
Landscape Analysis of a Class of NP-Hard
Binary Packing Problems

Khulood Alyahya K.Alyahya@exeter.ac.uk
Department of Computer Science, University of Exeter, EX4 4QF, UK

Jonathan E. Rowe J.E.Rowe@cs.bham.ac.uk
Department of Computer Science, University of Birmingham, B15 2TT, UK

Abstract
This paper presents an exploratory landscape analysis of three NP-hard combinatorial
optimisation problems: the number partitioning problem, the binary knapsack prob-
lem, and the quadratic binary knapsack problem. In the paper, we examine empir-
ically a number of fitness landscape properties of randomly generated instances of
these problems. We believe that the studied properties give insight into the structure
of the problem landscape and can be representative of the problem difficulty, in partic-
ular with respect to local search algorithms. Our work focuses on studying how these
properties vary with different values of problem parameters. We also compare these
properties across various landscapes that were induced by different penalty functions
and different neighbourhood operators. Unlike existing studies of these problems, we
study instances generated at random from various distributions. We found a general
trend where some of the landscape features in all of the three problems were found to
vary between the different distributions. We captured this variation by a single, easy
to calculate, parameter and we showed that it has a potentially useful application in
guiding the choice of the neighbourhood operator of some local search heuristics.
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1 Introduction

In the field of evolutionary computation and meta-heuristics, the most common prac-
tice of evaluating the performance of a new proposed algorithm is through what is
known as ”competitive testing”, where an extensive number of experiments is per-
formed on benchmark problems and the results are then compared against the per-
formance of other existent algorithms (Burke et al., 2009). Hooker (1995) has warned
against this approach more than 20 years ago and argued that it is harmful for research
in the field as it gives little or no insight into why or how the algorithm under test
is better or worse than the others. Over the past few years, this line of research has
been increasingly criticised for not advancing our knowledge and understanding of
the algorithm behaviour (Swan et al., 2015; Srensen, 2015). The need for a deep un-
derstanding of the problem features and how it relates to algorithm performance has
consequently been recognised and encouraged by an ongoing initiative to guide the re-
search in the field towards this direction (ibid.). Indeed, understanding problems fea-
tures and exploring algorithms weaknesses and strengths has been a popular area of
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research both as an independent exploratory landscape analysis of problems (Tayarani-
N. and Prügel-Bennett, 2015b,c,a; Prügel-Bennett and Tayarani-N., 2012; Daolio et al.,
2015) or as part of automatic algorithm selection and configuration techniques (Smith-
Miles and Lopes, 2012; Consoli et al., 2014).

Fitness landscape analysis emerged as an analytical framework to address the need
of understanding the relation between problem features and algorithm performance.
Indeed, an extensive amount of research has been carried out in the past two decades
where various predictive measures were proposed to characterise problem difficulty.
However, soon it has been realised that a single general measure that accurately pre-
dicts the difficulty of all the problems and that can be computed in polynomial-time
cannot exist unless P = NP as rigorously proven by He et al. (2007). These measures,
therefore, should be viewed instead as part of a toolbox of techniques to broadly char-
acterise problems. Studying more than one measure or feature can help in getting a
broader perspective and increase the chances of capturing various aspects of the prob-
lem difficulty.

Three NP-hard binary packing problems are studied in this paper, each of which
is an abstraction of many real-world problems. The problems are the number par-
titioning problem, the binary knapsack problem, and the quadratic binary knapsack
problem. We provide a systematic landscape analysis studying a set of properties that
we believe to be representative of the problems difficulties and to give insights into
the structure of the landscape particularly with respect to local search. We provide a
comparative analysis where we compare and contrast the landscape properties across
different landscapes that were induced by different neighbourhood operators, penalty
functions and problem parameters. To the best of our knowledge, this paper is the
first to conduct such extensive and comparative landscape analysis of these problems.
The analysis examines landscape properties, neighbourhood operators and differently
distributed random instances that have not been studied before in the literature. As a
result of the landscape analysis, the study also proposes a good heuristic for determin-
ing which local search operator to choose for this class of binary packing problems.

