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To calculate the return periods of individual wave or crest heights, the long-term distribution of sea states must
be combined with the short-term distribution of individual wave or crest heights conditional on sea state. This is
normally achieved using an equivalent storm model to parameterise the distribution of the maximum wave or
crest height in a storm. A new equivalent storm model is introduced that generalises the approach of Tromans
and Vanderschuren (1995). The generalised equivalent storm (GES) method is significantly simpler than
equivalent storm methods that model the temporal evolution of the significant wave height in a storm. The GES
method is applied to long time series of wave buoy measurements for deep and shallow water sites and de-
monstrated to be more accurate than existing methods at representing the statistical characteristics of measured
storms. Return periods of crest heights from the GES method are shown to be more robust to uncertainties in the
fitted models of the equivalent storm parameters than estimates from temporal evolution methods such as the
equivalent triangular storm and equivalent power storm model.

1. Introduction

Calculating the long-term statistics of extreme individual wave and
crest heights is an important problem in coastal and offshore en-
gineering. This topic has received considerable attention in the litera-
ture, with various approaches proposed. The problem involves com-
bining the short-term distribution of wave or crest heights conditional
on sea state with the long-term distribution of sea states. The methods
for combining the long-term and short-term distributions are identical
for both wave and crest heights, so to avoid referring to both
throughout the work, the following discussion will be presented in
terms of wave heights rather than crest heights.

The proposed approaches can be grouped into three categories. In
the first approach, originally proposed by Battjes (1970) and subse-
quently refined by Tucker (1989), the long-term distribution of all wave
heights is formed by calculating the proportion of waves or crests ex-
ceeding a value in a given sea state and weighting by the probability of
occurrence of the sea state.

Variants of the second approach have been proposed by Krogstad
(1985) and Tucker and Pitt (2001, Section 6.4.2). In this approach the
long-term distribution of wave heights is formed by integrating the
short-term distribution of the maximum wave height in each sea state
weighted by the probability of occurrence of each sea state.

In the third approach, the metocean data is divided into non-over-
lapping storms and the distribution of the maximum wave height in
each storm is calculated. This distribution is then characterised in terms
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of an ‘equivalent storm’ which has a simple parametric form. The
equivalent storm is fitted so that the distribution of the maximum wave
height in the equivalent storm matches that in the measured storm. The
long-term distribution of wave heights is then formed by integrating the
short-term distribution of the maximum wave height in a storm,
weighted by the distribution of storm parameters.

A comparison of these three types of methods was presented by
Forristall (2008), using Monte Carlo simulations of individual wave
heights over long time series of synthetic storms. Forristall demon-
strated that Battjes' method gives higher estimates of return values for
individual waves than Krogstad's method. He explains that the reason
for this discrepancy is that when a storm occurs in which the significant
wave height, H;, exceeds the N-year return value, there can be many
very large individual waves during that interval. All of these individual
waves go into the distribution given by Battjes, whereas the Krogstad
method only counts the highest wave in each r-hour interval. Forristall
goes on to note that the Krogstad method gives higher estimates than
methods that only consider the highest wave in each storm, since there
can be several high waves in separate r-hour periods within each storm.

For many engineering applications, it seems more appropriate to
calculate the probability that a single storm occurs in which a wave
height exceeds a certain threshold. If such a storm occurs, usually it
does not matter if that height is exceeded more than once within that
storm, as the damage to the structure will occur the first time the
threshold is exceeded.

Storm-based methods for calculating extreme wave conditions can
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be grouped into two categories, based on how the distribution of the
maximum wave in the storm is parameterised. One approach is to
model the temporal evolution of sea states in a storm using some sim-
plified geometric form, such as a triangle (Boccotti, 1986, 2000; Arena
and Pavone, 2006; Martin-Hidalgo et al., 2014; Laface et al., 2017),
trapezoid (Martin-Soldevilla et al., 2015), parabola (Tucker and Pitt,
2001, Section 6.5.4), power law (Fedele and Arena, 2010; Arena et al.,
2014) or exponential (Laface and Arena, 2016). The parameters of the
equivalent storm are fitted so that the distribution of the maximum
wave height in the equivalent storm is matched as closely as possible to
the measured storm. This approach is reasonably effective because the
order of sea states in the storm does not affect the distribution of the
maximum wave height, so the measured storm can be re-ordered into a
monotonically increasing series of sea states, for which a linear, power
or exponential law is a reasonable fit. The drawback of this approach is
that only the temporal evolution of H; is modelled, so if the short-term
distribution of wave height is dependent on with multiple sea state
parameters (such as steepness or directional spread) then a relation
between other sea state parameters and Hy; must be assumed in order to
calculate the distribution of the maximum wave height in the equiva-
lent storm.

The other approach, which has been less widely studied, is to model
the distribution of the maximum wave height in the storm directly. This
approach was adopted by Tromans and Vanderschuren (1995), who
assumed that the maximum wave height in the storm followed a
Gumbel distribution, with the parameters given as a function of the
most probable wave height in the measured storm. This forces a fixed
relation between the parameters of the distribution, which is not ne-
cessarily applicable in all locations.

In this paper, a generalisation of this approach is proposed, where
the distribution of the maximum wave height in a storm is modelled as
following a Generalised Extreme Value (GEV) distribution (for which
the Gumbel distribution is a special case) and the parameters of the GEV
are determined for each measured storm. This provides a more flexible
approach than the Tromans and Vanderschuren (1995) method. Com-
pared to temporal evolution models, the GEV method requires fewer
assumptions and is simpler to implement.

The paper is organised as follows. The short-term distribution of
individual wave and crest heights conditional on sea state is discussed
in Section 2. The distribution of the maximum wave height in a storm is
derived in Section 3. Existing equivalent storm models are reviewed in
Section 4 and the generalised equivalent storm model is presented. The
estimation of the long-term distribution of the parameters of the
equivalent storms is discussed in Section 5. The method for combing the
long-term and short-term distributions to calculate return periods of
individual wave heights is presented in Section 6. An example appli-
cation of the equivalent storm methods to measured wave data is pre-
sented in Section 7 and the accuracy and robustness of the methods is
compared. The differences between the equivalent storm models con-
sidered are summarised in Section 8. Finally, conclusions are presented
in Section 9.

2. The distribution of wave or crest heights conditional on sea
state

A sea state, o, is defined to be a period of time in which the wave
conditions can be considered approximately stationary, with the dura-
tion normally defined in the range 30 min to 3 h. A sea state is defined
in terms of the wave spectrum and summarised in terms of spectral
parameters, such as significant wave height H, = 4./m,, zero up-
crossing period T, = \mo/m,, mean period T, = mo/m;, where

[s+]

m, = [f"S(f)df is the n* moment of the wave frequency spectrum,
0
S({).

