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Concept Drift and Anomaly Detection
in Graph Streams
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Abstract— Graph representations offer powerful and intuitive
ways to describe data in a multitude of application domains.
Here, we consider stochastic processes generating graphs and
propose a methodology for detecting changes in stationarity of
such processes. The methodology is general and considers a
process generating attributed graphs with a variable number
of vertices/edges, without the need to assume a one-to-one corre-
spondence between vertices at different time steps. The method-
ology acts by embedding every graph of the stream into a vector
domain, where a conventional multivariate change detection
procedure can be easily applied. We ground the soundness of
our proposal by proving several theoretical results. In addi-
tion, we provide a specific implementation of the methodology
and evaluate its effectiveness on several detection problems
involving attributed graphs representing biological molecules and
drawings. Experimental results are contrasted with respect to
suitable baseline methods, demonstrating the effectiveness of our
approach.

Index Terms— Anomaly detection, attributed graph, change
detection, concept drift, dynamic/evolving graph, embedding,
graph matching, stationarity.

NOMENCLATURE

G Graph domain.
d(·, ·) Graph distance G × G → R+.
gt Generic graph in G generated at time t .
g Set {gt1, . . . , gtn} of graphs.
D Dissimilarity domain R

M .
d �(·, ·) Distance D × D → R+.
yt Dissimilarity representation of generic graph gt .
y Set {yt1, . . . , ytn } of dissimilarity representations

of g.
ζ(·) Dissimilarity representation (G, d) → (D, d �).
R Set of prototypes {r1, . . . , rM } ⊂ G.
P Stochastic process generating graphs.
τ, τ̂ Change time and its estimate.
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(G,S, Q) Probability space for G in nominal regime.
(D,B, F) Probability space for D in nominal regime.
H0, H1 Null and alternative hypotheses of a statistical

test.
St Statistic used by the change detection test.
ht Threshold for the change detection test.
αt Significance level of the change detection test.
y, E[F] Sample mean and expected value with respect

to F .
μ[g], μ[Q] Fréchet sample and population means with

respect to Q.

I. INTRODUCTION

LEARNING in nonstationary environments is becoming a
hot research topic, as proven by the increasing body of

literature on the subject, e.g., [1], [2] for a survey. Within this
learning framework, it is of particular relevance the detection
of changes in stationarity of the data generating process. This
can be achieved by means of either passive approaches [3],
which follow a pure online adaptation strategy, or active
ones [4], [5], enabling learning only as a proactive reaction to
a detected change in stationarity. In this paper, we follow this
last learning strategy, though many results are general and can
be suitably integrated in passive learning approaches as well.

Most change detection mechanisms have been proposed
for numeric independent and identically distributed (i.i.d.)
sequences and either rely on change point methods or change
detection tests. Both change point methods and change detec-
tion tests are statistical tests; the former works offline over
a finite number of samples [6] while the latter employs a
sequential analysis of incoming observations [7] to detect
possible changes. These techniques were originally designed
for univariate normal distributed variables, and only later
developments extended the methodology to non-Gaussian dis-
tributions [8], [9] and multivariate data streams [10], [11].

A somehow related field to change detection tests is one-
class classification (e.g., [12] and references therein). There,
the idea is to model only the nominal state of a given
system and detect nonnominal conditions (e.g., outliers, anom-
alies, or faults) by means of inference mechanisms. However,
one-class classifiers typically process data batches with no
specific presentation order, while change detection problems
are sequential in nature.

The important role played, nowadays, by graphs as descrip-
tion of dynamic systems is boosting, also thanks to recent
discoveries of theoretical frameworks for performing sig-
nal processing on graphs [13], [14] and for analyzing
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Fig. 1. Fundamental steps of the methodology. At the top of the figure, the stochastic process P generates over time a stream of graphs g1, g2, g3, . . . .
The embedding procedure ζ(·) is described in the bottom-left corner. The embedding of graph gt is computed by considering the dissimilarity d(gt , rm )
with respect to each prototype graph rm ∈ R, and returns the embedded vector yt (here 3-dimensional) lying in the dissimilarity space D. The embedding
procedure proceeds over time and generates the multivariate vector stream y1, y2, y3, . . . A change detection method (bottom-right) is applied to the wth
window extracted from the y-stream to evaluate whether a change was detected or not, hence, iterating the procedure with the acquisition of a new graph.

temporal (complex) networks [15]–[17]. However, very few
works address the problem of detecting changes in stationarity
in streams (i.e., sequences) of graphs [18]–[20], and, to the
best of our knowledge, none of them tackles the problem
by considering a generic family of graphs (e.g., graphs with
a varying number of vertices/edges, and arbitrary attributes
on them). In our opinion, the reason behind such a lack of
research in this direction lies in the difficulty of defining
a sound statistical framework for generic graphs that, once
solved, would permit to also detect changes in time variance in
time-dependent graphs. In fact, statistics grounds on concepts
like average and expectation, which are not standard concepts
in graph domains. Fortunately, recent studies [21], [22] have
provided some basic mathematical tools that allow us to move
forward in this direction, hence, addressing the problem of
detecting changes in stationarity in sequences of graphs.

A key problem in analyzing generic graphs refers to assess-
ing their dissimilarity, which is a well-known hard prob-
lem [23]. The literature proposes two main approaches for
designing such a measure of dissimilarity [24]–[26]. In the first
case, graphs are analyzed in their original domain G, whereas
the second approach consists of mapping (either explic-
itly or implicitly) graphs to numeric vectors. A well-known
family of algorithms used to assess dissimilarity between
graphs relies on the graph edit distance (GED) approach [27].
More specifically, GED algorithms count and weight the edit
operations that are needed in order to make two input graphs
equal. Differently, other techniques take advantage of kernel
functions [28], spectral graph theory [29], [30], or assess graph
similarity by looking for recurring motifs [31]. The computa-
tional complexity associated with the graph matching problem
inspired researchers to develop heuristics and approximations
(e.g., [32]–[34] and references therein.)

A. Problem Formulation

In this paper, we consider sequences of attributed graphs,
i.e., directed or undirected labeled graphs characterized by
a variable number of vertices and edges [21]. Attributed
graphs associate vertices and edges with generic labels, e.g.,
scalars, vectors, categorical, and user-defined data structures.
In addition, multiple attributes can be associated with the same
vertex/edge, whenever requested by the application. By con-
sidering attributed graphs, we position ourselves on a very

general framework covering most of application scenarios.
However, generality requires a new operational framework,
since all assumptions made in the literature to make the
mathematics amenable, e.g., graphs with a fixed number of
vertices and/or scalar attributes, cannot be accepted anymore.
In order to cover all applications modellable through attributed
graphs, we propose the following general problem formulation
for change detection.

Given a generic premetric distance d(·, ·) on G, we construct
a σ -algebra S containing at least all open balls of (G, d)
and associate a generic probability measure Q to (G,S).
The generated probability space (G,S, Q) allows us to con-
sider graphs as a realization of a structured random variable g
on (G,S, Q). Define P to be the process generating a generic
graph gt ∈ G at time t according to a stationary probability
distribution Q (nominal distribution). We say that a change
in stationarity occurs at (unknown) time τ when, from time
τ on, P starts generating graphs according to a nonnominal
distribution ˜Q �= Q, i.e.,

gt ∼
{

Q t < τ

˜Q t ≥ τ.

In this paper, we focus on persistent (abrupt) changes
in stationarity affecting the population mean. However, our
methodology is general and potentially can detect other types
of change, including drifts and transient anomalies lasting for
a reasonable lapse of time.