The paper is structured as follows. Section 2 presents preliminaries and defini-
tions. Section 3 introduces, formally, the three problems under study and describes
the random generation of their instances. Sections 4 to 6 discuss the properties of the
different landscapes of all three problems and examines the similarities and dissimilar-
ities between them. Section 7 examines the performance of local search and relates that
to the corresponding landscape properties. The paper is concluded in section 8 with
remarks on future work.

2 Preliminaries and Definitions

Search Space The search space X is the finite set of all the candidate solutions. The fit-
ness functions of all the studied problems in this paper are pseudo-Boolean func-
tions, hence the search space size is 2n.

Neighbourhood A neighbourhood is a mapping N : X → P (X), that associates each
solution with a set of candidate solutions, called neighbours, which can be reached
by applying the neighbourhood operator once. The set of neighbours of x is called
N(x), and x /∈ N(x). We consider two different neighbourhood operators: the
Hamming 1 operator (H1) and the 1+2 Hamming operator (H1+2) . The neighbour-
hood of the H1 operator is the set of points that are reached by 1-bit flip mutation of
the current solution x, hence the neighbourhood size is |N(x)| = n. The neighbour-
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hood of the H1+2 operator includes the Hamming one neighbours in addition to
the Hamming two neighbours of the current solution x, which can be reached by 2-
bits flip mutation. The neighbourhood size for this operator is |N(x)| = (n2 +n)/2.
Suppose we lay out the search space in circles around a configuration x, so that x
is placed in the centre and the configurations that are h Hamming distance away
from it lie on the circle of radius h (see figure 1 for an illustrative example when
n = 10). For a configuration in the h-th circle, its H1 neighbours will be spread out
as follows: h of them will reside in the h− 1 circle, the rest (n−h) will reside in the
h+ 1 circle. Its H1+2 neighbours will be spread out over the h− 2, h− 1, h, h+ 1,
h+2 circles as follows: h(h−1)/2, h, h(n−h), n−h, (n−h)(n−h−1)/2 respectively.

x

h-1
h

h+1

Figure 1: Illustration of the search space layout into circles of radius h around a config-
uration x, points that are h-Hamming distance away from x lie on the h-th circle.

Fitness Landscape The fitness landscape of a combinatorial optimisation problem is a
triple (X,N, f), where f is the objective function f : X → R, X is the search space
and N is the neighbourhood operator function (Stadler and Stephens, 2002).

Search Position Type For a given point x ∈ X in the landscape, according to the topol-
ogy and fitness values of its direct neighbourhood, it can belong to one of seven
different types of search positions (Hoos and Stützle, 2005). The types are:

• Strict local minimum (SLMIN): ∀y ∈ N(x), f(y) > f(x).

• Non-strict local minimum (NSLMIN): ∀y ∈ N(x), f(y) ≥ f(x), and ∃ u, z ∈
N(x), such that f(u) = f(x), and f(z) > f(x).

• Interior plateau (IPLAT): ∀ y ∈ N(x), f(y) = f(x).

• Ledge (LEDGE): ∃ u, y, z ∈ N(x), such that f(u) = f(x), f(y) > f(x), and
f(z) < f(x).

• Slope (SLOPE): ∀y ∈ N(x), f(y) 6= f(x), and ∃ u, z ∈ N(x), such that f(u) <
f(x), and f(z) > f(x).

• Non-strict local maximum (NSLMAX): ∀y ∈ N(x), f(y) ≤ f(x), and ∃ u, z ∈
N(x), such that f(u) = f(x), and f(z) < f(x).

• Strict local maximum (SLMAX): ∀y ∈ N(x), f(y) < f(x).

For the purpose of this paper, we use the term local optimum to refer to both strict
and non-strict local optimum.
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Global Optima Assuming maximisation, a point x ∈ X is a strict global maximum if it
is a strict local maximum and ∀y ∈ X, f(x) ≥ f(y), and a point x ∈ X is a non-strict
global maximum if it is a non-strict local maximum and ∀y ∈ X, f(x) ≥ f(y).

