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Abstract The North Atlantic is an important basin for the global ocean’s uptake of anthropogenic
and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully
understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2

concentration gradient, ΔpCO2, and the temperature- and salinity-dependent solubility coefficient, 𝛼. k is
difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual)
timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to
interannual F variability but that k is unimportant for multidecadal variability. On some timescale between
interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become
negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine
the importance of k, ΔpCO2, and 𝛼 on a range of timescales. On interannual and shorter timescales,
both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic
flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how
accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding
it possible for interannual and longer timescales. These findings suggest that continued efforts to better
constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic
carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term
flux variability.

1. Introduction

Since the onset of the industrial era in the middle of the eighteenth century, human activities have altered
oceanic and atmospheric chemistry, affecting the climate system. Fossil fuel consumption, changes in land
use, and cement production rapidly release carbon as carbon dioxide (CO2) gas from geological reservoirs into
the atmosphere, oceans, and terrestrial biosphere. This adds large amounts of “anthropogenic carbon” to the
biogeochemically and/or radiatively active “natural carbon” pool. The effects of CO2 on the Earth system are
numerous and complex, but as a “greenhouse gas” it is a prominent control on climate [Myhre et al., 2013]. Of
the 555±85 Pg of carbon emitted to the atmosphere between 1750 and 2011 by human activities, about half
has remained in the atmosphere while 28% ± 5% has been taken up by the oceans, with the remainder taken
up by the terrestrial biosphere [Ciais et al., 2013].

The flux equation (1), describes the net exchange of CO2 between the air and the ocean (F). Here ΔpCO2 is
the disequilibrium between the partial pressures of CO2 in the air and ocean (pCOair

2 − pCOocean
2 ). Under this

sign convention, an excess of CO2 in the air gives positive ΔpCO2 and F, driving exchange into seawater. If
pCOocean

2 is greater, outgassing occurs. pCO2 in seawater is primarily a function of temperature (T), and dis-
solved inorganic carbon (DIC), but salinity (S) and alkalinity also affect this. The gas transfer velocity, k, is a
parameterization of how several aspects the physical environment enable CO2 flux. Wind velocity is the main
variable affecting k (increasing winds increases k), but ice, surfactants, bubbles, and other factors also play
important roles [Wanninkhof et al., 2009]. The Schmidt number (the ratio between kinematic viscosity and
molecular diffusion) also affects k, varying with water temperature. 𝛼 is Henry’s constant of CO2 solubility in
seawater [Weiss, 1974], quantifying how temperature, salinity, and pressure affect solubility.

F = ΔpCO2 × k × 𝛼 (1)
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CO2 flux is difficult to measure directly due to the need for high temporal resolution measurements of pCO2

and small-scale turbulence [McGillis et al., 2001], and so a more common approach is to measure or esti-
mate each quantity on the right-hand side (RHS) of equation (1). 𝛼 is the most straightforward to determine,
varying primarily with temperature and also with salinity. 𝛼’s contribution to flux variability is generally well
constrained and found to be minor on interannual timescales [e.g., Doney et al., 2009]. ΔpCO2 and k, however,
present distinct challenges for ocean carbon research. The primary challenge with studying global ΔpCO2

variability is to place as many measurement systems in as many locations as possible and to maintain those
observations through time. The Surface Ocean CO2 Atlas (SOCAT) is an example of a global effort to compile
measurements of ocean surface CO2 gathered by autonomous underway systems on commercial vessels and
research cruises [Bakker et al., 2014].

The main difficulties in quantifying gas transfer velocity stem from its dependence on several elements of the
physicochemical environment. The main variable used to derive a gas transfer velocity is wind speed, but k is
also dependent on the smoothness of the sea surface (i.e., the presence of breaking and nonbreaking waves
[Frew et al., 2007]), bubble entrainment, rain, buoyancy-generated turbulence, surfactants, and other factors
[Wanninkhof et al., 2009]. Given the large range of variables, and poor constraints of their effects on k, field
measurement of gas transfer velocity is difficult. In attempts to refine these uncertainties, several parameter-
izations have been proposed, derived using a number of techniques, but there is no consensus which is the
most accurate [Bender et al., 2011]. Instead, authors tend to attempt to quantify k uncertainty in two ways:
the uncertainty inherent to a particular parameterization (resulting from the spread of data points about the
polynomial fitted) and the variation in derived k from the use of different parameterizations. Published uncer-
tainties relating to k are often not statistically sound and represent ad hoc best estimates of error [Wanninkhof ,
2014]. The result is that considerable CO2 flux uncertainty originates from uncertainties in the gas transfer
velocity.

While the whole global ocean represents a large net sink of CO2 for the atmosphere, its uptake is not uniform
spatially or temporally. The tropical oceans are net CO2 outgassing regions, whereas at higher latitudes there
is net uptake by seawater [Takahashi et al., 2009; Landschützer et al., 2014]. The major upwelling regions are
outgassing zones, and the strongest sites of ocean CO2 uptake are areas of deep water formation. In the North
Atlantic, the combination of deep water formation and high biological carbon fixation creates ideal physical
and biogeochemical conditions for strong ocean CO2 uptake, distinguishing it from other basins [Sabine et al.,
2004; Khatiwala et al., 2009]. It is therefore an important focus region in the ocean carbon cycle.

The evolution of the North Atlantic carbon sink on decadal and longer timescales is unclear, yet its quantifica-
tion is necessary for future climate change prediction [Halloran et al., 2015]. Bates [2007] and Takahashi et al.
[2009] call attention to this gap in knowledge, highlighting that a major limitation to our ability to understand
this variability stems from limited spatiotemporal coverage of CO2 observations. Although data sets with large
spatial coverage exist (e.g., SOCAT [Bakker et al., 2014]), they lack the temporal duration required to study long
timescales [Halloran et al., 2015]. Equally, the long-time series sites with sufficient data to quantify multiannual
variability, such as the Bermuda Atlantic Time Series (BATS) and others reviewed recently by Bates et al. [2014],
may not necessarily represent the systems at the basin scale [McKinley et al., 2004]. Given these temporal and
spatial data gaps, numerical modeling studies provide unique insight into an incompletely observed system.