B. Contribution and Paper Organization

A schematic description of the proposed methodology to
design change detection tests for attributed graphs is shown
in Fig. 1, and consists of two steps: 1) mapping each graph gt

to a numeric vector yt through a prototype-based embedding
and 2) using a multivariate change detection test operating on
the y-stream for detecting changes in stationarity.

The novelty content of this paper can be summarized as
follows.

1) A methodology to detect changes in stationarity in
streams of attributed graphs. To the best of our knowl-
edge, this is the first research contribution tackling
change detection problems in streams of varying-size
graphs with nonidentified vertices and user-defined
vertex/edge attributes.
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2) A method derived from the methodology to detect
changes in stationarity in attributed graphs. We stress
that the user can design his/her own change detec-
tion method by taking advantage of the proposed
methodology.

3) A set of theoretic results grounding the proposed
methodology on a firm basis.

The proposed methodology is general and advances the few
existing approaches for change detection in graph sequences
mostly relying on the extraction and processing of topological
features of fixed-size graphs (e.g., [35]).

It is worth emphasizing that the proposed approach assumes
neither one-to-one nor partial correspondence between
vertices/edges across time steps (i.e., vertices do not need to be
uniquely identified). This fact has important practical impli-
cations in several applications. As a very relevant example,
we refer to the identification problem of neurons in extra-
cellular brain recordings based on their activity [36]. In fact,
each electrode usually records the activity of a neuron cluster,
and single neurons need to be disentangled by a procedure
called spike sorting. Hence, a precise identification of neurons
(vertices) is virtually impossible in such an experimental
setting, stressing the importance of methods that do not require
one-to-one correspondence between vertices over time.

The remainder of this paper is structured as follows.
Section II contextualizes our contribution and discusses related
works. Section III-A presents the proposed methodology for
change detection in generic streams of graphs. Theoretical
results are sketched in Section III-B; related proofs are given
in Appendix C. A specific implementation of the methodology
is presented in Section IV and related proofs in Appendix D.
Section V shows experimental results conducted on data sets
of attributed graphs. Finally, Section VI draws conclusions and
offers future directions. Appendixes A and B provide further
technical details regarding the problem formulation.

II. RELATED WORKS

The relatively new field of temporal networks deals
with graph-like structures that undergo events across
time [16], [17]. Such events mostly realize in instanta-
neous or persistent contacts between pairs of vertices. With
such structures one can study dynamics taking place on a
network, like epidemic and information spreading, and/or
dynamics of the network itself, i.e., structural changes affect-
ing vertices and edges over time. Further relevant directions in
temporal networks include understanding the (hidden) driving
mechanisms and generative models [15].

The literature in statistical inference on time-varying graphs
(or networks) is rather limited [16], [22], especially when
dealing with attributed graphs and nonidentified vertices.
Among the many, anomaly detection in graphs emerged as a
problem of particular relevance, as a consequence of the ever
growing possibility to monitor and collect data coming from
natural and man-made systems of various size. An overview
of proposed approaches for anomaly and change detection on
time-variant graphs is reported in [35] and [37], where the
authors distinguish the level of influence of a change. They

identify changes affecting vertices and edges, or involving
entire subnetworks of different size; this type of change
usually concerns static networks, where the topology is often
fixed. Other changes have a global influence, or might not be
ascribed to specific vertices or edges.

We report that there are several applications in which the
vertices are labeled in such a way that, from a time step
to another, we are always able to create a partial one-to-
one correspondence (identified vertices). This case arises, e.g.,
when the identity of vertices plays a crucial role and must
be preserved over time. Here, we put ourself in the more
general scenario where vertices are not necessarily one-to-one
identifiable through time.

Within the anomaly detection context, only few works
tackle the problem in a classical change detection framework.
Among the already published works in detecting changes in
stationarity, we mention Barnett and Onnela [19], whose paper
deals with the problem of monitoring correlation networks by
means of a change point method. In particular, at every time
step t , the authors construct the covariance matrix computed
from the signals up to time t and the covariance matrix of the
remaining data. As statistic for the change point model, they
adopt the Frobenius norm between the covariance matrices.
The authors evaluate their method on functional magnetic
resonance imaging and stock returns. A different way to
approach the problem consists in modeling the network-
generating process within a probabilistic framework. Graphs
with N vertices and disjoint communities can be described
by the degree corrected stochastic block model, where some
parameters represent the tendency of single vertices to be
connected and communities to interact. This model has been
adopted by Wilson et al. [18] for monitoring the U.S.
Senate co-voting network. As monitoring strategy, they con-
sider the standard deviation of each community, and then
apply exponential weighted moving average control chart. A
further example of change point method for fixed-size graphs
combines a generative hierarchical random graph model with
a Bayesian hypothesis test [38].

III. CHANGE DETECTION IN A STREAM OF GRAPHS

The structure of the section is as follows. Section III-A
describes the proposed methodology at a high level to ease
the understanding. In Section III-B, we present theoretical
results grounding our proposal; their proofs are given in the
appendixes.

A. Proposed Methodology

The methodology operates on an input sequence of
attributed graphs g1, g2, . . . , gt , . . . ∈ G and, as sketched
in Fig. 1, it performs two steps.

1) Map (embed) input graphs to a vector domain D = R
M .

Embedding is carried out by means of the dissimilarity
representation ζ : G → D, which embeds a generic
graph gt ∈ G to a vector yt ∈ D.

2) Once a multivariate i.i.d. vector stream
y1, y2, . . . , yt , . . . is formed, change detection is
carried out by inspecting such a numerical sequence
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with the designer favorite method. The two phases are
detailed in the sequel.

1) Dissimilarity Representation: The embedding of a
generic graph g ∈ G is achieved by computing the dissimilarity
between g and the prototype graphs in R = {r1, . . . , rM } ⊂ G

y = ζ(g) := [d(g, r1), . . . , d(g, rM )]	. (1)

The vector y is referred to as the dissimilarity representation
of g. Set R has to be suitably chosen to induce informative
embedding vectors. For a detailed discussion about dissimi-
larity representations and possible ways to select prototypes,
we suggest [39].

In order to make the mathematics more amenable, here we
assume d(·, ·) to be a metric distance; nevertheless, in prac-
tical applications, one can choose more general dissimilarity
measures.

2) Multivariate Vector Stream: At time step t the process
P generates graph gt , and the map ζ(·) embeds gt onto
vector yt = ζ(gt ) ∈ D, inducing a multivariate stream
y1, y2, . . . , yt , . . . whose elements lie in D. Fig. 1 depicts the
continuous embedding of graph process.

Under the nominal condition for process P , graphs {gt}t<τ

are i.i.d. and drawn from probability space (G,S, Q). Conse-
quently, also vectors yt ∈ D are i.i.d.. We now define a sec-
ond probability space (D,B, F) associated with embedded
vectors yt ; in particular, here we propose to consider for B
the Borel’s σ -algebra generated by all open sets in D. F is
the push forward probability function of Q by means of ζ(·),
namely,

F(B) = Q(ζ−1(B)) ∀ B ∈ B. (2)

With such a choice of F , we demonstrate in Appendix A that
F is a probability measure on (D,B).

3) Change Detection Test: By observing the i.i.d. vector
stream y1, y2, . . . , yt , . . . over time we propose a multivariate
change detection procedure to infer whether a change has
occurred in the vector stream and, in turn, in the graph stream.

The change detection test is the statistical hypothesis test

H0 : E[St ] = 0

H1 : E[St ] > 0

where 0 is the expected value during the nominal—
stationary—regime and E[·] is the expectation operator.
Statistic St , which is applied to windows of the vector stream,
is user-defined and is requested to increase when the process P
becomes nonstationary.