Plateaux A plateau is a set of connected non-strict local maxima, with or without in-
terior plateau points. An exit is a neighbour of one or more configurations in the
plateau, which shares the same fitness value of the plateau, but has an improving
move. An exit could be a non-strict local minimum (maximum when minimising)
or a ledge. We call a plateau open when it has at least one exit, otherwise we call
it closed. We call a plateau of non-strict global maximum, a global plateau. Ob-
viously, all global plateaux are closed. We illustrated our definitions in Figure 2.
Collecting information about the different plateaux types gives an insight into the
different plateaux regions in the problems and can help inform the algorithm de-
sign and the choice of search operators. For example, a problem with mostly open
than closed plateaux motivates the use of plateaux moves.
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1

4

5 6 1010108

6 7 91096
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Figure 2: Schematic illustration (following Prügel-Bennett and Tayarani-N. (2012)) of
our definitions of strict global optima, strict local optima, and global, closed and open
plateaux. Two points are neighbours if there is an edge between them. Assuming
maximisation: a strict global optimum is shown by the single dark red point of fitness
10; A strict local optimum is shown by the single dark blue point of fitness 7; A global
plateau is shown by the light red region of size 5 and fitness 10; A closed plateau is
shown by the light blue region of size 2 and fitness 8; and an open plateau is shown by
the grey region of size 5 (7 when considering the exits) and fitness 7, the open plateau
has two exits (light grey), one (a non-strict local minimum) to the global plateau and
one (a ledge) to the closed plateau.

Local Search The local search algorithm under study in this paper is the steepest as-
cent(descent when minimising) with no plateau moves and with random restarts.

Basin of Attraction The attraction basin B(x∗) of an optimum x∗ ∈ X is the set of
points that leads to it after applying local search to them, B(x∗) = {x ∈ X |
localsearch(x) = x∗}. The basin of a plateau is the union of the basins of its con-
figurations. The neighbours of a point x are evaluated in order from left to right,
with respect to bit flips, in the case of having more than one neighbour with the
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best improving move, the first one is always selected. Of course, this determinis-
tic way of choosing the improving move could introduce some bias to the size of
the basin. However, there was only a small subset of such configurations in the
landscapes of the instances we have studied. Thus, we speculate that the bias, if
any, will be quite small. A possible way to break the tie and avoid the bias is to
choose randomly between the best improving configurations. This method, how-
ever, will render the landscape structure stochastic. To study the attraction basin
shape, we use the return probability concept from (Prügel-Bennett and Tayarani-
N., 2012). The return probability to an optimum starting from a Hamming sphere
of radius h around it is given by pr(h). We randomly sample s configurations that
are h Hamming distance away from an optimum, we then apply local search to
them and calculate the fraction that led to the starting optimum. The sample size

s is obtained from s0 =
z2α/2p̂(1−p̂)

e2 and s1 = s0S
s0+(S−1) (Alyahya and Rowe, 2016),

by setting the estimated proportion p̂ = 0.5, the error margin e = 0.005, and the
z-score zα/2 = 1.645 (corresponding to 90% confidence level), S is the number of
configurations in the Hamming sphere h.

3 Problems

We study three NP-hard problems: the number partitioning problem (NPP), the binary
knapsack problem (0-1KP), and the quadratic binary knapsack problem (0-1QKP). All
of the three problems are similar in nature, in the sense that all of them fall into a class
of NP-hard binary packing problems related to the 0-1 knapsack problem. A special
case of the 0-1KP known as the subset sum problem is a generalisation of the NPP. The
0-1QKP is a variant of the 0-1KP where the profit of an item depends also on the other
selected items. The 0-1KP and the 0-1QKP are constrained optimisation problems and
their search space is partitioned into a feasible and an infeasible region.

3.1 Number Partitioning Problem

The NPP is a classical problem in theoretical computer science and one of Garey and
Johnson’s six basic NP-complete problems (Garey and Johnson, 1979). Given a set
W = {w1, . . . , wn} of m-bit positive integers (weights) drawn at random from the set
{1, 2, . . . ,M} with M = 2m, the goal is to partition W into two disjoint subsets S, S′

such that the discrepancy between them |
∑
wi∈S wi −

∑
wi∈S′ wi| is minimised. A par-

tition is called perfect, if the discrepancy between the two subsets is 0 when the sum
of the original set is even, or 1 when the sum is odd. Equivalently, the problem can be
viewed as minimising: max

{∑
wi∈S wi,

∑
wi∈S′ wi

}
, the maximum sum over the two

subsets. Let x ∈ {0, 1}n, the objective function to be minimised can be defined as:

f(x) =

∣∣∣∣∣
n∑
i=1

wixi −
n∑
i=1

wi(1− xi)