It is necessary to understand where observational uncertainties limit our ability to confidently predict future
climate change. Previous work investigating global ocean carbon flux interannual variability has found both
ΔpCO2 and k to be important drivers [Doney et al., 2009; Long et al., 2013]. Other work has found that North
Atlantic multidecadal CO2 flux variability is controlled chiefly by the contribution from ΔpCO2 [McKinley et al.,
2011]. Therefore, on these multidecadal timescales, uncertainty in gas transfer velocity variability does not
considerably limit estimates of flux variability, because the contribution from k is minor. On some intermediate
critical timescale between interannual and multidecadal, flux variability transitions from a regime that is k and
ΔpCO2 controlled to purely ΔpCO2 controlled. Presently, neither the magnitude of this critical timescale nor
its spatial structure is known, yet both are needed to understand where uncertainties in ΔpCO2 and k add
uncertainty in derived fluxes.

Here we attribute CO2 flux variability to contributions from all flux equation components on a range of
timescales, to identify the timescales where k becomes unimportant. We hypothesize that on interannual and
shorter timescales, both k and ΔpCO2 will be important in controlling flux variability but that for longer-term
variability, ΔpCO2 will be the dominant contributor. We examine 150 years of ocean biogeochemical model
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Figure 1. Annual mean (a) atmospheric pCO2 and (b) sea surface temperature (SST) for the anthropogenic (green) and
control (red) runs, for 1950–2099 (model year 1 is 1860).

output, forced with two scenarios: (1) sharply rising, following historical measurements and RCP8.5 [Riahi
et al., 2011], and (2) fixed preindustrial atmospheric CO2 concentrations. First, we determine that our setup
is appropriate to test our hypothesis, comparing observed and modeled variability. Next, we compare our
model’s representation of interannual flux variability with those of previous studies, before expanding our
methodology to examine more specific timescales of variability. We then identify which long timescales of
flux variability, if any, are driven entirely by the ΔpCO2 contribution, with negligible influence from k. Finally,
we examine how successfully one can estimate flux variability with only a very limited knowledge of the
contribution of k.

2. Methods
2.1. Model Setup
We investigate the controls of ocean carbon flux variability on different timescales using a numerical ocean
general circulation model (GCM), version 3.2 of the Nucleus for European Modelling of the Ocean (NEMO)
physical ocean model [Madec, 2008]. This model includes sea ice, version 2 of the Louvain-la-Neuve Ice Model
(LIM2) [Timmermann et al., 2005]. NEMO was run with a 1∘ horizontal resolution using the ORCA-1 grid [Madec
and Imbard, 1996]. This grid is not sufficient to resolve the mesoscale but has a finer scale of about 1/3∘ of
latitude at the equator to better represent equatorial upwelling. The grid has 292× 362 horizontal points and
64 vertical levels (with smaller spacing at the surface, increasing with depth).

NEMO is coupled with an intermediate-complexity ecosystem model, MEDUSA 2.0 [Yool et al., 2013a]. MEDUSA
2.0 separately simulates “large” organisms (mesozooplankton and microphytoplankton like diatoms) and
“small” ecosystem members (to represent the microbial loop). MEDUSA 2.0 resolves nitrogen, silicon, iron,
carbon, alkalinity, and oxygen cycles. The model includes representations of sinking of detrital matter and
benthic interactions. The Nightingale et al. [2000] gas transfer velocity parameterization is used, with the
Schmidt number of Wanninkhof [1992]. This parameterization is commonly used as it is considered to be one
of the more robust; the function shows a high proportion (82%) of the variance of dual-tracer release data
explained by wind speed [Ho et al., 2011].

Output from the HadGEM2-ES Earth System Model is used as the atmospheric forcing set [Yool et al., 2013b].
HadGEM2-ES includes physical models of the ocean and atmosphere, the terrestrial and ocean carbon cycles,
tropospheric chemistry, and aerosols [Collins et al., 2011]. The surface fluxes of heat, momentum and fresh-
water, and atmospheric chemistry from HadGEM2-ES were used to force NEMO at 6-hourly intervals. The
atmospheric forcing set for the “anthropogenic” run prescribes concentrations of atmospheric CO2 (and other
greenhouse gases: methane, nitrous oxide, and halocarbons) following RCP8.5 [Jones et al., 2011]. RCP8.5 is a
high greenhouse gas emissions scenario, with atmospheric pCO2 exceeding 900 ppm by the year 2100 [Riahi
et al., 2011] (Figure 1a, green curve). This prescribed anthropogenic source of greenhouse gases into the atmo-
sphere affects the radiative forcing balance and causes a net rise in global temperatures, including sea surface
temperature (SST) (Figure 1b). The integration was run for 240 years.

A control run was also generated using a very similar setup to the experimental run, except with a differ-
ent atmospheric pCO2 scenario. In this run, atmospheric pCO2 is held at a preindustrial value of 286 ppmv
(Figure 1a, red curve). Only 30 years of this forcing set (i.e., output from HadGEM2-ES run with fixed preindus-
trial atmospheric CO2) were available to force NEMO-MEDUSA. Therefore, to obtain a comparable 240 year
control run, NEMO-MEDUSA was forced with eight repetitions of the forcing set. The control provides insight
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into the system’s internal variability, without forced changes in the radiation budget (observable in global
mean SST: Figure 1b) and global biogeochemistry. Internal variability in the control run on timescales longer
than 30 years is evident (e.g., in atmospheric pCO2 and SST, Figure 1, red curves), but given the forcing setup
of this run, it is not included in our analysis.

2.2. Decomposition of CO2 Flux Variability
To explore the drivers behind CO2 flux variability, we use a Reynolds decomposition to separate the
time-varying (y’) and time mean (ȳ) components of monthly averaged model output, as in equation (2). The
time-varying component is therefore the monthly anomaly from a time mean, representing nonseasonal
variability.

y = y′ + y (2)

The flux of CO2 is the product of three variables, equation (1). Therefore, a Reynolds decomposition for three
forcing components is needed. The generalized decomposition for three components and its expansion is
shown in equations (3)–(5), where a, b, and c are the forcing components, corresponding to the three RHS
variables in equation (1).

y = abc (3)

y′ + ȳ = (a′ + ā)(b′ + b̄)(c′ + c̄) (4)

= āb̄c̄ + a′b̄c̄ + āb′c̄ + āb̄c′ + āb′c′ + a′b̄c′ + a′b′c̄ + a′b′c′ (5)

The time mean component, ȳ, is time mean of each of the RHS terms in equation (5), as in equation (6). Terms
in equation (6) containing the time means of two forcing components (a′b̄c̄, āb′c̄, and āb̄c′) always have values
of zero, giving equation (7).

