Rowers stated that they would visit the same 

number of times. Their visitation rates appear to be saturated: they visit so 

frequently at present (c. 3-4 times a week), that it would not be realistic for them 

to visit more often. 

The differences in respondents’ perceptions of water quality at the Yare is 

interesting. Experts tend to have greater access to accurate information on water 

quality so it is unsurprising that the experts had the highest perceptions of water 

quality. 42.9% of experts felt the ecological water quality was Blue and the rest 

felt it was Green. Swimmers and rowers were the next best informed on 

ecological water quality as their recreation clubs regularly provide information on 

water quality. Twenty percent of swimmers felt the ecological water quality was 

Blue, the rest thought it was Green. Twenty percent of rowers felt it was Blue, 

50% Green and 30% thought Yellow. Non-visitors had the lowest perceptions of 

ecological quality. Door to door and Whitlingham respondents, the two non-

expert, non-contact respondent groups, had very similar perceptions and were 

the only categories to contain respondents who perceived the ecological quality 

to be Red (approximately 4.5%). 21% felt the quality was Yellow, 53% felt it was 

Green and a 21% thought the quality was Blue. 

There was a very similar pattern in respondents’ perceptions of recreational water 

quality. Again, experts had the highest perceptions with 57% perceiving the 

recreational quality to be High and the remainder believing the water quality was 

Medium. Again, non-experts and non-visitors had the lowest perceptions of the 

recreational water quality: approximately 4.5% felt it was low, approximately 68% 

felt it was Medium and the remainder, 28.5%, felt the recreational quality was 

High. Swimmers and rowers had very similar perceptions. 30% of rowers and 

20% of swimmers thought the recreational quality was High and the remainder 

from both groups, 70% of rowers and 80% of swimmers, felt the recreational 

quality was Medium. 
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After completing the choice task the respondents were asked to rate the 

importance of four key issues when making their choices. These were the 

ecological and recreational qualities of the water, the size of water bill increases 

and the distance from where they lived to where the quality improvements would 

happen. These four issues were rated by respondents as very important, 

important, neither, unimportant or completely unimportant. 

The size of increases to the water bill (price) was important to an average of 62% 

of the respondents. Price was of most importance to the public interviewed at 

Whitlingham (69.2%) closely followed by the public interviewed door to door 

(62.5%). Forty percent of swimmers and rowers and 57.1% of the experts felt the 

size of bill was important to them when making their choice decisions. 

Swimmers have the lowest proportion of respondents (20%) who felt that the 

issue of the distance from their home to where the improvement would happen is 

important. There are several reasons swimmers feel distance is unimportant: 

swimmers, on average, live closer to the Yare than any other respondent group 

and their recreation club, Tri-Anglia Triathlon Club, offers highly specialised 

recreation facilities and training opportunities at the survey river stretch. Forty 

percent of rowers felt the distance was important to them. This was just under the 

sample mean of 44%. As with the swimmers, rowers’ club facilities are located 

on the survey river stretch at predefined, unchanging locations, without suitable 

substitutes nearby. 

Respondents recruited at Whitlingham account for 19% of the total sample, and, 

of these, 74% felt that the distance was unimportant to them when making their 

choice decisions - despite this group living the highest mean distance from the 

Yare. This represents a sizable proportion of the whole sample for whom distance 

is unimportant. It may be that suitable alternative substitute sites are available for 

these respondents to enjoy less specialised activities. However, it appears that 

respondents in this category regularly visit the Yare as their preferred destination 

for dog-walking, exercise and other bankside activities, and they may also have 

an increased preference for visiting the survey river site due to the enhanced 

potential for socialising afforded by the indoor visitor centre and cafeteria. 
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Just under half of the respondents interviewed door to door felt distance was 

important; however, distance was particularly important to clusters of 

respondents who lived at greater distances from the Yare. For example, several 

respondents in Bungay, Beccles and Wroxham stated that they would rather pay 

to improve alternative rivers, e.g. the rivers Bure or Waveney, which are closer 

and more convenient for them. 

All but one of the experts felt that the distance was an important factor during 

their decisions in the choice task. This figure seems rather high given that the 

experts also tended to live quite close to the Yare. It may be that distance is 

important to these respondents because they are professionally invested in the 

survey river stretch: improvements at the survey site benefit them both personally 

and professionally, whereas they have no professional responsibility for rivers 

outside of their jurisdiction. 

Almost all respondents felt that the ecological quality of the water was important. 

All of the experts, rowers and swimmers thought it was important and 94.9% of 

respondents interviewed door to door and at Whitlingham thought it was 

important. There were large differences of opinion regarding the recreational 

quality of the water. All of the swimmers, 90% of the rowers and 85.7% of the 

experts felt that recreational quality was important when making their choice 

decisions. In marked contrast, only slightly more than half of those interviewed at 

either Whitlingham (51.3%) or door to door (53.9%) felt that the recreational 

quality of the water was important. In face to face interviews, several door to door 

respondents stated they would prefer it if people were prevented from using rivers 

for swimming. Reasons for this opposition were that they felt that rivers are too 

physically dangerous for use and that there are public swimming pools for people 

to use, if people want to swim. 

3.5.6 CL modelling 

This section reports two CL models. As with the pilot data, the CL modelling of 

the main survey data was undertaken using Stata 13.1 (StataCorp L. P., 2013). 

For the interested reader, a chronology of CL modelling development (CL models 

1-4) is included in Appendix V. Table 33 describes the variables used within the 

two CL models.  
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Table 33: variables used within econometric modelling 

Dependent variables 

Price 
Respondents’ response to cost of water quality, expressed as 
a continuous variable. 

Medium 
ecological quality 

Composite variable composed of Yellow and Green 
ecological quality categories combined, expressed as a 
categorical variable. 1=Yellow and Green (Medium) 
ecological water levels, 0=other ecological levels. 

High ecological 
quality 

High ecological water quality, expressed as a categorical 
variable. 1=blue/high ecological water level, 0=other 
ecological levels 

Medium 
recreational 
quality 

Medium recreational water quality, expressed as a 
categorical variable. 1=medium recreational water level, 
0=other recreational levels. 

High recreational 
quality 

High recreational water quality, expressed as a categorical 
variable. 1=high recreational water level, 0=other recreational 
levels. 

RQ*EQ 
Variable describing the interaction between recreational and 
ecological water quality, expressed as a continuous variable. 

Independent variables  

Rowers and 
Swimmers 

Composite variable composed of rowers and swimmers. 
Swimmers recruited via Tri-Anglia Triathlon Club, rowers 
recruited via local rowing clubs. Binary variable: 
0=respondent is not a rower or swimmer, 1=respondent is a 
rower or swimmer. 

Anglers 
Respondents who are anglers. Binary variable expressed as 
0=respondent is not an angler, 1=respondent is an angler. 

Environmental 
memberships 

Respondents who have environmental memberships. Binary 
variable expressed as 0=respondent does not have 
environmental memberships, 1=respondent has 
environmental memberships. 

EnvMemberCont The total number of environmental organisation memberships 
held by the respondent, expressed as a continuous variable.  

Distance 
The distance the respondent lives from the closest point of 
the Yare. Inverse multiplicative, expressed as 1/Distance. 

DistanceBin The distance the respondent lives from the closest point of 
the Yare. Binary variable: 0=respondent lives <8km, 1=the 
respondent lives >8km (Mean distance=7.99km). 

Income 
The respondents’ gross household annual income. Inverse 
square, expressed as 1/Income2. 

 

Model 5 incorporates socio-economic variables and distinguishes between 

different respondent types. Model 6 represents a more parsimonious modelling 

solution. The 7 experts, having professional interest, are excluded from these 

analyses. Each model is now discussed in turn. 

The CL models, shown on Table 34, report main effects interactions in the naïve 

way (interaction of attributes and socio economic variables) to provide insights 

into preference heterogeneity. Respondents’ preferences for Yellow and Green 
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ecological quality levels were insignificantly different from one another so those 

levels were collapsed into one intermediate variable called Medium ecological 

quality (see Wald test on p.310, Appendix V). For clarity Blue ecological quality 

is renamed High ecological quality. A definition of Model 5 is 

𝑈 = 𝑉 +  ∑ 𝑧 ∗(V) 

Where 

𝑉 = b ∗ Price + b ∗ MediumEQ + b ∗ HighEQ + b ∗ MediumRQ + b ∗ HighRQ 

Equation 17: definition of CL Model 5 

 

In this case the c=[1,...,5] are the socio-economic characteristics specified in the 

model (e.g. rowers or swimmers, environmental memberships, etc.). 

The first section of Model 5 displays estimated marginal utilities of the general 

public (i.e. have not used the river for swimming, boating or fishing over the last 

year, although they may have visited for other purposes) and who are not 

members of environmental groups. Coefficients for Medium and High ecological, 

and Medium and High recreational water quality levels are complete and 

transitive. The strength of the coefficients relative to one another suggests that 

such respondents, on average, value improvements in ecological quality more 

than they do improvements in recreational/microbial water quality. Respondents 

dislike options containing higher prices, ceteris paribus.  

An interaction term, RQxEQ, describes a highly significant positive interaction for 

all respondents: improvements in one dimension of water quality (whether it be 

ecological quality or recreational quality) are valued more highly the higher the 

quality level of the other dimension of water quality (The function RQxEQ is 

discussed further on p.316, Appendix V). 
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Table 34: CL models 

 Model 5 Model 6 

Variable Coef. s.e. Coef. s.e. 

Baseline coefficients     

Price -0.024*** 0.003 -0.021*** 0.002 

Medium ecological quality 1.213*** 0.152 1.860*** 0.090 

High ecological quality 2.194*** 0.228 3.111*** 0.128 

Medium recreational quality 0.533*** 0.145 0.771*** 0.081 

High recreational quality 0.739*** 0.188 1.286*** 0.086 

RQ*EQ 0.157*** 0.045   

Socio-Economic Coefficients     

Distance from river (1/distance)     

DistancexPrice 0.005** 0.002 0.006*** 0.002 

Income (1/income2)     

IncomexPrice -145842.3** 72882.52 -18460.1*** 63811.14 

Rowers and Swimmers (n=15)     

Rowers and swimmersxPrice -0.003 0.011   

Rowers and swimmersxMedium ecological quality -1.190*** 0.390   

Rowers and swimmersxHigh ecological quality -1.880*** 0.617   

Rowers and swimmersxMedium recreational quality 1.181*** 0.415   

Rowers and swimmersxHigh recreational quality 1.842*** 0.532   

Anglers (n=16)     

AnglersxPrice -0.0003 0.009   

AnglersxMedium ecological quality 2.364*** 0.791   

AnglersxHigh ecological quality 4.011*** 1.070   

AnglersxMedium recreational quality 0.101 0.635   

AnglersxHigh recreational quality -1.035* 0.573   

Environmental Memberships (Binary variable)     

Environmental membershipsxPrice 0.004 0.005   

Environmental membershipsxMedium ecological quality 1.003*** 0.238   

Environmental membershipsxHigh ecological quality 1.320*** 0.334   
Environmental membershipsxMedium recreational 
quality 

-0.022 0.199   

Environmental membershipsxHigh recreational quality 0.215 0.220   

Number of observations = 4632     

Pseudo R2 0.403 0.360 

Log Likelihood  -957.700 -1026.820 

Model 5: CL model of price, categorical water quality levels, EQ*RQ interaction term, with 
distance, income, swimmers and rowers, anglers, and environmental membership as interaction 

terms. Model 6: CL model of price, categorical water quality levels with distance and income 
interaction terms. *, ** and *** = significance at 10%, 5% and 1% levels 

 
 

Within the sample, we find a significant distance decay in respondents’ choice 

preferences; the further from the survey river the respondent lives, the less likely 

they are to choose choice alternatives containing higher prices. Distance is 

expressed as the multiplicative inverse (1/x). The effect of distance on 

respondents’ WTP is discussed below.  
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Income has a significant, positive impact on respondents’ willingness to choose 

choice alternatives containing higher prices. Income is expressed as the inverse 

square (1/x2). The effect of income on respondents’ WTP is discussed below.  

Swimmers and rowers are significantly more likely to value improved recreational 

water quality and significantly less likely to choose options containing higher 

ecological quality. This is reasonable given that improved levels of recreational 

water quality is important in order for them to enjoy their activities safely. 

Anglers are significantly more likely to value improved levels of both Medium and 

High ecological water quality. These preferences make sense when viewed from 

an angler’s perspective. Anglers require rivers with Medium ecological quality for 

coarse fishing and High ecological quality for game fishing. Anglers have 

significantly lower preferences (relative to the other respondents) for High 

recreational water quality. This is reasonable if lower recreational quality reduces 

the number of people using the river and disturbing the angler and the fish. In 

interview, several anglers stated preferences for quiet undisturbed locations. 

Membership of environmental organisations is typically used as a surrogate 

variable to positively identify respondents who would be expected to care more 

highly about the environment. During the survey, respondents were asked if they 

held personal memberships for any environmental organisations23. Membership 

of environmental organisations are expressed as a binary variable (0 = not a 

member, 1 = a member of one or more environmental organisations). Within this 

sample, members of environmental organisations have highly significant 

preferences for higher levels of ecological water quality. 

Model 6 is now discussed. Although this parsimonious model has slightly lower 

explained variance (R2), it is, arguably, more policy relevant as it contains 

important, relevant, interaction terms (i.e. distance and respondents’ income) 

which, unlike the highly specific socio-economic variables (e.g. recreational use 

                                            
23 Such organisations include walking clubs, ramblers associations, angling clubs, river recreation 
(e.g. rowing/canoeing/sailing) clubs, National Trust, RSPB, English Nature, Norfolk Wildlife Trust 
or similar, Greenpeace, Friends of the Earth, WWF, other environmental groups, outdoor 
swimming/triathlon clubs. 
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type, environmental memberships), can be readily obtained from secondary data 

sources without recourse to further survey work. 

As with Model 5, respondents’ dislike options containing higher prices, ceteris 

paribus. Coefficients for Medium and High ecological, and Medium and High 

recreational water quality levels are complete and transitive. Again, the strength 

of the water quality coefficients relative to one another suggests that respondents, 

on average, value improvements in ecological quality more than they do 

improvements in recreational water quality. Model 6 contains two interaction 

terms. One describes a significant distance decay in respondents’ willingness to 

choose choice alternatives containing higher prices. The other shows that income 

has a significant, positive impact on respondents’ willingness to choose choice 

alternatives containing higher prices. 

3.5.7 Marginal WTP estimates derived from Model 6 

This section reports the marginal WTP estimates for changes in attribute levels 

in CL Model 6. The marginal WTP estimates are the negative of the ratio between 

the mean coefficients for each attribute and the mean coefficient of the payment 

attribute (please see Equation 16, p.197). 

Monetary values for WTP are derived by assessing changes in utility from V0, the 

initial water quality state, and V1, the alternative state. As discussed previously, 

using the correct value for V0 is crucial, as, if incorrect, the resulting WTP 

estimates will also be incorrect. For example; if ecological quality is consistently 

low it would be correct to set V0 for ecological quality to low. However, water 

quality on the Yare isn’t low, but variable throughout the year, which complicates 

our attempts to accurately define V0. 

Tables 35 - 37 and Figures 26 and 27 report the welfare estimates for marginal 

changes in river water quality improvements, derived from Model 6. V0 is, for this 

analysis, defined by Low ecological and Low recreational water quality levels. 

The data will subsequently be reanalysed using respondents’ perceptions of 

water quality as V0. 
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Table 35: marginal WTP estimates derived from Model 6 using Low water 

quality as the baseline 

 Medium 
ecological 

quality 

High ecological 
quality 

Medium 
recreational 

quality 

High 
recreational 

quality 
WTP (£) £89.23*** £149.39*** £37.00*** £61.74*** 
95% confidence intervals 
Lower limit £70.51 £119.73 £26.59 £48.53 
Upper limit £108.08 £179.04 £47.42 £74.96 

Note *, ** and *** = significance at 10%, 5% and 1% levels. WTP=£, per household, per year for 

the 20km survey river stretch 

 

We now consider the impact of the distance and income interaction terms. Figure 

26 shows the impact of distance on respondents’ WTP for water quality. Figure 

27 shows the impact of income on respondents’ WTP for water quality. The effect 

of distance and income on respondents’ WTP values is described numerically in 

Tables 36 and 37. 

Figure 26: distance decay in respondents’ WTP for water quality 

 
WTP = £ per household, per year. Distance is measured from the respondent’s home to the 

closest point on the survey river stretch. Low water quality defines V0, the baseline. 
 
Figure 26 and Table 36 show that as respondents live further from the river, their 

estimated WTP for water quality decreases. Among respondents living closer to 

the river we see significantly higher WTP to secure each level of both water 

quality attributes. For example, a respondent who lives 2km from the river is 
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estimated to be willing to pay £167.83 for High ecological water quality and 

£69.37 for High recreational water quality, whereas a respondent who lives 25km 

from the river has estimated WTP of £150.71 and £62.79, respectively. 

The income interaction term describes a highly significant positive relationship 

between income and WTP. For example, the model predicts that a respondent 

with a household income of £10,000 is willing to pay £143.72 for High ecological 

water quality and £59.40 for High recreational water quality, whereas a 

respondent with a household income of £60,000 is estimated to be willing to pay 

£149.07 and £61.62, respectively (Figure 27 and Table 37). 

Figure 27: impact of respondents’ income on WTP 

 
WTP = £ per household, per year. Respondent income is defined as the respondent’s annual 

gross household income. Low water quality defines V0, the baseline. 
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Table 36: the effect of distance on respondents’ WTP 

 Distance from respondent’s home to the closest point on the survey river stretch (km) 

Distance (km) 1 2 3 4 5 6 7 8 9 10 15 20 25 30 

Water quality type WTP (£ per household, per year for the 20km survey river stretch) 

High ecological  191.47 167.83 161.20 158.07 156.25 155.07 154.23 153.61 153.13 152.74 151.61 151.05 150.71 150.49 

Medium ecological  114.45 100.32 96.35 94.49 93.40 92.69 92.19 91.82 91.53 91.30 90.62 90.29 90.09 89.95 

High recreational  79.14 69.37 66.63 65.34 64.58 64.09 63.75 63.49 63.29 63.13 62.66 62.43 62.29 62.20 

Medium recreational  47.43 41.57 39.93 39.16 38.71 38.41 38.20 38.05 37.93 37.84 37.55 37.41 37.33 37.28 

Low water quality defines V0, the baseline. 

Table 37: the effect of income on respondents’ WTP 

 Respondent’s gross annual household income (£1000s) 

Income (£1000s) 5 10 15 20 25 30 35 40 45 50 55 60 65 70 

Water quality type WTP (£ per household, per year for the 20km survey river stretch) 

High ecological 137.22 143.72 146.15 147.30 147.93 148.31 148.56 148.73 148.86 148.95 149.02 149.07 149.12 149.15 

Medium ecological 82.02 85.91 87.36 88.04 88.42 88.65 88.80 88.90 88.98 89.03 89.07 89.11 89.13 89.15 

High recreational 56.72 59.40 60.41 60.88 61.14 61.30 61.40 61.48 61.53 61.56 61.59 61.62 61.63 61.65 

Medium recreational 33.99 35.60 36.20 36.49 36.64 36.74 36.80 36.84 36.87 36.90 36.91 36.93 36.94 36.95 

Low water quality defines V0, the baseline. 
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3.5.8 WTP estimates based on respondents’ perceptions of water quality 

It is important that we use the correct level for V0 to produce meaningful 

valuations: if V0 is systematically set to the lowest water quality level WTP 

estimates are potentially overestimated. Perhaps the most important factor 

influencing the correct level of V0 in situations where V0 is variable, or where there 

is no correct level of V0, is the respondents’ perceptions of existing water quality. 

For this reason, WTP is adjusted for each individual, with V0 set to the level of 

water quality perceived by that individual. Individual values are aggregated to 

produce estimates of WTP for each level of water quality attributes. 

Within the survey the current state of the water quality was not fixed and was 

intentionally overlooked in the CE setting. Instead, respondents were asked what 

quality they thought ecological and recreational water quality was at the Yare. 

153 respondents visited the Yare in the year prior to the survey. Their perceptions 

of water quality are shown on Figure 28. 

Figure 28: Yare visitors’ perceptions of water quality 

 

Yare visitors’ perceptions of water quality correspond relatively closely to the 

Environment Agency’s estimates of Yare catchment water quality characteristics 

(2014)24. We see a small minority who believe that the current ecological water 

quality is Low, while the remaining respondents think that the water quality is 

higher, either Yellow, Green or Blue. The majority of respondents believe the 

                                            
24 The status of the River Yare, and its tributary rivers, was assessed by the Environment Agency 
in 2013 as being generally ‘moderate’ which broadly corresponds to the Green ecological and 
Medium recreational water quality attribute levels used in this study. 
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current recreational water quality is Medium with a sizeable proportion who think 

it is High. A small proportion think the recreational quality is Low. Based on this 

data, respondents would, on average, receive a disutility should the level of future 

ecological or recreational water quality be lower than Medium, and would wish to 

be compensated for that reduction in water quality. Within these results the 

hypothesis of compensation is disregarded as it is not a real world option. Non-

visitors, unable to provide perceptions data, are not excluded from this analysis. 

