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Abstract 

Building Integrated Concentrating Photovoltaic (BICPV) systems make use of optical elements to 

concentrate the incoming solar radiation on small-sized solar cells with the aim of integrating PV 

technology into the building.  We present a novel conjugate system designed to utilize the merits of 

both reflective and refractive optics. The optical geometry under study is a dielectric based three-

dimensional cross compound parabolic concentrator (3DCCPC) enveloped by a reflective geometry 

of similar shape whilst maintaining an air gap between them. Monte Carlo ray-trace simulations are 

used to model and optimize the system configuration.  The theoretical analysis shows that the 

optical performance of the system can be improved by 11 % whilst maintaining an air gap of 0.1 mm 

between the reflective and the refractive surfaces. Experiments are carried out by making a 

prototype of the proposed system to evaluate the proof of concept. A maximum power ratio of 2.76 

was found under standard testing conditions at an incidence angle of 10°. Results show that the 

average power output from the proposed system increases by 5.46 % compared to its predecessor. 

 

 

Keywords: NON-IMAGING OPTICS; SOLAR; CONCENTRATOR; LIGHT TRAPPING; CONJUGATE OPTICS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

1. Introduction 

Integration of concentrating photovoltaic systems into building architecture is referred to as Building 

Integrated Concentrating Photovoltaics (BICPV). Several systems have been presented in the past 

decade demonstrating the potential of this technology[1-4].  

The most popular design is the Compound Parabolic Concentrator (CPC) which generally comprises 

of two reflective shaped parabolas formed by rotating their axis through a certain design angle (also 

known as the acceptance angle, θa) and translation of its origin. All the rays entering the 

concentrator at angles less than the acceptance angle reach the exit aperture. This design was 

superseded by asymmetric designs that expand building integration possibilities [4, 5]. 

Improvements on these systems were presented recently [1, 6], where the use of a reflective 

boundary was made along the outer surface of the CPC to trap the light escaping the concentrator 

surface.  Further developments were made on the BICPV system using a Three Dimensional Cross 

Compound Parabolic Concentrator (3DCCPC) using both reflective[7] and refractive[2] based 

geometries.  

2. System Description 

In the present study, we introduce a new type of system which incorporates the benefits of both 

reflective and refractive based concentrators. A Conjugate Cross Compound Parabolic Concentrator 

(CCCPC) designed for a 3.6× geometric concentration is presented which essentially consists of a 

dielectric 3DCCPC enveloped by a reflective surface of the same shape to trap any escaping rays 

from the dielectric. Figure 1 shows the different components of the system.  

 

Figure 1 Components of the Conjugate system 

2.1 Optical Simulation 

Ray-trace simulations were carried out using the APEX® software package under standard AM 1.5G 

spectrum. Figure 2(a) shows the ray-trace analysis of a 3DCCPC at 0° incidence. Incoming rays 

undergo total internal reflection and reach the solar cell. During this process some rays escape 

through the edges of the concentrator. Trapping these escaping rays using a reflecting surface with a 

small air gap can improve the performance. The air gap is very important to maintain the TIR effect. 

Figure 2(b) shows the rays trapped by the reflective surface which is fitted along with an air gap. 



  

Some of the rays still escape from the edges of the concentrator, which essentially depend on the 

amount of air gap between the two surfaces.  

  

Figure 2 (a) Ray-trace analysis of the dielectric 3DCCPC showing the rays escaping through the 

surface of the concentrator (b) Ray-trace analysis of the conjugate system 

2.2 Materials & Manufacture 

High efficiency Laser grooved Buried contact [8] solar cells were used in the study. These cells are 

processed using commercially available p-type boron doped Cz silicon wafers. Using a direct laser 

process trenches are formed on the front of the cell which are then Ni-Cu plated to form buried 

contacts. Further details on the solar cell manufacture can be found in the appendix. Clear 

polyurethane material crystal –clear 200 ®, due to its excellent transmission and dielectric 

properties, is used to prepare the concentrating element. The casing was prepared using 3D printing 

process. Once printed, the reflective film was attached along the inner surfaces of the sleeve. 

3. Impact of air gap  

The illumination flux reaching the solar cell after concentration changes considerably while using the 

reflective surface of the casing around the 3DCCPC. This increment in the energy flux helps in the 

improvement of the optical efficiency of the system. Figure 3 (a) shows a spatial distribution of the 

energy flux increment (ΔG) obtained while using the reflective sleeve at incident angles of 45°. There 

is an average increment of 40.3 W/m2 at 45° incidence respectively with an air gap of 600µm 

between the reflective and refractive surfaces. The optical efficiency is a key parameter in 

determining the performance of a concentrating photovoltaics system and defined as shown in Eq. 

(1).  
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A parametric study was carried out by changing the air gap between the concentrator and the 

reflective surface at different incident angles. The initial refractive based system reported earlier is 

also presented for comparison purposes.  



  
 

Figure 3(a) Flux map showing the gain using a reflective sleeve at 45° incident angle (b) Simulated 

Optical Efficiency of the system with different air gaps 

 

Figure 3(b) shows a comparison of optical efficiency for the system with varying air gaps between 

the reflective and refractive geometries. The air gap was varied from 0 to 1mm. There is a sudden 

boost in the optical efficiency when the reflective surface is directly in contact with the outer 

periphery. The optical performance, however, is found to reduce the acceptance angle of the 

system. The refractive system was expected to have a maximum of 73.5 % efficiency by itself. 