∣∣∣∣∣ (1)

The binary representation of NPP creates a symmetry in the search space, in the
sense that a solution and its bitwise complement have the same fitness value. Thus,
the number of unique solutions is ≤ 2n−1. The NPP is NP-hard in the weak sense
(Garey and Johnson, 1979), that is, there exists an algorithm that can solve it in pseudo-
polynomial time through dynamic programming. The complexity of such an algo-

rithm, O(n2log2

∑n

i=1
wi), is polynomial in the number of weights and the sum of the

weights but exponential in the number of bits required to represent the sum. As Garey
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and Johnson (Garey and Johnson, 1979) note, such an algorithm will display an ex-
ponential behaviour only when extremely large input numbers are allowed. The run-
ning time of such an algorithm would thus exhibit an exponential behaviour as M
grows large.

NPP undergoes a sudden phase transition from solvability (a perfect partition ex-
ist) to insolvability (a perfect partition doesn’t exist), determined by the control param-
eter k = log2(M)/n, which corresponds to the number of the bits required to encode
the numbers in the set divided by the size of the set. For log2(M) and n tending to
infinity, the transition occurs at the critical value of kc = 1, such that for k < 1, there are
many perfect partitions with probability tending to 1, whereas for k > 1, the number
of perfect partitions drops to zero with probability tending to 1 (Borgs et al., 2001). A
more detailed parameterisation of the critical value of the control parameter is given
by the following 1 (Mertens, 2001): kc = 1− ln(π6 n)

2n ln(2) .
The transition between the two phases appears in the size of the problem back-

bone. The backbone notion is borrowed from statistical physics and has been gen-
eralised to optimisation problems by Slaney and Walsh (2001), where it is defined as
the set of decisions with fixed outcomes in all optimal solutions. In NPP, the pairs of
weights that are placed in the same subset or in opposite subsets in all optimal solu-
tions of an instance form the backbone of that instance. There is a very sharp increase
in the backbone size of the optimal solutions in the NPP as one approaches the phase
transition boundary, after which the backbone tends to be complete giving a unique
optimal solution (Slaney and Walsh, 2001). In the literature, the effect of this phase tran-
sition has been shown in the computational complexity of some exact solvers such as
the complete Karmarkar-Karp differencing algorithm (Mertens, 2001). Where instances
with k < kc were ”easy-to-solve” and the ones with k > kc were ”hard-to-solve”.

3.2 0-1 Knapsack Problem

Given a knapsack of capacity C and a set of n items each with associated weight wi and
profit pi, the aim is to find a subset of items that maximises

f(x) =

n∑
i=1

xipi (2)

subject to:
n∑
i=1

xiwi ≤ C, x ∈ {0, 1}n (3)

where

C = λ

n∑
i=1

wi, 0 ≤ λ ≤ 1 (4)

The binary vector x = (x1, . . . , xn) represents the decision variable where xi = 1 when
item i belongs to the subset and xi = 0 otherwise. We study instances where pi and wi
are positive integers drawn from the set {1, 2, . . . ,M}. Like NPP, the 0-1KP is NP-hard
in the weak sense (Garey and Johnson, 1979).

Note that the 0-1KP search space, X = {0, 1}n, is partitioned into a feasible region
F = {x ∈ X |

∑n
i=1 xiwi ≤ C} and an infeasible region INF = X \ F . For λ = 1 there

1A more rigorous derivation of the transition point can be found in (Borgs et al., 2001).
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are no infeasible solutions and as the value of λ decreases the size of the infeasible re-
gion increases until INF = X when λ = 0. We define the boundary between feasible
and infeasible regions as the set of feasible configurations that have at least one infea-
sible neighbour, B = {x ∈ X | x ∈ F ∧ ∃y : (y ∈ N(x) ∧ y ∈ INF )}. We mostly study
instance with moderate constraint (λ = 0.5), such instances have the largest boundary
sizes and thus the largest number of optima.