Instead, their perceptions of water quality are set to the modal values (i.e. Medium 

ecological quality and Medium recreational quality). 

Table 38: marginal WTP (£ per household, per year), derived from CL 

Model 6, based on respondents’ perceptions of water quality. 

Improvement type 
If V0 = low water 

quality 
if V0 = respondent’s 

perception 
Medium ecological quality £89.23 £1.85 
High ecological quality £149.39 £55.46 
Medium recreational quality £37.00 £0.74 
High recreational quality £61.74 £21.03 
WTP (£ per household, per year) for the 20km survey river stretch. Estimates of WTP where     

V0 = low water quality are transcribed from Table 35. 
 
Table 38 reports estimates of WTP derived from Model 6 (Table 34). V0 is set to 

respondents’ perception of ecological or recreational water quality. Within Table 

38 we see that where V0 is set to the lowest water quality level, WTP estimates 

are much higher than if we use respondents’ perceptions of water quality as the 

baseline upon which to calculate welfare estimates. We see that estimates of 

utility for medium levels of ecological and recreational water quality at the survey 

river stretch are very low. This is because the majority of Yare visitors (Figure 28) 

believe that the water quality at the site is already medium25, therefore they do 

not receive any additional benefit if the future water quality were to remain at the 

same level. On average, respondents have higher WTP for High ecological, 

rather than High recreational water quality. 

3.5.9 Shortcomings of using a CL model specification on the survey data 

As discussed previously, there was a possibility that the assumptions 

underpinning the CL modelling may be violated. A z-test of the variance was 

                                            
25 Perceptions of non-visitors were also set to medium, the model value of perceived water quality 
across the sample. 
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performed on the main variables in Model 6 and it was found that Price and 

Medium recreational quality have heterogeneous variance26. This is shown in 

Table 39. 

Table 39: results of z tests on the main variables of Model 6 

Variable Probability Decision 
Price 0.046 Reject 
Medium recreational quality 0.000 Reject 
High recreational quality 0.869 Accept 
Medium ecological quality 0.087 Accept 
High ecological quality 0.267 Accept 

 

This lack of homogeneity within the baseline coefficients (Morey et al., 2006), in 

conjunction with the CL modelling failing to control for intra-respondent variation 

(Kemperman and Timmermans, 2006), indicates that a CL specification of the 

choice data is not the best specification. 

3.5.10 LC modelling 

As CL models were not the best modelling solution, LC models were explored. 

LC models of the dataset were generated using Latent Gold version 5 (Statistical 

Innovations, 2014). In estimating the LC models 2, 3, 4 and 5 class solutions were 

investigated. Preliminary investigation of the optimal number of classes for LC 

models was informed using the Bayesian Information Criteria (BIC), the Akaike 

Information Criteria (AIC) and the consistent Akaike Information Criteria (CAIC) 

(Allenby, 1990; Ben-Akiva and Swait, 1986). Swait (1994) explains how these 

criteria should be used to determine the optimum number of latent classes. The 

criteria are based, in part, on the likelihood function and compare the relative 

plausibility of different models. Under the assumption that we have no prior 

preference for one model over another, the criteria identify the model that is more 

likely to have generated the observed data: the smaller the value of the statistic, 

the better the fit of the model. Using Swait’s scheme, the three class LC model 

appears to be the optimal solution for the data used in this study. 

The minimum BIC statistic, shown on Table 40, suggests a 3 class solution, but 

only marginally so, as the BIC value for a 4 class solution is only slightly higher. 

The CAIC statistic corroborates this finding. The AIC value continues to decrease 

                                            
26 Heterogeneous variance was also present in CL Model 4. 
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beyond a 3 class model and suggests a 5 class model. However, McLachlan and 

Peel (2004) warn us that the AIC tends to overestimate the most efficient number 

of classes due to a failure in the regularity conditions affecting the likelihood ratio 

test statistic. Although the BIC also fails certain regularity conditions, Leroux 

(1992) has shown that the BIC does not asymptomatically overestimate the 

optimal number of classes. Furthermore, the BIC has been described as the most 

conservative of the various indicators as it penalises additional parameters 

(Morey and Thacher, 2012). Wedel and Kamakura (2012) warn us that the 

various indicators are at best suggestive. With the above in mind, further 

investigation of the optimal number of classes was performed by hand, referring 

to the significance of the individual variables within the classes. A 2 class models 

was immediately dismissed as lacking in explanatory power. Although the BIC of 

a 4 class models is similar to that of a 3 class model, 4 class models resulted in 

large numbers of insignificant class variables and insignificant class membership 

covariates. For example, within a 4 class solution it was found that all but one of 

the variables in class 3 were insignificant. 

Table 40: information criteria values determining the optimum number of 

classes when modelling all respondents 

Number of classes BIC AIC CAIC 
2 1928.67 1885.80 1941.67 
3 1782.68 1716.71 1802.68 
4 1783.18 1694.13 1810.18 
5 1804.51 1692.37 1838.51 

 

Having decided on a three class solution, a number of 3 class models were 

generated to explore the effectiveness of different combinations of socio-

economic variables as class membership covariates. Most of the socio-economic 

variables proved insignificant in explaining class membership and, in common 

with the CL modelling, the most significant socio-economic variables were the 

number of environmental memberships held by respondents and the distance 

respondents lived from the survey river. As a Wald test on the coefficients of the 

Yellow and Green ecological water quality parameters in the CL modelling (see 

p.310) demonstrated that they were insignificantly different from one another, it 

was prudent, and parsimonious, to use the Medium ecological quality variable in 

the LC modelling. 
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The most informative LC models have three classes using price, Medium and 

High ecological quality and Medium and High recreational quality as explanatory 

choice attribute variables and environmental memberships (EnvMemberCont) 

and distance (DistanceBin) as class membership covariates. For both of the LC 

models reported below the interaction variable RQ*EQ was insignificant. 

The first of the LC models, Model 7, defines three distinct classes of respondents. 

All 200 respondents are included within this LC model. The discussion of the 

results this model makes reference to salient points from the model’s 

postestimation results, reported in Table 43. Following this, the marginal WTP 

estimates, using the coefficients of the three class LC model, and the remaining 

postestimation results are reported. 
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Table 41: Model 7, a 3 class LC model with distance and environmental 

membership as class membership covariates 
 Class 1 Class 2 Class 3 
Class membership covariate coefficients   

Intercept 
-0.269 0.460** -0.191 
(0.245) (0.205) (0.236) 

Environmental memberships 
(EnvMemberCont) 

0.476** 0.307 -0.783** 
(0.229) (0.218) (0.388) 

Distance (DistanceBin)  
-0.488* -0.371 0.859*** 
(0.272) (0.238) (0.331) 

Choice attribute coefficients    

Price 
-0.014*** -0.023*** -0.285*** 
(0.005) (0.003) (0.071) 

Medium ecological quality 
1.211*** 3.546*** 1.040** 
(0.171) (0.281) (0.448) 

High ecological quality 
1.647*** 5.790*** 1.903*** 
(0.262) (0.371) (0.727) 

Medium recreational quality 
2.006*** 0.480*** 0.984 
(0.208) (0.181) (0.768) 

High recreational quality 
2.941*** 0.993*** 2.507* 
(0.252) (0.175) (1.406) 

Class probability 0.31 0.585 0.105 

Predicted number of respondents 62 117 21 

Total respondents = 200    

Total observations = 4800    

*, ** and *** = significance at 10%, 5% and 1% levels. Standard errors in parenthesis 

 

Class 1 has a class probability of 0.31. This means that 62 of the 200 respondents 

are estimated to be in this class. The number of environmental memberships held 

by these respondents is a significant determinant of Class 1 membership and the 

positive coefficient, 0.476** (s.e. 0.229), predicts that as the number of 

environmental memberships held by respondents increases, the more likely it is 

that they will be assigned to Class 1. Postestimation results, Table 43, predict 

that Class 1 respondents have the highest average number of environmental 

memberships, 0.61 (s.e. 0.83), compared with an average of 0.51 (s.e. 0.72) 

memberships for all respondents. The negative coefficient for the distance 

covariate, -0.488* (s.e. 0.272), predicts that respondents who live closer to the 

Yare are more likely to be assigned to Class 1. Their mean distance to the Yare 

is 7.8km (s.e. 10.3), against the sample mean of 8.0km (s.e. 10.5). 

Of the three classes, members of Class 1 are least averse to increased price. 

They have the smallest of the price coefficients, 0.014*** (s.e. 0.005), and are 
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only slightly less likely to choose an option with increased price. This is despite 

the class having the smallest percentage of respondents who identify as being 

employed, 35.5%, and respondents who earn slightly less than average income 

of £28,300 (s.e. 21.3). Class 1 has the highest proportion of respondents, 

11.36%, who have an environmental occupation and 45.2% of these respondents 

have a degree level education. 

Respondents in Class 1 are more likely than other respondents to choose choice 

alternatives containing higher levels of recreational quality. Postestimation results 

suggest that Class 1 contains 80% of the swimmers and 70% of the rowers, 

conforming to our a priori expectations that these user groups prefer, and value, 

recreational water quality highly. 

Class 2 has the largest class probability, 0.585, and is estimated to contain 117 

respondents. Environmental memberships and distance are not significant class 

membership covariates for Class 2. 

Class 2 respondents are only slightly more averse to price increases, -0.023*** 

(s.e. 0.003), than Class one respondents, -0.014*** (s.e. 0.005). Class 2 has the 

highest proportion of respondents who identified as employed full time, 48.7%. 

This is above the sample mean of 44.5%. Class 2 respondents have the highest 

mean income, £29.5k (s.e. 18.4), of the three classes. 

Class 2 respondents are more likely to choose choice alternatives containing 

higher levels of ecological quality than members of the other two classes. The 

postestimation results suggest the same, as 14 of the 16 anglers and 4 of the 7 

experts are predicted to be in Class 2. As we saw from the CL modelling, anglers 

have significantly higher utility from ecological, rather than recreational water 

quality. 

Class 3 has the smallest class probability, 0.105, and is estimated to contain 21 

respondents. The number of environmental memberships held, and the distance 

Class 3 respondents live from the survey river, are significant class membership 

covariates. As the number of environmental memberships held by respondents 

increases, respondents are less likely to be assigned to Class 3. The 

postestimation results support this coefficient. They predict Class 3 respondents 
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to have, on average, 0.14 (s.e. 0.35) environmental memberships, far lower than 

the sample mean of 0.51 (s.e.0.72). As distance from the river increases, 

respondents are significantly more likely, 0.8589*** (s.e. 0.331), to be assigned 

to Class 3. Again, the postestimation results support the distance coefficient: the 

mean distance from Class 3 respondents’ homes to the survey river is 9.7km (s.e. 

8.5km), almost 2km further, on average, than other respondents. 

In common with respondents from other classes, respondents in Class 3 have 

complete and transitive preferences for water quality. Postestimation results 

suggest that this class is composed largely of respondents who rarely use the 

survey river for recreation. It is estimated that the class contains no swimmers or 

rowers, one angler, one expert and is largely composed of non-visitors. This class 

contains a high proportion (15 of the 21 class members) of the general public 

recruited door to door. 

In marked contrast to respondents assigned to the other two classes, 

respondents in Class 3 have a much higher sensitivity to increased price and are 

significantly less likely to choose a choice option with higher price, -0.285*** (s.e. 

0.071), against -0.014*** (s.e. 0.005) and -0.023*** (s.e. 0.003) for Class 1 and 

Class 2 respondents. Postestimation results hint at possible reasons for their 

aversion to price increases. Although an estimated 47.6% of this class identify as 

employed full-time (above the average of 44.5% of all respondents), their mean 

income, at £24,900 (s.e. £21,900) is almost £4,000 below the average income of 

all respondents. Although income was not a statistically significant determinant 

of LC class membership, CL Model 5 does find Income to be significantly 

positively correlated with respondents’ willingness to choose choice alternatives 

containing higher prices. On face value, it seems that these respondents are, on 

average, in low paid employment and may prefer their disposable income to be 

directed elsewhere. Postestimation results also predict that members of this class 

have the lowest proportion of respondents, 28.6%, holding a degree level 

education. Class 3 respondents’ sensitivity to choices with increased price 

impacts dramatically on their WTP for water quality, as will now be reported. 
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3.5.11 Marginal WTP estimates derived from the 3 class LC model 

WTP derived from the 3 class LC model are now discussed. Changes in utility 

are assessed using Low water quality to define V0, the baseline. 

The rejection by Class 3 respondents of choice options with higher prices, results 

in them having the lowest WTP for both water quality attributes (Table 42). 

Table 42: marginal WTP estimates derived from the 3 class LC model 

Water quality type 
Class1 Class2 Class3 

WTP 
(£) 

s.e. 
(£) 

WTP 
(£) 

s.e. 
(£) 

WTP 
(£) 

s.e. 
(£) 

Medium ecological 
quality 

£86.38 £30.45 £154.81 £24.54 £3.65 £1.80 

High ecological  
quality 

£117.45 £41.79 £252.75 £36.89 £6.68 £3.01 

Medium recreational 
quality 

£143.10 £48.77 £20.94 £9.14 £3.45 £2.09 

High recreational 
quality 

£209.72 £68.24 £43.34 £9.13 £8.79 £3.24 

Standard errors represent the 95% confidence intervals for the WTP estimates. WTP=£, per 

household, per year for the 20km survey river stretch. Low water quality defines V0, the baseline 

Class 1 respondents have a clear preference for the highest possible recreational 

quality. Despite their preference for recreational water quality, Class 1 

respondents’ WTP for ecological quality is relatively high. Class 2 respondents’ 

WTP for ecological water quality far exceeds that of the other two classes. 

Figure 29: visual representation of WTP derived from the 3 class LC model 

 

The differences in WTP by the three classes for the different water quality 

categories are explicitly shown in Figure 29. 
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Several of the postestimation results shown on Table 43 have been reported 

previously. However, the remaining postestimation results yield some interesting 

insights, which are now reported. 

With regard to distance and trip information, the postestimation results predict 

that Class 3 respondents visit the Yare less frequently and do less activities when 

they do visit. 

Table 43: post estimation results for the 3 class LC model 

 Class 1 Class 2 Class 3 
Whole 

Sample 
Class probability  .31 .585 .105 1.0 
Number of respondents 62 117 21 200 

Mean age 
53.2 

(19.5) 
50.0 

(17.5) 
48.9 

(20.7) 
50.9 

(20.7) 
Gender(% male) 43.5 43.6 47.6 44 
Employment, income, education and environmental affiliation 
Employed full time (%) 35.5 48.7 47.6 44.5 

Employed in environmental occupations (%) 11.3 7.7 4.8 8.5 

mean income (£1000s) 
28.3 

(21.3) 
29.5 

(21.8) 
24.9 

(18.4) 
28.6 

(21.4) 
% respondents with degree level education or 
higher 

45.2 49.6 28.6 46 

mean number of environmental memberships per 
respondent 

0.61 
(0.83) 

0.52 
(0.69) 

0.14 
(0.35) 

0.51 
(0.72) 

Predicted number of each respondent type in class 
Anglers 1 14 1 16 
Experts 2 4 1 7 
Rowers  7 3 0 10 
Swimmers  4 1 0 5 
General public (door to door) 37 87 15 139 
General public (Whitlingham) 12 22 5 39 
Distance and trip information 
Mean distance respondents live from the Yare 
(km) 

7.8 
(10.3) 

7.8 
(10.9) 

9.7 (8.5) 
8.0 

(10.5) 
Mean number of all river trips taken by 
respondents in the last year 

48.7 
(70.9) 

35.2 
(66.2) 

31.2 
(51.4) 

39.0 
(66.7) 

Mean number of activities at the most visited site 
in the last year 

1.7 (1.3) 2.1 (1.5) 1.6 (1.2) 
1.9 

(1.5) 
% of respondents visiting the Yare in the last year 61.3 59.0 33.3 57.0 
Mean number of Yare trips taken by respondents 
in the last year 

40.0 
(67.7) 

22.7 
(54.9) 

3.9 
(11.1) 

26.1 
(57.6) 

Mean number of activities at the Yare in the last 
year 

1.4 (1.3) 1.5 (1.5) 0.7 (1.2) 
1.4 

(1.4) 
Mean number of Yare trips in the next year if 
water quality improvements are made 

44.1 
(68.1) 

40.4 
(79.5) 

5.5 
(11.1) 

37.9 
(72.6) 

Importance of issues when making choice decisions (% respondents) 
The size of the bill 59.7 56.4 100.0 62.0 
The distance to any proposed improvement 41.9 43.6 52.4 44.0 
The ecological quality of the river 98.4 99.1 66.7 95.5 
The recreational quality of the river 75.8 54.7 19.0 57.5 
Protesting? 12.9 12.8 19.0 13.5 

Standard errors in parenthesis 
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However, when we examine the data relating to trips to all river locations, a 

different picture begins to emerge. Despite Class 3 respondents visiting the 

survey river stretch on the Yare infrequently, they visit other rivers on average 

31.2 (s.e. 51.4) times a year. We have previously seen that Class 3 respondents 

have consistent preferences for water quality – they do care about water quality 

– but they tend to live further from the survey stretch and appear to prefer to visit 

other river sites instead. These results are in line with the survey interviewer’s 

experiences: several respondents within the Beccles area told the interviewer that 

they would rather visit the River Waveney and they had no desire to fund 

improvements at a river site that they do not visit. 

Class 1 respondents make the greatest average number of trips each year, 48.7 

(s.e. 70.9), but take the majority of their trips, 40.0 (s.e. 67.7), at the survey river 

stretch on the Yare. Class 1, as we have seen, contains the majority of the 

recreational users, who use the recreational facilities on the Yare frequently. 

Class 2 respondents have a more balanced mix of destinations. They visit the 

survey river stretch 22.7 (s.e. 54.9) times and take the remainder of their 35.2 

(s.e. 66.2) annual trips elsewhere. 

During the interviews respondents were asked how often they would visit the Yare 

in the coming year if the ecological and recreational quality of the water was 

guaranteed to be high. The a priori expectation was that if high water quality was 

guaranteed, respondents who currently visit the Yare would visit more often and 

respondents who do not visit may start visiting. 

Class 3 respondents’ apathy towards recreation at the survey river stretch can be 

seen in their stated number of future visits, which rises only slightly, from 3.9 (s.e. 

11.1) current trips to 5.5 (s.e. 11.1) future trips. This negligible change suggests 

that their demand for recreation at the Yare is not at all related to the quality of 

river water. It appears that they do not wish to visit the survey river whatever its 

quality. 

Class 1 respondents’ proposed future trip frequency is also inelastic, showing a 

small rise, if high water quality is guaranteed. This may in part be explained by 
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the high frequency of visits made by the rowers and swimmers who would, as 

previously discussed, find it difficult to visit more often. 

In contrast to respondents in the other classes, Class 2 respondents future 

recreational demand is far more elastic. Their proposed future trip frequency rises 

from an average of 22.7 (s.e. 54.9) trips over the last year to an average of 40.4 

(s.e. 79.5) trips in the coming year. This suggests a class of respondents who 

would be willing to pay more for ecological improvements and would be keen to 

visit the river more often to enjoy those improvements. 

Respondents were asked to quantify the importance of different issues when 

making their choice decisions. These issues were bill size, the ecological quality, 

the recreational quality and the distance from where they lived to where the 

improvement would happen. Their answers to these questions, on a class by 

class basis, tend to confirm and reinforce the results of the LC analysis. 

Within this LC model, Class 3 respondents are the most sensitive to choices with 

higher prices. Postestimation results predict that all of the class 3 respondents 

thought that the size of the increases to their water were important when making 

their choice decisions. In contrast, 56.4% of Class 2 respondents felt bill size was 

important when making their choice decisions. As discussed previously, Class 2 

respondents have the highest percentage of respondents in full time employment 

and the highest mean income which may support their relative indifference 

towards price increases. 

Given that proportionally less Class 3 respondents visit the Yare and they visit 

less frequently, it is unsurprising that these respondents are less concerned about 

the ecological quality of the water at that site. 

The importance of the recreational water quality when making choice decisions 

also corresponds with respondents’ WTP for recreational quality. Recreational 

quality was important to 75.8% of Class 1 respondents (the class which contains 

the majority of recreational users), 54.7% of Class 2 respondents (who tend to 

prefer the ecological quality of the water), whereas only 19% of Class 3 

respondents (who tend not to use the river) felt recreational quality was important. 
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During the survey, respondents were asked how likely it was that improvements 

to the river water quality would actually happen in the future (see question 20 of 

the survey in Appendix III). Respondents who thought that improvements were 

highly unlikely were defined as protestors. These respondents had little faith that 

management agencies would improve water quality. Consequently, it was 

thought that these respondents may not have seriously considered choice 

options which offered High water quality, as they had little faith such 

improvements could, or would, be achieved. The protest rate across the sample 

was 13.5%. Class 3 contained the highest proportion of protestors, 19%, which 

may go some way to explain their unwillingness to select choice options which 

contained higher prices. Despite these observations, protestors were included in 

the analysis as their omission did not significantly affect results. 