ȳ = āb̄c̄ + a′b̄c̄ + āb′c̄ + āb̄c′ + āb′c′ + a′b̄c′ + a′b′c̄ + a′b′c′ (6)

= āb̄c̄ + āb′c′ + a′b̄c′ + a′b′c̄ + a′b′c′ (7)

We subtract ȳ from both sides of equation (5) to solve for the time-varying component of y, equations (8) and
(9). This gives an expression for y’ in terms of the contributions from separate components, equation (10).
Note that āb̄c̄ = āb̄c̄, so the difference between the two terms cancels to zero in equation (10).

y′ = y − ȳ (8)

=
(

āb̄c̄ + a′b̄c̄ + āb′c̄ + āb̄c′ + āb′c′ + a′b̄c′ + a′b′c̄ + a′b′c′
)
−
(

āb̄c̄ + āb′c′ + a′c′b̄ + a′b′c̄ + a′b′c′
)

(9)

= a′b̄c̄ + āb′c̄ + āb̄c′ +
(

a′b′c′ − a′b′c′
)
+
(

a′b′c̄ − a′b′c̄
)
+
(

a′b̄c′ − a′c′b̄
)
+
(

āb′c′ − āb′c′
)

(10)

We arrive at an equation for flux anomalies by expressing anomalies in the flux equation (1) using the
expansion in equation (10):

F′ = ΔpCO′
2k̄𝛼̄

⏟⏞⏞⏟⏞⏞⏟
term1

+ΔpCO2k′𝛼̄
⏟⏞⏞⏞⏟⏞⏞⏞⏟

term2

+ΔpCO2k̄𝛼′

⏟⏞⏞⏞⏟⏞⏞⏞⏟
term3

+
(
ΔpCO′

2k′𝛼̄ − ΔpCO′
2k′𝛼̄

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

term4

+
(
ΔpCO′

2k̄𝛼′ − ΔpCO′
2𝛼

′k̄
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
term5

+
(
ΔpCO2k′𝛼′ − ΔpCO2 k′𝛼′

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

term6

+
(
ΔpCO′

2k′𝛼′ − ΔpCO′
2k′𝛼′

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

term7

(11)

The physical interpretation of these terms is the anomaly in CO2 flux from a long-term monthly mean pro-
duced by variability in ΔpCO2 (term 1), in k (term 2), and in 𝛼 (term 3) and through nonlinear interactions
between components (terms 4 to 7). Rather than consider each of the cross terms (terms 4 to 7) in equation (11)
separately, we consider their sum as one term. This is because the role of the cross terms (even when added
together) in controlling F′ is minor, demonstrated in section 4.1. When summed, the decomposed contribu-
tions reliably reconstruct monthly mean fluxes, suggesting that the decomposition is not compromized by
covariances between components of the flux equation and synoptic-scale variability.

COULDREY ET AL. CARBON FLUX CONTROLS 790



Global Biogeochemical Cycles 10.1002/2015GB005267

Figure 2. (a) LDEO climatological flux of CO2 into the ocean for the reference year 2000, positive values indicating ocean
uptake of gas [Takahashi et al., 2009]. (b) Modeled mean CO2 flux over 1995–2005 for the anthropogenic run. (c) LDEO
versus modeled North Atlantic climatological CO2 flux (mol C m−2 yr−1).

To investigate how much each term in equation (11) contributes to variability in F′, we regress the values of
terms 1–3 at each grid point for each month against the monthly flux anomaly at that grid point. This method
is detailed further by Doney et al. [2007] and Doney et al. [2009]. For example, to solve for the change in y′ due
to the first forcing component a′b̄c̄, we regress the former against the latter:

𝜕y′

𝜕a′b̄c̄
= 𝛽a (12)

This yields a slope,𝛽 , which quantifies how strongly a given RHS term in equation (11) contributes to anomalies
in the CO2 flux. In equation (12), the subscripted a denotes that in this example, 𝛽a signifies the change in
y′ with respect to variability in the forcing component, a. 𝛽 close to one indicates that a term contributes
strongly to the value of F′, whereas a slope of 0 shows that F′ is insensitive to that term. Values of 𝛽 may be
less than 0 if a term is anticorrelated with F′. In such cases, one or more terms will have slopes greater than 1
to compensate for a different 𝛽 being smaller than 0. In general, Σ𝛽 = 1 (i.e., the linearity assumption of the
regression) does not hold due to cross correlations, but we find that the sum of all slopes is predominantly in
the range 0.8 < Σ𝛽 < 1. This suggests that the assumption of linearity in the response of y′ to its predictors is
effectively met.

3. Validation

Previous work has compared output from MEDUSA 2.0 to biogeochemical observations on global and
regional scales in more detail [Yool et al., 2013a], which we briefly summarize before elaborating our own val-
idation. In general, the model captures much of the spatial and seasonal patterns of primary productivity but
shows a low bias in the subtropics, a high bias in high-nutrient/low-chlorophyll regions, and underestimates
the strength of the North Atlantic spring bloom. MEDUSA 2.0 tends to show “higher highs” of surface DIC
than the GLODAP [Takahashi et al., 2009] fields [Yool et al., 2013a, Figure 16], but the broader spatial patterns
are well reproduced. Similarly, air-sea ΔpCO2 seasonal highs and lows are somewhat exaggerated, particu-
larly the North Atlantic winter [Yool et al., 2013a, Figures 21 and 22]. While these findings are useful to bear
in mind, our study focuses on carbon flux variability on interannual and longer timescales that has not been
thoroughly validated.

We first assess the ability of our setup to reproduce the major spatial features of the climatological CO2 flux by
comparing observational time mean fluxes [the Lamont-Doherty Earth Observatory or LDEO flux climatology
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Figure 3. Comparison of data from the SOCAT database and output from the anthropogenic run. (a) Coverage of SOCAT
monthly mean f CO2 values 2002–2011, red squares: locations of comparison regions, red cross: location of BATS site. (b,
d, and f ) Monthly mean f CO2 climatologies for the three comparison regions (high latitude, midlatitude, and
subtropical, respectively) for 2002–2011: for SOCAT (blue) and NEMO-MEDUSA (orange). (c, e, and g) Frequency spectra
of monthly f CO2 anomalies, smoothed with a five-point running mean.