The short-term distribution of wave heights or crest heights condi-
tional on sea state is denoted
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Pr(H < hlo) (€9)]

Models for (1) in terms of sea state parameters and water depth is
the subject of ongoing research and it is beyond the scope of this work
to provide an exhaustive review. Wu et al. (2016) reviewed models for
the short-term distribution of wave heights in shallow water and noted
that many studies have shown dependence of the short-term distribu-
tion on steepness, relative water depth and spectral bandwidth (see also
Tayfun and Fedele, 2007). Latheef and Swan (2013) demonstrated that
the distribution of crest heights is dependent on both the steepness and
directional spread of the sea state. The presence of currents also in-
fluences the wave and crest statistics, with opposing currents believed
to be a contributing factor to the formation of rogue waves (Toffoli,
2016).

The focus of this work is on how to combine the short-term dis-
tribution (1) with the long-term distribution of sea states. The methods
described are applicable to any model for the short-term distribution.
The example presented in Section 7 uses the Forristall (2000) model for
the short-term distribution of crest heights in directionally spread seas.
The Forristall model assumes that crest heights follow a Weibull dis-
tribution:

Pr(H < hlo) = 1—exp, —(—) .
af; @

The parameters a and 5 defined in terms of the significant steepness,
Sm> and Ursell number, Uy, defined as

_ 27mH;
" oeT ®3)
H,
L]rs =3 z 3
kZd @

where k,, is the finite depth wave number corresponding to T,, and d is
the water depth. The distribution parameters are given by

a = 0.3536 + 0.2568s,, + 0.0800U; )

B =2 — 1.7912s,, — 0.5302U;, + 0.2824U3 (6)

3. The distribution of the maximum wave height in a measured
storm

A storm can be thought of as a sequence of discrete sea states, o,
where the wave heights increase to a peak level and then decrease
again. To calculate the distribution of the maximum wave height in a
measured storm, we first need to calculate the distribution of the
maximum wave height in each sea state. If it is assumed that individual
wave heights are independent, then the probability that the maximum
wave height in a sea state, H,,qy, does not exceed a level h in an interval
At, is simply the product of the probability that each individual wave
does not exceed h. In the interval At, there are N = At/T, waves, so

Pr(Hpq: < hloy) = Pr(H < hig)N. 7

In reality, consecutive wave and crest heights are correlated, with
the largest waves occurring in groups. However, the assumption of
independence in (7) is not restrictive. Krogstad and Barstow (2004)
note that for Gaussian processes, there is an analytical theory for the
distribution of the maximum value during a given period of time, and
that this theory gives identical results to (7). They argue that this ob-
servation makes it reasonable to use (7) in the case of nonlinear waves,
where in general no analytical theory exists.

The probability that the maximum wave height in a measured
storm, MS, does not exceed level h, is calculated as the product of the
probabilities that the wave height is not exceeded in any of the sea
states over the course of the storm:
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k
Pr(Hpax < hIMS) = [ | Pr(Hax < hlo), ®
i=1

where the storm is defined as sea states oy, ...,0;. There is some sub-
jectivity in how a time series is partitioned into separate storms. The
process is analogous to defining a declustering algorithm in the peaks-
over-threshold (POT) method (see Section 5 for discussion of the POT
method). The criteria used to define separate storms typically state that
the time between the peak H; of two adjacent storms must be larger
than some minimum value and that the minimum H; between two
adjacent peaks must be less than some multiple of the lower of the peak.
For the present work, storms have been defined using a minimum
temporal separation of 5 days between adjacent peaks and a require-
ment that the minimum value of Hy between adjacent peaks is less than
50% of the lower of the two peaks.

4. Definition of the equivalent storm

In order to analyse the statistics of the maximum wave height in
storms in general, the distribution of the maximum wave height in the
measured storm, Pr(H,,q,, < h|MS), must be parameterised in some way.
Models for Pr(H,q, < h|MS) are referred to as equivalent storm models
and will be denoted Pr(Hg < hlES). The quality of the fit of the
equivalent storm model will be assessed in terms of the Cramér-von
Mises goodness-of-fit parameter, w, which quantifies the difference
between two distributions:

@ = [ [Pr(Hpgy < hIMS) = Pr(Hygy < hIES)Pdh.
0 (€C)]

Sections 4.1 reviews equivalent storm methods that model the time
series of H; in the storm. Section 4.2 describes the Tromans and
Vanderschuren (1995) (TV) method for modelling the distribution
Pr(Hpgx < h|MS) directly and introduces the generalised equivalent

storm method as a generalisation of the TV method.
4.1. Temporal evolution methods

As noted in the introduction, there have been several models pro-
posed for the temporal evolution of H; over the course of a storm. To
derive these models, equation (8) is rewritten as

k
Pr(Hyax < hIMS) = [ ] [Pr(H < hlay) ]

i=1

k
= exp(z %ln[Pr(H < hlai)]).

i=1 1z

(10)

The last expression on the RHS of (10) is obtained by using the
identity x. y = exp(In(x) + In(y)). As the duration of each sea state, At,
tends to zero, the summation in (10) can be expressed as an integral:

D

1
Pr(Hpax < hIMS) =
I ( IMS) eXp[{ .0

In[Pr(H < hla(t))]dt],
(1)

where D is the duration of the storm (in seconds). The form of the
integral in (11) was originally derived by Borgman (1973). The dis-
tribution of the maximum wave in the equivalent storm is then obtained
by substituting the assumed model for H;(t) into (11) and changing the
differential from dt to dH;. For the equivalent power storm (EPS) model
the time series of H; is modelled as:

_ k
Hs(t)=a[1—(u) ] to—25t5m+2
b 2 2 12)

where a is the storm peak H; at t = f, b is the storm duration and k is
the storm shape parameter. The equivalent triangular storm (ETS) is a
special case of the EPS model for k = 1 and the parabolic storm model is
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the case k = 2. Substituting (12) into (11) gives the distribution of the
maximum wave height in the equivalent storm (ES) for the EPS model
as:

a

1_
Pr(Hpax < h|ES) = exp % [ W(l _ %)k 1dHS].
0 Z\"5s

13

To apply the change in the differential from dt to dH;, the variables
T,(t) and o (t) must be changed to models T, (H;) and o (H;), which de-
scribe the mean values of T, and other sea state parameters for a given
value of H;. The fitting of these models is described in Section 7.1.

To fit the EPS model to Pr(H,,q, < h|MS), the peak value of H; in the
equivalent storm (a) is defined to be equal to that in the measured
storm. The duration of the equivalent storm is defined as the value for
which the expected value of the maximum wave height in the equiva-
lent storm is equal to that in the measured storm. The duration is ob-
tained using and iterative process.