Often, the test comes with a threshold ht so that if

St > ht ⇒ a change is detected (3)

and the estimated change time is

τ̂ = inf{t : St > ht }.
Whenever the distribution of St under hypothesis H0 is
available—or can be estimated—the threshold can be related
to an user-defined significance level αt so that αt = P(St >
ht |H0).

Fig. 2. Conceptual scheme of the proposed methodology that highlights the
theoretical results. The key point is to show that objects close in the graph
domain G, onto which metric d(·, ·) is defined, under certain conditions, are
close also in the embedded domain D controlled by metric d �(·, ·). It comes up
that if objects in the embedding domain D are distant in probability, then also
the related graphs in G are distant, hence indicating a change in stationarity
according to a given false positive rate.

B. Theoretical Results

In this section, we show some theoretical results related
to the methodology presented in Section III-A. In particular,
we prove the following claims.

(C1) Once a change is detected in the dissimilarity space
according to a significance level α�, then a change occurs
in probability with significance level α also in the graph
domain;

(C2) If a change occurs in the graph domain having set a
significance level α, then, with a significance level α�,
a change occurs also in the dissimilarity space.

Fig. 2 depicts the central idea behind the methodology.
Through transformation ζ(·), we map graphs to vectors. In the
transformed space, we consider the expectation E[F] and the
sample mean y associated with set y = {yt1, . . . , ytn } obtained
by embedding the graph set g = {gt1, . . . , gtn }, and design a
hypothesis test of the form

H0 : d �(E[F], y) ≤ δ

H1 : d �(E[F], y) > δ (4)

where δ is a positive threshold and hypothesis H0 is associated
with a nominal, change-free condition. In this paper, we relate
the y-test of (4) to a correspondent test d(μ[Q], μ[g]) > γ
operating in the graph domain, where μ[Q], μ[g] are, respec-
tively, the population and sample mean defined according to
Fréchet [40]; for further details about Fréchet statistics refer
to Appendix B.

Define α and α� to be two significance levels, such that

α = P(d(μ[Q], μ[g]) > γ |H0)

α� = P(d �(E[F], y) > γ �|H0). (5)

In the sequel, we relate the threshold γ to γ �, so that also the
significance levels α and α� are in turn related to each other.
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In order to address our problem, we introduce mild
assumptions to obtain closed-form expressions. Such
assumptions are satisfied in most applications. (A3)

(A1) We assume that the attributed graph space (G, d) and the
dissimilarity space (D, d �) are metric spaces; in particu-
lar, (G, d) is chosen as a graph alignment space [22]—
i.e., a general metric space of attributed graphs—and
d �(·, ·) has to be induced by a norm.

(A2) We put ourselves in the conditions of [22] in order to
take advantage of results therein; specifically, we assume
that the Fréchet function FQ(g) = ∫

G d2(g, f ) d Q( f )
is finite for any g ∈ G, and there exists a sufficiently
asymmetric graph f such that the support of Q is
contained in a cone around f . In this way, we are
under the hypotheses of Theorems 4.1 and 4.2 of [22],
which ensure the existence and uniqueness of the Fréchet
population and sample mean in G.

(A3) The embedding function ζ : (G, d) → (D, d �) is
bilipschitz, i.e., there exist two constants c, C > 0, such
that for any pair g, f ∈ G

d(g, f ) ≥ c d �(ζ(g), ζ( f )) (6)

d(g, f ) ≤ C d �(ζ(g), ζ( f )). (7)

Let �(·) and ϒ(·) be the cumulative density func-
tions (CDFs) of d(μ[g], μ[Q]) and d �(y, E[F]), respectively.
Proposition 1 bounds the distribution �(·) in terms of ϒ(·).
This fact yields the possibility to derive significance levels
α, α� and thresholds γ, γ � (5) that are related.

In order to prove Proposition 1, we make use of two aux-
iliary results, Lemmas 1 and 2. At first, we need to comment
that, although in general y �= ζ(μ[g]) and E[F] �= ζ(μ[Q]),
differences are bounded in practice, as shown by Lemma 1.

Lemma 1: Considering a set g of i.i.d. random graphs and
the associated embedded set y, there exists a constant v2 such
that

E[F] − ζ(μ[Q])2
2 ≤ v2

P(y − ζ(μ[g])2
2 ≥ δ) ≤ v2

δ
∀δ > 0.

Lemma 2 is used to derive bounds on the marginal distrib-
utions from bounds on the joint distributions that are useful in
Proposition 1 to relate the threshold and the significance level
in the graph space with the ones in the dissimilarity space.

Lemma 2: Consider a random variable x ∈ X and two
statistics d1(·), d2(·) : X → R+ with associated CDFs 
1(·),

2(·), respectively. If function u : R+ → R+ is increasing
and bijective and p is a constant in [0, 1], then

P(d1(x) ≤ u(d2(x))) ≥ p ⇒ 
1(·) ≥ p · 
2(u
−1(·)).

Claims (C1) and (C2) now follow from the relation
between the CDFs �(·) and ϒ(·) proven by the sub-
sequent Proposition 1. In particular, regarding Claim (C1)
Proposition 1 provides a criterion for setting a specific
threshold γ � for the test (4) for which we can state that
d(μ[Q], μ[g]) is unexpectedly large with a significance level
at most α; similarly, we obtain Claim (C2).

Proposition 1: Consider a sample g of i.i.d. graphs. Under
assumptions (A1)–(A3), if �(·) and ϒ(·) are the CDFs of
statistics d(μ[Q], μ[g]) and d �(E[F], y), respectively, then for
every δ > 0 there exist two values bδ and pδ, depending on δ
but independent of g, such that

pδ · ϒ
( γ

C
− bδ

)

≤ �(γ ) ≤ 1

pδ
· ϒ

(γ

c
+ bδ

)

.

The proofs are given in Appendix C. Results of
Proposition 1 allows us to state the major claim (C1): given
a sample g, for any significance level α and threshold γ ,
as in (5), we can set up a γ � such that the confidence level of
detecting a change in D is at least pδ(1 −α). Specifically, for
γ � = (γ /c) + bδ we have that

P(d �(E[F], y) ≤ γ � | H0) = ϒ
(γ

c
+ bδ

)

≥ pδ(1 − α). (8)

Equation (8) states that if no change occurs in G with
confidence level 1 − α, then a change will not be detected
in D according to threshold γ � at least with confidence
level pδ(1 − α). Indeed, this proves (C1) by contraposition.
Similarly, Proposition 1 allows to prove Claim (C2). In fact, for
any α� and γ � as in (5), we can set γ so that γ � = (γ /C)−bδ

and obtain

P(d(μ[Q], μ[g]) ≤ γ | H0) = �(γ ) ≥ pδ(1 − α�).

IV. IMPLEMENTATIONS OF THE METHODOLOGY

This section describes two examples showing how to imple-
ment the proposed methodology and derive actual change
detection tests. In Section IV-A, we present a specific method
for generic families of graphs, whereas in Section IV-B,
we further specialize the methodological results to a special
case considering graphs with identified vertices.

A. Change Detection Based on Central Limit Theorem

Here, we consider specific techniques for prototype selec-
tion and change detection test. For the sake of clarity, we keep
the subsection structure of Section III-A. Both the prototype
selection and change detection test require a training phase.
For this reason, the first observed graphs of the stream will
serve as training set T , that we assume to be all drawn under
nominal conditions.

1) Dissimilarity Representation: Since the change detection
method operates in the dissimilarity space, we need to define
the embedding ζ(·) that, at each time step, maps a generic
graph gt to a vector yt .