From a policy perspective, the three class model described above, may not best 

represent the general population, as the data on which it is based over-samples 

recreational users, river management and water quality experts. A criticism is that 

Model 7 may produce misleading WTP estimates. The solution to this criticism 

was to perform a LC analysis which partitioned recreational users and experts 

away from the respondents drawn from the general public – effectively sampling 

the general public without interference from the other respondent types. This 

reanalysis is now discussed. 

The starting point to this reanalysis was to generate information criteria values, 

shown on Table 44, for LC models of differing numbers of classes, to find the 

optimum number of classes to best represent the latent preferences of 

respondents drawn from the general public. 

Table 44: information criteria values for a partitioned LC model 

Number of classes BIC AIC CAIC 
2 1706.58 1665.22 1719.58 
3 1576.28 1512.65 1596.28 
4 1580.98 1495.08 1607.98 
5 1600.31 1492.12 1634.31 

 

For the reasons discussed previously, it was found that a 3 class model was the 

optimal solution. 
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Partitioned LC models using combinations of the full range of socio-economic 

variables were explored. One of the best specified models, LC Model 8, described 

in Table 45, uses the same class membership covariates and choice attribute 

coefficients as used in CL Model 4 (Appendix V). The results from Model 8, its 

corresponding WTP estimates, using Low water quality as the baseline (reported 

in Table 46), and its postestimation results, reported in Table 49, are now 

discussed. 

Model 8, shown in Table 45, contains four separate classes, the first 3 of which 

contain only respondents drawn from the general public. The fourth, partitioned 

class, contains only recreational user and expert groups. The most striking initial 

observation of the 4 class partitioned model is the similarity in composition of the 

first three classes to the 3 classes in the 3 class model, reported in Table 41. A 

priori expectations, were that by removing experts and users, there would be a 

significant impact on the marginal WTP estimates within the first three classes. 

This hasn’t been the case. Instead, the first 3 classes have remained relatively 

stable. The 4 class partitioned LC model has revealed 3 distinct types of latent 

preferences among respondents drawn from only the general public. These 3 

classes are now reported, with attention paid to the differences to the previous 

LC model. 
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Table 45: Model 8, a 4 class partitioned LC model with distance and 

environmental membership as class membership covariates 
 Class 1 Class 2 Class 3 Class 4# 

Class membership covariate coefficients    

Intercept 
0.575** 1.025*** 0.499 -2.099*** 
(0.303) (0.259) (0.305) (0.503) 

Environmental memberships 
(EnvMemberCont) 

-0.039 0.104 -1.335** 1.270*** 
(0.259) (0.226) (0.535) (0.281) 

Distance (DistanceBin)  
-0.011 -0.205 1.197*** -0.980** 
(0.319) (0.276) (0.414) (0.506) 

Choice attribute coefficients  

Price 
-0.015*** -0.023*** -0.301*** -0.016*** 
(0.005) (0.004) (0.076) (0.006) 

Medium ecological quality 
1.208*** 3.588*** 0.853** 1.466*** 
(0.192) (0.299) (0.465) (0.231) 

High ecological quality 
1.713*** 5.833*** 1.683** 2.487*** 
(0.291) (0.392) (0.753) (0.382) 

Medium recreational quality 
1.814*** 0.464** 1.047 1.449*** 
(0.214) (0.189) (0.825) (0.264) 

High recreational quality 
2.678*** 0.959*** 2.628* 2.215*** 
(0.257) (0.185) (1.517) (0.297) 

Class probability 0.26 0.53 0.1 0.11 
Predicted number of respondents 52 106 20 22 
Total respondents = 200     

Total observations = 4800     

*, ** and *** = significance at 10%, 5% and 1% levels. Standard errors in parenthesis 
 #Users and experts are partitioned into class 4 

 

Class 1 has a class probability of 0.26. 52 of the 200 respondents are estimated 

to be in this class. Despite the removal of recreational users, Class 1 respondents 

continue to have the highest likelihood of choosing a choice alternative with 

improved levels of recreational quality. It was erroneously assumed that because 

Class 1 in the three class LC model, shown in Table 41, contained the largest 

proportion of primary and secondary contact users, it was these recreators who 

were driving the positive recreational water quality coefficients. This is not the 

case. Class 1 consists of members of the general public who value the 

recreational quality of the water highly and chose High recreational quality when 

that option was available. 

Class 2 continues to have the largest class probability, 0.53, and is estimated to 

contain 106 respondents. The number of environmental memberships held, and 

class members’ distance from the river continue to be insignificant class 

membership covariates.  
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Despite the removal of users or experts, these respondents continue to have the 

greatest preference for ecological quality. This class continues to contain the 

majority of the anglers (12 respondents) who, as we have seen in the CL 

modelling, care passionately about the ecological quality of the river’s water. 

Class 3 is least affected by the removal of users and experts, as it contained only 

one expert, and no users, originally. The class continues to have the smallest 

class probability, 0.1, and is estimated to contain 20 respondents. The number of 

environmental memberships held, and the distance Class 3 respondents live from 

the survey river, continue to be significant class membership covariates. The 

strength of these variables has increased. As the number of environmental 

memberships held by respondents increases, respondents continue to be less 

likely, -1.335** (s.e. 0.281), to be assigned to Class 3. Postestimation results 

support this coefficient, as it is predicted that Class 3 respondents hold, on 

average, only 0.1 (s.e. 0.3) memberships, the lowest of the four classes. As 

distance to the river increases, respondents are, again, significantly more likely, 

1.197*** (s.e. 0.414), to be assigned to Class 3. Postestimation results estimate 

a mean distance from the river to the average Class 3 respondent’s home of 

10.0km (s.e. 8.6km), 2km further than the distance of the average respondent. 

Class 3 respondents continue to have complete and transitive preferences for 

water quality. These respondents continue to be the most averse to choice 

options containing increased price. It was previously hypothesised that the 

average Class 3 respondent had the lowest mean income and preferred their 

disposable income to be spent on goods and services other than riverine 

improvements. It then became apparent, from the 3 class model’s postestimation 

results, Table 43, that Class 3 respondents did visit rivers, but tended not to visit 

the survey river stretch. Within this partitioned model the motivations of Class 3 

respondents can be seen more clearly. Although they have the lowest preference 

for price increases, this doesn’t appear to wholly attributable to low income, as, 

following the partition, the average respondents from classes 1 and 3 now have 

similar mean incomes, £24,600 and £24,800 respectively. Relatively low income 

has not prevented the average Class 1 respondent from having clearly defined 

preferences for recreational water quality. Nevertheless, Class 3 respondents 

sensitivity to choices with increased price continues to impact on their willingness 
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to pay for water quality at the survey river stretch. It would seem, with reference 

to the postestimation results on Table 49, that Class 3 respondents are averse to 

paying higher prices at the Yare because they do not want to pay for 

improvements at a location they do not use. Class 3 respondents live the highest 

mean distance from the Yare and they visit infrequently, if at all. However, this 

class of respondents has the highest frequency of visits to all river sites, visiting 

30.2 (s.e. 52.5) times each year compared with 24.4 (s.e. 48.3) for Class 1 and 

28.3 (s.e. 55.4) for Class 2. 

Class 4, the partitioned class, contains the 22 respondents who identified as 

recreational users or experts. Referring to the results of CL model 4 (see 

Appendix V) and the 3 class LC model, it can be seen that the respondents in 

Class 4 produce confounded results. Some Class 4 respondents (swimmers, the 

majority of the rowers) prefer recreational water quality, while others (the 

remainder of the rowers, the majority of the experts) prefer ecological water 

quality. 

The number of environmental memberships held by Class 4 respondents and the 

distance they live from the survey river are both significant determinants of class 

membership. On average, these respondents live 3.8km (s.e. 3.4km) from the 

Yare. This is much closer than the average respondent. They also hold the most 

environmental memberships, 1.3 (s.e. 0.8), per person. 

All choice attribute coefficients are highly significant within Class 4. These 

respondents are only slightly less likely to choose an option with increased price. 

This may in part be because these respondents have the highest predicted mean 

income. Due to their higher disposable income, coupled with their desire for high 

water quality, the maximum price level of £100 within the choice experiment may 

not be sufficiently high to adversely impact upon these respondents’ choice 

decisions.  

3.5.12 Marginal WTP estimates derived from the 4 class partitioned LC 

model 

WTP derived from the 4 class partitioned LC model are now discussed. This first 

analysis assesses changes in utility using Low water quality to define V0, the 
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baseline. This is followed by an analysis using respondents’ perceptions of water 

quality to define V0. 

A priori expectations were that the partitioning of recreational users and experts 

may cause WTP for the general public to be significantly reduced. This hasn’t 

been the case. WTP for the three classes composed only of the general public in 

the partitioned model are similar to the WTP estimates generated from the 

coefficients of the 3 class model. With closer examination there are some 

interesting observations to be made. 

 

Table 46: marginal WTP estimates derived from the 4 class partitioned LC 

model 

Water quality 
type 

Class 1 Class 2 Class 3 Class 4 
WTP  
(£) 

s.e. 
(£) 

WTP  
(£) 

s.e. 
(£) 

WTP (£) 
s.e. 
(£) 

WTP  
(£) 

s.e. 
(£) 

Medium 
ecological 

£81.54 £29.13 £158.45 £26.63 £2.84 £1.66 £90.59 £32.16 

High 
ecological 

£115.58 £40.87 £257.58 £40.10 £5.60 £2.76 £153.69 £52.15 

Medium 
recreational 

£122.44 £43.27 £20.48 £9.66 £3.48 £2.12 £89.58 £31.56 

High 
recreational 

£180.72 £60.06 £42.33 £9.88 £8.74 £3.32 £136.87 £43.56 

(WTP £, per household, per year for the 20km survey river stretch) 

Class 1 respondents continue to have the highest WTP for recreational quality. 

The removal of recreational users and experts from this class has caused WTP 

for Medium recreational quality to fall by 14.4% and WTP for High recreational 

quality to fall by 13.8% compared with the values predicted in the 3 class model. 

Class 1 respondents’ WTP for ecological quality continues to remain high, relative 

to the other classes. Class 2 respondents’ WTP for ecological water quality has 

risen slightly, despite the removal of recreational users and experts. Class 3 

respondents continue to have the lowest WTP for water quality of the three 

classes. On Table 46, we see that their WTP has barely changed. Class 4 

respondents, due to their confounded preferences for water quality, have 

relatively high WTP for all types of water quality, as shown in Figure 30, below. 
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Figure 30: visual representation of WTP derived from the 4 class 

partitioned LC model 

 

The heterogeneous differences in preferences across classes are clearly shown 

in Figure 30. Class 1 respondents prefer, and are willing to pay for recreational 

quality. Class 2 respondents are willing to pay for ecological quality and Class 3 

respondents have consistently low WTP across the two water quality attributes. 

The WTP estimates for the 4 class partitioned model, reported in Table 46, avoid 

the criticism that the estimates are biased by the overrepresentation of user and 

expert groups in the sample. However, by calculating the above WTP estimates 

as marginal changes from Low water quality, it may be that respondents’ WTP is 

overestimated. Table 47 shows the results of a reanalysis of WTP with the 

baseline water quality set to the level of respondents’ perceived water quality. 
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Table 47: WTP estimates derived from the 4 class partitioned LC model, based on respondents’ perceptions of water 

quality 

 Class 1 Class 2 Class 3 Class 4 
WTP (£, per household, per year for the 20km survey river stretch) 

Water 
quality type 

V0=Low water 
quality 

V0 = 
respondents’ 

perception 

V0 = Low water 
quality 

V0 = 
respondents’ 

perception 

V0 = Low water 
quality 

V0 = 
respondents’ 

perception 

V0 = Low water 
quality 

V0 = 
respondents’ 

perception 
Medium 
ecological 

£81.54 £1.57 £158.45 £4.48 £2.84 £0.00 £90.59 £0.00 

High 
ecological 

£115.58 £29.79 £257.58 £92.53 £5.60 £2.31 £153.69 £54.44 

Medium 
recreational 

£122.44 £4.71 £20.48 £0.39 £3.48 £0.00 £89.58 £0.00 

High  
recreational 

£180.72 £49.54 £42.33 £19.14 £8.74 £5.00 £136.87 £30.09 

Estimates of WTP where V0 = low water quality transcribed from Table 46 for ease of comparison. 

 

 

 



 

240 
 

As with the estimates of perceptions-based WTP shown on Table 38, we find that 

respondents’ WTP for Medium water quality levels are greatly reduced. 

Respondents within the smaller classes, classes 3 and 4, have zero WTP for 

Medium ecological and Medium recreational water quality. These zero values are 

due to those respondents’ perceptions of current water quality. None of the 

respondents partitioned into Class 4 (e.g. the rowers, swimmers and experts, see 

Table 32) thought the water quality at the survey river was lower than Medium, 

therefore they would receive no marginal benefit from the future water quality 

remaining at Medium. No Class 4 visitors thought the water quality was lower 

than Medium, and Class 4 non-visitors’ (who were unable to provide perceptions 

data) had their perceptions set to Medium, the modal level of perceived water 

quality across the sample. WTP for the higher levels of ecological and 

recreational water quality are much reduced: those respondents who perceive 

the current water quality as High receive no benefit from the future water quality 

remaining, or changing to High. Those respondents who currently perceive the 

water quality to be Medium receive the marginal benefit from a change from 

Medium to High. The patterns within the results of the perceptions-based analysis 

of LC Model 8 remain as previously discussed: Class 1 respondents prefer 

recreational improvements, Class 2 respondents hold a preference for improved 

ecological water quality and Class 3 respondents have relatively low WTP values 

for either form of water quality improvement.  

The perceptions-based WTP values reported on Table 47 can be aggregated to 

provide averaged WTP for water quality attributes. These are shown on Table 48. 

Average WTP values for the whole sample differ marginally from the averaged 

WTP of classes 1-3 (which excludes rowers, swimmers and experts). The slight 

differences can be accounted for by rowers and swimmers holding a higher 

preference for the recreational, rather than ecological, quality of rivers. Experts 

tend to have higher perceptions of current water quality (Table 32), which serves 

to reduce the utility of Medium water quality levels. 
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Table 48: averaged perceptions-based WTP derived from LC Model 8 

 WTP (£, per household, per 
year for the 20km survey river 

stretch) 
Water quality type Classes 1-3 

only 
Whole sample 

Medium ecological quality £3.13 £2.78 
High ecological quality £64.06 £63.01 
Medium recreational quality £1.61 £1.43 
High recreational quality £26.43 £26.83 

 

The remaining postestimation results derived from the 4 class partitioned model 

are now reported. 

Table 49: post estimation results for the 4 class partitioned LC model 

 
Class 1 Class 2 Class 3 Class 4 

Whole 
Sample 

Class probability .26 .53 .1 .11 1.0 

Number of respondents 52 106 20 22 200 

Mean age 
57.4 

(18.9) 
50.0 

(17.6) 
49.8 

(20.7) 
40.8 

(13.9) 
50.9 

(18.6) 
Gender (% male) 40.4 44.3 45.0 50.0 44.0 

Employment, income, education and environmental affiliation 

Employed full time (%) 26.9 48.1 45.0 68.2 44.5 

Employed in environmental occupations (%) 1.9 2.8 0.0 59.1 8.5 

mean income (£1000s) 
24.6 

(16.1) 
28.2 

(21.1) 
24.8 

(18.8) 
43.5 

(28.3) 
28.6 

(21.4) 
% respondents with degree level education or 
higher 

36.5 50.0 25.0 68.2 46.0 

mean number of environmental memberships per 
respondent 

0.4 (0.7) 0.5 (0.6) 0.1 (0.3) 1.3 (0.8) 0.5 (0.7) 

Predicted number of each respondent type in class 

Anglers 0 12 0 4 16 

Rowers, swimmers and experts 0 0 0 22 22 

General public (door to door) 38 86 15 0 139 

General public (Whitlingham) 14 20 5 0 39 

Distance and trip information 
Mean distance respondent lives from the Yare 
(km) 

9.4 (11.1) 7.8 (11.2) 10.0 (8.6) 3.8 (3.4) 
8.0 

(10.5) 
Mean number of all river trips taken by respondent 
in the last year 

24.4 
(48.3) 

28.3 
(55.4) 

30.2 
(52.5) 

133.0 
(87.4) 

39.0 
(66.7) 

Mean number of activities at the most visited site 
in the last year 

1.4 (1.3) 2.0 (1.6) 1.5 (1.2) 2.8 (0.9) 1.9 (1.5) 

% of respondents visiting the Yare in the last year 51.9 55.7 30.0 100.0 57.0 

Mean number of Yare trips taken by respondents 
in the last year 

15.6 
(37.6) 

16.9 
(49.3) 

3.8 (11.4) 
115.2 
(77.1) 

26.1 
(57.6) 

Mean number of activities at the Yare in the last 
year 

1.8 (1.3) 1.4 (1.5) 0.7 (1.2) 2.5 (0.9) 1.4 (1.4) 

Mean number of Yare trips in the next year if 
water quality improvements are made 

17.0 
(32.2) 

33.8 
(72.7) 

5.1 (11.3) 
137.0 
(89.3) 

37.9 
(72.6) 

Importance of issues when making choice decisions (% respondents) 

The size of the bill 67.3 55.7 100.0 45.5 62.0 

The distance to any proposed improvement 42.3 42.5 50.0 50.0 44.0 

The ecological quality of the river 98.1 99.1 65.0 100.0 95.5 

The recreational quality of the river 67.3 52.8 20.0 90.9 57.5 

Protesting? 15.4 13.2 15.0 9.1 13.5 
Standard errors in parenthesis 
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Class 1 has seen a substantial reduction in the number of respondents visiting, 

from 61.3% to 51.9%. Class 2 has seen a slight reduction from 59.0% to 55.7% 

of respondents visiting. These reductions in visit frequency are due to the 

partitioning of the high frequency visitors into class 4, all of whom visited in the 

last year. The percentage of Class 3 respondents who visit the river has fallen 

slightly to 30%. The mean number of trips to the Yare taken by Class 3 

respondents is almost unchanged at 3.8 (s.e. 11.4). By removing high frequency 

recreational visitors, the mean number of trips taken by Class 1 respondents has 

fallen substantially from 40.0 (s.e. 67.7) to 15.6 (s.e. 37.6) trips. Class 2 

respondents visited 16.9 (s.e. 49.3) times. Class 4 respondents visited just under 

three times a week, at an average of 115.2 (s.e. 77.1) times each year.  

Respondents from classes 1 and 3 do not appear to be motivated to visit more 

frequently by the promise of high quality water. Interestingly, despite the removal 

from the class of users and experts, the remaining respondents in Class 2 stated 

that they would visit far more frequently if water quality was high. Their proposed 

number of trips rises from 16.9 (s.e. 49.3) to 33.8 (s.e. 72.7) trips in the future. 

This may be due to a latent demand for improved opportunities for ecologically 

focussed activities, e.g. nature watching or photography. Class 4 respondents 

also stated that they would visit more often, rising from 115.2 (s.e. 77.1) to 137.0 

(s.e. 89.3) trips in the future. As discussed, this rise may not be due to rowers 

visiting more frequently, as rowing club members typically visit 3 or more times 

at present. Part of this increase may be attributable to improved recreational 

opportunities for swimmers. In interview several of the experts professed a desire 

to take more trips for recreation and social activities if water quality was 

guaranteed to be high. 

Data on the importance of the different issues when making choice decisions 

continues to reinforce the results of the LC analysis. The mean income for Class 

1 has dropped substantially. It now has the lowest mean income, £24,600 (s.e. 

£16,100), of the four classes. Consequently, Class 1 respondents have become 

more sensitive to the issue of bill size, with 67.3% feeling it was very important. 

Interestingly, Class 3 respondents, with a slightly higher mean income (£24,800), 

continue to be the most sensitive to the issue of increased price. All Class 3 

respondents thought bill size was very important. 55.7% of Class 2 and 45.5% of 
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Class 4 respondents felt bill size was important when making their choice 

decisions. 

There is not a great deal of variation between the four classes on the importance 

of distance from the survey river stretch to their home. Equal proportions of Class 

3 and Class 4 respondents stated that the issue was important, despite a large 

difference in the mean distance these two classes live from the river stretch. It 

may be that the two classes felt the issue to be important for opposing reasons. 

Class 3 respondents, living an average of 10.0km (s.e. 8.6) from the river, may 

have felt the issue important because the river was relatively distant. Class 4 

respondents, living an average of 3.8km (s.e. 3.4) away from the river, may have 

felt the issue was important because the river was relatively close. The 

usefulness of this variable is reduced due to this ambiguity. 