Takahashi et al., 2009] with model output (Figure 2). The most prominent large-scale features are well repre-
sented in our model: low-latitude efflux and high-latitude influx. Some of the largest discrepancies between
the model and observations occur in the South Pacific, where measurements are sparse. For the purposes of
our study, these differences are unimportant, since we focus on the North Atlantic. After interpolating the
model North Atlantic CO2 flux climatology onto the coarser grid of the Takahashi observational climatology,
the two can be compared quantitatively. The North Atlantic climatological CO2 flux is one of the best repre-
sented basins in our setup; here the model somewhat underestimates high values of flux, but otherwise, the
two are well correlated (with a correlation coefficient r value of 0.80, p < 0.01) (Figure 2c).

Next, we attempt to validate the model’s temporal variability. Direct CO2 flux observations representing large
spatial and temporal scales do not exist, so instead, we validate our model’s f CO2 fields (CO2 fugacity is almost
equivalent to pCO2 but is scaled for the nonideal nature of real-world gases). We compare our model out-
put against (1) the SOCAT database of surface f CO2 observations (which maximizes spatial coverage at the
expense of temporal length) [Bakker et al., 2014] and (2) data collected at the BATS site (to compare variabil-
ity on the longest timescale possible, although only for a limited area). We compare fields of f CO2 rather than
ΔpCO2 because in our setup, the atmospheric pCO2 only varies with the increase prescribed under RCP8.5,
and so all of the modeled ΔpCO2 variability arises from the oceanic side. Spatial and temporal (other than the
trend) variability in atmospheric pCO2 are omitted in our setup but are small (order 1–10 ppm) in comparison
to the oceanic pCO2 variability of interest (order 10–100 ppm) [Wanninkhof et al., 2013].

We compare our model output with 1 × 1∘ monthly mean gridded f CO2 fields from the SOCAT database
(version 2) [Bakker et al., 2014]. For this comparison, we first regrid our model output onto the SOCAT grid.
Although the data set includes values from the 1970s, the most consistent temporal coverage in the North
Atlantic is between 2002 and 2011. We choose three locations in zonally distinct regions on the basis that
they had the most complete set of observations for this period. We select data from 5 × 5∘ areas across the
North Atlantic (subtropical: northeast of the Caribbean, midlatitude: east of the Bay of Biscay, and high
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Figure 4. Comparison of (a and b) temperature, (c and d) salinity, (e and f) alkalinity, and (g and h) f CO2 from BATS,
Bermuda (blue), with corresponding NEMO-MEDUSA anthropogenic run output (orange). Figures 4a, 4c, 4e, and 4g
show climatological monthly means for 1991–2011. Figures 4b, 4d, 4f, and 4h show five-point smoothed frequency
spectra of monthly anomalies for 1991–2011.

latitude: south of Greenland/Iceland) to compare against our model output (Figure 3a, orange boxes). The
comparison is insensitive to the exact location of the boxes (shifting their positions by a few degrees gives
similar results) and the time period of model output used. It was not possible to apply this comparison to the
equatorial Atlantic, as there were insufficient monthly mean f CO2 values (Figure 3a). We calculate a monthly
climatology of time mean f CO2 fields (Figures 3b, 3d and 3f) and monthly anomalies from this climatology for
the 2002–2011 period. We then calculate frequency spectra of the f CO2 anomalies for each box (Figures 3c,
3e, and 3g). Data gaps were filled with that month’s mean value, plus the contribution of the linear trend.
Where gaps existed in the SOCAT data, the model output was accordingly subsampled and the resulting gaps
were filled in the same way as for the observations.

Clear differences exist between the modeled and observed seasonal cycles of f CO2 (Figures 3b, 3d, and 3f).
These differences are unimportant for our study, which does not focus on seasonal variability. The compar-
ison between the frequency spectra of the model output and the observations is similar across all boxes:
high-frequency (short-timescale) variability is similar or slightly higher in observations, and low frequencies
(long timescales) show slightly more energy in the model. The discrepancies at high frequencies are unsur-
prising, as the observations will reflect features that are unresolved by the model, such as mesoscale eddies.
Although the f CO2 variability at low frequencies is larger in the model, the agreement with observations is
within a factor of 2.

The carbon system data collected at BATS, Bermuda (64∘W, 31.5∘N), are among the longest and most consis-
tent, covering the years 1991 to 2011. The seasonal cycle amplitudes of all four parameters are well resolved
in the model, with systematic offsets in salinity and alkalinity (Figures 4c and 4e). Nonseasonal variability
is well represented (Figures 4b, 4d, 4f, and 4h). As with the SOCAT-NEMO comparison, there is substantial
high-frequency variability in the observations not present in the model output, since the former represents
snapshots of real-world features, while the latter represents monthly mean output from a 1 × 1∘ model grid
cell. Overall, the model tends to underestimate subannual variability but captures the amplitudes on longer
timescales that are relevant for this study.

The gas transfer velocity is primarily a function of wind speed, so it is important that our setup reproduces
realistic wind fields and variability. Other work has explored the performance of the HadGEM2 models more
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Figure 5. Comparison of wind variability from the CCMP wind product [Atlas et al., 2011] and the anthropogenic run. (a) Division of zones. (b, d, f, and h) Monthly
mean wind speed climatologies for the four zonal areas (polar, subpolar, subtropical, and equatorial, respectively) for 1988–2011: for CCMP (blue) and
NEMO-MEDUSA (orange). (c, e, g, and i) Frequency spectra of monthly wind speed anomalies, smoothed with a five-point running mean.

generally [Martin et al., 2011; Collins et al., 2011]. We compare the wind fields used to force NEMO-MEDUSA
with monthly mean Cross-Calibrated Multiplatform (CCMP) sea surface (10 m) winds [Atlas et al., 2011], which
cover the period 1988–2011. CCMP zonal wind speed variability is similar to other products [Wanninkhof et al.,
2013], and so our comparison would likely produce similar results if other wind data sets were chosen. We
regrid the data from its 0.25×0.25∘ grid onto a 1×1∘ grid for comparison with our model output. We construct
a monthly climatology and fields of anomalies of wind speeds. Similarly to the other aspects of the validation,
we construct frequency spectra of the model and observation anomaly fields (Figure 5). In general, agree-
ment between the model and observations is good for variability with frequencies higher than 0.25 year−1

and somewhat poorer for lower frequencies (longer timescales). In the subpolar and polar North Atlantic, the
model underestimates low-frequency wind variability.