In the EPS storm model, there is an additional free parameter, the
exponent k, which describes the storm shape. Fedele and Arena (2010)
and Arena et al. (2014) fitted the EPS for a range of values of k and
compared the return values for each fixed value of k. In the present
work, the value of k will be selected for each measured storm as the
value which minimises the Cramér-von Mises parameter w. This ap-
proach has been adopted to allow a fairer comparison with the gen-
eralised equivalent storm method, which has three free parameters.

In the equivalent exponential storm (EES) model (Laface and Arena,
2016) the storm is separated into growth and decay phases before and
after the peak H;. The peak H; in the EES is defined to be equal to the
peak H; in the measured storm and duration of the growth and decay
phases is determined in the same way as for the ETS and EPS models, by
matching E(Hpqy |ES) with E(H,,q IMS) for the growth and decay phases
separately. However, Laface and Arena (2016) conclude that although
the EES model can provide a better representation of the storm duration
than the ETS and EPS models, the separation of the storm into separate
growth and decay phases does not change the estimates of return per-
iods of individual wave heights. The EES model will therefore not be
considered further here.

Temporal evolution methods have been demonstrated to give a
good fit to the distribution of the maximum wave height in the mea-
sured storm in most cases. Considering that measured storms have
highly irregular shapes and the equivalent storms are fitted using only
the first moment of the distribution (8), it is somewhat surprising that
modelling a storm using these simple shapes can provide a good match
to the measured distributions. Mackay (2012) noted that the reason for
the good match is that the order of the sea states in (8) does not affect
the calculation. The sea states in a storm can therefore be reordered into
an ascending sequence where H; increases from a minimum to a max-
imum value. Only the largest few sea states in a storm affect the dis-
tribution of the maximum wave height, and the temporal evolution of
these largest few sea states of the reordered storm can be well-modelled
by a simple shape.

One of the disadvantages with time series methods is that they only
model the temporal evolution of H; and relations between other sea
state parameters and H; must be assumed. Fortunately, it is not ne-
cessary to model the temporal evolution of sea state parameters. The
distribution of the maximum wave height in a measured storm can be
modelled directly, as explained in next section.

4.2. Distribution modelling methods

Instead of modelling the temporal evolution of sea states in a storm,
an equivalent storm can be defined as a statistical distribution which
matches the distribution of the maximum wave height in the measured
storm (8). Tromans and Vanderschuren (1995) took this approach and
proposed that (8) could be modelled using a Gumbel distribution in
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H?2 . with fixed relations between the distribution parameters. The as-
sumption of a fixed form for Pr(H,,,, < hlES) can be relaxed and a more
general model can be applied. The generalised extreme value dis-
tribution (GEV) is a natural candidate for modelling (8), given that it is
the asymptotic form of the distribution of the maximum of a large
sample of independent, identically distributed observations (Coles,
2001). The maximum wave heights in each sea state in a storm are
effectively independent, but are not identically distributed, as the dis-
tribution parameters vary with sea state. However, the GEV provides a
flexible formulation, capable of representing a range of distribution
shapes, so the main justification for the use of the GEV is in its fit to the
data rather than asymptotic arguments. In the generalised equivalent
storm method, the distribution of the maximum wave height in the
storm is assumed to follow the GEV distribution:

1

exp[—(l + k(h;a))iﬁ], for k #0andb > 0

S
a4

where a, b and k are the location, scale and shape parameters, re-
spectively. The variable names a, b and k have been reused here for
analogy with the temporal evolution models. Using the same notation,
simplifies the presentation later and the interpretation should be clear
from the context.

The Gumbel distribution is a special case of the GEV when k = 0.
However, the TV model assumes that H2,, follows a Gumbel distribu-
tion rather than H,,. The TV model is defined as:

Pr(Hax < h|ES) = exp[—exp(—( hzb_ a))).
15)

The TV and GEV models are fitted using the mode and standard
deviation of the distribution. The mode of the GEV (i.e. the most
probable value) is given by:

Pr(Hpax < hIES) =
for k=0andb > 0

1+k)*-1
mode(Hyox |ES) = {a +b———— fork#0
a fork=0 (16)

The standard deviation of the GEV is:

br/\6, fork=0
std(Hya|ES) = { b\[(g, — g2 /k, fork #0, k <1/2
&) fork > 1/2 a7

where g, = T'(1 — nk) and T is the gamma function.

In the TV model, the location parameter is therefore defined as
a= H,flp, where H,,, is the most probable maximum wave height in the
storm (i.e. the mode of (8)). The scale parameter is defined to be in
fixed relation to the location parameter, with b = a/In(N), where
N = D/T, is the number of waves in the storm and D is a measure of the
duration of the storm. Tromans and Vanderschuren (1995) do not
specify how D is defined, but note that In(N) ~ 8 for Northern Eur-
opean winter storms. The DNV GL guidelines (DNV GL, 2017) re-
commend the TV model for estimating return periods of individual
wave and crest heights, however there is no recommendation for how
to calculate In(N). Two options for calculating In(IN) will be considered
here. The first method is to use the standard deviation of the distribu-
tion, which gives

2
In(N) = ﬂ
std(Hpa) V6 18)

In the second, the value of In(N) is determined numerically by
finding the value that minimises the Cramér-von Mises goodness-of-fit
parameter, .

The GEV model is fitted numerically, by finding the values of a, b
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and k that minimise w. Efficient numerical optimisation of three para-
meters requires a starting point that is close to the optimum. The first
guess for the parameters of the GEV is defined by assuming k = 0,
which then implies a = H,,, and b = V6 std(Hygy)/7. In this work, the
parameters that minimise w have been found using the MATLAB func-
tion ‘fminsearch’ which uses a simplex search technique (Lagarias et al.,
1998) and first-guess values noted above.

5. The distribution of equivalent storm parameters

Once each measured storm has been fitted with an equivalent storm,
the next step is to establish the long-term joint distribution of the
equivalent storm parameters. The joint probability density function
(PDF) of the equivalent storm parameters, p(a, b, k), can be written as
the product of marginal density, p(a) and the conditional density
function p(b, kla):

p(a, b, k) = p(a)p(b, kla). 19

For the ETS and TV models there is no shape parameter k, so the
joint pdf of the storm parameters is written as p(a, b) = p(a)p(bla).

The details of how the conditional PDFs are modelled is dependent
on the equivalent storm method used, so the discussion of this will be
postponed until examples are presented in Section 7. Here we consider
the PDF p(a). In the case of the ETS and EPS models, a is the peak H; in
the storm. In the case of the TV model, a is the square of the most
probable maximum wave height in the storm, H,flp. For the GEV model,
it will be shown in Section 7 that, to a very good approximation,
a = Hy,p. So, depending on the equivalent storm model used, p(a) is the
PDF of either storm peak H;, H,, or Hyﬁp. In all cases, the parameter a
defines some measure of the peak intensity of the storm. Two methods
for estimating p(a) will be described here. The first approach, described
in Section 5.1, uses a peaks-over-threshold (POT) analysis, and is ap-
plicable to both the time series models (ETS/EPS) and the distribution
models (TV/GEV). The second method, described in Section 5.2, is only
applicable to the time series models and is derived from the mean time
when H; is above a threshold level in the equivalent storm.