We comment that the embedding ζ(·) is completely defined
once the graph distance metric d(·, ·) and prototype set R are
chosen. Here, we adopt a metric GED as graph distance, since
it meets Assumption (A1) of (G, d) being a graph alignment
space.

Many approaches have been proposed to deal with the
prototype selection problem (e.g., [41] and references therein).
While the proposed methodology is general and one can
choose any solution to this problem, here we adopt the
k-Centres method [42]. The method selects prototypes so as
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to cover training data with balls of equal radius. Specifically,
the algorithm operates as follows:

1) select M random prototypes R := {r1, . . . , rM } ⊆ T ;
2) for each rm ∈ R, consider the set Cm of all g ∈ T such

that d(rm, g) = minr∈R d(r, g);
3) for m = 1, . . . , M update the prototypes rm with a graph

c ∈ T minimizing maxg∈Cm d(c, g);
4) if the prototype set R did not change from the previous

iteration step then exit, otherwise go to step 2.

In order to improve the robustness of the k-Centres
algorithm, we repeat steps 1–4 by randomizing initial con-
ditions and select the final prototype set R to be

R = arg min
R∈{R(i)}

{

max
rm∈R

[

max
c∈Cm

d(rm , c)
]}

where {R(i)} is the collection of prototype sets found at each
repetition.

2) Multivariate Vector Stream: Every time the process
P generates a graph gt , we embed it as yt = ζ(gt)
by using the prototype set R identified with the k-Centres
approach. This operation results in a multivariate vector stream
y1, y2, . . . , yt , . . . on which we apply the change detection
test.

3) Change Detection Test: We consider here a variation
of the cumulative sum (CUSUM) test [8] to design the
change detection test. CUSUM is based on the cumulative
sum chart [43], it has been proven to be asymptotically
optimal [7] and allows for a simple graphical interpretation of
results [44]. Here, the CUSUM is adapted to the multivariate
case. However, we remind that, in principle, any change
detection test can be used on the embedded sequence.

We batch the observed embedding vectors into nonoverlap-
ping samples yw := {y(w−1)n+1, . . . , ywn} of length n, where
index w represents the wth data window. For each window,
we compare the sample mean y0 estimated in the training set
T with that estimated in the wth window, i.e., yw and compute
the discrepancy

sw := d �(y0, yw).

By assuming that y1, y2, . . . , yt , . . . are i.i.d., and given
sufficiently large |T | and n, the central limit theorem grants
that y0 and yw are normally distributed. In particular, y0
and yw share the same expectation E[F], while covariance
matrices are (1/|T |) Var[F] and (1/n) Var[F], respectively.

As a specific choice of d �(·, ·), we adopt the Mahalanobis’
distance, i.e., d �(y0, yw) := d�(y0, yw) where

d�(y0, yw) =
√

(y0 − yw)	�−1(y0 − yw) (9)

with matrix � = ((1/|T |) + (1/n)) Var[F], i.e., the covari-
ance matrix of y0 − yw. In our implementation, we con-
sider as covariance matrix Var[F] the unbiased estimator
(1/(|T | − 1))

∑

y∈T (y − y0) · (y − y0)
	.

For each stationary window w, the squared Mahalanobis’
distance s2

w is distributed as a χ2
M .

The final statistic Sw inspired by the CUSUM test is
defined as

{

Sw = max{0, Sw−1 + (sw − q)}
S0 = 0.

(10)

The difference sw − q increases with the increase of the
discrepancy in (9) and positive values support the hypothe-
sis that a change occurred, whereas negative values suggest
that the system is still operating under nominal conditions.
This behavior resembles that of the original CUSUM incre-
ment associated with the log-likelihood ratio. In particular,
the parameter q can be used to tune the sensitivity of the
change detection; in fact, if q2 is the β-quantile χ2

M (β), then
sw − q produces a negative increment with probability β and
a positive one with probability 1 − β.

The last parameter to be defined is the threshold hw

as requested in (3). Since the nonnominal distribution is
unknown, a common criterion suggests to control the rate
of false alarms α. In sequential detection tests, a related
criterion requires a specific average run length under the
null hypothesis (ARL0) [45]. ARL0 is connected to the false
positive rate in the sense that setting a false alarm rate to
α yields an ARL0 of α−1. Since we propose a sequential
test, statistic Sw depends on statistics at preceding times. As
a consequence, since we wish to keep α fixed, we end up
with a time-dependent threshold hw . As done in [10], [11],
we numerically determine thresholds through Monte Carlo
sampling by simulating a large number of processes of
repeated independent χ2

M realisations. Threshold hw is then
the 1 − α quantile of the estimated distribution of Sw .

We point out that, when setting a significance level for the
random variable Sw , we are implicitly conditioning to the event
Si ≤ hi , ∀i < w; in fact, when Sw exceeds hw, we raise an
alarm and reconfigure the detection procedure.

4) Theoretical Results: The choice of Mahalanobis’
distance ensures that almost all assumptions in Section III-B
are met. In particular, the Mahalanobis’ distance meets
the requirements of Assumption (A1). Then, the follow-
ing Lemma 3 provides a lower bound of the form (6) in
Assumption (A3); specifically, the lemma shows that, up to
a positive factor, the distance between two graphs is larger
than the one between the associated embedding vectors.

From these properties, we can apply Proposition 1 to state
that Claim (C1) holds. Hence, for any α, we can set a specific
threshold γ � yielding a confidence level at least pδ(1 − α).

Lemma 3: For any two graphs g, f ∈ G, we have that

d(g, f ) ≥
√

λM

M
d�(ζ(g), ζ( f ))

where λM is the smallest eigenvalue of �.
The proof is reported in Appendix D. Distance d�(·, ·) is

well defined only when � is positive definite, a condition
implying that selected prototypes are not redundant.

B. Special Case: Graphs With Identified Vertices

Here, we take into account the particular scenario where
the attribute function a(·) of g = (V , E, a) ∈ G assigns
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numerical attributes in [0, 1] to vertices and edges of g; the
vertex set V is a subset of a predefined finite set V , with
|V| = N . The peculiarity of this space G resides in the fact
that any vertex permutation of a graph leads to a different
graph. Many real-world applications fall in this setting, for
instance correlation graphs obtained by signals coming from
sensors or graphs generated by transportation networks.

We show an example of method for this setting, which
complies with the methodology and satisfies Assumption (A3).
This fact follows from the existence of an injective map
ω from G to the [0, 1]N×N matrix set. Indeed, we repre-
sent each graph with its weighted adjacency matrix whose
row/column indices univocally correspond to the vertices in V .
By endowing G with the Frobenius distance1 dF (g1, g2) :=
ω(g1) − ω(g2)F , map ω : (G, dF ) → ([0, 1]N×N , ·F ) is
an isometry.

Being the co-domain of ω an Euclidean space, we com-
pute a matrix X ∈ R

k×M whose columns xi constitute
a k-dimensional vector configuration related to the proto-
type graphs; this is done via Classical Scaling [39], that is,
xi − x j2 = d(ri , r j ) for all pairs of prototypes ri , r j ∈ R.
As usual, we consider the smallest possible k that preserves
the data structure as much as possible. Successively, for any
dissimilarity vector y ∈ D, we define u := X J y∗2 to
be a linear transformation of y∗2, obtained by squaring all
the components of y; the matrix J is the centering matrix
I − (1/M)11	. We apply the same procedure of Section IV,
considering u instead of y: matrix � is derived from the
nonsingular covariance matrix,2 and the statistic sw is the
Mahalanobis distance d�(u0, uw).

Considering the space (G, dF ) and the above transform,
we claim that the following lemma holds. Lemma 4 proves
the fulfillment of Assumption (A3).