4. Results
4.1. The Roles of Flux Components in Interannual Variability
In this section, we investigate the drivers behind interannual CO2 flux variability, quantifying the contributions
of its components, ΔpCO2, k, and 𝛼. This approach builds on the methodology of Doney et al. [2009], attribut-
ing interannual flux variability to each component. First, we establish that our model setup is able to represent
CO2 flux variability comparable to previous estimates using the portion of the simulation which overlaps the
observational record.

To assess global CO2 flux interannual variability, we calculate the root-mean-square (RMS) or standard devia-
tion of globally integrated monthly flux anomalies. From monthly averaged CO2 flux fields at each grid point,
we subtract a long-term mean flux (spanning 1980–2009) for each month to generate anomaly fields. For
this time period, variability is insensitive to the choice of RCP because the scenarios have not yet substan-
tially diverged [Myhre et al., 2013]. We globally integrate those flux anomalies and calculate the square root
of the mean squared anomaly, yielding the RMS. The metric is quite sensitive to the duration over which it is
calculated. We calculate the RMS over a similar time period to other studies (1980 to 2009), finding a value
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Table 1. Comparison of Global Interannual Variability (RMS or Standard Deviation of Monthly CO2 Flux Anomalies) From
Various Studies

Variability (Pg C yr−1) Approach Time Period Reference

0.20 Model 1979–1997 Le Quéré et al. [2000]

0.23 Model 1961–1998 Obata and Kitamura [2003]

0.28 Model 1980–1998 McKinley et al. [2004]

0.34 Model 1979–2004 Doney et al. [2009]

0.20 Observation and Model 1990–2009 Wanninkhof et al. [2013]

0.31 Observations 1993–2008 Rödenbeck et al. [2014]

0.12 Observations 1998–2011 Landschützer et al. [2014]

0.29 Model 1980–2009 This Study

of 0.29 Pg C yr−1, comparable to previous estimates (Table 1). Two recent observational estimates of interan-
nual flux variability differ by a factor of 2 [Rödenbeck et al., 2014; Landschützer et al., 2014], which the authors
attribute to differing time periods of study. Landschützer et al. [2014] comment that their data do not cover
the strong 1997/1998 El Niño period, which made the Rödenbeck et al. [2014] estimate much larger.

Qualitatively, our setup captures many of the key regional hot spots of interannual variability between 1980
and 2009 (Figure 6a): the equatorial Pacific, the subpolar and subtropical oceans, and the south Southern
Ocean [e.g., Doney et al., 2009; Rödenbeck et al., 2014]. The North Atlantic is a notable region for its large inter-
annual CO2 flux variability. The areas with the strongest variability (>1.0 mol m−2 yr−1) are in the subpolar gyre,
along the sea ice edge of the Labrador Sea, along the Greenland coast, and along the path of the North Atlantic
Current (NAC). The subtropical gyre shows a relatively moderate level of variability (up to 1 mol m−2 yr−1)
which decays with distance from the NAC. The equatorial Atlantic shows the lowest overall CO2 flux variability.

To investigate the causes of the interannual variability illustrated in Figure 6a, we estimate the contribution
of each component of the flux equation (1) using the linear expansion of F′ (equation (11)). At each grid point
for all months, we calculate the contribution of each term in equation (11). Taking each of these contributions,
we regress them against the grid point’s monthly CO2 flux anomalies (F′) to quantify the influence of that
particular term on F′, as in equation (12). This allows us to compare the contributions of ΔpCO2, k, 𝛼, and the
cross terms (Figures 6b–6e, respectively) to variability in F′.

Figure 6. (a) Interannual CO2 flux variability as the RMS of deseasonalized monthly anomalies and contributions of
(b) ΔpCO2, (c) k, (d) 𝛼, and (e) cross terms to interannual variability in the CO2 flux for the period 1980–2009 of the
anthropogenic run, as in equation (12).
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Figure 7. (a) North Atlantic zones and their period spectra of zonally averaged CO2 flux (blue) and (b–e) the
contribution to flux variability from k (red) for the anthropogenic run, 1950–2099. The dark colored lines denote best
estimates of spectra, and lighter shaded regions show the spectra within 95% confidence. Vertical dashed lines indicate
the critical timescale: the shortest timescale that for all longer timescales, the best estimate of CO2 flux variability is at
least twice as large as that of k.

Over much the global ocean, ΔpCO2 is the most important contributor to interannual CO2 flux variability
(Figure 6b), in agreement with the findings of Doney et al. [2009]. The global area-weighted mean ΔpCO2

contribution is 0.20 mol m−2 yr−1, about 60% of the global interannual CO2 flux variability. The role of k is also
important in almost all regions, contributing about 35% of global interannual flux variability, but is the most
significant where the role of ΔpCO2 is smaller (Figure 6c). Indeed, Figures 6b and 6c mirror each other, since
nearly all interannual variability in the CO2 flux comes from variability in eitherΔpCO2 or k. This is because the
contributions from 𝛼 and the cross terms are minor (Figures 6d and 6e). Furthermore, most of the variability
observed when considering k and 𝛼 together as one component comes from k, as was assumed by Doney
et al. [2009].

Many of the locations where k is an important driver behind interannual CO2 flux variability coincide with the
edges of the seasonally ice-covered oceans. This is because k is scaled by the proportion of each ocean grid
cell area that is ice free. Away from ice edges, k is an important control on F′ in such locations as the tropical
Pacific and the storm track of the North Atlantic (and to a lesser extent the Pacific). Here interannual variability
in winds is considerable, probably associated with low-frequency modes of climate variability such as the
El Niño-Southern Oscillation and the North Atlantic Oscillation (NAO), respectively.

Overall, this analysis yields findings that agree with many of those of Doney et al. [2009] insofar as that inter-
annual variability in the global oceanic flux of CO2 is controlled primarily by ΔpCO2 but that k contributes
about 40% of this. In the following section, we build upon these findings, exploring the longer multiannual
to multidecadal timescales of variability, with an emphasis on the North Atlantic.