5.1. The distribution of storm peak intensity using the POT method

The POT method is now commonly adopted in extreme value ana-
lysis for ocean engineering (see e.g. Coles, 2001; Jonathan and Ewans,
2013). In the POT method, the generalised Pareto distribution (GPD) is
fitted to observations exceeding a high threshold. The CDF of the GPD is
defined conditional on a exceeding some high threshold u:

1 —(1 +§(x_"))7§ for £+ 0and o > 0,

a

1 —exp(—(=2 for £=0and o> 0.
(-()

4

Pr(a < xla > u) =

(20)

The parameters o and £ are the scale and shape parameters re-
spectively. When £ > 0, the distribution is unbounded from above and
referred to as heavy tailed or long tailed. When & < 0 the distribution
has a maximum value, equal to u — o/, and is referred to as short
tailed.

The method used to estimate the parameters of the GPD can have a
significant influence on results, especially with relatively small sample
sizes. The metocean time series available for estimating extreme values
are typically quite short in relation to the return periods of interest,
resulting in small samples sizes. This means that using accurate esti-
mators is important. Hosking and Wallis (1987) showed that the max-
imum likelihood (ML) estimators for the GPD are non-optimal for
sample sizes up to 500, with higher bias and variance than other esti-
mators, such as the moments (MOM) and probability weighted mo-
ments (PWM) estimators. Hosking and Wallis also noted that sometimes
solutions to the ML equations do not exist and that at other times when
a solution does exist there can be convergence problems with the



E. Mackay, L. Johanning

algorithm they used to find them. Dupuis (1996) found that the MOM
and PWM estimators are sensitive to threshold choice and sometimes
result in non-feasible estimates, where £ < 0 so that the estimated dis-
tribution has a maximum value of u — ¢/£, but the maximum ob-
servation is larger than this value for the estimated parameters. A
comparison of estimators for the GPD was presented by Mackay et al.
(2011). The authors concluded that a modified version of the like-
lihood-moment (LM) estimator (Zhang, 2007), using an initial estimate
of the shape parameter from the hybrid PWM method of Dupuis and
Tsao (1998), gave the lowest bias and variance in estimates of high
quantiles. Subsequent work has improved the estimation of parameters
for the GPD. Kang and Song (2017) provide a quantitative comparison
of more recent estimation methods for the GPD and conclude that the
empirical Bayesian method (EBM) of Zhang (2010) performs best in a
wide range of cases. The EBM method will be used here.

The threshold for the GPD is selected by fitting the distribution for a
range of threshold values and selecting the threshold as the lowest
value for which the shape parameter of the distribution and estimates of
high quantiles converge to steady values (see Coles, 2001, for further
details).

It should be noted that the distribution of storms where the peak
intensity does not exceed the threshold is not modelled, as it does not
influence the return values at high return periods. The occurrence rate
of storms where the peak intensity exceeds the threshold is accounted
for in the calculation of return periods, described in the next section.

5.2. The distribution of storm peak intensity for temporal evolution methods

For the temporal evolution methods, an alternative method has
been proposed for estimating the PDF p(a), as a function of the CDF of
H; (denoted Pr(H; < a)). By considering the mean time that H; > h in
an equivalent storm, it can be shown that

p(@) =g (@), v, Pr(H; < a)), 21)

where b (a) is the mean storm duration as a function of a, v is the oc-
currence rate of storms and the function g is dependent on the time
series model assumed (see Arena and Pavone, 2006; Fedele and Arena,
2010 and Laface and Arena, 2016 for the specific forms of g for the ETS,
EPS and EES models respectively). In the examples presented in the
references above, the authors assume that Pr(H; < a) follows a Weibull
distribution.

The problem with this approach is that fitting a model for the entire
range of H; does not guarantee a good fit to the highest values which
have the strongest influence on the extreme wave and crest heights.
This point has been well illustrated by Ferreira and Guedes Soares
(1999), who fit three types of model to the distribution of Hy, where the
three models have tails which tend to different forms of the GPD, with
shape parameters ¢ < 0, £ = 0 and & > 0 respectively. They show that all
three types of distribution fit H; data from the Portuguese coast very
well, with Kolmogorov-Smirnov tests for goodness-of-fit not rejecting
any of the distributions as not fitting the data. The three distributions
are very close to each other over the range of the bulk of the data but
differ remarkably at high probability quantiles. This leads to estimates
of 100-year return values of H; differing by over 5m between the
models with & < 0 and & > 0. Mathiesen et al. (1994) noted that since
there is no a priori reason to suppose that H; follows one type of dis-
tribution rather than another, fitting a model to the entire range of H; is
not a reliable method for estimating extremes. Instead, Mathiesen et al.
recommend the POT method, since in this method the quality of the fit
is dependent on only the extreme values and not the bulk of the data.
The POT/GPD method is also justified by asymptotic arguments (Coles,
2001).

Laface and Arena (2016) note that to improve the fit of the model
for Pr(H; < a), a piecewise model could be adopted, with e.g. a log-
normal model for the bulk of the distribution and a Weibull model for
values above some high threshold level. This introduces further
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complication into the calculation of p(a), since a smooth transition
from the model for the bulk to the tail must be ensured so that
Pr(H; < a) has a continuous derivative (the derivative is used in the
function g). Whilst this is possible to achieve, it seems unnecessarily
complicated compared to the POT/GPD model for p(a).

Estimating p(a) from Pr(H; < a) in fact provides no new informa-
tion about the distribution of a. In the case of ETS and EPS methods,
p(a) is the density function of storm peak H;. The additional informa-
tion provided in Pr(H; < a) compared to p(a) is related to the dis-
tribution of lower values of H; in a storm, given the peak value a. The
use of (21) to estimate p(a) is therefore not expected to result in a lower
variance than the POT/GPD method.

Laface et al. (2016) examined the sensitivity of estimates of p(a)
from the POT/GPD method and (21) to the choice of threshold level.
Laface et al. (2017) found that return values of storm peak H; calculated
from p(a) are more sensitive to threshold level when p(a) is estimated
from the POT/GPD method than when it is estimated from (21).
However, the authors do not state what method was used to estimate
the GPD parameters in their study. As noted in the preceding section,
commonly used estimators for the GPD such as the maximum likelihood
or probability weighted moments estimators are not optimal, especially
for smaller sample sizes, and give a higher sensitivity to threshold level
than other estimators such as the EBM estimator used in this study.
Without knowing the GPD parameter estimation method used by Laface
et al. (2017), it is not possible to conclude whether the use of (21) to
estimate p(a) is more stable with threshold level than the POT/GPD
method in general, or whether their findings were a result of using non-
optimal estimators for the GPD.

