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Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic
technology, including diagnostics and drug delivery. In this paper, we realize a macroscopic single particle
ferromagnetic swimmer experimentally and investigate its swimming properties. The flagella-based swimmer
is comprised of a hard ferromagnetic head attached to a flexible tail. We investigate the dynamic performance
of the swimmer on the air-liquid interface as a function of the external magnetic field parameters (frequency
and amplitude of an applied magnetic field). We show that the speed of the swimmer can be controlled by
manipulating the strength and frequency of the external magnetic field (< 3.5 mT) and that the propagation
direction has a dependence on parameters of the external magnetic field. The experimental results are
compared to a theoretical model based on three beads, one of which having a fixed magnetic moment and
the other two non-magnetic, connected via elastic filaments. The model shows sufficient complexity to satisfy
the ‘non-reciprocity’ condition and gives good agreement with experiment. Via a simple conversion, we also
demonstrate a fluid pump and investigate the induced flow. This investigation paves the way to the fabrication
of such swimmers and fluid pump systems on a micro-scale, promising a variety of microfluidic applications.

I. INTRODUCTION

Externally controlled micro-robots have recently become
an area of intense research because of their potential to
contribute to a large range of applications. However, the
experimental realization of such devices faces challenges
due to the nature of their environments, namely propul-
sion at a low Reynolds number (Re� 1). The situation
has been succinctly summarized by the so-called scallop
theorem,1–3 stating a biological swimmer or any micro-
scaled robot must have more than one degree of freedom
to propel itself in a low Reynolds number environment.

In the past, many elegant models have been pro-
posed showing methods of propulsion at low Reynolds
numbers.4–9 Experimentally, the challenge remains in
providing the micro device with significant energy and
set of interactions to generate the required swimming
motion. Thus, a range of different strategies have
been proposed and employed, to varying levels of suc-
cess, including ultrasound,10 electric,11 and magnetic
fields,12–19 as well as chemical reactions,20–24 and light
driven systems.25,26

As has been demonstrated in a number of cases, a
typical approach to tackling the problem would be by
mimicking the natural microscopic swimmers, such as
sperm cells or bacteria. These systems would normally
include magnetic beads for actuating and driving the
swimmer in the liquid with an external magnetic field.
The mechanism of motion in this case relies on the col-
lective response of all particles. Even though the indi-
vidual torques created on each bead is small the overall
mechanics of the system is sufficient to generate a non-
zero displacement.27,28
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Other approaches take advantage of the elastic proper-
ties of the tail, while applying the torque only to a single
particle.29–37 For example, in a recent study by F. Box et
al. a centimeter-scale system of elastically linked spheres
was investigated, comprising of three spheres connected
by unequal length elastic struts.38 One of the spheres
contained a fixed magnetic moment and the field was
applied perpendicular to the moment. The propulsion
mechanism was compared to the far-field description of
a puller (a negative Stokes dipole).

Previously, we described theoretically and experimen-
tally a highly efficient low Reynolds number swimmer
based on the dipolar magnetic interaction between two
magnetic particles of different anisotropy and size, elasti-
cally coupled together and actuated by an external mag-
netic field.39–44

In this study, we discuss the properties and external
responses of a self-propelled macro-scaled ferromagnetic
swimmer based on only one magnetic particle. Experi-
mentally this is implemented by using a high anisotropy
magnetic bead - the head - attached to a flexible elastic
filament - the tail - to mimic the structure of a beating
flagellum. In order to describe this system, theoretically
we use a simplified model based on multiple beads, in
which the effect of the tail is represented by non-magnetic
beads linked with massless elastic links. We show that
even with the minimum of three particles (one magnetic
and two non-magnetic, see Figure 1a) the system is able
to self-propel and achieve the velocities comparable to
those demonstrated experimentally.

In all cases the devices are activated and controlled by
oscillating uniform magnetic field, in which the frequency
and amplitude are varied to achieve different regimes of
performance. A key variable which we have investigated
is the effect of the tail length on the swimming perfor-
mance. We also propose that such a swimmer can be
converted into an efficient fluid pump.
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FIG. 1. (a) Geometrical configuration of the theoretical swim-
mer model, (b) schematic representation of the single ferro-
magnetic particle swimmer.