The three classes (1, 2 and 4) of respondents who visit the river relatively 

frequently are in agreement on the importance of the ecological water quality. 

Over 98% of these respondents thought the issue was important when making 

their choice decisions. In contrast, only 65% of Class 3 respondents felt the issue 

was important. This may not be because they feel that the ecological quality of 

rivers is unimportant per se, as they visit other rivers frequently and have positive 

coefficients for ecological water quality within the LC modelling. It appears more 

likely that they place less importance on the ecological quality of a river which 

they rarely visit. 

Recreational quality was important to 67.3% of Class 1 respondents (the class 

which has the highest WTP for recreational quality), 54.7% of Class 2 

respondents (who tend to prefer the ecological quality of the water) and 90.9% of 

Class 4, which has a large proportion of respondents who frequently use the river 

for recreation. Only 20% of Class 3 respondents thought that the recreational 

water quality was important. Again, this may be because they rarely visit the site 

and distance was an extremely important factor to them when making their choice 

decisions. 

Class 4 has the lowest proportion of respondents, 9.1%, defined as protestors, 

e.g. respondents who thought that improvements were highly unlikely. There is 

little difference in the protest rate across the other three classes, in which the 
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protest rate ranges from 13.2% for Class 3 to 15.4% for Class 1. As discussed 

previously, protestors were included in the analysis as their omission did not 

significantly affect results. 
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3.6 Discussion 
Two groups of complimentary models examine different aspects of the same data 

to find solutions to the research questions. Comparing and contrasting the results 

of the different types of models reveals significant answers to the questions of 

who cares about river water quality and by how much. 

The analysis uses choice experiment methods to disaggregate the value of 

recreational and ecological characteristics of river water quality. This is both 

feasible and necessary since, contrary to previous econometric valuation 

practices (Bateman et al., 2011; Ferrini et al., 2014), these facets of water quality 

can be completely uncorrelated. The CE featured an efficient experimental design 

and the sample included both non-visitors and a wide variety of recreational 

users. Face-to-face surveys presented respondents with choices across a range 

of future water quality scenarios, differentiated in terms of the survey river’s 

ecological and recreational quality attributes and hypothetical remediation costs. 

CL and LC analyses identified a number of preference predictors including 

respondents’ spatial relationship to rivers and their socio-economic 

characteristics. The willingness to pay measures derived from CL and LC models 

revealed clear differences in preferences between respondent groups. 

Of the CL models, Model 5 is most suited to providing an overview of the water 

quality preferences of less specialised respondents (i.e. non-visitors and casual 

visitors from the general public) and the more specialised respondent groups (i.e. 

rowers and swimmers, and anglers). The less specialised respondents held 

higher values for improved ecological quality, rather than recreational 

enhancements. Similar preference orderings, but at higher levels of WTP, were 

revealed by anglers. However, other users, such as swimmers and rowers, 

prioritised recreational over ecological improvements. Three other preference 

predictors, environmental memberships held, distance and income, were 

identified. There were positive correlations between respondents’ WTP and their 

income and also positive correlations between respondents’ WTP and the 

number of environmental memberships they held. A significant distance decay in 

values away from the sites of any proposed investment was also observed. It may 

be argued that CL Model 5 presents respondents as one dimensional beings, e.g. 

anglers preferring EQ and rowers and swimmers preferring RQ. This outcome 
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arises from parameterising the model in the most efficient way, to best represent 

the preferences of those user groups. It would be strange if those relationships 

did not conform to a priori expectations in the way that they do: one would then 

have to consider if the results from the survey sample were random. Another 

criticism is that Model 5 is heavily parameterised to arrive at its results. 

Provencher and Bishop (2004) caution us that heavily parameterised models 

tend not to be robust. To avoid this criticism, CL Model 6 provides a simple, robust 

and parsimonious solution which suggests that the average respondent holds 

greater preferences for ecological water quality improvements. In addition to 

these weaknesses, the CL models fail to meet critical assumptions underpinning 

RUT. Several of the parameters of model 6 were found to exhibit heterogeneous 

variance, shown on table 39. The CL model structure also failed to control for 

intra-respondent panel data, but instead treated all unobserved factors across 

observations as independent and unique. These shortcomings are 

acknowledged. The use of CL modelling, as a starting point of the data analyses, 

is defended because CL is a simple method by which trends within data can be 

examined. 

The rudimentary findings of the CL models are highlighted by the results from the 

LC models. These unpick the simple characterisation of respondents to reveal 

three statistically distinct types of respondent defined by their latent preferences. 

While the partitioned LC model confirms that the majority of the general public 

have a preference for ecological quality, it also reveals a sizeable minority which 

hold a preference for recreational water quality, and a third group, which holds 

relatively low values for either form of river water quality improvements at the 

survey site. 

Of the two LC models, it can be argued that the preferred model is the four class 

partitioned model. From a policy perspective, the first three classes are more 

representative of the preferences of the general public, as recreational users and 

experts are omitted from these classes. Their omission is acceptable given that 

the results of CL Model 5 confirms their water quality preferences and because 

the postestimation results (Table 43) from the 3 class LC model suggests the 

classes to which these respondents may have been ascribed, had they not been 

excluded. 
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It appears that Class 1 respondents within the partitioned LC model, despite 

having a relatively high WTP for improved recreational water quality, do not 

actually want to use potentially improved recreational water. Although they have 

a high WTP for improved recreational water quality, the number of their proposed 

future trips barely increases if recreational quality is guaranteed to be high. This 

begs the question: why do they have a clear preferences for improved 

recreational water quality? It is unlikely that these respondents are ‘yea-saying’ 

as the CE format presents repeated options with assorted combinations of choice 

attributes to the respondent. It may be that Class 1 respondents are anthropic in 

their outlook. Although they have a high regard for both aspects of water quality, 

they appear to hold preferences which improve the environmental safety for other 

humans, even if they do not directly benefit themselves. Anthropic behaviour 

does occur. Hanley et al. (2003) found that despite the majority of respondents 

preferring improved water quality at Scottish beaches, those respondents would 

not start swimming as a result of improved water quality. 

Within the 4 class partitioned LC model we find that the majority of respondents 

prefer, and have a higher willingness to pay for, ecological water quality. We also 

find that there appears to be a strong latent demand by that majority for an 

increased enjoyment of ecologically based leisure activities, if ecological 

improvements are made. 

Within the LC modelling a small class of respondents is revealed, the majority of 

which tend not to visit or participate in river based recreational activities at the 

Yare. These respondents are apathetic in their WTP for ecological or recreational 

water quality improvements at the Yare. However, the postestimation results 

suggest that these respondents typically take their river based recreation at 

substitute locations. Given that these respondents frequently enjoy trips to other 

rivers, it is likely that these respondents may prefer river water quality 

improvements at sites closer, and more convenient, to their homes. 
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3.7 Conclusions 
The legislative imperative of the WFD requires improvements to river water 

quality. Poor river water quality imposes costs onto society, as do the remedial 

measures to reduce that river pollution. To minimise the incidence of derogations, 

relaxing the requirement to achieve ‘good ecological status’ on grounds of 

excessive cost, it is necessary that the benefits of reducing pollution are 

comprehensively assessed. To aid cost/benefit assessments, the present 

research has sought to disentangle and examine the relationships between the 

different sources of non-market values, thereby allowing decision makers to 

understand the consequences of adopting alternative investment strategies. 

These strategies may favour either ecological or recreational improvements, or a 

mix of the same to improve benefits. To improve our understanding of the 

consequences of alternative strategies, this research has used attribute based 

valuation methods and a novel survey design to analyse the way in which 

individuals value the recreational and environmental functions of rivers. 

With regard to the question of who cares about river water quality, results were 

found to be stable over the alternative choice models estimated. These models 

identified significant heterogeneity in water quality preferences across the 

different respondent types. Clearly the answer to “who cares?” depends on who 

is being asked, and for what reason. Previous research revealed that recreational 

water users are willing to pay relatively more to secure higher recreational water 

quality. This expectation is confirmed within these results. What was more 

unexpected was the heterogeneity across preferences found within the general 

population, composed primarily of non- and infrequent visitors. Three distinct 

respondent types were revealed within the general public. The majority hold a 

preference for enhanced ecological quality, a minority are motivated by 

recreational quality improvements and a yet smaller proportion typically prefer to 

visit substitute river venues and are ambivalent about the water quality at the 

Yare. 

Topography, human population density, land use type and land use intensity 

causes spatial differences in pollution types, pollution vectors and pollution 

concentrations across UK rivers (Hampson et al., 2010; Haygarth et al., 2005). 

Previous research has shown that it is technically infeasible and prohibitively 
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expensive for all UK rivers to be brought to ‘good ecological status’ within the 

near future (Defra, 2008c; Wither et al., 2005). Derogations on grounds of 

unacceptable financial costs and technical infeasibility will be necessary. 

This research adds to the literature by further demonstrating that positive non-

market benefits are likely to accrue from remediation schemes. It also shows that 

the non-market benefits which may accrue from different types of water quality 

improvements are nuanced in terms of their environmental impacts, their potential 

beneficiaries and, by inference, their overall value and policy implications. It is 

important that research outcomes demonstrate to policymakers that different 

remedial measures (aimed at either ecological or microbial water quality 

improvements) may trigger entirely different benefits and differing levels of market 

and non-market values. Decision makers need to be able to understand these 

differences and be able to access simple, quantifiable data in order to maximise 

the effectiveness of the limited resources available for improvements. 

So, what are the implications and how should the policy and management 

community react? As the costs of pollution and the benefits of remediating that 

pollution are unequally distributed, it is simply not cost effective to direct scarce 

financial resources at pollution remediation equally across all rivers. It appears 

that the policy and management communities must be pragmatic, accept that not 

all riverine pollution can be solved in the short term, and adopt a focussed and 

targeted approach to pollution remediation schemes. Close examination of the 

net benefits of different patterns of investment, at different locations, will ensure 

that the allocation of scarce resources yield the maximum net benefits across 

locations. Areas of high net benefit will vary spatially, not only due to the 

characteristics of riverine pollutants, but also because beneficiaries are unevenly 

distributed. Using this approach, the policy and management communities should 

well be advised to focus on the highest value areas for immediate attention. There 

are solid reasons why this should be and the foundations for this approach are 

already in place. Successive UK governments have adopted and maintained 

evidence based decision-making processes as their leitmotif. Decisions require 

the consistent and effective monitoring of pollution in watercourses and the 

accurate calculation of the costs of remediation schemes. Governmental 

regulatory organisations, such as the Environment Agency and Defra, are well 
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placed to calculate and assess damage to the environment (and costs to society) 

arising from pollution, the benefits of alleviating that pollution, and, in 

collaboration with the agricultural sector and the privately owned utility 

companies, the costs of schemes to remediate identified pollution sources. 

Economists will find that the net costs arising from river water quality 

improvements are bound to change over time. The location of the pollution source 

yielding the highest net benefit, once remediated, may not be the location of the 

source yielding the next best net benefit, ad infinitum. 

The benefits of pollution remediation are relatively uncertain given the elusive 

nature of non-market values. Precise calculations of the benefits arising from 

pollution remediation appear to be location specific, requiring detailed and costly 

research and analysis to reveal. What is being increasing confirmed and revealed 

by recent work, e.g. Metcalfe et al., (2012), the findings of which are reinforced 

by the research presented here, are the spatial conditions and patterns pertaining 

to the non-market benefits which may be available following pollution 

remediation. This research finds that the location of the pollution remediation, the 

type of remediation, the intended beneficiaries and the distance to those 

beneficiaries, all significantly affect benefit values. 

The results of this research suggest that, with regard to microbiological river water 

quality, the optimal remediation solutions may be to supply a relatively few 

numbers of high quality recreational sites close to population centres across the 

UK. CL models 5 and 6 found significant distance decay in benefit values. CL 

Model 4 found distance to have a step function, with a preference parameter at 

8km from the river. LC models 7 and 8 found distance to be a significant 

determinant of class membership. These results corroborate the findings of 

Metcalfe et al. (2012), that the highest benefits will be obtained from 

improvements undertaken relatively close to densely populated settlements. LC 

Model 8 suggests that Class 3 respondents hold relatively low preferences for 

improvements at the survey river as they may be motivated by preferences for 

improvements at substitute sites which they visit more frequently (see Table 49). 

Given that the focus of this study was to develop a method to disentangle 

preferences for ecological and recreational water attributes, it did not include 

analyses of respondents’ preferences for substitute sites, benefits transferability, 
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framing or respondents’ insensitivity to scope. With this in mind, it is not prudent 

to extrapolate the results of the models reported here to estimate preferences 

with accuracy spatially elsewhere. These issues are discussed further below. 

More generally, within this case study area the location which would appear to 

yield the highest net recreational benefits would be the area surrounding the 

centre of Norwich. This would take full advantage of the close proximity of the 

largest proportion of potential recipients.. On a national scale, the locations which 

may yield the highest net benefits from recreational improvements could include 

sites such as the River Trent at the location of the National Water Sports Centre, 

which, as discussed previously, suffers financial losses and disruption due to poor 

water quality. Other river locations with substantial numbers of recreational users, 

such as lengthy stretches along the River Thames upstream of Westminster, may 

also yield high use values. 

A targeted approach to remediation schemes may help to minimise the tangible 

financial losses to boating, swimming and other river recreation clubs and the 

losses due to ill-health. Improved recreational water quality may help to promote 

recreational use of rivers leading to, among other benefits, increased revenues 

once rivers have gained reliable reputations as safe venues due to consistently 

high water quality. 

The major motivation for the majority of the respondents within this research 

concern the ecological quality of river water. With this in mind we should expect 

proportionately more resources to be targeted towards improving the ecological 

quality of our rivers. Bateman et al. (2006a) speculate that we might expect to 

find less distance decay in pure non-use ecological values. Within CL Model 4 

(Table 51, Appendix V) in the present study there is a distance threshold in 

ecological values, e.g. baseline respondents living further than 8km from the river 

are WTP 38.8% less for high ecological water quality. It is important to note that 

this reduced benefit value does not necessarily indicate a distance decay in pure 

non-use values. Within this analysis non-users (who were not intentionally 

sampled) are conflated with non-visitors (i.e. those who did not visit the survey 

river in the year prior to the study). This issue is discussed in further detail below.  
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Given a targeted approach to ecological pollution remediation by management 

authorities, within the geographical area of the present study, we should perhaps 

expect the majority of ecological quality improvements to be made close to, but 

upstream of, the major urban area, Norwich. The reasons for this assumption are 

twofold. This study finds that ecological improvements close to urban areas 

adjacent to the river would receive the largest numbers of beneficiaries and, 

accordingly, higher levels of ecological use benefit values. Secondly, areas 

downstream of Norwich may require more costly pollution remediation measures 

due to pollution derived from human effluent emissions into the Yare from the 

wastewater treatment works at Postwick, downstream of the survey river stretch. 

Previous research (Hampson et al., 2010) found that the water quality in upland 

headwaters tends to be relatively high. Although remediation costs in those areas 

may be low, the number of beneficiaries in those relatively unpopulated and 

inaccessible areas is also low, which generates low use benefit values. 

What these last few paragraphs have highlighted is the emphasis which must be 

made on spatial location in planning decisions. The benefits of remediation vary 

substantially across space, such that there is little point in spending scarce 

resources on remediation measures in locations where there are little or no net 

benefits. We find that respondents have preferences not only intricately related 

to the nature of the good, but also related to its distance from them and related 

to the availability of substitute goods. For example, within this research, 

respondents at Wroxham or Bungay have little or no incentive to visit the Yare as 

they have high quality recreational sites available locally. A close examination of 

the effects of distance decay on benefit values, and the availability of substitute 

venues, will better enable planners to examine the benefits arising in different 

locations and help transform scenario analyses into optimal analyses for different 

types of investment and remediation schemes. 

In recent years the field of environmental economics has increasingly sought to 

develop spatially transferable models. As we have seen in the preceding 

chapters, transferable results are advantageous in terms of reducing not only the 

financial and temporal analytical costs, but also because such models provide 

insights into the optimal locations in which to undertake more comprehensive 

assessments of the effects of environmental change. The transferability of 
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predictive models is a contentious issue within water valuation research given the 

frequently disparate nature of highly localised factors. Different areas are subject 

to different pressures, in terms of pollution sources, concentrations and vectors. 

These same areas differ in terms of the spatial distributions and densities of the 

potential beneficiaries arising from remedial measures. This complex interplay 

between costs and benefits and the nature of potential remedial measures, has 

not been fully addressed by this research. The conclusion to this thesis explores 

the limitations of the research and examines ways in which this work may be 

improved and extended in order to produce more robust, transferable outcomes. 

3.7.1 Limitations and potential improvements to the research within 

Chapter 3 

As mentioned above, it may not be prudent to extrapolate the WTP estimates 

obtained by this research to calculate total welfare estimates for ecological and 

recreational improvements held by the wider population. There are several 

reasons for this. 

At worst case, WTP values are potentially too high to be meaningful. Although 

the perceptions-based estimates of annual household WTP (i.e. High ecological 

quality = £55.46/household/year and High recreational quality = 

£21.03/household/year from CL Model 6 (Table 38), and High ecological quality 

= £63.01-64.06/household/year and High recreational quality = £26-43-

26.83/household/year from LC Model 8 (Table 48)) produce values not too 

dissimilar from Metcalfe et al. (2012) (i.e. £66.40-76.20/household/year/up to 

2015 for a bundle of attributes (Table 24), Hanley et al. (2006) (i.e. £28.57-

42.99/household/year for individual attributes at the Clyde (Table 24)), or Doherty 

et al. (2012) (i.e. €129/household/year for a bundle of waterbody attributes at 

‘good’ quality), the scale of the improvements proposed within this study differs 

markedly. Within this CE respondents were responding to potential changes to a 

20km stretch of the River Yare. Respondents in the Hanley et al. study were 

providing welfare estimates for improvements to the whole of the River Clyde, 

whereas in Metcalfe et al., respondents provided welfare estimates for either 

improvements to rivers in their local area or, as in Doherty et al., rivers nationally. 

Clearly the scale of proposed waterbody improvements is a limiting factor to the 

reliability of WTP values reported here: it isn’t reasonable to scale WTP values 
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for a 20km stretch up to provide estimates of WTP for the thousands of kilometres 

of rivers nationally. Within the present study a defined stretch of a single survey 

river was chosen to examine potential effects of distance decay on respondents’ 

utility for ecological or recreational or both water quality attributes. A stretch-

based approach was also used to aid compatibility with the stretch-based 

approach used in the ChREAM project. It is entirely possible that if the wording 

of the survey used here (see Appendix III) was framed differently (e.g. prompted 

respondents to consider changes to all rivers, rather than to a 20km stretch of a 

single river), more realistic, transferable, WTP estimates may have been 

obtained. Metcalfe et al. accounted for scale. They observed WTP of 

£66.40/household/year for 95% of local rivers to be improved to ‘good’ ecological 

status and £76.20/household/year for 95% of national rivers to be improved to 

the same standard. 

There are other reasons why the WTP values reported here may be 

unrepresentative. The most obvious reason is that visitors to the survey site and 

recreational users (i.e. swimmers and rowers) were over-sampled. This was by 

design: to reveal and examine a suite of preferences for different aspects of river 

water quality and recreational functions of the survey river. Issues of sample 

weighting and sample representativeness are discussed further below. 

Combined WTP values for both water quality attributes to be brought to ‘good’ 

ecological status in the present analysis range from £76.49/household/year (CL 

Model 6, Table 38) to £90.49/household/year (LC Model 8, whole sample, Table 

48). These estimates exceed the value of the bundle of water quality attributes at 

the River Wear (£36.93/household/year) but are less than the aggregated welfare 

of improvements at the river Clyde (£110.26/household/year) (Hanley et al. 

(2006), Table 24). Hanley et al. found that, despite the same survey design being 

employed in both places and despite both rivers being superficially similar, 

benefits transfer tests were rejected as preferences differed significantly across 

the two studies, potentially due to differences in unobserved psychological 

characteristics and/or cultural values. Socio-economic and quantitative 

demographic characteristics aside, it is not possible to say whether the latent 

psychological and cultural preferences for river quality held by the present sample 

of respondents is representative of those held by people in other areas within the 
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UK. The increased use of quantified qualitative research methods in 

environmental economics, such as Q Methodology (see for example Brown 

(1980), or Watts and Stenner (2012)), may aid the characterisation of 

respondents’ psychological preferences. A mixed methods27 approach towards 

incorporating such qualitative data into economic valuation (e.g. Aldrich et al. 

(2007) or Hunter et al. (2012)), may help improve our understanding of how 

populations differ culturally and also help us to identify the characteristics of a 

psychologically representative sample.  

Although the number of attributes used in this study was deliberately kept low, 

the DCE multiple-attribute design format used here may introduce error in welfare 

estimates. Previous studies such as Foster and Mourato (2003) and Hanley et al. 