Given that the use of (21) to estimate p(a) appears to offer several
disadvantages and no clear advantages over the POT/GPD method, the
POT/GPD has been adopted in this study for both the time series
equivalent storm models (ETS, EPS) and the distribution equivalent
storm models (TV, GEV).

6. Return periods of individual wave heights

The distribution of the maximum wave height in a random storm
where the peak intensity, a, exceeds the threshold value, u, is calculated
by integrating the short-term distribution of the maximum wave in a
storm specified by the parameters a, b and k over the long-term joint
distribution of a, b and k:

Pr(Hyax < hIRS) = [ [ [ p(@)p(b, Kla)Pr(Hype, < hIES) da db dk
k b a

(22)

For the ETS and TV models, the expression above reduces to a
double integral as there is no shape parameter, k.

Once the distribution Pr(H,,, < h|RS) has been calculated, the re-
turn values of individual wave heights can be calculated. The wave
height that is exceeded once every m storms on average, is the solution
of:

Pr(Hyo, < hIRS) =1 — +
= B m’ (23)

The wave height that is exceeded once every T years on average, is
known as the T-year return value and is said to have a return period of
T years. If there are on average v storms exceeding the threshold level
every year, then the T-year return value, Hy, is the solution of:

Pr(Hyge < HyIRS) = 1 — —
max = ST B VT’ (24)

The value v is estimated as v = n/t where 7 is the length of the
dataset in years and n is the number of storms in the dataset which
exceed the threshold value used in the POT analysis.
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7. Example - application to measured data

The equivalent storm models discussed in Section 4 are compared
using two long datasets of wave buoy measurements. Return periods of
individual crest heights are calculated using the short-term crest height
distribution of Forristall (2000), described in Section 2. The datasets
used are described in Section 7.1. The fit of the equivalent storm models
to the distribution of the maximum crest height in measured storms is
compared in Section 7.2. The joint distributions of equivalent storm
parameters are described in Section 7.3 and return periods from each
model are compared in Section 7.4. Finally, the reduction of the double
or triple integral (22) to a single integral for each model is discussed in
Section 7.5.

7.1. Datasets

Two datasets have been selected for comparison of the equivalent
storm models, representing two distinct wave climate regimes. The first
dataset is from NDBC buoy number 46014, located off the coast of
Northern California in a water depth of 256 m. The dataset consists of
35 years of hourly records of wave spectra over the period April
1981-December 2016. The other dataset is from NDBC buoy number
44025, located off the coast of Long Island, New York, in a water depth
of 36 m. The dataset consists of 25 years of hourly records of wave
spectra over the period April 1991-December 2016. Scatterplots of H;
against T, for the two datasets are shown in Fig. 1. Both datasets have
similar maximum observed Hj, with a maximum H; at buoy 44025 of
9.64m and a maximum at buoy 46014 of 10.34 m. In the shallower
water site, the maximum values of H; occur for the steepest seas with
0.06 < s, < 0.07, whilst at the deeper site the extremes H; occurs for a
wider range of steepness, with 0.03 < s, < 0.06. The range of T, ob-
served at the Californian site is also much larger than at the New York
site.

To apply the time series equivalent storm methods, a model is
needed for the mean value of T, and the assumed short-term distribu-
tion parameters as a function of H;. Fig. 2 shows the values of T, and the
Forristall (2000) distribution parameters @ and § for individual sea
states and the mean values, binned by H;. The shallower location, Buoy
44025, shows a greater variation in « and  with H; than Buoy 46014,
due to the increase in nonlinear effects related to wave steepness and
water depth (the parameters a and f are defined as functions of
steepness and Ursell number — see Section 2). The mean values have
been modelled as linearly dependent on H; in sea states with Hy > 2m.
The reason for the distinct change in the variation of a« and 8 around
H; = 2m is not clear, however the values of @ and 8 in lower sea states
are irrelevant for extremes and will not be considered further here. The
linear models provide a reasonable fit to the observed mean values for

Buoy 44025, depth = 36m
12 T T T 77 7] 7
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H; > 2m. It should be noted that although the short-term distribution
must be evaluated to calculate Pr(Hp,, < hlES), the accuracy of the
prediction of return values of wave heights is dependent on how closely
Pr(Hpax < hIES) matches Pr(Hp,, < h|MS) and not the accuracy of the
model for the variation of the distribution parameters with H;. As
Pr(Hpqy < hIES) is fitted to Pr(Hyg, < hIMS), the fitted storm duration
(and storm shape in the case of the EPS model) can compensate to some
extent for inaccuracies in the models for T; (H;), & (H;) and 8 (H;). The
complications involved in the indirect modelling of Pr(Hyq, < hIMS) in

the ETS and EPS models highlight the advantages of the TV and GEV
models, which do not require this preliminary step.

7.2. Accuracy of equivalent storm models

For each dataset, independent storm peaks were identified, defined
as local maxima in H; separated from adjacent maxima by a minimum
of 5 days and a requirement that the minimum value of H; between two
adjacent peaks is less than 50% of the lower of the two peaks. The time
series of sea states was divided into discrete sections, with the dividing
points located at the time of the minimum H; between each storm peak.
These blocks were defined as constituting a storm. This resulted in 780
storms for buoy 44025 and 1036 storms for buoy 46014.

The distribution of the maximum crest height in each storm was
calculated and the ETS, EPS, TV and GEV equivalent storm models were
fitted using the methods described in Section 4. For the TV model the
parameters were estimated using both the moment method and nu-
merical optimisation method described in Section 4.2. The results from
these methods are denoted TV(mom) and TV(num) respectively.

Examples of the fits of the equivalent storm models to the largest
measured storm in each dataset are shown in Figs. 3 and 4. The upper
panels show the measured time series of Hy in the storm and the fitted
ETS and EPS, together with the same series sorted into descending
order. The ETS approximates a linear fit to the highest values of H; in
the storm, whilst the EPS provides a slightly better fit using a nonlinear
variation with time. The density functions of the highest crest in the
storm are shown in the lower left panels. All the equivalent storm
methods provide a good approximation to the shape of the density
functions.