Lemma 4: For any positive definite matrix � ∈ R
k×k

c d�(u1, u2) ≤ dF (g1, g2) ≤ C d�(u1, u2)

where c = ((λk(�))/(4λ1(X X	)))1/2, C = ((λ1(�))/
(4λk(X X	)))1/2. λi (·) is the i th eigenvalue in descending
order of magnitude.

The proof is reported in Appendix D.

V. EXPERIMENTS

The proposed methodology can operate on very general
families of graphs. Besides the theoretical foundations around
which the paper is built, we provide some experimental
results showing the effectiveness of what proposed in real
change detection problems in streams of graphs. In particular,
we consider the method introduced in Section IV-A as an
instance of our methodology. Source code for replicating the
experiments is available in [46].

A. Experimental Description

1) Data: The experimental evaluation is performed on the
well-known IAM benchmarking databases [47]. The IAM

1In G, dF (·, ·) is a graph alignment distance, as formally shown in
Appendixes D–B.

2� is nonsingular, since there are no isolated points in G and as a
consequence of the selection of k.

TABLE I

EXPERIMENTAL SETTINGS. THE FIRST COLUMN CONTAINS AN IDENTI-
FIER FOR EACH EXPERIMENT; IN PARTICULAR, IN THE LETTER DATA

SET, “D,” “O,” AND “S,” STAND FOR DISJOINT, OVERLAPPING,
AND SUBSET, RESPECTIVELY. THE SECOND COLUMN REPORTS

THE DATA SET INVOLVED, AND THE THIRD AND FOURTH
COLUMNS SHOW THE SET OF CLASSES FROM WHICH

NOMINAL/NONNOMINAL GRAPHS ARE EXTRACTED.
THE COLLECTIONS OF LETTERS ARE SELECTED

IN ALPHABETICAL ORDER

data sets contain attributed graphs representing drawings and
biochemical compounds. Here, we consider the Letters, Muta-
genicity, and AIDS data sets.

The Letters data set contains 2-dimensional geometric
graphs. As such, each vertex of the graphs is characterized by
a real vector representing its location on a plane. The edges
define lines such that the graphical planar representation of the
graphs resembles a Latin-script letter. The data set is composed
of 15 classes (one for each letter3) containing 150 instances
each.

Conversely, the Mutagenicity and AIDS data sets contain
biological molecules. Molecules are represented as graphs
by considering each atom as a vertex and each chemical
link as an edge. Each vertex is attributed with a chemical
symbol, whereas the edges are labeled according to the valence
of the link. Both data sets contain two classes of graphs:
mutagenic/nonmutagenic for Mutagenicity and active/inactive
for AIDS. The two data sets are imbalanced in terms of size of
each classes, in particular Mutagenicity has 2401 mutagenic
and 1963 nonmutagenic molecules; AIDS contains 400 active
and 1600 inactive molecules.

We considered these data sets because they contain different
types of graphs with variegated attributes (numerical and
categorical). We refer the reader to [47] and references therein
for a more in-depth discussion about the data sets.

2) Simulating the Generating Process P: For each exper-
iment in Table I, we consider two collections of graphs
containing all possible observations in the nominal and non-
nominal regimes, respectively. Each collection is composed by
graphs present in one or more predefined classes of the data
set under investigation. The collections have to be different,
but they do not need to be disjoint; as such, some graphs can
belong to both collections.

Next, we simulate the process P by bootstrapping graphs
from the first collection up to the predefined change time τ ;
this is the nominal regime. After τ , we bootstrap objects from
the second collection hence modeling a change.

3The IAM letters database [47] considers only noncurved letters; hence,
e.g., letters A and E are considered, whereas B and C are excluded.
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TABLE II

RESULTS ATTAINED BY OUR METHOD VARYING NUMBER OF PROTOTYPES (M ) AND WINDOW SIZE (n). SYMBOL ∗
INDICATES DCR STATISTICALLY LARGER THAN 0.99, WITH A CONFIDENCE OF 95%. SYMBOLS ◦ AND •

HIGHLIGHT SIGNIFICANT TRENDS IN THE DCR INCREASING M AND n, RESPECTIVELY

Regarding molecular data sets, we considered two dis-
tinct experiments. For the Mutagenicity (AIDS) experiment,
we set the nonmutagenic (inactive) class as nominal col-
lection and mutagenic (active) class as nonnominal one.
On the other side, for the Letter data set we design four
different experiments depending on which classes will pop-
ulate the collections. Table I reports the settings of all
the experiments and Section V-A.3 describes the relevant
parameters.

3) Parameters Setting: For all experiments, the offset q is
set to the third quartile of the χ2(M) distribution. The time-
dependent threshold hw has been numerically estimated by
Monte Carlo sampling. We drew one million processes of i.i.d.
random variables sw by taking the square root of i.i.d. random
variables distributed as χ2(M). For each obtained process
(stream), we computed the sequence of cumulative sums Sw

like in (10) and estimated the threshold hw as the quantile of
order αw =1/ARL0, with ARL0 = 200 (windows).

We divided the training set T in two disjoint subsets,
Tc and Tp , used during the prototype selection and change
detection learning phases, respectively. We set |Tp| = 300
and |Tc| = 1000, afterward we generated a stream of graphs
containing 20 · n · ARL0 observations associated with the
operational phase. The change is forced at time τ = 12 · n ·
ARL0. As for the distance d(·, ·), we considered the bipartite
GED implemented in [48], where we selected the Volgenant
and Jonker assignment algorithm. The other GED parameters
are set according to the type of graphs under analysis, i.e., for
geometric graphs we consider the Euclidean distance between
numerical attributes, and a binary (0-1 distance) for categorical
attributes. The k-Centres procedure is repeated 20 times.

We believe that the selected parameter settings are reason-
able. Nevertheless, a proper investigation of their impact with
respect to performance metrics is performed in a companion
paper [49], hence it is outside the focus of the present one.

4) Figures of Merit: We assess the performance of the
proposed methodology by means of the figures of merit here
described. Such measurements are obtained by replicating
each experiment one hundred times; we report the average of
the observed measures with their estimated 95% confidence
interval (95CI) or standard deviation (std).

First of all, we consider the observed ARL0 introduced
in Section III-A3 and the delay of detection (DoD). Both
of them are computed as the average time lapses between
consecutive alarms, but limiting to those alarms raised before
and after time τ , respectively. From them, we estimate the rate
of detected changes [detection rate (DCR)], by assessing the
rate of simulations in which the DoD is less than the observed
ARL0. Finally, we consider also the estimated rate of false
anomalies within 1000 samples (FA1000). This is computed
as the ratio between the count of raised false alarms and the
total number of thousands of time steps under the nominal
condition.

We point out that the measures ARL0, DoD, and FA1000 are
computed with the window as unitary time step.

5) Baseline Methods: As previously mentioned, state-of-
the-art change detection methods for graph streams usually
assume a given topology with a fixed number of vertices
and/or simple numeric features for vertices/edges. As reported
in [35], considering a variable topology, a common method-
ology for anomaly detection on graphs consists of extracting
some topological features at each time step and then applying
a more general anomaly detector on the resulting numeric
sequence. Accordingly, in addition to the method proposed in
Section IV, we consider two baseline methods for comparison.
More precisely, we considered two topological features: the
density of edges φ1(g) = |E |/(|V |(|V | − 1)) and the spectral
gap φ2(g) = |λ1(L(g))| − |λ2(L(g))| of the Laplacian matrix
L(g) [50]. The particular choices of φ1 and φ2 can be justified
by considering that both features are suitable for describing
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TABLE III

RESULTS ATTAINED BY BASELINE METHODS (INDEX COLUMN) BASED ON THE GRAPH DENSITY (DEN), THE SPECTRAL GAP OF THE
LAPLACIAN (SG), AND THE DEGENERATE IMPLEMENTATION OF THE METHODOLOGY WITH M = 1 PROTOTYPE (M1).