(1998) have found that the DCE multiple-attribute format can produce higher 

values for a package of improvements rather than a CV focused on a single 

aggregated policy change. Metcalfe et al. (2012) suggest that this may be a 

function of respondents placing less weight on the cost attribute when it is varied 

simultaneously with other attribute. 

During the experimental design the range of price levels was intentionally kept 

relatively low. There are several reasons for this: it would be unrealistic for 

respondents’ annual water bills to rise dramatically (e.g. there would be a public 

outcry if bills were to double or triple for the purpose of river pollution remediation) 

and such extreme increases, within the experimental setting, may have led to 

attribute non-attendance (i.e. respondents ignoring the ecological and 

recreational attributes to focus on selecting the lowest available price alternative) 

or hypothetical bias (i.e. respondents rejecting the premise of the choice 

experiment as they believed it to unrealistic, and, consequently, providing ill-

considered answers). Naturally there will be respondents for whom increased 

price is a considerable burden and, for those respondents, a low range of prices 

will be sufficient to capture their sensitivity to price. For other respondents, for a 

variety of reasons (e.g. higher income, greater wealth, etc.), increased price may 

not be so constraining: an increase of £100 per year (£1.92 per week) may be 

                                            
27 Where mixed methods is defined as the “collection or analysis of both quantitative and 
qualitative data in a single study in which the data are collected concurrently, both are given 
priority, and involve the integration of the data at one or more stages in the process of research.” 
(Cresswell et al., 2003). 
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insignificant. The price vector used in this research may have been too low to 

fully capture their sensitivity to price. A higher maximum value, e.g., £200, as 

used by Metcalfe et al. (2012), may be more appropriate. 

A further criticism of the selection of price levels is that a price level of zero is 

unrealistic (e.g. all improvements are costly). There are a number of experimental 

reasons why we would want to have a zero cost in the choice alternative attribute 

bundle. Firstly, a zero price enables a sense check to see if respondents behave 

in an illogical manner (e.g. it would be worrying if more people rejected, rather 

than selected, a zero price), or check if respondents are protesting. We may also 

want to see the possible shape of the trade-off between money and the different 

improvements, to allow for a non-linear relationship: if we only had prices of, for 

example, £3, £5 or £10, the ‘real’ price may be outside of that range (e.g. £1, or 

£12) and we may then need to extrapolate outside of the range of the data to 

calculate the relationship between benefits and costs, e.g. calculate what 

respondents’ WTP may be for different levels of the water quality attributes. 

Another problem of a zero cost may be that it may promote strategic behaviour, 

where the respondent, realising that on one choice occasion was able to get a 

bundle of goods for zero, begins to act strategically and rejects non-zero, or the 

higher price of the alternatives, in other choice sets. This suggests a failure of the 

design to be incentive compatible, e.g. respondents may provide misleading 

answers. However, this argument can occur at any price level, e.g. the next 

lowest price level. As soon as respondents realise that that could get an 

improvement for, say, £3, they may then begin to behave strategically and reject 

price options that exceed £3. 

We may consider if having a zero cost undermines the credibility of the 

experiment. For example, if a zero cost introduces hypothetical bias, where 

respondents disbelieve the premise that improvements, or a bundle of attributes, 

can be provided at zero cost. However, from a purely experimental perspective, 

having a zero cost is perfectly reasonable: an improvement in the recreational 

attribute may be accompanied by both a deterioration in the ecological attribute 

and by a zero price increase - the implication is that an increased level of one 

service is offset by a lower service elsewhere with no net increase in price. 
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During post-survey interviews, a small proportion of respondents reported 

lexicographic preferences or attribute non-attendance, depending on their 

personal preferences. Lexicographic behaviour is non-compensatory: 

respondents do not consider all attributes but instead adopt an attribute 

processing strategy to ease their decision-making, such as always choosing the 

cheapest alternative (Campbell and Lorimer, 2009). 

Overall, all levels of all attributes within both the CL and LC results were 

significant, complete and transitive, and respondents’ preferences for attribute 

levels appear consistent (Tables 29-31), which suggests a reasonably low level 

of attribute non-attendance. At a group level, we find that certain respondents, 

e.g. swimmers, are not prepared to trade off reductions in recreational water 

quality, suggestive of a lexicographic preference for water quality within this 

group: several of the swimmers reported selecting only the choice options which 

maximised recreational water quality. Other respondents reported that they were 

motivated by the smallest increases in the cost attribute. 

The above examples may be considered rational circumstances in which value 

estimates demonstrate attribute non-attendance, lexicographic preferences or 

responsiveness to scope (Heberlein et al., 2005; Rollins and Lyke, 1998), that is, 

such preferences reasonably reflect the manifestation of underlying preferences 

that are truly lexicographic (Atkinson et al., 2000). Consequently, such ‘irrational’ 

responses were retained (Lancsar and Louviere, 2006). The issues of attribute 

non-attendance and lexicographic preferences could be further analysed but, 

within this analysis, as in Campbell et al. (2011), a latent class framework that 

defines classes based on rules that recognise the non-attendance to one or more 

attributes, was preferred. 

Within the survey design, to minimise the complexity of choice options, alternative 

river sites (or substitute activities) were not offered to respondents within the 

choice options. Consequently, there was not sufficient information collected to 

determine variations in insensitivity to scope. While scope is an important issue 

with a contentious literature (e.g. Diamond and Hausman 1994; Hausman, 2012; 

Heberlein et al. 2005; Powe and Bateman 2004; Veisten et al., 2004), the focus 

within the present research was on disentangling and examining preferences for 
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ecological and recreational water quality for a single site, not on measuring 

respondents’ preferences for the survey river against substitute river sites or 

against alternative recreational activities. The availability of, and respondents’ 

preferences for, alternative recreational sites undoubtedly influenced 

respondents’ choice decisions, particularly among respondents who lived at 

greater distances from the Yare: during the post-survey interviews it was found 

that respondents living closer to alternative high quality sites, e.g. the Wroxham 

Broads or the River Waveney at Beccles, preferred to visit those sites, rather than 

travel to the Yare. 

A relatively small sample has been used in this research. There are a number of 

reason for this which are outlined from p.189. A small sample is probably less 

representative of the overall population. There is an argument that the sample 

should be weighted to try to make it more representative of society, e.g. add 

weight to population groups underrepresented within the sample, so that such 

groups have more weight within the analysis, and, therefore, the analysis is more 

representative of the overall population. With a sample of 200, some of the 

weights could be quite strong because in some respects the profile of the sample 

are quite different from the wider population (e.g. different ethnicities are 

underrepresented within the sample). Weighting could have been done if the 

purpose of the analysis was to produce data representative of the UK population. 

However, the purpose of this work was not to produce values suitable for CBA 

for national decision making. What has been done is the development of a 

method that allows us to distinguish between ecological and recreational 

preferences, in a format that can be adapted for use within the ChREAM project, 

and to assess those differences within the present sample. The results from this 

research, with further analysis and with weighting applied, can be applied to 

inform the ChREAM study (in which there is currently no way to disentangle 

preferences for ecological and recreational attributes). The results obtained using 

the current methodology are informative for several reasons. The significant 

impact of distance (in CL Model 4) on respondents’ preferences for high 

recreational quality suggests that it is likely that recreational values are relatively 

spatially confined (and ecological values relatively less spatially confined): if there 

are rivers close to areas where demand for recreational use is high, preferences 
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for recreational quality are likely to be higher whereas for more distant rivers 

preferences for recreational use are likely to fall away. What could not be 

distinguished from the ChREAM results, is whether recreational values fall with 

distance: if the preferences motivating ChREAM respondents are predominantly 

recreational it would suggest that there is little value in improving remote rivers. 

However, in common with Doherty et al. (2014), this work shows that ecological 

values are typically higher than recreational values. Metcalfe et al. (2012) suggest 

that the relative values of the non-cost attributes derived from a DCE can be 

considered reliable, but that total values, which depend on cost, may be biased 

upward. Further analysis of the ChREAM data should be taking account of the 

results presented here. It is accepted that the unweighted values reported here 

should not be used in their raw form within CBA. 

Previous research has shown that, with an efficient experimental design, effective 

results are possible with small samples (e.g. Hanley et al., 1998, 2005, 2006; 

Rolfe et al., 2000; Wattage et al., 2005). However, a larger sample for any future 

extension of this research is desirable for several reasons. Firstly, a larger sample 

may reduce noise in the error term and produce narrower confidence intervals. 

Although the results reported here are broadly similar to those obtained by 

ChREAM research, there are differences. We see that CL Model 2 (Table 51) has 

overlapping confidence intervals for Yellow and Green ecological quality levels 

(cf. the confidence intervals of the Yellow and Green water quality levels of the 

larger ChREAM survey, on Table 25, which do not overlap). Secondly, the small 

sample size (and the low mean distance respondents live from the survey river) 

causes difficulties in estimating the impact distance has on respondents’ WTP for 

river improvements. A larger sample size, and more variability in respondents’ 

distances from the survey river, may enable the experiment to better reveal 

respondents’ nuanced distance-sensitive preferences for water quality attributes. 

This research fails to capture the non-use values which may exist within a 

proportion of the sample. The survey summary statistics, on Table 32, show that 

43% of respondents didn’t visit the survey river stretch of the Yare over the year 

prior to the study. Furthermore there appears to be a relationship between the 

frequency of visitation and WTP (see, for example, the rate of visitation of Class 

3 respondents in the LC models). Nevertheless, there is no evidence that any of 
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the respondents are pure non-users. It is of course feasible that non-users might 

hold differing values for improving the River Yare. Arguably a less 

methodologically inclined study which focusses solely upon estimating the total 

value for improvements should include pure non-users. However, this was not 

the purpose of this study which was more concerned with developing an 

approach to disaggregate the effects of ecological and recreational 

improvements upon WTP values. 

As mentioned during the conclusions to this chapter, the transferability of 

research findings is a contentious issue within water valuation research (e.g. 

Bateman et al., 2011; Hanley et al., 2006b). Although this research primarily 

sought to disentangle and examine the relationships between the different 

sources of non-market values, it was also designed to supplement and integrate 

with the analysis of the wider effects of land use change conducted under the 

ChREAM research programme (Bateman et al., 2006a). The survey instruments 

used in this research were designed to capture data that may be used to produce 

alternative valuation assessments, e.g. travel cost assessments of benefit values, 

in such a way that integrates with the ChREAM dataset. It may also be possible 

to use this research to devise methods by which the larger ChREAM dataset may 

be reanalysed to disentangle and measure the differences in preferences 

between ecological and recreational benefit values. The results presented here 

may also help guide interpretation of any future LC analysis of the ChREAM 

dataset. Given the similarities in their research designs, the larger ChREAM 

dataset may be useful in helping to test the spatial transferability of the results 

obtained during this analysis. Given the limitations of the present research, 

outlined above, it would not be prudent to use the estimates of WTP in their 

present form for benefits transfer. 

Norwich may be atypical among UK cities in providing high quality riverine 

recreation facilities, as the city caters for a range of tastes by offering a variety of 

river recreation clubs, venues and activities. This research found that the majority 

of recreational users live close to the sources of their recreation. The situation 

invokes Gidden’s theory of structuration (Giddens, 1984), as the nature of the 

relationship between the agents (rowers, swimmers) and the structures in place 

to support them (clubs, recreation infrastructure) is unclear from the findings of 
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this research. For example, have the recreationalists (agents) been drawn to the 

recreational structures, or have the recreational clubs (structures) developed to 

meet agents’ demands for river recreation? Within Norwich the relationships 

between structures and agents may be difficult to assess due to the stability and 

longevity of those recursive relationships. This research found that those 

respondents whose primary motivation is high recreational water quality, despite 

having high WTP values, may not be able, or are unwilling, to visit more 

frequently. However, in other cities where the infrastructure supporting river 

recreation is less developed, there may be a high latent demand among potential 

recreationalists for increased recreational opportunities. Assessing whether the 

necessary structures are in place for those agents to enjoy, or whether the 

demand from agents is sufficient so that structures ought to be put in place, may 

be desirable as these considerations may affect non-market use values 

considerably. 

Within this research, potential reasons why several respondent types are 

unwilling to increase their number of visits are discussed. For example, rowers 

typically visit in excess of three times per week, and, as such, could be assumed 

to receive no marginal benefit from improved water quality. The elasticities of 

future visits of the different respondent classes within the LC models were also 

discussed. During that discussion it was found that while classes 1 and 3 were 

somewhat ambivalent about future trips, the postestimation estimates for Class 

2 respondents (who prefer the ecological quality of the river) shown on Table 49, 

predicted that they would double their annual number of trips if the water quality 

was guaranteed to be high. Do these results simply suggest that ecological 

quality improvements should be the preferred remediation strategy, given the 

potentially large increase in utility by those respondents who predominantly 

favour ecological water quality? This type of research question is worthy of future 

investigation, particularly if increased uptake of river recreation is desirable as a 

policy objective. 
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Postscript 

The implications for water policy and the utility of this research following 

the decision to leave the EU 

The decision to leave the EU may potentially result in legislative changes in the 

mid- to long-term. As mentioned in the introduction, the research presented in 

this thesis can be decoupled from the legislative imperatives of the WFD. And, 

depending on the shape of future legislation, this research may have enhanced 

relevance as UK policymakers become tasked with modifying legislation to suit 

an altered socio-economic climate. The potential shape of the UK’s post-Brexit 

water policy, and the implications for the value of this research, are now 

discussed. 

At the time of writing (November 2016) it is uncertain what the future holds for UK 

water policy or what impacts the decision to leave the EU will have. 

Environmental protection does not exist in a vacuum but must be viewed 

alongside a range of interrelated and competing factors, including the perceived 

need to control immigration or the economic imperative to retain access to the 

EU common market. Lloyd Martin, chief executive of British Water, said “following 

the result of the referendum on EU membership, industry finds itself in uncertain 

yet stimulating times” (Freyberg, 2016). The same uncertainty holds for the 

agricultural sector. Although the government were quick to reassure the sector 

by guaranteeing the current level of direct agricultural subsidies up to 2020, in 

line with the current CAP funding period (H. M. Treasury, 2016), many 

commentators agree that post-Brexit, post-CAP fiscal constraints will reduce the 

level of support available for UK agriculture (ADAS, 2016; House of Commons 

Environmental Audit Committee, 2016). This uncertainty has prompted Defra to 

delay publication of its 25-year Food and Farming Plan until there is a greater 

understanding of the outcome of the EU-exit negotiations (Farming Online, 2016). 

The direction new legislation may take is dependent on two major factors: the 

future relationship the UK has with the EU and the objectives the UK government 

chooses to adopt regarding environmental issues. These factors are not mutually 

exclusive. In the short term, EU directives that have already been adopted into 

domestic UK legislation will continue to apply until they are repealed or amended 
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by the government (Institute for European Environmental Policy, 2016). The 

future relationship with the EU is the key determinant of future UK water pollution 

legislation, as that relationship may be conditional upon the UK retaining aspects 

of EU policy. 

In the near future, the UK government aims to embark on unprecedented Article 

50 exit negotiations and is reticent to reveal its negotiating position. The shape of 

the UK’s future relationship with the EU has been the subject of much conjecture 

and commentators foresee several possible scenarios, the two extremes of which 

will now be outlined in turn. 

Stanley Johnson (Boris Johnson’s father), the co-chair of Environmentalists for 

Europe and one of the original authors of EU environmental legislation, believes 

that future environmental regulations are currently a low priority for the UK 

government (Neslen, 2016). Of greater priority is the need to try to retain 

unfettered access to the EU’s single market which, in 2015, accounted for 44% 

of UK exports and 53% of UK imports (Institute for European Environmental 

Policy, 2016; Miller, 2016). In addition, the government is under pressure to retain 

harmonised regulations and standards from innumerable sources, across all 

sectors of the UK economy, including manufacturing (Ministry of Foreign Affairs 

of Japan, 2016) and the financial services sector (Elgot, 2016). One post-Brexit 

relationship which would achieve these objectives would be to become a member 

of the European Economic Area (EEA), which allows members to freely move 

goods, services and capital within the EU single market. This solution, widely 

touted by the press as a “soft Brexit,” or “the Norway model,” would result in the 

UK being bound by many existing pieces of EU environmental legislation, 

including the WFD. However, EEA countries do not have to comply with all EU 

legislation: most crucially for the present research, the UK would no longer be 

bound by the rBWD or the SWD (Institute for European Environmental Policy, 

2016), which have been the key drivers of improvements to UK water and 

wastewater quality (Freyberg, 2016). 

Membership of the EEA would preserve the free movement of EU citizens into 

the UK. Given the Brexit Leave Campaign’s vociferous focus on controlling 

immigration, the government may consider EEA membership to be politically 
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untenable (Davies-Boren, 2016). An alternative scenario, “hard Brexit,” would 

position the UK outside of the EU entirely. This would enable the UK to have 

greater control over immigration policy, at the expense of preferential access to 

the internal market (Institute for European Environmental Policy, 2016). Under 

this scenario the UK would cease to be bound by EU environmental legislation. 

Naturally, there are a number of variations to the relationship the UK could adopt 

with the EU, post-Brexit; but the two scenarios outlined above describe the 

extremes of the continuum with regard to the UK’s continued adherence to EU 

water quality legislation. Whatever the future holds, it is clear that in the mid- to 

long-term the UK’s environmental policy has the potential for change, the extent 

of which is subject to competing ideologies. 

Currently, EU water policy is transposed into domestic legislation. Given the 

transboundary nature of environmental pollution, it may be unlikely for the 

government to abandon co-operative arrangements to tackle environmental 

degradation. Defra minister, Rory Stewart, has stated "the basic structure of 

European environmental law in relation to our Department, I think, is very close 

to what we think is sensible. It is what we would intend to do in the United 

Kingdom" (BBC, 2016). This sentiment is echoed by the Chartered Institution of 

Water and Environmental Management, which believes “the logic of an EU-led 

initiative on the environment is sound” (Freyberg, 2016). 

Others are far less optimistic. In the worst case, Dr Charlotte Burns, of Friends of 

the Earth, warns of an erosion of UK environmental policy whereby the UK 

regains a reputation for being the ‘Dirty Man of Europe’ (2016). To a lesser 

degree, this pessimism is shared by the House of Commons Environmental Audit 

Committee, which recently reported “the overwhelming evidence is that EU 

membership has improved the UK’s approach to the environment and ensured 

that the UK’s environment has been better protected… Many witnesses implied 

that if the UK were free to set its own environmental standards, it would set them 

at a less stringent level than has been imposed by the EU" (House of Commons 

Environmental Audit Committee, 2016). Kerry McCarthy MP, the Shadow 

Secretary of State for the Environment, Food and Rural Affairs, shares these 
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concerns that Brexit jeopardises the future quality of the UK’s environmental 

quality (Landscape Institute, 2016). 

While it is unlikely that the UK’s environmental policy would change immediately 

following Brexit, there is an emerging consensus that the future for water policy 

lies in subsequent amendments to existing legislation (Country Land and 

Business Association Limited, 2016; Shepherd and Wedderburn LLP, 2016). This 

view is shared by Antoine Simon, legal expert at Friends of the Earth Europe, 

who said “what would change is that future governments would be able to review 

the environmental legislation in place and apply the standards they deem useful, 

or reasonable, or necessary” (Davies-Boren, 2016). 

Post Brexit, there are opportunities for a simpler agricultural policy which could 

focus on the UK’s priorities for a competitive agricultural sector, with an increased 

emphasis on efficiency, streamlining and deregulation (H.M. Treasury, 2016; 

Cowell and Owens, 2016). The Eurosceptic, George Eustice, promoted by Prime 

Minister May to Minister of State at Defra (Tasker, 2016), believes the UK could 

develop a more flexible approach to environmental protection following Brexit 

(Neslen, 2016). This perspective has raised doubts concerning the 

implementation and enforcement of environmental legislation, as the UK 

becomes subject to a simplified judicial process (Miller, 2016). There are also 

concerns that policymakers may return to legislating on environment issues in a 

fragmented and ad-hoc manner (Lowe and Carter, 1994), or that policymakers 

may expand ineffective voluntary regulatory frameworks (Mitchell, 2016). 

Environmental organisations warn of public outcry if environmental legislation 

were to be seriously compromised. The head of WWF UK, David Nussbaum, 

warns "there will be one mighty battle if the government uses Brexit to try to 

reduce standards on the environment. Why should we in the UK have a worse 

environment than our neighbours?” (Harrabin, 2016; Mitchell, 2016). 

Whatever the exit conditions, UK agricultural policy is likely to change as, even 

with a “soft Brexit,” EEA members do not participate in the CAP (Burns, 2016). 

The government has indicated that without the CAP it would be unlikely to 

maintain current levels of agricultural subsidy (H.M. Treasury, 2016). If direct 

subsidies to the agricultural sector are reduced, the House of Commons 



 

266 
 

Environmental Audit Committee (2016) predicts that structural changes will occur 

within the farming sector, with a transition to fewer, larger producers, which are 

better able to remain competitive due to improved economies of scale. Structural 

change carries risks of detrimental consequences for the environment: the LUAM 

‘healthy diet’ scenario analysis (Figure 18 in Chapter 2) predicted a rise in 

localised FIO pollution corresponding with a structural change towards larger, 

more intensive dairy enterprises. 