II. METHODOLOGY

The main feature of our experimental device is the mag-
netic ’head’, which is made of a magnetically hard Nd-
FeB cubic particle (0.5 mm × 0.5 mm × 0.5 mm, Super
Magnet Man, US). The NdFeB particle exhibits a high
coercive field, due to its tetragonal crystal structure. The
’tails’ were constructed using a 3D printed mold to pro-
duce the desired overall swimmer geometry (see Figure
1b). The mold was designed using Autodesk AutoCAD
and 3D printed using a Formlabs Form 2, with clear resin
(GPCL02) and cleaned by placing in isopropyl alcohol for
20 minutes. The magnetically hard ferromagnetic parti-
cle was fixed with its anisotropy axis along the tail axis
of the swimmer, then the mold was filled with a Polycrat
silicone rubber and fast cure catalyst (GP-3481-F) mixed
with a weight ratio of 1:10 (catalyst:silicone). The length
of the tails were varied in the range of L = 1 − 12 mm,
while keeping the head cubic (h = 0.7 mm) and tail width
(b = 0.4 mm) constant. For all produced swimmers, the
depth was kept at 0.7 mm, to ensure the complete en-
capsulation of the magnetic particle.

The swimming behavior of the macroscopic devices was
studied by examining their mobility on a air-fluid inter-
face of a large area Petri dish (148 mm diameter). The
experimental setup comprised a Helmholtz coil system,
powered with a sinusoidal signal, providing a uniform
magnetic field to actuate and control the swimming de-
vices. The frequency of the external field ranged between
30 and 170 Hz with magnetic fields up to 3.5 mT. The
motion of the devices were observed using a video cam-
era connected to a computer. Particle tracking software
(Tracker45) was used to determine the average speed and
direction of propagation. A range of Reynolds numbers
∼ 3× 10−6 – 90 have been investigated. The upper limit
of the Reynolds number is due to a few factors, e.g. the
high speeds which we observe at small tail lengths and
the large characteristic length of the device at large tail
lengths.

(a)

(b)

93

FIG. 2. dimensionless speed (by Lω) as a function of tail
length for (a) different frequencies - 80 Hz (black circle), 100
Hz (red square) and 120 Hz (blue diamond) - with an external
magnetic field strength of 1.5 mT, (b) different magnetic field
strengths - 1.7 mT (black circle), 2.4 mT (red square) and 3.2
mT (blue diamond) - with a fixed frequency of 50 Hz.

III. RESULTS AND DISCUSSION

A. Optimizing the single ferromagnetic particle swimmer

In previous investigations, the swimming behavior of
flagella-like devices have been shown to have a depen-
dence on the length of the flagellum, frequency of the
applied field, the bending stiffness of the filament and
the tail’s fluid dynamic interactions.34,46 We investigated
how external parameters of the magnetic field - frequency
ω and field strength B - affect the swimmers, as well as
tail length L. To find the optimum length of the swim-
mers tail, we created swimmers of different tail lengths
and investigated the change in swimming performance
for different field strengths and frequencies.

Figure 2a shows the range in performance of the swim-
ming speed (scaled by Lω) as a function of tail length
for different frequencies. The magnetic field strength is
fixed at 1.5 mT. There is a clear peak for all frequencies
at L = 4 mm. When the tail length is increased past the
peak, the swimming speeds start to decrease for all fre-

http://dx.doi.org/10.1063/1.5046360


3

quencies. We observe a maximum dimensionless speed of
0.18 corresponding to a real speed of 57.8 mm s−1, with
an external field of 1.5 mT and 80 Hz and a tail length
of 4 mm.

Figure 2b shows a similar trend, but in this case for
different field strengths, with a fixed frequency of 50 Hz.
As the field strength is increased the overall speed of the
swimming increases - due to the increased torque effects -
as well as a peak at L = 5 mm manifesting at the higher
field strengths. The maximum dimensionless speed in
this case is 0.3 corresponding to a speed of 74.6 mm s−1,
with an external field of 3.2 mT and 50 Hz and a tail
length of 5 mm.