SYMBOL † INDICATES SIGNIFICANTLY BETTER (95% CONFIDENCE) RESULTS

graphs with a variable number of vertices and edges. We
implemented two CUSUM-like change detection tests as in
Section IV where, for i = 1, 2, the statistic st is now given by
|φi (gt ) − E[φi (gt )]|, and E[φi (gt )] is numerically estimated
in the training phase.

In addition, we consider a further baseline implemented as
a degenerate case of our method by selecting only M = 1
prototype and window size n = 25. This last baseline is
introduced to show that the strength of our methodology
resides also in the embedding procedure, and not only in the
graph distance d(·, ·).

B. Results on IAM Graph Database

For the sake of readability, we show results for our method
and baselines in two different tables, that is, Tables II and III,
respectively.

In all experiments shown in Table I, there is a parameter
setting achieving a detection rate (DCR) statistically larger
than 0.99. Indeed, in Table II, the 95% confidence interval
(95CI) of the DCR is above 0.99 (see symbol ∗ in Table II).
Looking at Table II more in detail, we notice that both the
window size and the number of prototypes yield higher DCR.
In particular, this can be seen in L-O experiments, where
all DCR estimates have disjoint 95CIs (i.e., differences are
statistically significant). The same phenomenon appears also
for L-D5, L-S, and mutagenicity (MUT) (e.g., symbols ◦ and
• in Table II). As far as other figures of merit are concerned,
we do not observe statistical evidence of any trend. Still, with
the exception of a few cases in MUT, all 95CIs related to
ARL0 contain the target value ARL0 = 200; hence, we may
say that the threshold estimation described in Section V-A3
completed as expected.

Here, we limit the analysis to the proposed parameter
settings for n or M , since we already reach the highest possible
DCR, achieving one hundred detections out of one hundred.
We believe that, by increasing the window size n the false

alarms will decrease, as our method relies on the central limit
theorem. Concerning the number M of prototypes, we point
out that, in the current implementation of the methodology,
the number of parameters to be estimated scales as M2;
accordingly, we need to increase the number of samples.

The second experimental analysis addresses the perfor-
mance assessment of the three baselines of Section V-A5 on
the experiments of Table I. The results reported in Table III
show that, in some cases, the considered baselines achieve
sound performance, which is comparable to the one shown
in Table II. Comparing Table III with Table II, by intersecting
the 95% confidence intervals, we notice that there is always
one of the proposed methods which attains DCR that is
statistically equivalent or better than the baselines (see symbol
∗ in Table II). In particular, the proposed method performs
significantly better than the baselines on the MUT data set.

Finally, Table III shows that the method based on edge
density φ1 is significantly more accurate in terms of DCR than
the one based on spectral gap φ2 in almost all experiments;
confidence intervals at level 95% do not intersect. The first
method performed better than the degenerate one (M1) with
only one prototype: see L-O and L-S. Conversely, M1 outper-
forms φ1 on L-D5.

VI. CONCLUSION

In this paper, we proposed a methodology for detecting
changes in stationarity in streams of graphs. Our approach
allows to handle general families of attributed graphs and is not
limited to graphs with fixed number of vertices or graphs with
(partial) one-to-one correspondence between vertices at dif-
ferent time steps (uniquely identified vertices). The proposed
methodology consists of an embedding step, which maps input
graphs onto numeric vectors, bringing the change detection
problem back to a more manageable setting.

We designed and tested a specific method as an instance of
the proposed methodology. The embedding has been imple-
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mented here as a dissimilarity space representation, hence
relying on a suitable set of prototype graphs, which in our case,
provide also a characterization of the nominal condition, and
a dissimilarity measure between graphs, here implemented as
a GED. The method then computes the Mahalanobis’ distance
between the mean values in two windows of embedded graphs
and adopts a CUSUM-like procedure to identify changes in
stationarity.

We provided theoretical results proving that, under suitable
assumptions, the methodology is able to relate the significance
level with which we detect changes in the dissimilarity space
with a significance level that changes also occurred in the
graph domain; also the vice versa has been proven. We also
showed that our methodology can handle more basic, yet
relevant scenarios with uniquely identified vertices.

Finally, we performed experiments on IAM graph data
sets showing that the methodology can be applied both to
geometric graphs (2-dimentional drawings) and graphs with
categorical attributes (molecules), as instances of possible
data encountered in real-world applications. Results show that
the proposed method attains at least comparable (and often
better) results with respect to other change detectors for graph
streams.

In conclusion, we believe that the proposed methodology
opens the way to designing sound change detection methods
for sequences of attributed graphs with possibly time-varying
topology and nonidentified vertices. In the future studies,
we plan to work on real-world applications and focus on the
automatic optimization of relevant parameters affecting the
performance.

APPENDIX A
CORRESPONDENCE BETWEEN PROBABILITY SPACES

Consider the measurable space (D,B) introduced in
Section III-A2, and the probability space (G,S, Q) of
Section I-A.

Let us define the preimage function ζ−1(B) := {g ∈ G :
ζ(g) ∈ B}, with ζ−1(∅) = ∅ and consider the smallest
σ -algebra S containing all open balls4 O(ρ, g) and preimage
sets with respect to any B ∈ B

{O(ρ, g)|ρ > 0, g ∈ G} ∪ {ζ−1(B)|B ∈ B)}
and a generic probability density function Q : S → [0, 1]
on S. Then, we can define the function F : B → [0, 1] as in
Equation (2).

The triple (D,B, F) is a probability space. The following
three properties provide a proof that F is a probability measure
on (D,B):

1) F(D) = Q(ζ−1(D)) = Q(G) = 1.
2) F(∅) = Q(∅) = 0.
3) For any countable collection {Bi } ∈ B of pair-

wise disjoint sets, ζ−1(∪Bi ) = ∪ζ−1(Bi ), hence the
sets ζ−1(Bi) are pairwise disjoint and F(∪Bi ) =
∪Q(ζ−1(Bi )) = ∪F(Bi ).

4A ball O(ρ, g) is defined as a set { f ∈ G : d(g, f ) < ρ} of all graphs
f ∈ G having distance d( f, g) with respect to a reference graph g ∈ G smaller
than the radius ρ > 0.

Notice also that, indicating with Im(ζ ) the image set
{ζ(g)|g ∈ G} ⊆ D of ζ(·), we have F(B) = 0 for any B ∈ B
such that B ∩ Im(ζ ) = ∅.

APPENDIX B
FRÉCHET MEAN

Given a probability space (X ,S, P) defined on a metric
space (X , d), we consider a random sample x = {xt1, . . . , xtn}.

A. Definition of Fréchet Mean and Variation

For any object x ∈ X , let us define the functions Fx(x) :=
(1/n)

∑tn
t=t1 d(x, xt)

2 and FP(x) := ∫

G d(x, x �)2 d P(x �). A
Fréchet sample (population) mean is any object x attaining
the minimum of the function Fx(·) (FP(·)). We point out that
the minimum might not exist in X and, if it does, it can be
attained at multiple objects. Whenever the minimum exists and
is unique, we refer to it as μ[x] (μ[P]). In addition, we define
Fréchet sample (population) variation as the infimum Vf[x] :=
infx Fx(x) (Vf[P] := infx FP(x)).