To highlight the differences between the methods, the lower right
panels show the ratio between the quantile of the equivalent storm and
the measured storm at a given probability level. If the equivalent storm
was a perfect fit to the measured storm, then this ratio would be equal
to one for the entire probability range. The trends for both the examples
are similar. The GEV model has the lowest bias in the quantiles, with
quantiles with exceedance probabilities below 1072 being slightly un-
derestimated. The EPS model provides the next best fit to the measured
storm, with a very similar performance to the GEV for the example in

Buoy 46014, depth = 256m

12 T . -
77 7
/ ! / y:

Fig. 1. Scatter plots of H; against T, for the two datasets used in this study. Colour indicates density of occurrence. Black dashed lines indicate s, from 0.01 to 0.07 at
intervals of 0.01. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Mean value of T; and Forristall (2000) distribution parameters « and § as a function of H;. Blue dots show values for individual sea states. Red circles are mean
values binned by H;. Black lines are linear models for the mean value as a function of H; in sea states with H; > 2m. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Fit of the equivalent storm models for the largest storm observed at Buoy 46014. Upper left: Measured time series of H; and fitted ETS and EPS models. Upper
right: Time series of H; sorted in descending order. Lower left: density function of maximum crest height in the storm. Lower right: Ratio of quantiles from the
distributions in the measured and equivalent storms.
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Fig. 4. As Fig. 3, but for the largest

Fig. 3 and a slightly higher bias for the example shown in Fig. 4. The
ETS model is biased high in the example shown in Fig. 3 and biased low
for the example in Fig. 4. The TV model has the largest deviation from
the measured storm, exhibiting the same pattern in the two examples.
The TV model estimated using the moment method is biased high over
the range of exceedance probabilities shown, whereas the TV model
fitted numerically is biased high for exceedance probabilities less than
107! and low for the rest of the range.

The mean and standard deviation of the quantile ratios over all
measured storms are shown in Figs. 5 and 6 for the two datasets. The
trends in the biases (i.e. the mean value of the ratios) are consistent
between the two datasets and similar to those shown in the examples
for individual storms in Figs. 3 and 4. The GEV has the lowest bias and
standard deviation of all models, indicating a consistently good fit to
the measured storms. The EPS model has the next best performance,
with a tendency to be biased slightly low at high probability quantiles,
but with a low STD, indicating consistent performance. The ETS model
has a lower bias than the EPS model for buoy 46014, but a slightly
higher bias than the EPS model for buoy 44025. The ETS model has the
highest STD of all the models, indicating the most variable quality of fit
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storm observed at Buoy 44025.

to the data. The TV models have a low STD indicating that the biases
compared to the measured storms are consistent, following the same
patterns as in the examples in Figs. 3 and 4.

The distribution of the Cramér—von Mises goodness-of-fit parameter,
w, over all measured storms is shown in Fig. 7 for each dataset. As with
the quantile ratios, the GEV model has the best performance in terms of
w, showing almost an order of magnitude reduction in the mean value
of w compared to the EPS model. The TV model based on the moment
estimates is the worst performing, almost two orders of magnitude
higher w than the GEV model. The ETS and numerically fit TV models
have similar performance, but with the ETS model showing slightly
better fit for buoy 44025. No correlation between w and storm peak Hj
was found for any of the models at either site, with the GEV having the
best performance for all conditions.

It is not surprising that the GEV and EPS models provide better fit
than ETS and TV models, considering that the former have three free
parameters to describe the distribution, and the latter have two.
However, the findings show that GEV method is more accurate than
time series models as well as being simpler. The TV model based on the
moment estimators is the simplest model but worst performing. The

Buoy 44025
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Fig. 5. Mean and STD of quantile ratios for Buoy 44025.
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Fig. 6. Mean and STD of quantile ratios for Buoy 46014.
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Fig. 7. Distribution of goodness of fit parameter w for each equivalent storm model.

GEV model is only marginally more complex to implement than the
numerical TV model, but shows a large improvement in the accuracy.

7.3. Distributions of equivalent storms parameters

7.3.1. ETS parameter relations

The relationship between the fitted ETS height, a, and duration, b, is
shown in Fig. 8 for each dataset. There is an approximately linear log-
log relation, giving a model for the parameters as In(b) = A + B In(a)
or equivalently b = exp(A)a®. The residuals of the model for b, defined
as r=1In(b) — (A + Bln(a)) are approximately normally distributed
about the regression line. This gives a model for p(In(b)la) as

p(n(b)la) = N (u(a), o) (25)

where u = A + B In(a) and o is assumed to be constant.

The threshold for the GPD fit to the ETS heights a (storm peak Hy)
was selected as 5m for both datasets. For Buoy 44025 this gave 54
storms exceeding the threshold value and 304 storms exceeding the
threshold for Buoy 46014. The ordered sample of threshold ex-
ceedances is denoted a(;) < a) < ...<a(y), where n is the number of
storms exceeding the threshold value. The empirical non-exceedance
probabilities of the threshold exceedances are defined as

}’5()() = Pr(a(k) < xla(k) >u) = P . (26)

The fit of the GPD is compared to the empirical exceedance prob-
abilities in Fig. 9, for each dataset. The GPD appears to be very good fit
to the data for Buoy 46014, whereas for buoy 44025 there are two large
observations that lie further from the fitted GPD curve. One of these
large storms was Hurricane Sandy in October 2012, with a peak H; of
9.6 m. The other large storm was an extratropical cyclone, which

occurred in December 1992, with a peak H; of 9.3 m. All other storms at
Buoy 44025 had peak H; less than 7.5 m. These two large storms result
in a positive estimate for shape parameter for the GPD of £ = 0.089. For
Buoy 46014, the greater number of observations close to the maximum
result in a negative estimate for the shape parameters of the GPD of
£=-0.157.

Confidence bounds can be added to the empirical exceedance
probabilities as follows. As each storm is effectively an independent
observation from a common population, the empirical non-exceedance
probabilities follow a Beta distribution (David and Nagaraja, 2003):

n! ~ k—1 ~ —k
Py ™ = Pp)"

FPw) = k= D!(n - k! @7)

where f (13(,()) is the PDF of Ek). A 95% confidence interval for the
empirical exceedance probabilities is shown on Fig. 9. The fitted GPD
falls within the confidence interval for the exceedance probability of
the two largest observations, indicating that the deviation is within the
range expected from sampling variability.

7.3.2. EPS parameter relations

The relations between the parameters of the fitted EPS models are
shown in Figs. 10 and 11 for the two datasets. There is a weak linear
relationship is observed between In(a) and In(b) for Buoy 44025, but
with a higher level of scatter than for the ETS model. For Buoy 46014
the mean value of In(b) is approximately constant with In(a) and there
is a higher level of scatter than for buoy 44025. For both datasets the
residuals r = In(b) — (A + B In(a)) were found to be better represented
by a Student-t distribution than a normal distribution in this case, due
to the larger scatter about the regression line. There is a weak re-
lationship between storm shape, k, and storm height, a, although there
is a high level of scatter. The storm shape parameter k is negatively
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Fig. 8. Left: Regression of storm duration b on storm peak intensity a for the ETS model. Blue dots indicate individual storms, red circles indicate mean values of
In(b)binned by In(a), black dashed line indicates linear log-log fit. Right: distribution of residuals from linear fit. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

correlated to In(b), since lower values of k result in a sub-linear de-
crease in H; from the peak value and therefore result in wider bases for
the storms.