Figure 2 shows that as the length of the tail becomes
shorter (L < 3 mm), the swimming performance begins
to reduce; this is expected, due to the tail becoming ef-
fectively more rigid. For such conditions, the device be-
comes similar to a single degree of freedom reciprocal
system and the scallop theorem will apply.1 On the other
hand, as the tail length is increased (L > 10 mm), the
elastic deformation or beating patterns become irregular,
resulting in another reduction of swimming speed.

An important observation is that there is an obvious
optimum length at which the swimming speed is maxi-
mized. This behavior can be linked to previous work,29,33

which shows a rapid decrease in swimming performance
and irregular beading trajectories at large tail lengths. It
also appears that there is also a second peak at L = 8
mm (Figure 2). It may be due to the second harmonic
beating pattern, as the tail is twice the length of that for
the first peak.

B. Directional control of the single ferromagnetic particle
swimmer

Figure 3 shows a trajectory plot to visualize the direc-
tion of motion of the swimmer for different tail lengths
and frequencies. The field direction is given in the last
panel. We show the trajectories for four frequencies,
30 Hz (black circle), 80 Hz (red triangle), 130 Hz (blue
square) and 170 Hz (green diamond). If the trace for
a given frequency is not present, this is due to unstable
propulsion of the swimmer for this combination of tail
length and frequency.

Figure 3 clearly shows that as the frequency is in-
creased for all tail lengths, the swimmer can be controlled
for a range of propagation angles. The maximum angle of
control ∼ 90o, can be observed in the L = 12 mm panel.
The trajectories also visualize the variations of swimming
speed with tail length, as the distance between the two
points on the trajectories increases (the time between two
points is kept constant at 0.2 seconds). For the swimmer
with tail length less than 6 mm, the trajectories tend to
be parallel to the applied magnetic field.

Typically, as the length of the tail is increased (L >
6 mm), at low frequencies, the trajectories become per-
pendicular to the applied field. This mix of parallel and
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FIG. 3. Trajectory plots for tail lengths, 12 mm, 10 mm, 8
mm, 6 mm, 4 mm and 2 mm. The field has a strength of 1.5
mT and frequencies shown are 30 Hz (black circle), 80 Hz (red
triangle), 130 Hz (blue square) and 170 Hz (green diamond).
The swimmer is recorded for 20 seconds and the time between
two points on a trajectory is 0.2 second.

perpendicular behavior is unexpected, one would expect
the trajectories to be perpendicular to the applied field.
[3 and 26] This could be due to irregular beating patterns
created at large tail lengths, but could also be caused by
additional degrees of freedom. These extra degrees of
freedom could be caused in fabrication; there may be a
small out-of-plane magnetic component, resulting in a
rocking in the z-plane when the external field is applied.
As the devices are placed on the surface of the fluid, this
could also cause extra asymmetries in the motion, due
to boundary effects. At the air-liquid interface, the force
arising from the surface tension confines the swimmer to
the liquid surface as it acts against swimmers motion in
the z-direction (i.e. in the direction normal to the liq-
uid surface). This behavior could also be explained by
the increased Reynolds number for the larger values of
L, resulting in inertia effects being present.
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FIG. 4. Swimming speed as a function of dynamic viscosity.
The solid red line indicates the predicted values from the the-
ory (equation 10). The external magnetic field has strength
3.0 mT and frequency 50 Hz. The Reynolds numbers shown
here are: 90 (for η = 1 × 10−3 Pa s), 0.53 (for η = 1 × 10−2

Pa s), 1.6× 10−4 (for η = 0.1 Pa s) and 2.5× 10−6 (for η = 1
Pa s).

C. Viscosity dependency of the single ferromagnetic
particle swimmer

Figure 4 shows the swimming speed of a single particle
swimmer with L = 3 mm for fluids of different viscosities.
The dynamic viscosity ranges from 1× 10−3 Pa s (100%
water) to 1.4 Pa s (100% glycerol). The external mag-
netic field has a frequency of 50 Hz and strength of 3.0
mT. The predicted velocities are shown with the solid red
line - using the experimental parameters with no fitted
parameters and equation 10 (see below). The experi-
ment and theory show good agreement, expect for the
most viscous data where the experiment is out preform-
ing the theoretical prediction. The differences between
the theory and experiment may arise from the simpli-
fications made in the theory. Figure 4 shows that the
swimmer can successfully propel at both low and moder-
ate Reynolds number - given the Reynolds number range
of ∼ 3× 10−6 – 90.