B. Fréchet Mean in Euclidean Spaces

In the case of a set X ⊆ R
d and distance d(·, ·) = · − ·2,

the space is Euclidean. First, we show that μ[P] = E[P]
and μ[x] = x, then we show that

E[Vf[x]] =
(

1 − 1

n

)

Vf[P]. (11)

1. The following equality holds:

FP(z) = FP (E[P]) + E[P] − z2
2 (12)

as we will show below, in Part 3. This result proves that the
minimum is attained in the expectation z = E[P].

2. Similarly, in the “sample” case

Fx(z) = Fx(x) + x − z2
2

proving that μ[x] = x.
3. The results of previous Parts 1 and 2 are derived from

the following three equalities: for any z ∈ R
d

a + b2
2 = a2

2 + 2 a	b + b2
2 , a, b ∈ X

∫

X
(x − E[P])	(E[P] − z) d P(x)

=
∫

X
x	(E[P] − z) d P(x) − E[P]	(E[P] − z)

= 0
∑

t

(xt − x)	(x − z) =
∑

t

x	
t (x − z) − n x	(x − z) = 0.

4. Let us move on proving the second result. Notice that

Vf[P] = E
[ x − μ[P]2

2

]

= E
[ x2

2 − 2y	
E[P] + μ[P]2

2

]

= E
[ x2

2

] − μ[P]2
2 .
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5. Then

Vf[x] = 1

n

∑

t

xt −μ[x]2
2 = 1

n

∑

t

x	
t xt −μ[x]	μ[x]

= 1

n

∑

t

x	
t xt − 1

n2

∑

i, j

x	
i x j

=
(

1

n
− 1

n2

)

∑

t

x	
t xt − 1

n2

∑

i �= j

x	
i x j .

Now, thanks to the independence of the observations

E[Vf[x]] =
(

1 − 1

n

)

E[x	x] −
(

1 − 1

n

)

μ[P]	μ[P]

=
(

1 − 1

n

)

(

E
[ x2

2

] − μ[P]2
2

)

=
(

1 − 1

n

)

Vf[P]

which proves the thesis.
6. Finally, in this part, we prove a result that holds in

general. Notice that (1/n)
∑

t d(xt , μ[P])2 ≥ Vf[x]. Then,
since x are i.i.d. so also are the {d(xt , μ[P])2}. Thanks to
the monotonicity of the expectation, we have

E[Vf[x]] ≤ 1

n

∑

t

E[d(xt , μ[P])2] = Vf[P]. (13)

APPENDIX C
PROOFS OF SECTION III-A

A. Proof of Lemma 1

Notice that the means μ[ y] = y and μ[F] = E[F] are
computed with respect to the Euclidean metric, and d �(·, ·) is
deployed as statistic for the change detection test.

1. From (12), for any z ∈ D, we have

FF (z) = z − E[F]2
2 + Vf[F].

2. We provide a second inequality that will be useful
later. Given three graphs g, f, r ∈ G, we have d(g, f ) ≥
d(g, r) − d(r, f ) from the triangular inequality (Assumption
(A1)); since this holds for any prototype r ∈ R, it proves that

d(g, f ) ≥ ζ(g) − ζ( f )∞ ≥ M− 1
2 ζ(g) − ζ( f )2 . (14)

3. Exploiting the inequality (14) in Part 2, and taking z =
ζ(μ[Q]), we obtain

Vf[Q] =
∫

G
d(g, μ[Q])2 d Q(g)=

∫

G
d(g, μ[Q])2 d F(ζ(g))

≥
∫

G
M−1 ζ(g) − ζ(μ[Q])2

2 d F(ζ(g))

= M−1
∫

Im(ζ )
y − ζ(μ[Q])2

2 d F(y).

In Appendix A, we observed that F(D \ Im(ζ )) = 0, then

Vf[Q] ≥ M−1
∫

D
y − ζ(μ[Q])2

2 d F(y)

= M−1FF (ζ(μ[Q])).

Eventually, combining with Part 1, we obtain the first part of
the thesis for v0 := M Vf[Q] − Vf[F] ≥ 0, in fact

M Vf[Q] ≥ FF (ζ(μ[Q])) = ζ(μ[Q]) − E[F]2
2 + Vf[F].

4. Similarly, we have

Fg(z) = Vf[ y] + z − y2
2

and, for vg := M Vf[g] − Vf[ y],
ζ(μ[g]) − y2

2 ≤ vg .

By exploiting (11) and (13), and the monotonicity of the
expected value

E[vg] ≤ M Vf[Q] − (1 − 1/n) Vf[F] =: vn .

As final remarks, we point out that here we left the
dependence from n on purpose, but an independent bound can
be easily found, e.g., v2 = M Vf[Q] − (1/2) Vf[F].

5. The random variable  y − ζ(μ[g])2
2 is nonnegative. As

such we can apply Theorem 1, Section V.4 in [51] (sometimes
called Markov’s inequality) and obtain, for each δ > 0,

P
( y − ζ(μ[g])2

2 ≥ δ
) ≤ E

[ y − ζ(μ[g])2
2

]

δ
.

Now, from the previous Part 4 we conclude that

P
( y − ζ(μ[g])2

2 ≥ δ
) ≤ v2

δ
.

B. Proof of Lemma 2

For convenience, let us define the quantities

A := {x0 ∈ X : d1(x0) ≤ u(d2(x0))}
ρ(−|−) := P(d1 ≤ u(γ ) | d2 ≤ γ, x ∈ A)

ρ(−|+) := P(d1 ≤ u(γ ) | d2 > γ, x ∈ A).

1. By the law of total probability, and for any γ ≥ 0,

P(d1(x) ≤ u(γ )) = P(d1(x) ≤ u(γ )|x ∈ A)P(x ∈ A)

+ P(d1(x) ≤ u(γ )|x �∈ A)P(x �∈ A).

Lower bounding the second addendum with zero and by
hypothesis,

P(d1(x) ≤ u(γ )) ≥ P(d1(x) ≤ u(γ )|x ∈ A) · p.

2. Notice that P(d1(x) ≤ u(γ )|d2(x) = γ, x ∈ A) = 1 for
all γ ≥ 0, thanks to the fact that x ∈ A; hence, we have
ρ(−|−) = 1. Applying again the law of total probabilities,

P(d1(x) ≤ u(γ )|x ∈ A)

= ρ(−|−)
2(γ ) + ρ(−|+)(1 − 
2(γ )) ≥ 1 · 
2(γ ).

Combining with the above Part 1, we have


1(u(γ )) = P(d1(x) ≤ u(γ )) ≥ p · 
2(γ ).

3. A final remark is that Lemma 2 proves also that, if � :
R+ → R+ is bijective and increasing providing a lower bound,
then for any γ > 0 and p > 0

P(d1(x) ≥ �(d2(x))) ≥ p ⇒ 
1(γ ) ≤ 1

p
· 
2(�

−1(γ )) (15)

In fact d1 ≥ �(d2) if and only if d2 ≤ �−1(d1), therefore,
we obtain the result by applying the lemma to u(·) = �−1(·)
and inverting the roles of d1 and d2.
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C. Proof of Proposition 1

By Assumption (A2), we can consider the following
function of g and their respective CDFs:

d(g) := d(μ[g], μ[Q]), �(·)
d �(g) := d �(ζ(μ[g]), ζ(μ[Q])), 
(·)
d �

0(g) := d �(y, E[F]), ϒ(·)
recalling that y = (. . . , ζ(gi ), . . . )

	.
1. From triangular inequality [Assumption (A1)], we have
∣

∣d �
0(g) − d �(g)

∣

∣ ≤ d �(ζ(μ[g]), y) + d �(E[F], ζ(μ[Q])).
By the equivalence of the 1- and 2-norm in R

2,
(

d �
0(g) − d �(g)

)2

≤ 1

2
· d �(ζ(μ[g]), y)2 + 1

2
· d �(E[F], ζ(μ[Q]))2.