Due to the strong correlation between k and In(b), the conditional
joint density function p(b, kla) will be replaced by a single density
function p(bla), modelled in the same way as for the ETS model, but
with a Student-t distribution replacing the normal distribution. The
storm shape k is assumed to be linearly related to In(b) (i.e. the ob-
served scatter about the regression line is not modelled).

Note that model for the density function p(a) is identical to that for
the ETS model, since the storm peak heights, a, are the same for both
models.

7.3.3. TV parameter relations
As the TV model fitted numerically performed better than the TV
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model fitted using the moment estimators, only the numerically fit TV
model will be considered in this section. The relationship between the
scale and location parameters of the TV model is shown in Fig. 12. As,
a = H,, and b = H;,,/In(N) by definition, the plot shows /a against
Jb. Both datasets exhibit a very similar relationship, with a strong
linear correlation and low levels of scatter. Linear regression for both
datasets gives a slight negative intercept for the regression line and very
similar slopes.

The relationship between In(N) and H,y,, is shown in Fig. 13. There
is a slight negative correlation between In(N) and H,,,. This is related to
the negative intercept in the regression line between Ja = H,, and
Jb = Hyp/y/In(N). Tromans and Vanderschuren (1995) assumed a
constant value of In(N) = 8 in there model. It is evident that the as-
sumption of constant In(N) is not appropriate for the datasets examined
here, but the mean values are close to 8 for both datasets. It our model it
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Fig. 9. Empirical exceedance probabilities and fitted GPD for ETS triangle heights, a. Dashed lines indicate 95% CI for the empirical exceedance probabilities.
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Fig. 12. Scatter plot of square roots of scale and location parameters for the TV model. Black dashed lines are linear fit.

will be assumed that In(N) is linearly related to H,,;,, with the residuals
distributed normally about the regression line (see RHS of Fig. 13).
For the TV model the GPD has been fitted to H,,, rather than the
location parameter a = H,,,, which was also the method adopted by
Tromans and Vanderschuren (1995). The integral in (22) over p(a) is
replaced by an integral over p (H,y,). It will be shown in the next section
that the GEV parameter a is almost identical to Hy,, so the same GPD
model can be used for both the TV and GEV methods. As discussed

below, there is an almost one-to-one relationship between H,,, and

Buoy 44025
10 — ; . , .

12
Hpyp [m]

storm peak H;. Therefore the same threshold values have been used for
the GPD fit to H,,, as for the ETS/EPS models. The fit of the GPD is
shown in Fig. 14, which displays very similar behaviour to the fit for the
ETS/EPS model, with estimated shape parameters of £ = 0.102 and
£ = —0.157 for buoys 44025 and 46014 respectively.

Fig. 15 shows a scatter plot of H,,, against storm peak Hy (i.e. ETS/
EPS parameter a). The two variables are strongly correlated with an
almost 1:1 relationship. The slightly higher values of H,,, observed for
Buoy 44025 are related to nonlinear effects caused by shallow water. To
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Fig. 13. Left: Scatter plots of In(N) against H,, for the TV model. Blue dots indicate relations for individual storms. Red lines are mean values binned by H,,,. Black
dashed lines are linear fit. Right: Distribution of residuals about regression line and fitted normal distribution. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Left: Linear regression of H,, on storm peak H,. Right: Return periods of H,,, from (a) fit of GPD direct to H,,, and (b) fit of GPD to storm peak Hj, scaled by

linear relation shown on LHS.

compare the fitted GPD for the ETS/EPS and TV/GEV models, return
values of H,,, have been calculated from the GPD model for H,, and
from the GPD model for storm peak Hj, scaled by the linear relationship
shown in Fig. 15. The results shown on the RHS of Fig. 15 indicate that
the two models are in good agreement.
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7.3.4. GEV parameter relations

The relations between the fitted GEV parameters for each dataset
are shown in Figs. 16 and 17. There is a strong positive correlation
between the location and scale parameters, a and b, with low levels of
scatter. The shape parameter, k, is uncorrelated to the location
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Fig. 16. Scatter plots of relations between GEV parameters and fitted distributions for buoy 44025. Blue dots indicate relations for individual storms. Red lines are
mean values binned by the x-axis variable. Black dashed lines are linear fit. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 17. Scatter plots of relations between GEV parameters and fitted distributions for buoy 46014.
parameter, a, and the residuals of the linear regression of b on a. There modelled as a Student-t distribution, with the mean value of p(bla)
is also no strong trend in the regression residuals with a. The dis- varying linearly with a.
tributions of k and the regression residuals are both well fit by a Stu- It is interesting to note that the distribution of the GEV parameters is
dent-t distribution. As k is approximately independent of a and the similar for both datasets. The shape parameter takes a narrow range of
residuals of b, the conditional density function p(b, kla) will be mod- values, with a mean value around — 0.035, close to the initial guess for

elled as p(b, kla) = p(bla)p(k), where p(k) and p(bla) are both the optimisation of k = 0. Given that k is consistently close to zero, it is
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Fig. 18. Left: Scatter plot of H,,, against GEV parameter a. Right: Scatter plot of STD(H,) against GEV parameter b. Dashed lines are linear regression.

interesting to examine how the parameters a and b relate to the mode
and STD of the distribution. Fig. 18 shows scatter plots of H,,, against a
and STD (H,,,,) against b for each dataset. The fitted value of a is almost
identical to H,,. From (16), for k # 0,

Q+k)*-1
k ’ (28)

In our datasets, b ~ 0.07a and the mean value of the function of k on
the RHS is ~0.034, so H,,, ~ 1.0023a, resulting in the near equality
observed in Fig. 18. Similarly, from (17), for k # 0,

std(Hinax) = %\ (gz - glz);

where g, = I'(1 — nk). For our datasets the mean value of the terms
involving k on the RHS was ~1.22, which was equal to the gradient of
the regression line shown in Fig. 18. These observations give an inter-
pretation of the fitted GEV parameters in terms of properties of the
distribution of H,,,, in the measured storm.

Hyp=a+b

(29)

7.4. Comparison of return periods

Return value of maximum crest height were calculated using each
equivalent storm model for both datasets, based on the fitted models for
the joint distribution of equivalent storm parameters described in the
preceding section. The return values from each model are shown in
Fig. 19. The return values for Buoy 44025 are in good agreement be-
tween the models, with less than 0.2 m difference at the 100-year level
and 0.5 m difference at the 1000-year level. For Buoy 46014, the ETS,
TV and GEV models are in close agreement, but the EPS model gives
higher return values.