D. Fluid pumping with the single ferromagnetic particle
swimmer

A swimming device can easily be converted into a pump-
ing device by a change of reference frame. This can be
done by restricting the translational motion of the swim-
mer when actuated. In the case of the single ferromag-
netic particle swimmer, it is possible to attach one end to
the top of an elastic pin (Figure 5 inset). Instead of pro-

pelling itself through the fluid, the swimmer now induces
a fluid flow.

In this configuration, the pinned swimmer rests gently
on the surface of the fluid (supported by surface tension
forces) and the fluid flow it generates can conveniently be
investigated. As an example of this application we attach
the pinned swimmer (tail length of 7 mm) within a 3D
printed straight channel with width of 5 mm and depth
of 10 mm. The flow speed is determined by placing small
(∼ 0.2 mm) particles of graphite on the air-fluid interface
and following them using the previous tracking software.
In this investigation, we apply the external magnetic field
perpendicular to the channel.

Figure 5 shows the frequency dependence of the in-
duced flow speeds driven by an actuating magnetic field
of 1.5 mT. The figure shows a maximum in flow speed at
30 Hz, then over 40 - 140 Hz a gradual decrease in flow
speed between 6 mm s−1 and 2 mm s−1. We can define
the effectiveness (χ) of the system as the ratio between
the real speed range of a free swimmer and the induced
flow speed. If we investigate the stable range of the sys-
tem 40 - 140 Hz, we find χ7mm = 0.31± 0.07, where the
uncertainty is half a standard deviation. This system
shows a stable flow speed over the operating regime of
the device. A possible way to improve the effectiveness
would be to restrict the translational motion with less
effects on the beating pattern. The only concern with
such a system is that as the channel width is reduced,
the pump could obstruct too much of the channel and
the viscous friction will be increases, this may result in
a reduced flow rate. The concern could be addressed by
scaling the pump with the channel, or incorporating the
system into the walls of the channel.
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FIG. 5. Measured flow speed along the channel as a function
of frequency. The inset shows a schematic representation of
the single ferromagnetic particle swimmer as a fluid pump.
The base of the pin is attached to the base of the channel.
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IV. THREE PARTICLE THEORETICAL MODEL

To elucidate the swimmer mechanism, we have developed
a minimal theoretical model in which three spherical par-
ticles labeled by j = 1, 2, 3, are connected via elastic fila-
ments, as depicted in Figure 1a. The particles have radii
Rj and are centered at rj(t) = (xj(t), yj(t)); the center
of reaction47 is X = (X,Y ) given by

X
∑
j

Rj =
∑
j

Rjrj .

We set rjk = rk − rj , rjk = |rjk|, r̂jk = r−1
jk rjk, and

let φjk be the angle rjk makes with the x-axis. Particle
motion is governed by

µj r̈j = F spring,j + F bend,j + F ext,j + F fluid,j , (1)

with masses µj taken to be sufficiently small that the
motion is in an inertia-free Stokes regime (the results are
insensitive to the values of µj in the limit µj → 0). The
following forces are derived from potentials, first elastic
forces

Vspring = 1
2k(r21 − l0)2 + 1

2k(r32 − l0)2,

where l0 is each filament’s natural length and k is a spring
constant. Second, we impose a force resisting bending
motion of the three particle configuration, derived from
the potential

Vbend = −` cos(φ21 − φ32).

Since cos ε = 1 − ε2/2 + · · · , this is quadratic for small
angle, but being periodic in the angle does not result
in numerical problems if an angle jumps by 2π in our
simulations.