Now, since d �(·, ·) is induced by a norm [Assumption (A1)],
we can deploy the equivalence of any pair of norms in R

M .
Letting m be a constant for relating the distance d �(·, ·) with
the Euclidean one, and applying Lemma 1, we obtain

(

d �
0(g) − d �(g)

)2

≤ m2

2

( ζ(μ[g]) − y2
2 + E[F] − ζ(μ[Q])2

2

)

≤ m2

2
· (

v2 + ζ(μ[g]) − y2
2

)

.

By exploiting again Lemma 1, for any δ > 0, we have

P

(

(

d �
0(g) − d �(g)

)2 ≤ m2

2
· (v2 + δ)

)

≥ P
( ζ(μ[g]) − y2

2 ≤ δ
) ≥ 1 − v2

δ
.

So, with b(δ) = ((m2/2)(v2 + δ))1/2 and p(δ) = 1 − (v2/δ),
we have the following estimates:

P(d �
0(g) ≤ d �(g) + b(δ)) ≥ p(δ)

P(d �(g) ≤ d �
0(g) + b(δ)) ≥ p(δ). (16)

2. With Assumption (A3), we can exploit Lemma 2 by
setting u(x) = C x , d1(g) = d(g) and d2(g) = d �(g). Here
P(d1 ≤ u(d2)) = 1, hence we obtain that �(γ ) ≥ 
(γ/C).
Accordingly, employing also (15), we have



( γ

C

)

≤ �(γ ) ≤ 

(γ

c

)

.

3. Consider this time (16) with d1(g) = d �
0(g) and d2(g) =

d �(g). By applying Lemma 2 twice, with u(x) = x + b(δ)
and �(x) = x − b(δ), we obtain


(γ ) ≥ pδ · ϒ(γ − bδ)


(γ ) ≤ 1

pδ
· ϒ(γ + bδ).

4. Combining previous parts, Parts 2 and 3, we obtain

pδϒ
( γ

C
− bδ

)

≤ �(γ ) ≤ 1

pδ
ϒ

(γ

c
+ bδ

)

.

APPENDIX D
PROOFS OF SECTIONS IV AND IV-B

A. Proof of Lemma 3

Recall that x2
2 ≥ λM x	�−1x , where λM is the smallest

eigenvalue of the covariance matrix �. By the triangular
inequality we have (14), which leads to c = (λM/M)1/2.

B. Instance of Graph Alignment Space

A graph alignment space is a pair (G, d). According to
what defined in Section IV-B, we explicit an attribute kernel
determining a graph alignment distance d acting like dF .

We consider A = V × [0, 1] as attribute set. Following [21,
Ex.3.4], for any pair (x, v) ∈ A, we define the feature map
� : (x, v) �→ (x, ev ), where ev ∈ R

N is zero everywhere
except for the position v where it assumes the fixed value ν.
The attribute kernel k : A × A → R is then defined
accordingly. We consider a vertex disabled if there are no
incoming or outgoing edges, but it has always a label of the
form (0, v).

It might happen that the “cost” of matching vertices is over-
come by the improvement of a better topology alignment. This
is something which is not contemplated in the distance dF . For
avoiding this, it suffices to set the constant ν sufficiently large,
so that the trivial identity alignment is always the optimal
alignment (i.e., vertices are uniquely identified). Setting ν =
N2 ensures this behavior and yields an alignment distance
d(·, ·) acting like dF (·, ·).

C. Proof of Lemma 4

1. For every prototye set R, the dissimilarity matrix
D(R, R) := [dF (ri , r j )]i, j is Euclidean, since it has been gen-
erated by using the Euclidean distance. In general, the dimen-
sion of R

k is k = N2, although it can be lower. We remind
that N is the number of vertices assumed for the input
graphs. We use the notation x1, . . . , xM ∈ R

k to denote
the prototypes r1, . . . , rM ∈ R with respect to the classical
scaling process and X is obtained by stacking [x1| . . . |xM ]
as columns (see [39, Sec. 3.5.1]). The minimal number of
prototypes for representing R

k is M = k + 1, and this holds
true only when the matrix X is full rank. For obtaining the
embedding z of a generic graph g ∈ G \ R, we compute
y∗2 := [dF (g, r1)

2, . . . , dF (g, rM )2]	 and we can solve the
following linear system with respect to z

2 X	z = −(J y∗2 − J D∗2 1)

where J = I − (1/n)11	 is the centering matrix, I is the
identity matrix, and D∗2 is the componentwise square of
D(R, R) (see [39, Cor. 3.7]). The solution is unique, provided
that the rank of X is k.

2. The differences δz = z1 − z2 and δy∗2 = y∗2
1 − y∗2

2 are
related to the equation 2 X X	δz = −X J δy∗2.

Being a2
A = a	 A a we have that 4δz(X X	)2 =

4
∥

∥X X	z
∥

∥

I = ∥

∥X J δy∗2
∥

∥

I and

δzI
∥

∥X J δy∗2
∥

∥

�−1

= δzI

4 δz(X X	)2
·

∥

∥X J δy∗2
∥

∥

I
∥

∥X J δy∗2
∥

∥

�−1

.
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We want to show that c ≤ δzI /
∥

∥X J δy∗2
∥

∥

�−1 ≤ C ,
in fact δzI = δz2 = dF (g1, g2), and

∥

∥X J δy∗2
∥

∥

�−1 =
d�(X J y∗2

1 , X J y∗2
2 ).

3. Applying [52, Th. 1], we can bound aA/aB in
terms of the values β for which there exists nonnull q ∈
R

M such that (A − β B) q = 0. For the pair (I, (X X	)2),
the values β are provided by the square of the inverse eigen-
values λ1(X X	), . . . , λk(X X	) of X X	. The eigenvalues are
reported in descending order. For what concerns (I,�−1),
instead, we see that the values β corresponds to the eigenvalues
λ1(�), . . . , λk(�) of �. In the end, the positive constants c, C
are

c2 = λk(�)

4 λ1(X X	)
, C2 = λ1(�)

4 λk(X X	)
.

The nonsingularity of X X	 makes the above fractions
feasible.

A final comment on how to exploit Lemma 4 in
Proposition 1 is reported in Appendix D–D.

D. Proposition 1 for the Special Case of Section IV-B

When considering identified vertices, while Lemma 2 is
still valid, Lemma 1 has to be adapted. Despite the new
embedding ζ0(g) = X Jζ(g)∗2 is slightly different from the
original one in (1), ζ0(·) and D0 can be treated in a similar
way. In particular, a result equivalent to Lemma 1 can be
proved for ζ0(·) by solely adapting Part 2 of the proof shown
in Appendixes C–A

dF (g1, g2) = δz2 ≥
∥

∥X X	 δz
∥

∥

2

λ1(X X	)
=

∥

∥X J δy∗2
∥

∥

2

λ1(X X	)

= (λ1(X X	))−1 u1 − u22 .

Paying attention in substituting the map ζ(·) with ζ0(·), the rest
of the proof holds with M = λ1(X X	)2 thus obtaining the
Claims (C1) and (C2), with a final result similar to the one of
Proposition 1.

REFERENCES

[1] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in nonsta-
tionary environments: A survey,” IEEE Comput. Intell. Mag., vol. 10,
no. 4, pp. 12–25, Apr. 2015.
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