4.2. Critical Timescale of 𝚫pCO2 Dominance of CO2 Flux Variability
In this section we identify at what timescale, if any, does variability in F becomes dominated by vari-
ability in ΔpCO2. To explore which parameters dominate flux variability over specific timescales, we aver-
age each component’s contributions (i.e., ΔpCO′

2k̄𝛼̄ for the contribution of ΔpCO2) over various zonal
areas to obtain mean contributions on the subbasin scale. We define zones as polar (Baffin Bay and the
Greenland-Iceland-Norwegian, or GIN, Sea), subpolar (60∘N–35∘N), subtropical (35∘N–10∘N), and equatorial
(10∘N–10∘S) (Figure 7a). We construct frequency spectra of these zonal mean contributions to quantify the
energy of each contribution at specific timescales. Since the contributions from each component are in units
of CO2 flux (mmol m−2 d−1), one can compare their magnitudes directly. We also employ Welch’s method of
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segmenting signals to better constrain estimates of the spectra [Welch, 1967]. Briefly, this involves segmenting
a signal into shorter segments of equal length, calculating the spectra of each segment and then averaging
over all segments’ spectra to obtain one more robust estimate of the spectrum. In our case, we segment the
150 year series of zonally averaged CO2 flux anomalies and the contribution from k into five nonoverlapping
segments of 30 year length. This method improves the confidence intervals of the spectrum calculated at the
cost of being unable to solve for variability on timescales longer than the segment length. This is because the
timescales of interest correspond to the lowest frequencies of variability, and so we plot the spectra in period
space to highlight this end of the domain.

Across the North Atlantic, most of the variability in CO2 flux is attributable to the contribution from either
ΔpCO2 or k; the roles of 𝛼 and the cross terms are minor (not shown). Therefore, almost all of the spectral
energy in CO2 flux anomalies (Figures 7b–7e, blue lines) that does not correspond with the spectrum of k
(red) is attributable to the contribution from ΔpCO2. In other words, where the energy in CO2 flux anomalies
is high, but the energy of k’s contribution is lower, most of the discrepancy comes from the contribution of
ΔpCO2. In general, the long-period CO2 flux variability comes from the variability of ΔpCO2, rather than k.
We quantify the CO2 flux variability that is dominated by the contribution from ΔpCO2 as being the shortest
period of variability where the amplitude of F′ variability is at least twice as large as the contribution from k
for all longer periods. A factor of 2 was chosen as it identifies the point at which a clear majority (at least half )
of flux variability is attributable to the ΔpCO2 contribution. To do this, we search along the spectrum from
long to short periods for the first period where the spectrum of F′ is equal to or less than double the energy
of the contribution from k. The vertical dashed lines in Figures 7b–7e show the value of this critical timescale
for each zonal band. If this number is small, then it means a wider band of long-period CO2 flux variability is
controlled entirely by ΔpCO2.

In the equatorial and subtropical latitudes, a very wide band of long-period variability in CO2 flux is controlled
by ΔpCO2 (all timescales to the right of the vertical dashed lines in Figures 7c–7e). That is to say that the
roles of k and 𝛼 are negligible for these long periods. The same is also true at subpolar latitudes, but the band
of timescales is narrower: approximately decadal and longer-term variability in CO2 flux is almost entirely
controlled by ΔpCO2. The separation of the (95% confidence) error envelopes around the best estimates of
the subpolar, subtropical, and equatorial spectra (darker blue and pink lines) indicate that the differences
between the spectra at the large-period end are significant. For the polar zone, both ΔpCO2 and k have an
important role in driving flux variability for all timescales longer than interannual (even without curtailing the
series length by segmentation), and so there is no long period dominated byΔpCO2. In addition to the strong
influence of ΔpCO2, there is also long-period variability in k. As k is scaled by sea ice cover, a negative trend
in ice area (in response to a warming climate) will therefore force F′ in the long term at high latitudes. Such a
decline has been documented in this model setup [Yool et al., 2013b]. Taken over the whole North Atlantic, we
find that flux variability on pentadal and longer timescales is greatly dominated by the influence of ΔpCO2,
and k contributes to less than quarter of long-period flux variability.

To more fully interpret the spectra of zonally averaged contributions, it is helpful to examine the critical
timescale of ΔpCO2 dominance at each grid point for the anthropogenic run (Figure 8a). At the grid point
scale, one can infer which physical phenomena give rise to the spectra in Figure 7. The polar zone in both
runs is dominated by points with no long timescale of ΔpCO2 dominance: much of Baffin Bay and the west-
ern GIN Sea. These regions are strongly influenced by sea ice, but in the eastern ice-free GIN Sea long-period
variability is dominated by ΔpCO2.

The subpolar zone features a southwest-to-northeast band of grid points whose flux variability is only dom-
inated by ΔpCO2 on multidecadal timescales (higher than elsewhere in the basin). This location coincides
with the southern boundary of the NAC. Here there is long-period variability in wind speeds in the model,
which drives the critical timescale of ΔpCO2 dominance in the subpolar zone (∼10 years) to be longer than
the subtropical or equatorial zones (∼3 and ∼1 years, respectively).

We also estimate the critical timescale using observations in the three locations described in section 3. In the
three 5-by-5∘ areas with the largest number of SOCAT monthly mean f CO2 values, we construct and decom-
pose CO2 fluxes using these f CO2 data (as in Figure 3), monthly mean CCMP winds, SST values from the EN4
gridded data set [Good et al., 2013], and atmospheric pCO2 from Mauna Loa, Hawaii [Thoning et al., 2014]. In
these locations, there is a sufficient history of ocean f CO2 data to determine the critical timescale: 2 years in
the subtropical box, 0.5 year in the midlatitude box, and 4 years in the high-latitude box (values shown as color
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Figure 8. Largest timescale of CO2 flux variability for which the contribution of k is nonnegligible, beyond which
variability is dominated by ΔpCO2 for the (a) anthropogenic and (b) control runs. Shades of purple indicate this
timescale, orange areas show where ΔpCO2 never dominates on the longest timescales, and white non-Atlantic areas
are out of bounds. Colors inside the three black squares in Figure 8a show the timescale derived using observations in
the same locations as Figure 3 [CCMP winds Atlas et al., 2011, SOCAT oceanic pCO2 Bakker et al., 2014, MLO atmospheric
pCO2 Thoning et al., 2014, and EN4 SST Good et al., 2013].

within black squares in Figure 8a). These values are comparable to those determined using model output in
the same locations; 4.6, 3.7, and 4.6 years, respectively.