The external magnetic field Bext drives the swimmer
directly through a potential term, on magnet j = 1,

Vext = −m ·Bext = −mBextb(t) cos(φ21 − ψ(t)),

where the field has magnitude Bextb(t) and angle ψ(t) to
the x-axis. Here Bext is a constant and b(t) and ψ(t) are
dimensionless. The field is taken to be purely back-and-
forth along the y-axis,

Bext = Bext(0, sinωt). (2)

Provided the radii Rj � l0, the length of the connect-
ing filaments, we may write the force on each bead from
the surrounding fluid as expansions that include Stokes
drag and the leading order fluid interaction term47,48,

F fluid,j = F drag,j + F interact,j

= −6πηRj ṙj +
∑
k

9π

2

ηRjRk

rjk
(r̂jkr̂jk + I) · ṙk, (3)

where I is the identity matrix. Here and below we ex-
clude the term when j = k without comment. These are

the leading terms in an expansion in the small parameter
ε = R/l0 � 1 where R = 1

3 (R1 + R2 + R3) is the aver-
age bead radius, say. At this level of approximation the
motion of the center of reaction is given by

6πη
(∑

j

Rj

)
Ẋ =

∑
j

F interact,j

=
∑
j,k

9π

2

ηRjRk

rjk
(r̂jkr̂jk + I) · ṙk. (4)

The parameters introduced are {µj , Rj , k, l0, `,m,
Bext, ω, η} and it is convenient to define length, time and
mass scales via

l0 = L, ω−1 = T , `l−2
0 ω−2 =M,

and key dimensionless parameters40

ε =
R

L
, $ = ε

LT
M

6πη =
ωl20R

`
6πη,

Aext = mBext
T 2

ML2
=
mBext

`
.

Note that the quantity Aext is sometimes called the mag-
netoelastic number, and $ is closely linked to the ratio of
swimmer length to the elastic penetration length, e.g. in
R. Livanovičs et al.32 We use the following experimental
parameter values for simulations,

R = 1.25× 10−3 m, k = 1.67× 10−2 N m−1,

l0 = 5× 10−3 m, ` = kl20 = 4.2× 10−7 J,

m = 1.2× 10−4 A m2, Bext = 3× 10−3 T,

ω = 100× 2π s−1, η = 10−3 Pa s,

yielding

L = 5× 10−3 m, T = 1.6× 10−3 s, M = 4.2× 10−8 kg,

ε = 0.25, $ = 0.89, Aext = 0.86,

but should note that our idealized model is only expected
to allow qualitative comparison with the experiments.
The theory developed below gives an approximation to
the swimming speed as

Ẋ = εl0ω
21A2

ext

16$($2 + 36)
' 2.4× 10−2 m s−1. (5)

The value for the swimming speed shown in equation
(5) can be compared with the typical value of speed
shown experimentally. Comparing to the experimental
data, the velocities range ∼ 5 mm s−1 - 70 mm s−1. This
comparison gives good order of magnitude agreement and
provides support for the model, despite its idealized na-
ture - simplified geometry and elastic properties.

Differences between the model could also arise from
the swimmer being modeled within the bulk of the fluid.
In the experiment the simmer is mainly confined to the
interface, with only part of the body submerged into the

http://dx.doi.org/10.1063/1.5046360
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FIG. 6. (a) The motion of the swimmer without fluid inter-
actions, to visualize how time-reversibility is broken. (b) The
overall motion of the modeled swimmer with fluid interac-
tions.
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liquid. With contact angle being close to 90 degrees, the
translational motion of the swimmer is still governed by
the same principles as those in the model.

Figure 6a shows the motion of the swimmer using the
above parameter values with no fluid interactions be-
tween particles. The figure of eight motion of each par-
ticle, observed in one full cycle, shows how the swimmer
breaks time-reversibility, while the center of reaction re-
mains fixed. Once the fluid interactions are turned on in
the simulation, the swimmer now propels itself through
the fluid (Figure 6b), as seen in a series of snap-shots in
Figure 7.