Creating an air gap between the surfaces increases both the optical efficiency and the acceptance 

angle of the system. Increasing the air gap reduces the optical efficiency due to increased ray travel 

and rays being rejected out of the system. A maximum optical efficiency of 84% could be achieved 

with an air gap of 0.1 mm at an incidence angle of 25 °. 

4. Results  

4.1 Electrical Performance  

The experimental setup typically consists of a light source generating collimated light with a 

standard AM 1.5G spectrum at 1000 W/m2. Four different system measurements were carried out 

using the same solar cell at different incident angles using a special setup [2]. The systems include 

the following: (i) Bare solar cell; (ii) An Initial Refractive based 3DCCPC system; (iii) New Refractive 

3DCCPC system and (iv) Conjugate system. 

Figure 4 (a) shows the variation of the Isc at different incident angles. Under normal incidence, the 

conjugate system has the highest value of 102 mA compared to 89 mA reported earlier [2] which 

shows a 14.6 % increase in the short circuit current value.  The new refractive system produced using 

the current manufacturing method is found to give improved results compared to the initial 

refractive system and has a short circuit current of 96 mA.   



  

 

Figure 4 Comparison of Experimental values of important electrical parameters for different 

systems as a function of incident angle (a) Short Circuit current (b) Open Circuit Voltage (c) Fill 

factor (d) Maximum power output  

The performance increment is reflected across the entire range of the incidence angles up to 60°, 

where both the systems become the same.  The variation of the open circuit voltage is shown in 

Figure 4 (b). The open circuit voltage (Voc) of all the different systems increases due to 

concentration. A maximum of 605 mV was seen in the case of a refractive based system compared 

to 603 mV obtained using the conjugate system. The fill factor (FF) defines the maximum power that 

can be extracted using the solar cell [9]. The FF of the different systems is plotted in Figure 4 (c). It 

may be seen that the bare solar cell exhibits a constant fill factor with a variation of ± 1% at different 

angles of incidence. The FF of the conjugate system is found to be considerably lower when 

compared to the other systems at every incident angle. This is essentially due to increase in series 

resistance occurred because of the non-uniformity of the illumination. In Figure 4(d) the maximum 

power output obtained by the different system configurations is shown. A maximum power of the 

conjugate system is 47.15 mW at 10 ° incident angle and an average of 2.24 mW increase in the 

power output over the entire range of incidence angles was observed.  

5. Conclusions  

Impact of the air gap between the reflective and refractive geometry was evaluated. The use of a 

reflective surface enclosing the original refractive geometry was found to boost the overall 

performance of the system. A prototype of the proposed system was tested experimentally to 

demonstrate the proof of concept. A maximum optical efficiency of 77% was found in the conjugate 

system at 10 ° incidence angle. A maximum power ratio of 2.76 was found in the case of the 

conjugate system.  

 



  

References 

[1] H. Baig, N. Sarmah, D. Chemisana, J. Rosell, T.K. Mallick, Enhancing performance of a linear 
dielectric based concentrating photovoltaic system using a reflective film along the edge, Energy 
73(0) (2014) 177-191. 
[2] H. Baig, N. Sellami, D. Chemisana, J. Rosell, T.K. Mallick, Performance Analysis of a Dielectric 
based 3D Building Integrated Concentrating Photovoltaic System, Solar Energy  (2014). 
[3] D. Chemisana, Building Integrated Concentrating Photovoltaics: A review, Renewable and 
Sustainable Energy Reviews 15(1) (2011) 603-611. 
[4] T.K. Mallick, P.C. Eames, Electrical performance evaluation of low-concentrating non-imaging 
photovoltaic concentrator, Progress in Photovoltaics: Research and Applications 16(5) (2008) 389-
398. 
[5] T.K. Mallick, P.C. Eames, T.J. Hyde, B. Norton, The design and experimental characterisation of an 
asymmetric compound parabolic photovoltaic concentrator for building façade integration in the UK, 
Solar Energy 77(3) (2004) 319-327. 
[6] L. Guiqiang, P. Gang, S. Yuehong, W. Yunyun, J. Jie, Design and investigation of a novel lens-
walled compound parabolic concentrator with air gap, Applied Energy 125(0) (2014) 21-27. 
[7] H. Baig, J. Siviter, W. Li, M.C. Paul, A. Montecucco, M.H. Rolley, T.K.N. Sweet, M. Gao, P.A. 
Mullen, E.F. Fernandez, G. Han, D.H. Gregory, A.R. Knox, T. Mallick, Conceptual design and 
performance evaluation of a hybrid concentrating photovoltaic system in preparation for energy, 
Energy 147 (2018) 547-560. 
[8] A.C. K.C. Heasman, S. Roberts, M. Brown, I. Baistow, S. Devenport and T.M. Bruton, Development 
of LGBC solar cells for use at concentration factors up to 100x, 4th International Conference on Solar 
Concentrators (ICSC-4), Spain, 2007. 
[9] H. Baig, K.C. Heasman, T.K. Mallick, Non-uniform illumination in concentrating solar cells, 
Renewable and Sustainable Energy Reviews 16(8) (2012) 5890-5909. 

 

Highlights 

This research article presents the following key points 

 Optical analysis of a Conjugate dielectric based concentrating photovoltaic system 

 Impact of the air gap between the refractive and the reflective surface  

 Establishes a proof of concept to be utilized for any CPV system 

 Experimental validation of the results 

 



  

 