By examining the same metric for the control run, we can learn the extent to which ΔpCO2 controls natu-
ral variability in the global ocean, without the influence of anthropogenic CO2 input. For much of the North
Atlantic, ΔpCO2 variability controls most of the CO2 flux variability in the control run (Figure 8b). Due to the
construction of the control run, it is not possible to comment on variability on timescales longer than 30 years,
yet this period is sufficiently longer than the ΔpCO2 critical timescale for most of the ice-free North Atlantic.
This means that natural, internal ocean multiannual CO2 flux variability is quite insensitive to the contribution
from k, and therefore, that much of the control exerted by the ΔpCO2 is not purely the product of anthro-
pogenic emissions. In other words, the strong influence of the ΔpCO2 in many parts of the North Atlantic
is naturally occurring and not purely due to rising atmospheric carbon concentrations. Such variability in
ΔpCO2 may arise without a rise in atmospheric pCO2 due to ocean circulation (particularly horizontal and
vertical advection). Advection acts to reorganize the surface inventories of heat, DIC, and alkalinity, thereby
modulating ocean pCO2 [Doney et al., 2009; Halloran et al., 2015].

4.3. CO2 Flux Estimation With Simplified k
Here we explore the extent to which flux variability can be reliably estimated in circumstances where we have a
minimal knowledge of the variability in gas transfer velocity. In section 1, some of the uncertainties associated
with k were outlined. A key question is understanding the extent to which those uncertainties limit our ability
to estimate oceanic CO2 flux variability. We can approximate equation (11) by assuming that variations in the
gas transfer velocity (k′) and the role of the cross terms (terms 4 to 7) are small (demonstrated in section 4.2).
Under these assumptions, terms 2, 4–7 vanish, yielding equation (13).

F′ ≈ ΔpCO′
2k̄𝛼̄ + ΔpCO2k̄𝛼′ (13)

If these assumptions are valid and equation (13) is a reasonable approximation, the uncertainties associated
with k would also become irrelevant in the determination of flux variability. This estimation would be useful in
estimating multidecadal flux variability using limited observations or simple box models. The “true” simulated
CO2 flux is known in the model, and we are therefore able to determine the error due to the approximation in
equation (13). By omitting some contributions, the estimated flux will necessarily have less variability than the
actual flux. We therefore assess our estimation by quantifying at each grid point (1) the correlation coefficient
(r values) between estimated and model actual fluxes that are significant beyond a level of 95% confidence
and (2) the proportion of the flux variability that is captured by the estimation relative to the model’s actual flux
variability. The error in observational reconstructions of CO2 flux is likely to differ due to the parameterization
of gas transfer in the model, but the model validation (section 3) indicates that the statistical properties of the
error should be similar on interannual to decadal timescales.

COULDREY ET AL. CARBON FLUX CONTROLS 798



Global Biogeochemical Cycles 10.1002/2015GB005267

Figure 9. Evaluation of flux estimation applied to the (a–c) anthropogenic and (d–f ) control runs, 1950–2099.
Figures 9a and 9d show correlation between modeled and estimated fluxes (all values are of >95% significance).
Figures 9b and 9e show RMS of modeled CO2 flux anomalies (a measure of variability). Figures 9c and 9f show ratio
between estimated and modeled CO2 flux RMS (the proportion of variability captured by the estimation).

The longest-term variability in the North Atlantic CO2 flux is primarily controlled by the positive trend in atmo-
spheric pCO2. Correspondingly, the estimated CO2 flux correlates very closely with the model’s actual series
(Figure 9a). However, even without this trend (as in the control run), the actual and estimated fluxes corre-
late well (Figure 9d). In general, the correlations are weaker in the control than in the anthropogenic run,
and several local minima are apparent; these also correspond to regions where variability is generally small
(Figures 9b and 9f). The good correlation between estimated and actual fluxes in both the anthropogenic and
control runs suggests that the estimation captures the key patterns of flux variability, both anthropogenically
and internally driven.

In addition to reproducing patterns of flux variability, it is also necessary for the estimation to correctly pre-
dict magnitudes. Since the estimation omits some contributions, it will naturally show either equal or lower
variability than the actual flux. To quantify this, we show the ratio between the estimated and actual modeled
CO2 flux variability (as the RMS of monthly anomalies) (Figures 9c and 9f). Where the value is 1, the estimation
reproduces all the modeled variability; values between 0 and 1 indicate the proportion of variability retained
by the estimation. This metric indicates that the estimation is robust at reproducing most of the modeled
variability across the Atlantic, in both the anthropogenic and control runs.

The main area where the flux estimation fares poorly is in the ice-covered North Atlantic. Here nonseasonal sea
ice variability is an important control on fluxes. Our estimation implicitly excludes interannual variability in the
ice edge and the multidecadal decline of ice extent, so the fluxes in the region are not well represented. To the
south of the NAC there are local minima in correlations and the RMS is retained, which are more pronounced
in the control run than the anthropogenic run. Although these areas are less well estimated than elsewhere
in the Atlantic, the variability in these regions is small, and so flux variability on the basin and subbasin scale
will still be well captured.

5. Discussion

Presently, large uncertainties are introduced into calculated CO2 fluxes via the gas transfer velocity. The choice
of wind speed parameterization can vary k by approximately 50% at global mean wind speeds (∼7 m/s) and
by 100% at speeds higher than 15 m/s [e.g., Woolf , 2005]. The choice of wind product can affect k by 10–40%
[Wanninkhof et al., 2002], and variability differs between products [Wanninkhof et al., 2013; Wanninkhof , 2014;
Kent et al., 2013]. The roles of breaking waves and bubbles are not taken into account when using a purely
wind speed-based parameterization of k, so these phenomena introduce poorly constrained uncertainty
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[Prytherch et al., 2010]. Certainly, these factors all limit our ability to accurately estimate CO2 flux variability on
interannual and shorter timescales, and ongoing work is needed in these areas.

In the high-latitude North Atlantic, the gas transfer velocity controls CO2 flux variability on longer timescales
than elsewhere in the basin. In the regions of the Labrador Sea, Baffin Bay, Denmark Strait, and Fram Strait, sea
ice cover is an important mediator of gas exchange. Here long-period variability in sea ice cover controls CO2

flux variability via the gas transfer velocity, since k is scaled by the fraction of area that is ice free. As a result,
there is no long period of variability over which ΔpCO2 predominantly controls the carbon flux. Therefore, to
accurately quantify estimates of the high-latitude North Atlantic carbon flux, a detailed knowledge of sea ice
dynamics is necessary.