Environmental groups have expressed concerns about the overall level of funding 

for agri-environmental protection schemes outside of the CAP (H.M. Treasury, 

2016). The government recognises environmental degradation as a market 

failure in the agricultural sector and, in return for continued agricultural subsidies, 

may require environmentally sensitive farming practices governed by an 

ecosystem services approach (ADAS, 2016; H.M. Treasury, 2016) or a move 

away from the blanket principles of EU legislation, towards a greater utilisation of 

CBA to assess specific changes in the agricultural sector (H. M. Treasury, 2003). 

As with the agricultural sector, the water industry may be subject to legislative 

changes. Recent analysis by Defra found no significant changes in the overall 

number of water bodies classified at ‘excellent’ or ‘good’ surface water status 

between 2008 and 2012 (Institute for European Environmental Policy, 2016). In 

the face of frequent criticism for non-compliance with EU rBWD standards, and 

in the case of a soft Brexit, the UK may decide to relax bathing water legislation 

(DWF LLP, 2016). Under Brexit outside of the EEA there could be a retreat from 

the tough objectives of the WFD (Institute for European Environmental Policy, 

2016). British Water, the industry trade association, has said that leaving the EU 

is “certain to have a significant impact on a sector where considerable investment 

is driven by EU directives on water, wastewater and the environment” and has 

begun lobbying for a relaxation of water quality legislation (British Water, 2016; 

Freyberg, 2016). 

This section has provided a broad overview of the likely challenges faced by 

policymakers, the agricultural sector and the water industry as a result of Brexit. 

The UK may obtain greater flexibility to shape the future direction of 

environmental legislation and, if so, it is likely that the UK will make greater use 
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of CBA within decision making. Defra will become tasked with shaping legislation 

to suit an altered political and economic climate and will require guidance in the 

coming years. Post-Brexit, the research presented within this thesis - modelling 

FIO pollution in response to land use change and assessing the non-market 

benefits of alternative water quality investment strategies - becomes more 

relevant. 
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Appendices 

Appendix I: Agreement between Professor Dave Kay (CREH) and 
Professor Ian Bateman (UEA) concerning collaborative work under 
the ChREAM project 
Rationale for the agreement 

This agreement sets out plans and conditions regarding the above collaboration. 

It is necessitated because of the commercial sensitivity regarding the data and 

models held and to be generated by CREH concerning the determinants of faecal 

indicator organism (FIO) levels in UK rivers. The agreement is designed to 

facilitate full collaboration between CREH and UEA so as to fulfil the requirements 

of the ChREAM project. It is also hoped that this may provide a basis for more 

long-term collaboration. 

Introduction to the research 

The ChREAM project covers a wide variety of work. However, of particular 

relevance to this agreement is the modelling of the impact of land use change 

(typically initiated by policy implementation or shifts in market forces) upon river 

water quality. While other work considers impacts in terms of nutrient levels, the 

CREH/UEA collaboration examines fluctuations in FIO levels as a result primarily 

(but not exclusively) of land use change. Carlo Fezzi and Ian Bateman of the 

ChREAM project at UEA are developing a land use model intended to predict 

changes in land use pattern as a result of the above policy and market drivers. 

This modelling exercise combines temporal and cross sectional panel data on 

agricultural land use and farm finances to predict land use under a variety of 

scenarios. 

The key research objective of the planned collaboration is to link a unified model 

of FIO fluctuations to the land use model. This will allow inspection of how 

changes in land use affect FIO response. 

There are a number of stages in achieving this. In overview these are as follows: 

1. UEA is in the process of providing CREH with land use, environmental 

characteristic and population data covering all of the catchments for which CREH 

hold FIO records. That data is also held for the whole of the UK; a point which 
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will be vital to the transfer exercise described subsequently. For example, it is 

expected that shifts in population and climate change may also be amenable to 

incorporation within the FIO modelling exercise. 

2. CREH have already undertaken research to combine all of their FIO catchment 

data together. They will use the UEA data to provide a consistent set of predictors 

of FIO fluctuations. CREH will undertake a new modelling exercise using this 

consistent set of predictors. Once the initial analysis is complete CREH will invite 

Danyel Hampson (PhD student, UEA – Dave Kay being an external supervisor 

and Ian Bateman being the lead internal supervisor) to be involved in further 

aspects of this process (those aspects to be agreed), the intention being that his 

work will form a valid element in his thesis. Carlo Fezzi and Ian Bateman will liaise 

with CREH to ensure that the FIO model is compatible with the land use model. 

3. CREH will provide the full details of FIO model (including estimated 

parameters, standard errors, etc.) to Ian Bateman who will take responsibility for 

its confidentiality at UEA (see notes on publication etc. subsequently). 

4. The FIO model will be linked to the land use model in such a manner that each 

scenario run of the latter generates estimates of FIOs. The objective is to allow 

the joint model to run to optimise in a manner that maximises farm profit subject 

to constraints imposed by river FIO and nutrient levels. Further scenarios will also 

be considered for alternative optimisations (e.g. in respect of minimising FIOs, 

etc.) 

5. Because the joint land use and FIO model runs on common variables, and the 

latter are held for all points across the UK, the intention is to extrapolate to this 

wider area. 

6. A range of further collaborative extensions are foreseen. For example, as part 

of his thesis Danyel Hampson will undertake a study into the various economic 

values (including informal recreation) that may be generated by reductions in FIO 

levels. Danyel will also be assisted by Dave regarding modelling of the health 

consequences of such changes. 
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Conditions of agreement 

Professors Dave Kay and Ian Bateman jointly agree to the above work plan 

subject to the following conditions: 

1. At the end of the ChREAM project any data supplied and all details of the FIO 

model will be deleted or returned to Professor Dave Kay unless he asks 

otherwise. 

2. At no point will any data, model parameters or any information be published or 

otherwise disseminated which could allow a third party to operationalise the FIO 

model. 

3. Instead it is foreseen that publications will focus upon summary statistics and 

mapped outputs from the model and relationships described in terms of 

directional responses rather than quantified parameters. 

4. To guarantee the above, Professor Dave Kay will hold a veto over any 

publication or other output concerning the FIO aspect of ChREAM. 

Ian Bateman 

26th February 2008 

i.bateman@uea.ac.uk 
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Crowther, J., Hampson, D., Bateman, I. J., Kay, D., Posen, P., Stapleton, 
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concentrations in the UK. Working paper ECM 10-01, Norwich: The 

Centre for Social and Economic Research on the Global Environment 

(CSERGE), University of East Anglia. 

Crowther, J., Hampson, D., Bateman, I. J., Kay, D., Posen, P., Stapleton, 

C. and Wyer, M. (2011). Generic modelling of faecal indicator organism 
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Hampson, D., Crowther, J., Bateman, I. J., Kay, D., Posen, P., Stapleton, 
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Bateman, I. J., Binner, A., Coombes, E., Day, B. H., Ferrini, S. Fezzi, C., 

Hampson, D. and Posen, P. (2010). “The ChREAM and SEER Projects”, 
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poster and group presentation to HRH The Prince of Wales, 26 January 

2010, University of East Anglia, Norwich. 

Bateman, I. J., Coombes, E. and Hampson, D. (2010). “The ChREAM 

Project”, poster presentation at the Royal Norfolk Show, 29 June 2010, 

Norfolk Showground, Norwich. 

Hampson, D., Bateman, I. J. and Lovett, A. (2008). “Predicting faecal 

organism pollution in riverine environments in response to land use 

changes”, paper presented at the University of East Anglia School of 

Environmental Sciences Seminar Series, 5 June 2008, School of 

Environmental Sciences, University of East Anglia, Norwich. 

Hampson, D., Bateman, I. J. and Lovett, A. (2009). “Benefits of reducing 

microbial river pollution”, poster presentation at the Environment Agency 

‘Better Environments, Better Lives’ Conference, 27 February 2009, 

Birmingham, England. 

Hampson, D., Crowther, J., Bateman, I. J., Kay, D., Posen, P., Stapleton, 

C., Wyer, M., Fezzi, C., Jones, P. and Tzanopoulos, J. (2010). “Predicting 

Microbial Pollution Concentrations in UK Rivers in Response to Land Use 

Change”, paper presented to the University of East Anglia Water Security 

Research Centre, 5 March 2010, University of East Anglia, Norwich, 

England. 

Hampson, D., Crowther, J., Bateman, I. J., Kay, D., Posen, P., Stapleton, 

C., Wyer, M., Fezzi, C., Jones, P. and Tzanopoulos, J. (2010). “Predicting 

Microbial Pollution Concentrations in UK Rivers in Response to Land Use 

Change”, paper presented at the International Water Association Water 

Research Conference, 11-14 April 2010, Lisbon, Portugal. 

Hampson, D., Ferrini, S., Rigby, D. and Bateman, I. J. (2016). “River 

water quality: who cares, how much and why?”, paper presented to the 

School of Agriculture, Food and Rural Development, Newcastle 

University, 3 February 2016, Newcastle. (paper presented by S. Ferrini). 
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Hampson, D., Ferrini, S., Rigby, D. and Bateman, I. J. (2016). “River 

water quality: who cares, how much and why?” Paper presented at the 

European Association of Environmental and Resource Economists 22nd 

Annual Conference, 22-25 June 2016, Zurich, Switzerland. Available 

online at: 

http://www.webmeets.com/files/papers/EAERE/2016/471/2016_EAERE

_final.pdf, last accessed 12 August 2016. (paper presented by I. J. 

Bateman). 

Press releases 

Natural Environment Research Council (2011), Fences Help Clean Up 
Livestock Pollution of Rivers, 8 March 2011. 

Rural Economy and Land Use (2010), Fences Could Help Clean Up 
Watercourses, 20 September 2010. 

Finally, post-doctoral research, which incorporates elements of the research 

conducted within thesis, was presented at the 2013 annual meeting of UK Q 

users: 

Hampson, D., Bateman, I. J., Simmons, P. and Rigby, D. (2013). “Using 

Q methodology to reveal non-expert preferences on UK river water 

quality issues: a pilot study in East Anglia”, paper presented at the T and 

Q annual meeting of UK Q users, 17th May 2013, University of East 

London. 
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Appendix III: choice experiment questionnaire 
 

Suitability questions 

[POTENTIAL RESPONDENT MUST BE 18 YEARS OF AGE OR OVER] 

Q1. Hello, is there anyone over the age of eighteen available to speak to? 

IF NO – It’s no problem, I just wanted to ask them some questions about a survey 

I’m doing. Thanks, goodbye. 

Q2. Hello, my name is Danyel Hampson. I’m a university student and I’m 

conducting a survey as part of a University project looking at local environmental 

issues. I’m keen to get the views of local people. Would you help by completing 

a questionnaire? It lasts about 30 minutes at most and is completely anonymous 

and confidential. I have a letter from my supervisor and several other forms of ID. 

[OFFER PROOFS] 

IF NO – Thanks for your time, goodbye. [COLLATE REFUSALS DATA] 

Q3. Are any of the following statements true? [READ STATEMENTS FROM 

SHOWCARD 1] 

IF YES – I’m sorry, but due to its format, you’ll be unable to take part in this 

survey, but thank you for your time. 

Introduction 

This survey is mainly about water quality in rivers. This does not have any effect 

on the quality of your tap water; it only affects river plants, animals and fish and 

the types and quality of recreation that visitors can enjoy. I want to get a balanced 

picture, and am just as interested in talking to people who don’t visit rivers as 

those who do. 

Q4. How long you have lived at this address or an address in the surrounding 

mile or so? [RECORD RESPONSE] 

Q5. Please could you tell me your home postcode? [RECORD RESPONSE] 

Questions about actual river use 
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To start with I’d like to ask you some questions about recreational trips you take 

which involve a visit to a river. By a ‘recreational trip’ I mean when you leave your 

home with the deliberate purpose of visiting such a place rather than, for example, 

just passing the river on your way somewhere else. 

So this would include trips where you go out for a walk or bike ride alongside the 

river, as well as trips to go fishing or canoeing in the river. 

Q6. Looking at the categories in [SHOWCARD 2], which best describes how 

often, over the past 12 months, you have been on trips to rivers or riverside sites? 

[RECORD RESPONSE] 

Q7. Please take a look at the following map of the area [SHOWCARD 3]. Can 

you point to where your home is? [MARK MAP ON ANSWER SHEET WITH ‘x’ 

SYMBOL]. [ALL RESPONDENTS MUST IDENTIFY THEIR HOME EVEN IF 

THEY DO NOT VISIT RIVERS] 

IF RIVER TRIPS [IN Q6] = 0, GO TO ‘POLLUTION INFORMATION’, 

OTHERWISE CONTINUE 

Q8. You said that you took [READ TOTAL RIVER TRIPS FROM ANSWER 

SHEET, Q6] trips to rivers each year. How many trips were to sites on this map? 

[SHOWCARD 3]. [RECORD RESPONSE] 

IF RIVER TRIPS IN AREA [IN Q8] = 0, GO TO ‘POLLUTION INFORMATION’, 

OTHERWISE CONTINUE 

Q9. Can you point to the place you have visited most often on a river in this area? 

[SHOW SHOWCARD 3, RECORD RESPONSE AS ‘o’ ON MAP] 

Q10. From these categories [SHOWCARD 4] can you tell me the main purpose 

of your visit(s) to that location? [RECORD RESPONSE] 

Q11a. What other things have you done on visits to any of the rivers in the area? 

[SHOWCARD 4] [RECORD RESPONSES] 

Q11b. [ASK IF ANSWERS TO Q10 AND Q11A DO NOT INCLUDE SWIMMING, 

BOATING OR CANOEING, OTHERWISE CONTINUE TO ‘POLLUTION 
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INFORMATION’] Do you ever do any riverside activity in the area which involves 

contact with the river water? This would include things like swimming, paddling, 

boating or canoeing [RECORD RESPONSE] 

Pollution Information 

I now want to show you some information about pollution problems in rivers. As 

this card shows [SHOW SHOWCARD 5], there are two main type of pollution that 

affect UK rivers. 

Ecological pollution [INDICATE] from washing detergents and farm fertilisers 

cause algae to grow in rivers. This reduces the oxygen available for fish and water 

plants, etc. However, this does not pose major risks for human health. 

Biological pollution, such as sewage, [INDICATE] comes mainly from households 

and farm animals and makes rivers unsuitable for recreation such as paddling, 

swimming or boating. However, most water plants and most fish can tolerate a 

fair amount of biological pollution. Biological pollution can be harmful to human 

health, as I will shortly explain. 

[SHOW ECOLOGICAL QUALITY LADDER - SHOWCARD 6a]  

This picture marked with a blue circle shows a river of the highest ecological 

quality [INDICATE PICTURE]. This symbol [POINT TO GAME FISH SYMBOL] 

shows that rivers like this are suitable for pollution sensitive game fish such as 

salmon and trout. This symbol [POINT TO COARSE FISH SYMBOL] shows it’s 

suitable for coarse fish, such as carp and chub while this one [POINT TO BIRD 

SYMBOL] shows it’s suitable for all bird species. As you can see, there is a wide 

variety of plants in and around the river which has very clear water. 

This green circle [INDICATE] indicates the presence of some ecological pollution 

with far fewer game fish [POINT TO GAME FISH SYMBOL]. But there is no 

reduction in coarse fish or birds [POINT TO SYMBOLS]. The variety of plants in 

and around the river is slightly lower but the water is still fairly clear. 

The yellow circle [INDICATE] shows still higher levels of ecological pollution, with 

virtually no game fish [POINT TO GAME FISH SYMBOL] and significantly less 

coarse fish [POINT TO COURSE FISH SYMBOL]. The variety of plants is lower 
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and algae has substantially reduced the water clarity although there will still be a 

number of birds. 

The red circle [INDICATE] shows the highest level of ecological pollution with 

virtually no fish, few birds or water plants and very cloudy water. 

Is there anything you want to ask about ecological pollution in rivers or these 

pictures? [ANSWER ANY QUESTIONS] 

[PUT ECOLOGICAL LADDER ASIDE] 

[SHOW RECREATIONAL QUALITY LADDER - SHOWCARD 6b]. 

I am going to use these images to show the presence of biological pollution in 

rivers and the effect it has on recreation. 

Biological pollution can cause a variety of illnesses ranging from nausea and 

diarrhoea to, very occasionally, more serious illnesses which can, very rarely 

result in death. 

The more contact a person has with biologically polluted water, the more likely it 

is that they will get ill. Someone in the water swimming has a higher risk of illness 

than a person in a canoe who only gets splashed with the water. A person on the 

river bank, who has no contact with the water, has no increased risk of getting ill. 

As the amount of biological pollution increases, the risk of illness to recreational 

river users increases. This affects the types and quality of recreation that users 

can enjoy. 

We’ll use these images [INDICATE RECREATIONAL QUALITY LADDER – 

SHOWCARD 6b] to show different recreational qualities. As you can see the 

pictures are arranged from higher to lower quality [INDICATE] 

These blue images, [INDICATE 1st ROW], show a river of the highest recreational 

quality. The risk of illness is low. These symbols [INDICATE SYMBOLS] show 

that a river of this quality is suitable for swimming and boating. 
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The next type of river [INDICATE 2nd ROW] has a higher risk of illness. This type 

of river is suitable for boating but is no longer suitable for swimming. [POINT TO 

SYMBOLS]. 

These red images show a river of the lowest recreational quality [INDICATE 3rd 

ROW]. This river has the highest risk of illness and isn’t suitable for swimming or 

boating [POINT TO SYMBOLS] 

Is there anything you want to ask about biological pollution in rivers or these 

pictures? [ANSWER ANY QUESTIONS] 

[PLACE SHOWCARD 6a NEXT TO SHOWCARD 6b – ENSURE RESPONDENT 

CAN SEE BOTH] 

I am going to use pictures from these cards to illustrate the different combinations 

of ecological pollution and biological pollution sewage in the survey river. 

An important fact is that ecological pollution and sewage in rivers can happen 

independently from each other. For example, a river of high ecological quality 

[INDICATE BLUE ECOLOGICAL PICTURE] might look inviting but may have 

levels of biological pollution which makes it unsafe for either swimming or boating 

[INDICATE RED RECREATION ICONS]. On the other hand the water in an 

ecologically polluted river [INDICATE RED ECOLOGICAL PICTURE] may have 

no biological pollution and be perfectly safe for people to swim in [INDICATE 

BLUE RECREATION ICONS] 

We’ll be using these pictures throughout the interview so please take your time 

to get used to them. [PAUSE] 

IF RIVER TRIPS IN AREA [IN Q8] = 0, GO TO ‘INTRODUCING THE SURVEY 

STRETCH’, OTHERWISE CONTINUE 

Now, please think again about the river site [INDICATE THE SITE GIVEN IN THE 

ANSWER TO Q9, On SHOWCARD 3] that you visited most often. 

Q12, Looking at the ecological quality pictures [SHOWCARD 6a] which colour 

best describes the ecological quality of the river at your most visited site? 

[RECORD RESPONSE] 
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Q13, Looking at the recreational quality pictures [SHOWCARD 6b] which colour 

best describes the recreational quality of the river at your most visited site? 

[RECORD RESPONSE] 

Introducing the survey stretch 

I’d now like you to think about the river along this stretch, highlighted in purple 

[INDICATE PURPLE STRETCH ON SHOWCARD 7]. As you can see, this stretch 

of the river flows from here [INDICATE], through the city centre, to here 

[INDICATE] just to the south-east of Norwich. 

IF RIVER TRIPS IN AREA [IN Q8] = 0, GO TO ‘INTRODUCTION TO CHOICE 

EXPERIMENT’, OTHERWISE CONTINUE 

Q14. How many of your river trips in the area were to sites along the purple 

stretch? [SHOWCARD 7] [RECORD RESPONSE] 

IF RIVER TRIPS ALONG PURPLE STRIP = 0, GO TO ‘INTRODUCTION TO 

CHOICE EXPERIMENT’, OTHERWISE CONTINUE 

Q15. From these categories [SHOWCARD 4] what was the main purpose of 

that/those visit(s)? [RECORD RESPONSE] 

Q16. What other things did you do on that/those visit(s)? [SHOWCARD 4] 

[RECORD RESPONSES] 

Q17a. Looking at the ecological quality ladder [SHOWCARD 6a] which colour do 

you think best describes the actual ecological quality of the river along this 

stretch? [RECORD RESPONSE] 

Q17b. Looking at the recreational quality ladder [SHOWCARD 6b] which colour 

do you think best describes the recreational quality of the river along this stretch? 