Figure 8 shows the frequency dependence of the swim-
ming speed when Aext takes the above value (top solid
curve in red) and when it is reduced to 80%, 60%, etc
(other solid curves). For all values of Aext the simulated
velocities show a peak for low frequencies ($ < 1). This
can be compared to the suppression of the maximum in
experimental speed shown in Figure 2, as the frequency
is increased - and fixed tail length. The agreement be-

0

0.004

0.008

0.012

0.016

543210

100% Aext 
80% Aext 
60% Aext 

40% Aext 

20% Aext

FIG. 8. Scaled non-dimensional speed as a function of fre-
quency for different values of Aext. The solid line indicates
the simulation, the dotted indicates the theory.

tween simulated swimming velocities (solid curves) and
the theory - shown later - (dotted curves) is not partic-
ularly good; we note however that the theory is based
on linearized internal motion and on weak fluid interac-
tions, requiring that Aext and ε are both small and $ is
of order unity. Further simulations (not reported here)
confirm that the theory does in fact becomes accurate
in the limit of small Aext and ε with $ = O(1). While
it cannot be used for quantitative information at these
parameter values, we argue that it does capture the un-
derlying mechanism and give correct order-of-magnitude
estimates; a more accurate theory would require a com-
putational fluid dynamics (CFD) approach. Note that for

clarity we have plotted the quantity $Ẋ/l0ω for which
the frequency ω of the field is scaled out (by virtue of the
definition of $). Thus this figure gives a quantity propor-
tional to the observed swimming speed in the laboratory
(that is, not divided by the field frequency).

Figure 9 shows the frequency dependence of the swim-
ming speed for different numbers of linked particles. The
investigation ranges from the standard n = 3 particle sys-
tem increasing to n = 8, with ε now reduced to ε = 0.1.
Note that in our formulation the total swimmer length is
(n − 1)l0 and we have scaled the swimming speed by l0
not by the total length. For all particle systems a peak
in swimming performance is observed.

Two noteworthy observations are that for low fre-
quency ($ < 1) the propulsion speed is lowest for the
3 particle system, then increases to a peak at the 4 par-
ticle system, then decreases with increasing numbers of
particles (Figure 9). We also note that for large frequen-
cies ($ > 2) the propulsion speed is highest for the 3
particle system and decreases with increasing number of
particles.

Figure 10 shows the dependency of the number of
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linked particles on the swimming speed. The investi-
gation ranges from n = 2 to n = 8, for different values
of the frequency. For all cases, we observe a rise to a
peak (≈ n = 3) then a steady decrease in speed. This
is in agreement with results for flexible-tailed swimmers,
Figure 7 of R. Livanovičs et al.,32 which shows similar
peaks in velocity as a function of swimmer length. As
the frequency increases, the peak speed is reduced - sim-
ilar to that seen in the experiment (Figure 2). For fre-
quencies where $ ≤ 0.4 we observe a peak at n = 4, as
the frequencies increases ($ ≥ 0.6), the maximum shifts
towards n = 3.

We now give the theory leading to (5). In our approxi-
mate model we start with the swimmer beads located at
(l0, 0), (0, 0) and (−l0, 0) for j = 1, 2, 3, respectively and
linearize the equations of motion for small displacements,
neglecting any fluid interaction forces. We take the driv-
ing magnetic field to be given in (2), zero inertia µj = 0
and beads of equal radius Rj = R for simplicity; the
framework is easily generalized to any number of beads
and any radii. The linearized equations only involve the
transverse displacements yj and take the form

6πηR ẏ = `l−2
0 My +mBextl

−1
0 sinωtw,

M =

−1 2 −1
2 −4 2
−1 2 −1

 , w =

 1
−1
0

 , y =

y1

y2

y3

 .

We now extract a harmonic by setting y = l0ŷe
iωt + c.c..

The factor l0 makes the vector ŷ dimensionless and the
governing equations then become

i$ ŷ = M ŷ − 1
2 iAext w (6)

This can be inverted to give ŷ and the internal motion
of the swimmer reconstructed, in other words giving the
balance between elastic forces, Stokes drag and magnetic
driving, but excluding fluid interactions in (3)

The actual swimming speed is then given at leading
order by substituting the internal motion into the equa-
tion (4) for the center of reaction. At leading order in
perturbation theory this is given by quadratic terms and
the average speed in the x-direction is then

Ẋ = 1
4Rl

−2
0 〈yTN ẏ〉, N =

 0 1 1
4

−1 0 1
− 1

4 −1 0

 , (7)

where the angled brackets denote a time average. This
becomes

Ẋ = 1
2 iεl0ω ŷ∗TN ŷ, (8)

noting that l0ω = L/T are the units of speed in our
non-dimensionalisation, that is, motion of the swimmer
is measured in units of link length per cycle, multiplied by
ε reflecting the fact that it is the weak fluid interactions
that are key to motion of the center of reaction.