Over the whole North Atlantic, pentadal and longer-term CO2 flux variability is dominated by the influence
of ΔpCO2. These longer timescales contrast the shorter timescales, where the role of k is crucial. This sug-
gests that a detailed knowledge of the pentadal to multidecadal control of k on F may not be necessary to
quantify the longer-term variability of the North Atlantic carbon sink. This finding therefore lends support to
the approaches of studies such as that of McKinley et al. [2011], which attempt to make judgements about
multidecadal variability of the North Atlantic CO2 sink based purely on pCO2 observations. In their study, it
was found that the oceanic trend in pCO2 converges to that of the atmosphere when examined over the full
29 year period between 1981 and 2009, but when only decadal timescales are considered, the two trends dif-
fer. Therefore, if on these same multidecadal timescales, the present day air-sea pCO2 difference is maintained
as McKinley et al. [2011] suggest, then the North Atlantic CO2 sink is approximately stable; neither a decline
nor an enhancement of the flux is apparent. Our work would support this approach, since we find the roles of
k and 𝛼 in governing flux variability over this timescale to be minor.

There is a broad increase in the critical timescale with latitude in the North Atlantic, which is explainable in
terms of wind speed variability. At the low latitudes, wind speed variability is lower, increasing toward the
poles (Figure 5). In addition, mean wind speeds are higher at the poles than the equator, so a given magni-
tude of wind speed variability at subpolar latitudes will produce greater variability in k than at the equator.
This is because k scales with the square of the wind speed in our setup [Nightingale et al., 2000]. This zonal
increase in k variability, in addition to the presence of sea ice at the highest latitudes, is what causes the
comparable zonal increase of the critical timescale (Figures 7 and 8). Furthermore, wind speed (and hence k)
variability is a stronger control on carbon fluxes in the control simulation than the anthropogenic run. This is
because the control’s fixed atmospheric CO2 concentration means that there is much less variability inΔpCO2

(and therefore also in the CO2 flux) than in the anthropogenic run. As a result, wind speed variability patterns
become relatively more important in setting the critical timescale for the control run than the anthropogenic
run (Figure 8). This means that k is a more important controller of variability of preindustrial carbon fluxes,
although not more important than ΔpCO2 on pentadal and longer timescales.

Through the comparison of modeled ocean f CO2 fields against observations from SOCAT and Bermuda, it
was shown that our setup underestimates variability on timescales shorter than 1 year. This result is to be
expected, since GCMs of this scale will tend not to represent high-frequency and small spatial-scale variabil-
ity well [e.g., Taylor et al., 2012]. This could indicate that the ΔpCO2 contribution may be a stronger control on
fluxes on shorter timescales than our study suggests. Our forcing set underestimates multiannual wind speed
variability at high latitudes, which may be associated with an inability to appropriately represent the NAO (an
issue common to many GCMs [Lee and Black, 2013]). This could cause the real-world critical timescale to be
longer than what the model suggests. In the polar zone, the low bias does not affect the critical timescale,
since k variability on all timescales is nonnegligible. In the subpolar zone, the critical timescale may be under-
estimated, due to the low bias, yet the observation-derived critical timescales are comparable to the model
prediction (∼1–5 years for all three locations, using both model output and observations, Figure 8a).

Current ocean models (including NEMO-MEDUSA) do not derive k from the full range of kinetic factors that
control it and instead parameterize it purely from wind speed. It is likely then that k variability on inter-
annual and shorter timescales will be underestimated too; since real-world, shorter timescale variability in
processes such as wave breaking and bubble dynamics is not represented in GCMs. Until a more thorough
understanding of the mechanisms underlying k is developed, we will not know exactly how important it is
in governing short-timescale flux variability. While the unmodeled factors are very likely strong controls on k
on short timescales, it is not clear if their variability on longer timescales (decadal and longer) is large, relative
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to the effect of wind speed. If on these long timescales k variability is dominated by the contribution from
wind speed, then wind speed parameterizations of k should be sufficient to estimate decadal gas transfer
variability.

It is worth exploring the caveat that we have derived our findings from GCM output. One could expect that
other models and configurations would yield slightly different timescales for the emergence of ΔpCO2 domi-
nance of flux variability. Yet our choice of model and setup appears reliable for the purposes of our study. This
experiment has been shown to produce interannual flux variability comparable to other models as well as
observational estimates (Table 1). In addition, it captures real-world multiannual f CO2 variance (Figures 3 and
4) and a reasonable degree of wind speed variability (Figure 5) [Lee and Black, 2013]. Therefore, other models
similarly capable of representing multiannual flux, f CO2, and wind variability would likely give results consis-
tent with those presented here, even if the mechanisms underlying that variability differ. Finally, the choice of
gas transfer velocity parameterization can have some effect on the critical timescale derived. Functions [e.g.,
McGillis et al., 2001] that produce a wider range of k values over the most commonly occurring wind speed
range (3 to 15 m/s) [Wanninkhof , 2014] impart greater variability into the CO2 flux and so would increase the
critical timescale. Many of the most commonly used parameterizations, however, show the greatest concor-
dance of derived k values over the range of commonly occurring wind speeds, and so the critical timescale is
generally insensitive to the choice of function (see supporting information).

While we have clearly identified the roles of each of the components of the flux equation in governing F vari-
ability, our methodology only hints at which underlying processes are important. To derive a more complete
and mechanistic understanding of the controls on carbon flux variability, further work is necessary. A very
broad range of physical, chemical, and biological processes cause ocean pCO2 variability, and so future work
should seek to quantify the relative importance of these drivers while attributing them to specific timescales
of variability.

6. Conclusions

We have examined the relative importance of the three components of the air-sea CO2 flux equation (k,
ΔpCO2, and 𝛼) in controlling flux variability on a range of timescales. In the North Atlantic, as for much of
the global ocean, we find that subannual to interannual variability in ΔpCO2 and k both have important roles
in controlling the air-sea carbon flux, in agreement with previous work [e.g., Doney et al., 2009]. On these
timescales, it is critical to obtain estimates of ΔpCO2 and k for accurate flux variability to be derived. On
pentadal and longer timescales, variability in k is not important and can be ignored when estimating flux
variability. The critical timescale increases from interannual at low latitudes to decadal at high latitudes.
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