[RECORD RESPONSE] 

Choice experiment section 

Introduction 

The next few questions are among the most important of this interview. 
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In 2004 the UK government agreed new laws to improve the quality of certain 

rivers. One of these rivers is the river along this purple stretch. [INDICATE 

PURPLE STRETCH ON SHOWCARD 7]. Other rivers in the area are not 

highlighted [INDICATE] as we will not be considering the quality of these rivers. 

[IF ASKED, SAY THAT THE ACTUAL WATER QUALITY OF THE RIVERS IS 

UNKNOWN, ONLY THAT WATER QUALITY CHANGES ARE BEING 

CONSIDERED] 

Choice experiment. 

The following questions ask you to choose between two future options for the 

water quality of this stretch of river [INDICATE PURPLE STRETCH, 

SHOWCARD 9]. The options are labelled A and B [INDICATE OPTIONS ON 

SHOWCARD 8.1]. Each option shows the ecological [INDICATE] and 

recreational [INDICATE] qualities of the river stretch, and the level of your annual 

water bill [INDICATE]. In all cases this bill will either be unchanged or increase. 

This is because improving river water quality requires investments which would 

have to be paid for by higher water bills. All water users would have to pay, 

including industry and farmers, but also households, because they also contribute 

to water pollution. Any increase in bills would start in early 2014 and the 

improvements to water quality would be finished by 2015. 

For each question simply choose the situation you would prefer for the purple 

river stretch. In comparing A and B please consider the location of the river, 

[INDICATE PURPLE STRETCH, SHOWCARD 7] how close it is to your home 

[INDICATE RESPONDENTS HOME (ANSWER TO Q7)], and whether you would 

benefit from them. Please remember that any increases in water bills would mean 

you have less money to spend on other things. 

Q18a. Let’s look at the first question [SHOWCARD 8.1]. Here you can see that 

under option A the ecological quality is [STATE COLOUR], the recreational 

quality is [STATE COLOUR] and the increase to your annual water bill is [STATE 

AMOUNT]. Under option B the ecological quality is [STATE COLOUR], the 

recreational quality is [STATE COLOUR] and the annual water bill increase is 
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[STATE AMOUNT]. Take your time to consider these two options and then let me 

know which one you would prefer for the purple stretch [RECORD RESPONSE] 

Q18b-l. The next few questions have the same format. Here is the next question, 

[SHOWCARD 8.2] where option A is like this [INDICATE] and option B is like this 

[INDICATE]. Again, which one would you prefer for the purple stretch? [RECORD 

RESPONSE] 

[WORK THROUGH EACH QUESTION WITH THE RESPONDENT, 

RECORDING RESPONSES] 

[AFTER SHOWCARD 8.9, STATE ‘THERE ARE 3 MORE TO GO’, AFTER 

SHOWCARD 8.10, STATE ‘THERE ARE 2 MORE TO GO’, AFTER SHOWCARD 

8.11 STATE ‘THIS IS THE FINAL QUESTION ON THIS’] 

Questions on respondents’ future river use 

I’m interested in your how your use of this river might change in the future. 

Q19a. If you haven’t already, would you visit or use this river stretch [INDICATE 

PURPLE STRETCH ON SHOWCARD 7] if improvements were made so that the 

water quality was guaranteed to be like this? [SHOWCARD 9] [RECORD 

RESPONSE]. [IF YES GO TO 19b, IF NO GO TO Q20] 

Q19b. If yes, how many days do you think you would visit the river over the next 

year? [RECORD RESPONSE] 

Q19c. From these categories [SHOWCARD 4] what might be the main purpose 

of that/those visit(s)? [RECORD RESPONSE] 

Q19d. What other things might you do on that/those visit(s)? [SHOWCARD 4] 

[RECORD RESPONSES] 

Q20. How likely do you feel it is that the river quality proposed in the last question 

[SHOWCARD 9] would be provided as described? [SHOWCARD 10] [RECORD 

RESPONSE] 

Choice experiment control questions 
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Q21. Overall, how easy or difficult did you find it to answer the questions involving 

changes in water quality and water bills? [SHOWCARD 11] [RECORD 

RESPONSE] 

I’d like to know, from these categories [SHOWCARD 12], how important each of 

the following issues were in determining your answers to the choice questions. 

Q22a. The distance from where you live to where the improvement would 

happen? [RECORD RESPONSE] 

Q22b. The size of the water bill increases? [RECORD RESPONSE] 

Q22c. The size of the ecological quality improvements? [RECORD RESPONSE] 

Q22d. The size of the recreational quality improvements? [RECORD 

RESPONSE] 

Q22e. Any other? [RECORD RESPONSES] 

Q22f. How important was this other issue? [RECORD RESPONSES] 

Please tell me, from these categories [SHOWCARD 13], who you think should pay 

for water quality improvements. 

Q23a. The government or council? [RECORD RESPONSE] 

Q23b. Water companies? [RECORD RESPONSE] 

Q23c. Domestic water and sewerage customers? [RECORD RESPONSE] 

Q23d. The agricultural sector? [RECORD RESPONSE] 

Q23e. The polluter? [RECORD RESPONSE] 

Q23f. The recreational user? [RECORD RESPONSE] 

Q23g. Any other? [RECORD RESPONSE] 

Thank you for your help with that. 

Survey control questions 
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To finish off, I just have a few more questions about you and your household. 

These will only be used for statistical purposes to see if we have interviewed a 

fair range of people and please remember that all of these answers are 

completely confidential. 

Q26a. What is your age? [RECORD RESPONSE] 

Q26b. What is your ethnic background? [SHOWCARD 15] [RECORD 

RESPONSE] 

Q26c. What is your religion? [SHOWCARD 15a] [RECORD RESPONSE] 

Q26d. From this list what is your highest educational qualification? [SHOWCARD 

16] [RECORD RESPONSE] 

Q27. How many people including yourself are in your household, by which I mean 

you your partner and any members of your family that you currently live with? 

[RECORD RESPONSE] 

Q28. How many of them are younger than 18? [RECORD RESPONSE] 

Q29. Looking at these categories [SHOWCARD 17] could you tell me which best 

approximates your total household income before tax? [SELECT ONE ONLY] 

[IF NECESSARY, REASSURE RESPONDENT THAT ALL INFORMATION IS 

COMPLETELY CONFIDENTIAL AND THIS IS THE BEST INDICATOR OF 

WHETHER I HAVE INTERVIEWED A REPRESENTATIVE RANGE OF 

PEOPLE] 

Q30a. Looking at this list of organisations [SHOWCARD 18] please tell me which, 

if any, you are a member of. You can select more than one. [RECORD 

RESPONSES] [IF SPORTS CLUB OR OTHER, RECORD TYPE] 

Q30b. Which organisations are any others in your household a member of? 

[RECORD RESPONSES] [IF SPORTS CLUB OR OTHER, RECORD TYPE] 

Q31. Which of these statements [SHOWCARD 19] best describes your current 

employment status? [SELECT ONE ONLY] [RECORD RESPONSE] 

Q32a. Do you go fishing? [RECORD RESPONSE] [If NO, GO TO Q34] 



 

284 
 

Q32b. Do you hold a fishing licence? [RECORD RESPONSE] [If NO, GO TO 

Q33a] 

Q32c. How much does the licence cost per year? [RECORD RESPONSE] 

Q33a. Do you belong to a fishing club? [RECORD RESPONSE][If NO, GO TO 

Q34] 

Q33b, How much does membership cost per year? [RECORD RESPONSE] 

Q34. Do you own any of the following craft? [SHOWCARD 20] [RECORD 

RESPONSE] 

Q35a. Do you belong to a rowing, canoeing, or any other river based recreation 

club? [RECORD RESPONSE] [IF NO, GO TO ‘LEAD OUT’] 

Q35b. What Type? [RECORD TYPE] [IF NO, GO TO ‘LEAD OUT’] 

Q35c. What is the membership cost per year? [RECORD RESPONSE] 

Lead out 

That was the last of my questions. This survey will continue for several weeks. At 

the end of that time there is a possibility that my supervisor might have some 

follow up questions - this would be for quality control purposes only and not to 

ask any further questions about rivers. Could you please give me a telephone 

number where you can be contacted and your first name? This data will be kept 

strictly confidential and held for 3 months following this survey after which it will 

be destroyed. [RECORD RESPONSE] 

That's the end of the interview. Thank you very much for your time and help, it is 

very much appreciated. 
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SHOWCARD 1 – Participation Statements 
 
Statement True False 
I am colour blind   
Myself or my partner are NOT responsible for 
the water bill 

  

I have lived at this address, or within the 
surrounding mile for less than a year 
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SHOWCARD 2 – Number of trips 

 
Code Trip frequency Trips per year 

A Did not go No trips 
B Once in the last year 1 trip 
C Twice in the last year 2 trips 
D Once every three months 4 trips 
E Once every month 12 trips 
F Once a fortnight 26 trips 
G Once a week 52 trips 
H Twice a week 104 trips 
I More than twice a week 208 trips 
J Every day 365 trips 
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SHOWCARD 3 – Survey area  
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SHOWCARD 4 – Purpose of visit 
 
Code Activity 
A Walking / Rambling 
B Dog walking 
C Running 
D Picnic 
E Feeding birds 
F Wildlife watching 
G Cycling 
H Motorised Boating 

I 
Canoeing / Rowing (or other non-motorised water 
recreation) 

J Swimming / paddling 
K Fishing / Angling 
L Other (please state) 
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SHOWCARD 5 – UK river pollution problems 
 

Pollution type Main sources Main effects 

Ecological 

 Washing Machines, 
detergents, etc. 

 Farm fertilizers, etc. 

 Causes algae to 
grow 

 Reduces oxygen in 
rivers 

 Harms fish, river 
plants, etc. 

Biological 
 Households, e.g. 

sewage 
 Farm animals 

 Makes rivers 
unsuitable for 
recreation 
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SHOWCARD 6a – Ecological quality ladder 

Highest 
Water 

Quality 

Lowest 
Water 

Quality 
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SHOWCARD 7 – Survey river stretch  
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SHOWCARD 9 – Future visits 
 
 
 
 
 
 
 
 
 
 
 
 
 

RECREATIONAL 
QUALITY 

ECOLOGICAL 
QUALITY 
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SHOWCARD 10 – Future river improvements  

 
Code Likelihood of improvements being made 

A Very likely 
B Somewhat likely 
C Neither likely or unlikely 
D Somewhat unlikely 
E Very unlikely 
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SHOWCARD 11 –Question difficulty 
 

Code Difficulty level 
A Very easy 
B Fairly easy 
C Neither easy or difficult 
D Fairly difficult 
E Very difficult 

 
 
  
 



 

296 
 

SHOWCARD 12 –Importance of issues  
 
I thought this issue was... 
 

Very 
Important 

Important Neither Unimportant 
Completely 

Unimportant 
A B C D E 
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SHOWCARD 13 – Who should pay for water quality 
improvements 
 

Improvements to water quality should be paid for by... 

 
Strongly 

Agree 
Tend to 
Agree 

Neither 
Tend to 
disagree 

Strongly 
Disagree 

A B C D E 

 



 

298 
 

 SHOWCARD 14 – Question difficulty 
 

Code Difficulty level 
A Very easy 
B Fairly easy 
C Neither easy or difficult 
D Fairly difficult 
E Very difficult 
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SHOWCARD 15 – Ethnic background 
 
 

Code Ethnicity 
A White 
B Mixed/Multiple ethnic groups 
C Asian/Asian British 
D Black/African/Caribbean/Black British 
E Other 
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SHOWCARD 15a – Religion  
 

Code Religion 
A no religion 
B Christian 
C Buddhist 
D Hindu 
E Jewish 
F Muslim 
G Sikh 
I Other 
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SHOWCARD 16 – Highest educational qualification  
 

Code Qualification type 
A No qualifications 
B NVQ Level 1, Foundation GNVQ 
C 1 - 4 O levels/CSEs/GCSEs (any grades), Foundation Diploma 

D 
NVQ Level 2, Intermediate GNVQ, City and Guilds Craft, BTEC First/ 
General Diploma, RSA Diploma 

E 5+ O levels/CSEs (grade 1)/GCSEs (grades A*- C),  Higher Diploma 

F 
NVQ Level 3, Advanced GNVQ, City and Guilds Advanced Craft, ONC, 
OND, BTEC National, RSA Advanced Diploma 

G 2+ A levels/VCEs, 4+ AS levels, Higher School Certificate, Advanced Diploma 
H NVQ Level 4 - 5, HNC, HND, RSA Higher Diploma, BTEC Higher Level 
I Degree (for example BA, BSc) 
J Higher degree (for example MA, PhD, PGCE) 
K Professional qualification(e.g. teaching, nursing, accountancy) 
L Other (please state) 
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SHOWCARD 17 – Total household income before tax 
 

Code Annual income £s Monthly income £s 
A less than 6,000 less than 500 
B 6,001 – 12,000 501 – 1,000 
C 12,001 – 18,000 1,001 – 1,500 
D 18,001 – 24,000 1,501 – 2,000 
E 24,001 – 30,000 2,001 – 2,500 
F 30,000 – 36,000 2,501 – 3,000 
G 36,001 – 42,000 3,001 – 3,500 
H 42,001 – 48,000 3,501 – 4,000 
I 48,001 – 54,000 4,001 – 4,500 
J 54,001 – 60,000 4,501 – 5,000 
K 60,001 – 66,000 5,001 – 5,500 
L 66,001 – 72,000 5,501 – 6,000 
M Over 72,001 over 6,001 
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SHOWCARD 18 –Organisation memberships 
 

Code Membership type 
A Religious, or faith group 
B School fundraising group / PTA / School Governors 
C Scouts, Guides, cadets, etc. 
D Lions club / Rotary club / other community volunteering group 
E Walking club / Ramblers Association 
F Fishing / Angling club 
G Rowing / Canoeing club 
H National Trust / RSPB / English Nature 
I Greenpeace, Friends of the Earth, WWF, other environmental group 
J Climbing club 
K Women’s Institute 
L Not a member of any similar organisations 
M Other (please state) 
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SHOWCARD 19 – Employment Status 
 

Code Employment type 
A Self Employed 
B Employed full-time (more than 30 hours per week) 
C Employed part-time (less than 30 hours per week) 
D Student 
E Unemployed – seeking employment 
F Unemployed – other 
G Looking after the home /children 
H Retired 
I Unable to work due to sickness or disability 
J Other 
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SHOWCARD 20 – Recreational craft owned 
 

Code Craft type 
A Canoe / Rowing boat 
B Narrowboat / Widebeam / Cruiser 
C Yacht 
D Other (please state) 
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Appendix IV: CL model on the pilot data 
 

conditional logit model on price ecological quality recreational quality 

 

Conditional (fixed-effects) logistic regression             Number of obs.  =480 

LR chi2(3)       =      85.03 

Prob. > chi2     =       0.00 

Log likelihood   =    -123.84                             Pseudo R2     = 0.2556 

 

 

Choice               Coef.    Std. Err.      z      P>z     [95% Conf. Interval] 

 

price                -.008      .005       -1.64   0.102     -.017       .002 

ecological quality    .725      .110        6.59   0.000      .509       .941 

recreational quality  .646      .120        5.39   0.000      .411       .881 
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Appendix V: chronology of CL modelling development 
This section reports a chronology of CL modelling development. As with the pilot 

data, the CL modelling of the main survey data was undertaken using Stata 13.1 

(StataCorp L. P., 2013). Table 51, on the following page, shows the results of four 

CL models, each of which evolve towards an increasingly complex modelling 

solution. Descriptions and definitions of these variables are shown below. 

Table 50: variables used within preliminary econometric modelling 

Dependent variables 

Price 
Respondents’ response to cost of water quality, expressed as 
a continuous variable. 

EQ Ecological water quality, expressed as a continuous variable. 

Yellow ecological 
quality 

Yellow ecological water quality, expressed as a categorical 
variable. 1=yellow ecological water level, 0=other ecological 
levels. 

Green ecological 
quality 

Green ecological water quality, expressed as a categorical 
variable. 1=green ecological water level, 0=other ecological 
levels. 

Medium 
ecological quality 

Yellow and green ecological quality categories combined, 
expressed as a categorical variable. 1=yellow and green 
ecological water levels, 0=other ecological levels. 

Blue/High 
ecological quality 

Blue/High ecological water quality, expressed as a 
categorical variable. 1=blue/high ecological water level, 
0=other ecological levels 

RQ 
Recreational water quality, expressed as a continuous 
variable. 

Medium 
recreational 
quality 

Medium recreational water quality, expressed as a 
categorical variable. 1=medium recreational water level, 
0=other recreational levels. 

High recreational 
quality 

High recreational water quality, expressed as a categorical 
variable. 1=high recreational water level, 0=other recreational 
levels. 

RQ*EQ 
Variable describing the interaction between recreational and 
ecological water quality, expressed as a continuous variable. 

Independent variables  

Swimmers 
Respondent who is an active river swimmer, recruited via Tri-
Anglia Triathlon Club. Binary variable: 0=respondent is not a 
swimmer, 1=respondent is a swimmer. 

Rowers 
Respondents who are rowers, recruited via rowing clubs. 
Binary variable: 0=respondent is not a rower, 1=respondent is 
a rower. 

Anglers 
Respondents who are anglers. Binary variable expressed as 
0=respondent is not an angler, 1=respondent is an angler. 

EnvMemberCont 
The total number of environmental organisation memberships 
held by the respondent, expressed as a continuous variable.  

DistanceBin The distance the respondent lives from the closest point of 
the Yare. Binary variable: 0=respondent lives <8km, 1=the 
respondent lives >8km (Mean distance=7.99km). 
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Model 1 has the same specification as the CL model performed on the pilot survey 

data, to check whether anomalies existed within the main survey data. Model 2 

offers a refinement in that, rather than treat ecological and recreational water 

quality as continuous variables, it uses separate coefficients to represent the 

different levels of ecological and recreational water quality. This enabled a better 

understanding of respondents’ preferences, e.g. how they distinguished between 

the different attribute levels. Model 3 goes further as it examines an interaction 

within respondents’ preferences when improved levels of ecological and 

recreational water quality are simultaneously available. The final preliminary 

model, Model 4, incorporates socio-economic variables, identifies and isolates 

different user types and reports their preferences as separate variables. Each 

model is now discussed. 
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Table 51: preliminary CL models 

 Model 1 Model 2 Model 3 Model 4 

Variable Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. 

Baseline Coefficients 

Price -.018*** .002 -.012*** .002 -.020*** .002 -0.020*** .003 

EQ .929*** .039  

RQ .601*** .040  

Yellow ecological quality  1.781*** .101  

Green ecological quality  1.872*** .103  

Medium ecological quality   1.601*** .112 1.395*** .148 

Blue/High ecological quality  3.072*** .124 2.717*** .169 2.546*** .223 

Medium recreational quality  .775*** .080 .578*** .102 0.590*** .138 

High recreational quality  1.264*** .083 .911*** .145 0.910** .178 

RQ*EQ  .121*** .042 0.141*** .044 

Socio-Economic Coefficients 

Swimmers 

SwimmerxPrice -0.019 .020 

SwimmerxMedium ecological quality -1.612*** .616 

SwimmerxHigh ecological quality -3.152*** .971 

SwimmerxMedium recreational quality 0.964 .747 

SwimmerxHigh recreational quality 2.405** 1.191 

Anglers 

AnglersxPrice -0.008 .008 

AnglersxMedium ecological quality 0.840** .425 

AnglersxHigh ecological quality 1.678*** .633 

AnglersxMedium recreational quality -0.721* .382 

AnglersxHigh recreational quality -0.870** .386 

Rowers 

RowerxPrice -0.006 .012 

RowerxMedium ecological quality -0.771* .465 

RowerxHigh ecological quality -0.862 .801 

RowerxMedium recreational quality 1.218** .504 

RowerxHigh recreational quality 1.290** .598 

Environmental Memberships (continuous variable) 

EnvMemberContxPrice 0.005 .003 

EnvMemberContxMedium ecological quality 0.701*** .171 

EnvMemberContxHigh ecological quality 0.908*** .241 

EnvMemberContxMedium recreational quality 0.095 .139 

EnvMemberContxHigh recreational quality 0.314** .157 

Distance from river (binary 0=closer than 8km, 1=further than 8km) 

DistanceBinxPrice -0.008* .004 

DistanceBinxMedium ecological quality 0.006 .193 

DistanceBinxHigh ecological quality -0.374 .275 

DistanceBinxMedium recreational quality -0.113 .175 

DistanceBinxHigh recreational quality -0.444** .186 

Pseudo R2 0.322 0.354 0.356 0.396 

Log Likelihood  -1127.501 -1074.67 -1070.782 -1004.083 
Model 1: Simple CL model of Price, EQ and RQ. Model 2: CL model of Price, with ecological and recreational water 

quality attributes split into categorical levels. Model 3: CL model of Price with categorical levels of ecological and 
recreational water quality for main effects, and a continuous interaction term (RQ*EQ) between ecological and 

recreational water quality. Model 4: CL model of price, Categorical water quality levels, EQ*RQ interaction term, with 
anglers, swimmers, rowers, environmental membership and distance as categorical covariates. Note *, ** and *** = 

significance at 10%, 5% and 1% levels  
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The results of the simple CL analysis of price, ecological and recreational water 

quality reported in Model 1, correspond with the pattern of results seen in the pilot 

study data. As expected, because of the increased sample size, the confidence 

intervals for the three variables have narrowed and the estimated coefficients are 

more narrowly defined. Importantly, along with the coefficients for ecological and 

recreational water quality, the coefficient for price is now highly significant. The 

coefficients of Model 1 confirm that respondents are less likely to choose an 

alternative with increased price, ceteris paribus, and respondents have higher 

preferences for ecological, rather than recreational, water quality. This simple 

model assumes that the water quality variables, defined within the survey, are 

continuous. In reality water quality characteristics span a continuum but, for 

simplicity, within the experiment water quality was defined by categorical levels. 