There are three elements that could cause differences between the
models, corresponding to the three terms in the integrand of (22): p(a),
p(b, kla) and Pr(Hyg, < hIES). In Section 7.3.3 it was confirmed that
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the GPD model for p(a) matches closely between the ETS/EPS and TV/
GEV models. Moreover, the same model for p(a) is used for both the
ETS and EPS methods. In Section 7.2 it was shown that the EPS model is
more accurate than the ETS and TV models at representing
Pr(Hyqe < hIMS). Therefore the differences in the return values from
the EPS method for Buoy 46014 must be a result of the model for the
conditional density function p(b, kla). The relationships between the
EPS parameters displayed a high level of scatter, with the inter-de-
pendence between parameters being unclear and more difficult to
model than for the other methods. It is therefore likely that the model
assumed for the EPS parameter joint distribution does not correctly
capture the correlation between the parameters, causing the observed
differences in the return values. For the other models the dependencies
between the parameters was clearer, so there is a higher confidence in
the model for the joint distribution of storm parameters. The sensitivity
to the assumed models for the parameter joint distributions is assessed
in the next section.

7.5. Reduction to single integrals

The sensitivity to the assumed form of the model for the conditional
density function p(b, kla) (or p(bla) in the case of ETS and TV models)
can be assessed by comparing to results calculated using the mean
values of b and k, conditional on a and replacing (22) by the single
integral:

Pr(Hypa < hIRS) = /‘ p(a@)Pr(Hypex < hIES)da.
u (30)

Figs. 20 and 21 show a comparison return values from the ETS and
EPS models calculated using single and double integrals. For Buoy
44025, both methods give the same return values using the single in-
tegral with the mean values of b and the linear model k = A + Bb for
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Fig. 19. Return values of maximum crest height calculated using each equivalent storm model.

the EPS method. However, for Buoy 46014, the single integral results in
different estimates of return values, indicating a greater sensitivity to
the models for p(bla). This sensitivity is likely related to the greater
level of scatter in the parameter relations for Buoy 46014.

Fig. 22 shows that return values from TV model calculated using the
double integral are the same as those calculated from a single integral
assuming a linear model for In(N) in terms of H,,,. However, if a con-
stant mean value of In(N) is used (as assumed by Tromans and
Vanderschuren (1995) and recommended in the DNV GL guidelines,
DNV GL, 2017), this results in lower return values for both datasets.
Given that the data showed a linear dependence of In(N) on H,,,, it is
likely that the results using the constant mean value of In(N) are less
accurate.

For the GEV model, the single integral (30) is calculated using a
constant mean value of k and a linear model for the dependence of b on
a. Return values from the GEV model calculated using the triple and
single integrals are shown in Fig. 23. In both cases the single integral
gives identical results to the triple integral, indicating that the results
are not sensitive to the assumed form of the conditional density func-
tion p(b, kla). This is due to the narrow range of values of k and low
level of scatter in the relationship between a and b.

8. Summary

Table 1 presents a comparison of the equivalent storm models and
interpretations of the model parameters. The ETS and EPS models both
require a model to be established for how T, and the parameters of the

Buoy 44025

Double integral

O  Single integral

10° 102 10°
Return period [years]

short-term distribution vary with H;, whereas the TV and GEV models
do not. The form of Pr(H,,,, < hlES) is more complex for the ETS and
EPS models than for the TV and GEV models, with the ETS/EPS models
involving an integral of the short-term distribution over H;. The TV and
GEV models give simple closed form expressions for Pr(H,,, < hlES).
The increased complexity in the ETS/EPS models means that the
computational time required to fit them and calculate return periods is
significantly higher than for the TV and GEV models.

The ETS and EPS models both have the height parameter, a, defined
as the peak H; of the measured storm. However, the duration, b, is not
directly related to a well-defined characteristic of the measured storm.
The TV and GEV models both have the parameters a and b related to
well-defined characteristics of the measured storm. However, the TV
model has its parameters defined in terms of the distribution of H2,, SO
the interpretation of the GEV parameters is more immediate.

The parameters of the TV and GEV models exhibited clear relations
in comparison to the parameters of the ETS and EPS models. This re-
sulted in the TV and GEV models being less sensitive to models for the
conditional density function p(b, k|a) than for the ETS and EPS models.

9. Conclusions

A new equivalent storm model has been introduced and compared
to existing equivalent models. The new model generalises the method of
Tromans and Vanderschuren (1995), by using the GEV to model the
distribution of maximum wave height in a storm. It has been demon-
strated that the GEV model gives a more accurate representation of the

Buoy 46014
13.5 T

Double integral
131 O  Single integral (@)

9.5 -
10' 102 10°
Return period [years|

Fig. 20. Comparison of return periods from the ETS model using single and double integrals.
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Fig. 21. Comparison of return periods from the EPS model using single and double integrals.
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Fig. 22. Comparison of return periods from the ETS model using double integral and single integral using either a linear model or a constant mean value for In(N).
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Fig. 23. Comparison of return periods from the GEV model using single and triple integrals.
distribution of maximum wave or crest height in a storm than the TV, reduction in the Cramer-von Mises goodness-of-fit parameter.
ETS and EPS models. The TV model fitted using moment method was The ETS and EPS methods provide an indirect way of para-
shown to have the highest bias of all the models considered. The nu- meterising the distribution of the maximum wave height in a storm. The
merically-fitted TV model had a reduced bias compared to the TV GEV method removes the intermediate and unnecessary step of mod-
model fitted from the moments of the distribution, but still performed elling the temporal evolution of sea states in a storm and instead pro-
worse than the ETS and EPS models. The GEV model is only marginally vides a direct representation of the statistical properties of the mea-
more complex to implement than the numerically-fitted TV model, but sured storms. The GEV method also removes the need to assume a
results in much lower biases and almost two orders of magnitude model for how other sea state parameters vary with H;, which is of
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Table 1
Comparison of equivalent storm models and interpretation of parameters.
Model Pr(Hpyax < h|ES) a b k
ETS ot ;_ InfPrCr < Ho G 4, Storm peak Hj Storm duration N/A
&P % Tz (Hs) $
EPS ool } In[Pr(H < hio (Hs))] (1 _ &)i _ldH Storm peak Hg Storm duration Storm shape
Pl o Ty (Hs) a S
vV 2 6 N/A
on{-en(-(52))) i Faatifad
GEV Hpp ~ 1.22 std (Hyax) Distribution shape

exp(—(l + k(";“))_%], for k # 0
o(-en(-(*5))),

for k=0

benefit if the short-term distribution is dependent on multiple sea state
parameters, such as steepness, spectral bandwidth or directional
spread.

The GEV model was found to be the most robust in terms of the
models for the joint distribution of storm parameters. The relations
between the GEV parameters was clear in both datasets considered and
it was shown that return values can be calculated from a single integral
(30) using the mean value of the shape parameter and a linear model
for the relation between the scale and location parameters.

In summary, the GEV method is simpler, more accurate and more
robust than the ETS and EPS methods and is therefore recommended for
calculating return periods of individual wave and crest heights.
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