Although a similar system is easily written down for
any number of beads, the advantage of dealing with just
three is that the problem may be solved analytically.
The matrix M has eigenvectors v1 = (1, 1, 1)T eigenvalue
λ1 = 0 (a translation mode), v2 = (1, 0,−1)T , λ2 = 0 (a
rotation mode) and v3 = (1,−2, 1)T , λ3 = −6 (a bending
mode). The magnetic driving excites the latter two since
w = 1

2v2 + 1
2v3 and then we can express the solution to

(6) as

ŷ = − 1
4Aext[$

−1v2 + ($ − 6i)−1v3] (9)

We drive two modes and this is crucial for swimming.
Now vT

2 Nv3 = −vT
3 Nv2 = −7/2 and thus after a short
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calculation we obtain the swimmer speed from (8) as

Ẋ

l0ω
= ε

21A2
ext

16$($2 + 36)
. (10)

The velocity here is normalized in terms of body length
per (radian of the) magnetic field cycle. The right-hand
side diverges as$ → 0, which is unphysical, but in reality
the linearization would break down in this limit and the
model is not applicable.

Note that we need to drive two distinct modes to
‘break’ the scallop theorem and that the translation mode
v1 cannot be excited externally as there is no net force
on the swimmer; thus the three-particle swimmer here is
a minimal model. For a three-particle model of a biologi-
cal swimmer (without any external torques or forces), the
second mode v2 also could not be generated and only v3

could be, leading to precisely a scallop type motion and
no swimming. A key point is that the external field pro-
vides torques on the swimmer and allows a three-particle
swimmer to work. A four-particle model would allow
for a biological swimmer; translation and rotation modes
could not be excited, but this would still leave two bend-
ing modes which could be employed to give non-reversible
internal motion and so swimming. Although these re-
marks are for idealized multi-bead swimmers, they are
relevant to more realistic geometry, here with a head and
elastic tail,33,38 when the finite set of bending modes dis-
cussed above would be replaced by the leading bending
modes from an infinite set.

V. CONCLUSIONS

In summary, we present a macroscopic investigation of a
single ferromagnetic particle swimming device based on
the bending of a flexible tail. The device was actuated
and controlled by an oscillating magnetic field (< 3.5
mT). This investigation involved the fabrication of the
device and its characterization by device and external pa-
rameters (tail length, field strength and frequency). The
frequency and tail length response showed that there is
an optimum tail length of 4 mm, corresponding to speed
of propulsion and control of direction.

The single ferromagnetic particle swimmer was shown
to successfully propel at a range of Reynolds numbers
∼ 3× 10−6 – 90.

This investigation of macroscopic scaled swimmers,
helps understand the swimming behavior of artificial
flagella-based swimmers. and paves the way for fabricat-
ing optimum microscopic magnetic flagella-based swim-
mers

We also present a theoretical model comprising of three
particles, one of which is magnetic, to describe the ba-
sic motion of the swimmer in the low Reynolds number
regime. We show that there are three main modes of
the system. However, we only excite the two modes (ro-
tation and bending) that are crucial for swimming at a

low Reynolds number. There is no external force so the
translational mode is not excited. The model shows a
quantitative agreement with experiment, even with its
simplified geometry and elastic properties.

In addition to the investigation of the free swimmer,
we also present a way to use such a device as a fluid
pump. The system was shown to induce a flow which
was stable over the operating range of the device, with
an effectiveness χ7mm = 0.31±0.07. Such a system holds
promise to be used as a microfluidic pump embedded into
a lab-on-a-chip system for microfluidic manipulation.

SUPPLEMENTARY MATERIAL

See supplementary material for real time videos show-
ing the translational motion of the single ferromagnetic
particle swimmer.
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