The water quality data should, more accurately, be analysed as categorical levels 

and this refinement is explored in Model 2. 

Model 2 verifies whether respondents’ preferences for ecological and recreational 

water quality present non-linear effects and identifies respondents’ preferences 

for individual water quality levels. The log likelihood of Model 2 (-1074.67) shows 

an improvement over that of Model 1 (-1127.501). Respondents clearly prefer 

improved water quality as both ecological and recreational water quality levels 

have an increased likelihood of being chosen as their quality improves. 

Respondents continue to prefer to choose choice options which contain lower 

price. All variables in Model 2 are highly significant. 

This categorical model has overlapping confidence intervals for Yellow and Green 

ecological water quality levels. A Wald test on their coefficients (Prob. > chi2 = 

0.9398), confirmed that they are insignificantly different from one another: 

respondents did not differentiate between Yellow and Green ecological 

categories when they made their choice decisions. This is in contrast to the 

confidence intervals of the Yellow and Green coefficients of the CL model on 

ChREAM data, which do not overlap (see Table 25). The standard errors of the 

water quality coefficients in the ChREAM model are much smaller (Yellow s.e. 

0.012, Green s.e. 0.011, Blue s.e. 0.012) and the ChREAM model’s confidence 

intervals are more narrowly defined. This is almost certainly due to the larger 

sample size (1100 respondents) used for the ChREAM model. It is possible that, 
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if the sample used for this present research was of a comparable size, that larger 

sample may reduce noise in the error term and produce narrower confidence 

intervals, resulting in significant differences between coefficients for Yellow and 

Green ecological water quality levels. 

It is important to remember that the ChREAM water quality levels conflate 

ecological and recreational attributes into a single attribute of preference, 

whereas, in this present research, ecological and recreational attributes are 

disaggregated. An alternative explanation for the insignificant difference in 

respondents’ preferences for Yellow and Green ecological water quality levels 

may be that, by removing the recreational attribute inherent within the ChREAM 

water quality levels28, the actual differences between the Yellow and Green 

ecological quality levels depicted here may have been diminished to the point 

where respondents feel that the differences that remain are insignificant. 

Further cross-referencing of Model 2 against the ChREAM model suggests that 

the specification of Model 2 (and the efficiency of the CE design underpinning the 

choice data) is essentially sound: respondents’ preferences for both ecological 

and recreational water quality attributes are complete and transitive, as we would 

expect them to be. Despite this, it may not be worthwhile excessively comparing 

the strength of the coefficients of Model 2’s ecological water quality levels against 

the ChREAM coefficients for water quality levels simply because, being 

disaggregated, the attributes represented by the ecological water quality levels 

are now qualitatively different: some of the variation in respondents’ preferences 

is now undoubtedly contained within the coefficients for recreational water quality 

levels. 

A parsimonious solution to the insignificant difference between Yellow and Green 

ecological water quality levels was to collapse them into one intermediate 

variable, Medium, which is used within models 3 and 4. For clarity and conformity 

Blue ecological quality is renamed High. In terms of the log likelihood, Model 3, 

LL -1070.782, represents a small improvement over Model 2. As with Model 2, 

                                            
28 Apart from the differences in ecological quality, ChREAM’s Yellow water quality is suitable for 
boating, but not swimming, and the Green level used in ChREAM is suitable for boating and 
swimming. These differences in recreational quality add to the overall differences between Yellow 
and Green water quality levels and to the distinctions respondents can make between them. 
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we see that respondents continue to have consistent preferences for water 

quality, preferring to choose higher levels of ecological and recreational quality, 

where those options are available. Respondents continue to avoid choice options 

which have increased price, ceteris paribus. 

Model 3 includes another significant variable, RQ*EQ, which describes a 

significant positive interaction when respondents choose options containing the 

higher categorical levels of ecological and recreational quality. Respondents are 

significantly more likely to choose options with higher levels of recreational quality 

(or ecological quality) if higher levels of ecological quality (or recreational quality) 

are also available. This interaction variable treats recreational quality and 

ecological quality as continuous rather than categorical. Different specifications 

of RQ*EQ interaction variables were explored, e.g. using categorical levels of 

recreational quality and ecological quality, but their usefulness was slight and 

their interpretation problematic. The effect of the RQ*EQ variable on respondents’ 

WTP is discussed below. 

Given the objectives of disentangling and quantifying different types of 

respondents’ preferences for ecological or recreational water quality, one of the 

optimal CL models, Model 4, also uses Price, ecological and recreational water 

quality levels and RQ*EQ coefficients. However, within Model 4, these six 

coefficients are baseline variables that represent respondents who have no 

environmental memberships, live within 8km of the survey stretch on the Yare 

and have not used the river for primary or secondary recreational activities (e.g. 

swimming, boating, fishing) over the last year, although they may have visited for 

other purposes. Model 4 also contains three groups of coefficients used to 

distinguish the preferences of the three primary recreational users; anglers, 

swimmers and rowers. There are also two other groups of socio economic 

variables used in Model 4. These model the impact that the number of 

environmental memberships held by respondents and the distance respondents 

live from the Yare, have on respondents’ preferences. The additional groups of 

socio-economic interaction variables modify the baseline variables, depending on 

the socio-economic and use characteristics of the respondents. All of the 

coefficients are now discussed in greater detail. 
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The sign, strength and significance of the baseline coefficients in Model 4 

reasonably describe the preferences for water quality held by a baseline 

respondent. 

Several of the groups of socio-economic variables produce coefficients with wide 

confidence intervals, primarily due to small group size. Consequently some of the 

socio-economic coefficients in Model 4 are insignificant and cannot be taken at 

face value. However, these insignificant variables are useful as a guide to identify 

trends in the data. Despite this caveat, many of the socio-economic variables are 

significant, particularly those which have the highest utility for each of the different 

types of recreational user. It is important to remember that these socio-economic 

variables are interaction terms which modify the baseline coefficients, and, with 

this in mind, they become very useful. 

In common with baseline respondents, swimmers’ utility decreases as Price 

increases. Swimmers are more likely to choose an option with High recreational 

quality, than the other three water quality states. Both interaction terms for 

ecological water quality are negative, which appear reasonable, given that 

swimmers have primary contact with the water and would be expected to prefer 

swimmable water quality. 

The net result of modifying the baseline coefficient for High ecological quality, to 

account for the preferences of the average swimmer, produces a negative 

coefficient for High ecological quality, e.g. 

2.546 + -3.152 = -0.606 

It is important to consider that the High ecological quality coefficient for a 

swimmer becomes further modified by the environmental membership and 

distance variables. All of the swimmers who were interviewed were members of 

at least one environmental organisation and, because of this, their coefficient for 

High ecological quality becomes further modified. Interactions between multiple 

socio-economic variables, and the effect these interactions have on the WTP 

estimates of respondents’, is discussed further below. 

Rowers exhibit similar choice behaviour to that of the swimmers. Rowers have 

significant, positive preferences for recreational water quality. There is an 
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insignificant difference in preferences between Medium and High recreational 

quality coefficients (Prob. > chi2 = 0.8630). It seems that rowers, in common with 

swimmers, choose the recreational quality level most appropriate to their needs 

as Medium recreational quality is sufficient for rowers to enjoy their activities 

safely. 

Anglers are significantly more likely to choose higher levels of ecological quality, 

when the option to do so is available. Interestingly, anglers have negative 

preferences for both recreational quality levels. A Wald test (Prob. > chi2 = 

0.7286) confirms that anglers’ preferences for recreational water quality are 

insignificantly different from one another. All of these coefficient modifiers make 

sense when viewed from an angler’s perspective. Anglers require rivers with 

Medium ecological quality for coarse fishing and High ecological quality for game 

fishing. In interview, several anglers stated preferences for quiet locations where 

fish are undisturbed by swimmers, rowers or other human interference. It is quite 

reasonable that anglers choose water at lower recreational quality, to inhibit 

swimming and boating. 

During the interview process respondents were asked if they held personal 

memberships for any environmental organisations. Examples include the 

National Trust, Royal Society for the Protection of Birds (RSPB), English Nature, 

Norfolk Wildlife Trust and environmental recreation clubs. The environmental 

membership variable is coded as a continuous variable. Having at least one 

environmental membership has a highly significant positive effect on the 

respondent’s probability of choosing a choice option with higher levels of 

ecological quality. A Wald test (Prob. > chi2 = 0.1331) confirms that these 

respondents do not distinguish between the two ecological water quality states, 

but it is clear that respondents holding environmental memberships have 

significant preferences for higher ecological water quality. These respondents are 

also significantly more likely to choose options with High recreational water 

quality. 

The distance variable is defined by the distance the respondent lives from their 

home to the closest point of the survey river stretch. Within Model 4, the distance 

variable captures a distance threshold, at 8km, where respondents who live 
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further from the environmental improvement are less likely to choose an option 

with higher prices to pay for that improvements. Distance is a binary variable 

where respondents who lived within the mean distance of 7.99km from the Yare 

were coded as 0 and respondents who lived further than the mean were coded 

as 129. Respondents who live further away from the river are slightly less likely, 

to choose an option with increased price (-0.008* (s.e. 0.004)). This coefficient is 

close to the 5% significance level at p=0.053. Respondents who live further away 

from the river are also significantly less likely to choose options with High 

recreational water quality. The distance variable has an insignificant effect on the 

remaining three water quality variables but the sign of the coefficients on these 

variables suggest that respondents are less likely to choose higher levels of water 

quality, as distance increases. Distance was also analysed as continuous and log 

transformed variables, but was insignificant when expressed in either of those 

forms. 

A selection of other socio-economic variables collected during the survey, e.g. 

age, gender, education, were assessed for their suitability as explanatory 

variables but these were insignificant determinants of choice behaviour. 

Experts were treated as a discrete group of interest during data collection but 

during the analysis treating experts as an independent group produced no 

significant results. However, experts were selected from a range of disciplines 

and may have confounding motivations for water quality improvements, which 

may explain why they proved insignificant as a defining group. 

Marginal willingness to pay estimates derived from preliminary CL models 

This section reports the marginal WTP estimates for changes in attribute levels 

in CL models 3 and 4. The marginal WTP estimates are the negative of the ratio 

between the mean coefficients for each attribute and the mean coefficient of the 

payment attribute (please see Equation 16, p.197). The marginal WTP estimates, 

shown on Table 52, are derived from Model 3. This model is parsimonious, as, 

                                            
29 A binary variable using median distance was explored but, due to the skewed distance 
respondents lived from the survey river (Figure 25), this variable was insignificant. Distance is 
further refined and expressed as the inverse multiplicative (1/x) in CL models 5 and 6. 
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using only six variables, it obtains highly significant WTP estimates which are 

useful to examine the overall trends in the data. 

Table 52: marginal WTP estimates derived from Model 3 

 Medium 
ecological 

quality 

High 
ecological 

quality 

Medium 
recreational 

quality 

High 
recreational 

quality 
RQ*EQ 

WTP for all respondents (200 respondents) 
WTP (£) £78.72*** £133.61*** £28.44*** £44.80*** £5.92*** 
95% confidence intervals 
Lower limit £62.37 £107.96 £17.51 £29.43 £1.90 
Upper limit £95.07 £159.26 £39.37 £60.17 £9.96 

WTP=£, per household, per year for the 20km survey river stretch. Low water quality defines V0, 

the baseline. Note *, ** and *** = significance at 10%, 5% and 1% levels.  

 

Table 52 provides marginal WTP estimates for improvements in water quality 

from Low ecological or recreational quality (the baseline, V0) to either Medium or 

High levels of those water quality attributes. Respondents have significantly 

higher WTP for ecological quality, rather than recreational quality. As discussed 

previously, the variable RQ*EQ reflects the respondent’s preferences to choose 

options with higher categorical levels of water quality simultaneously. Within 

Model 3, we see that RQ*EQ is highly significant and the effect this coefficient 

has on respondents’ WTP is shown in Table 53. 

Table 53: additional WTP derived from the interaction effect of RQ*EQ in 

Model 3 

Water quality (level) Low ecological 
quality (0) 

Medium ecological 
quality (1) 

High ecological 
quality (2) 

Low recreational 
quality (0) 

0 0 0 

Medium recreational 
quality (1) 

0 £5.92 £11.84 

High recreational 
quality (2) 

0 £11.84 £23.68 

WTP=£, per household, per year for the 20km survey river stretch. Low water quality defines V0, 

the baseline. 

We see that where a respondent is able to choose Medium levels of ecological 

and recreational quality together they are willing to pay an additional £5.92 on 

their water bill. Where they are able to choose High ecological quality with 

Medium recreational quality (or vice versa) they are willing to pay an additional 

£11.84 for improved water quality. Where they can choose High levels of both 
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ecological and recreational water quality, they are willing to pay an additional 

£23.68 towards water quality improvements at the survey stretch. 

Although Model 3 is parsimonious and highly significant, it may be argued that 

the WTP estimates derived from Model 3 do not adequately represent the general 

population as the sample contains disproportionately high numbers of rowers, 

swimmers and experts, which may skew the mean coefficient estimates. Hence 

the development of Model 4, which identifies and distinguishes recreational users 

from the general population. Unfortunately, due to the non-probabilistic sampling 

scheme, it cannot be stated with certainty that the coefficients of Model 4 are 

actually more representative of the wider population. Despite these criticisms, 

these models do achieve one of the primary objectives of this research: to 

disaggregate the values respondents hold for different attributes of water quality. 

The marginal WTP estimates for different water quality levels, user groups and 

socio-economic variables, derived from Model 4, are reported in Table 54. 
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Table 54: marginal WTP estimates derived from Model 4 

 Medium 
ecological 

quality 

High 
ecological 

quality 

Medium 
recreational 

quality 

High 
recreational 

quality 
RQ*EQ 

 WTP (£, per household, per year for the 20km survey river stretch)  
Baseline, no primary or secondary river contact (178 respondents) 

WTP < 
8km 

70.32*** 
(11.317) 

128.30*** 
(18.651) 

29.71*** 
(7.864) 

45.86*** 
(10.147) 

7.10*** 
(2.392) 

WTP > 
8km 

50.61*** 
(7.791) 

78.44*** 
(11.097) 

17.21*** 
(5.806) 

16.84** 
(7.068) 

5.09*** 
(1.666) 

Anglers (16 respondents) 
WTP < 
8km 

80.78*** 
(23.371) 

152.62*** 
(37.279) 

-4.74 
(13.598) 

1.43 
(14.337) 

 

WTP > 
8km 

63.10*** 
(16.956) 

108.37*** 
(24.720) 

-6.87 
(11.419) 

-11.38 
(12.889) 

 

Swimmers (5 respondents) 
WTP < 
8km 

-5.59 
(16.966) 

-15.65 
(29.044) 

40.11** 
(18.780) 

85.56*** 
(28.876) 

 

WTP > 
8km 

-4.52 
(14.488) 

-21.03 
(26.255) 

30.93** 
(14.627) 

61.62*** 
(19.174) 

 

Rowers (10 respondents) 
WTP < 
8km 

23.86 
(20.683) 

64.34 
(41.851) 

69.06* 
(36.993) 

84.05** 
(42.453) 

 

WTP > 
8km 

18.54 
(15.575) 

38.51 
(27.371) 

49.80** 
(23.380) 

51.61** 
(24.178) 

 

Baseline respondent holding 1 environmental membership 
WTP < 
8km 

141.70*** 
(31.795) 

233.45*** 
(50.285) 

46.29*** 
(15.196) 

82.74*** 
(21.880) 

 

WTP > 
8km 

92.86*** 
(16.615) 

136.03*** 
(22.890) 

25.26*** 
(8.958) 

34.47*** 
(10.675) 

 

Standard errors in parenthesis. *, ** and *** = significance at 10%, 5% and 1% levels. Low 

water quality defines V0, the baseline.  

The mean WTP values for the baseline respondents who live within 8km of the 

Yare, who do not hold environmental memberships or use the river for recreation, 

are broadly similar to the mean WTP values derived from Model 3. Among the 

baseline respondents living closer to the river we see a clear willingness to pay 

more for the ecological quality of the survey river and consistent willingness to 

pay more to obtain the highest water quality of both water quality types. 

As discussed previously, distance has a significant effect on respondents’ 

probability of choosing an option which, in turn, leads to a highly significant 

decrease in respondents' WTP for all water quality types if they live further than 

8km from the river. These respondents continue to have consistent preferences 

in their WTP for higher ecological water quality as ecological quality improves, 

but appear to be unwilling to pay more for High recreational water quality. As 

discussed previously, baseline respondents tend to be more ambivalent about 
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recreational quality and, it would appear, they become more ambivalent about 

High recreational quality as they live further away from the river. 

The additional explanatory variables in Model 4 tend to reduce the central WTP 

results on the common, baseline, variables in Table 54. We find that the variation 

has moved into the user and socio-economic variables. Several of the user 

groups produce very wide estimates due to small group size. Consequently, 

some of the WTP estimates reported in Table 54 are insignificantly different from 

zero and cannot be taken at face value - but they are useful as a guide to 

identifying trends in the data. The variables of interest relating to the different user 

groups are significant, e.g. anglers prefer ecological quality and their WTP for 

ecological quality is significant, rowers and swimmers prefer RQ and their WTP 

for RQ is significant. 

Of the three user groups, anglers living close to the river have the highest WTP 

for both Medium ecological quality and High ecological water quality. In contrast, 

for the reasons discussed previously, anglers have the lowest mean WTP for 

recreational water quality. The WTP values for recreational water quality for 

anglers are insignificantly different to zero. 

Swimmers have the highest WTP for High recreational water quality. Swimmers’ 

WTP for ecological quality is the lowest of all respondent types. Although the 

WTP values held by swimmers for ecological water quality are not significantly 

different from zero and have very wide confidence intervals, the values do 

suggest that swimmers would prefer water quality investments to be directed 

towards improving the recreational quality of water. It is important to note that the 

correct value of swimmers’ WTP for ecological quality may not be negative as all 

of the swimmers who were interviewed held at least one environmental 

membership, which positively modifies their willingness to pay for ecological 

quality. For example, a swimmer, holding one environmental membership and 

living within 8km of the river has a positive willingness to pay, £8.97 (s.e. 26.309), 

for High ecological water quality. 

Like swimmers, rowers also have higher willingness to pay for recreational water 

quality. Rowers have the highest WTP, of all respondent types, for Medium 

recreational water quality. This is, as discussed previously, the water quality type 
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from which they gain the greatest utility. Rowers’ WTP for High recreational water 

quality is slightly lower than that of the swimmers. Like swimmers, rowers WTP 

for ecological water quality is less than the values held by anglers or baseline 

respondents. 

Having one (or more) membership(s) of an environmental organisation has a 

large impact on the baseline respondents' mean willingness to pay for both water 

quality types. In Model 4, the number of environmental memberships held by 

respondents is specified as a continuous variable. However, we would not expect 

environmental memberships to have a linear relationship with WTP. To prevent 

this issue, Model 5 contains a respecified, binary, variable to describe the effect 

of Environmental Membership where 0=no memberships and 1=one or more 

memberships.  

Within Model 4, RQ*EQ varies depending on whether the respondent lives within, 

or further than, 8km of the survey river. For respondents living closer to the river 

the effect is £7.10*** (s.e. 2.392), and £5.09*** (s.e. 1.666) for respondents living 

farther away. The effects of the RQ*EQ interactions on different combinations of 

RQ and ecological quality are further described in Table 55. 

Table 55: additional WTP derived from the interaction effect of RQ*EQ in 

Model 4 

Water quality (level) 
Low 

ecological 
quality (0) 

Medium 
ecological 
quality (1) 

High 
ecological 
quality (2) 

 WTP (£, per household, per year for the 20km 
survey river stretch)  

Respondents living < 8km 
Low recreational quality (0) 0 0 0 
Medium recreational quality (1) 0 £7.10*** £14.20*** 
High recreational quality (2) 0 £14.20*** £28.40*** 
Respondents living > 8km 
Low recreational quality (0) 0 0 0 
Medium recreational quality (1) 0 £5.09*** £10.18*** 
High recreational quality (2) 0 £10.18*** £20.36*** 

Low water quality defines V0, the baseline. 
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