Randomly generated instances of the 0-1 KP can be classified into different types
based on the relation between the item’s profit and weight. We study 11 types, which
have been the focus of several studies in the literature, each with different proper-
ties that could influence the performance of problem solvers (Pisinger, 1999, 2005;
Martello et al., 1999; Caccetta and Kulanoot, 2001). The instance types are: uncorre-
lated, weakly correlated, strongly correlated, inverse strongly correlated, subset sum,
uncorrelated spanner,weakly correlated spanner, strongly correlated spanner, multiple
strongly correlated, profit ceiling, and circle. The definition of the instance types are
taken from (Pisinger, 2005) 2.

The problem type, subset sum, has a similar phase transition to NPP determined
by the same control parameter k = log2M/n (Sasamoto, 2003). The parametrisation of
the critical value kc for subset sum is given in (Sasamoto et al., 2001).

3.2.1 Constraint handling
We use a penalty function as a constraint handling method. An infeasible solution
x that violates the given constraint is penalised by a value Pen(x) > 0, Pen(x) = 0
for a feasible solution x. The objective functions after adding the penalty term is
f(x) =

∑n
i=1 xipi − Pen(x). The choice of an appropriate penalty function is very

critical for inducing smoother landscapes and guiding the search process to good fea-
sible regions. Careful design of appropriate penalty functions is particularly important
for this class of problems since local optima in all covering and packing problems lie in
the boundary of the feasible region (Gottlieb, 2001). Assigning a lower fitness value to
infeasible solutions than all feasible solutions is hence of critical importance for success-
ful penalty-based search. Some penalty-based algorithms for the 0-1KP suffer from the
feasibility problem, that is, they often terminate with completely infeasible solutions
due to inappropriate choice of the penalty function (Olsen, 1994).

Various penalty functions have been proposed for the 0-1KP (Olsen, 1994;
Michalewicz and Arabas, 1994) and its generalisation the multiple knapsack problem
(Gottlieb, 2001; Khuri et al., 1994). We studied three penalty functions proposed in
(Michalewicz and Arabas, 1994), which differ in the growth of the penalty value with
respect to the degree of constraint violation, namely: logarithmic, linear and quadratic.
We also add the term

∑n
i=1 pi to the penalty function as an offset term that insures that

all infeasible solutions achieve lower fitness values than all feasible solutions (Gottlieb,
2001). Otherwise, in the logarithmic case for instance, the entire search space becomes
part of the all ones solution x = (1, · · · , 1) basin. The penalty functions, in order from
weak to strong, are as follows:

Pen(x) = log2

(
1 + ρ

(
n∑
i=1

xiwi − C

))
+

n∑
i=1

pi (5)

Pen(x) = ρ

(
n∑
i=1

xiwi − C

)
+

n∑
i=1

pi (6)

2See the supplementary material for a detailed description of our process of generating the instances.
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Pen(x) =

(
ρ

(
n∑
i=1

xiwi − C

))2

+

n∑
i=1

pi, (7)

where ρ = maxi=1,...,n {pi} /mini=1,...,n {wi}. We found some evidence that the linear
penalty function appears to be the best choice, in terms of local search performance
and correlation of basin size and fitness, out of the three investigated functions. The
logarithmic penalty function is a poor choice since it creates a strict local optimum,
the all ones solution x = (1, · · · , 1), in the infeasible region. While both the linear and
quadratic functions do not create any local optima in the infeasible region, the strong
penalty enforced by the quadratic function seems to direct the infeasible configurations
to be part of the basins of optima with lower quality, as opposed to the linear penalty
function. In the rest of this paper, we use the linear penalty function (eq. 6) with all
instance types except for the subset sum. Applying this penalty function to infeasible
solutions in a subset sum instance assigns equal fitness values for all infeasible solution,
thus creating large plateaux in the landscape. Instead, we simply set the fitness of an
infeasible solution in a subset sum instance to the negative of the amount it exceeded
the knapsack capacity by, f(x) = C −

∑n
i=1 xiwi.

3.3 Quadratic 0-1 Knapsack Problem

Given a knapsack of capacity C and a set of n items each with associated weight wi,
and profits according to an n× n non-negative integer matrix P = pij , where pjj is the
profit achieved if item j is selected and pij + pji is the profit achieved if both items i
and j are selected (for i < j) (Gallo et al., 1980). The aim of the 0-1QKP is to find a
subset of items that maximises the profit without exceeding the knapsack capacity. The
density of the profit matrix, that is the percentage of non-zero elements, is given by ∆.
The quadratic objective function to be maximised is as follows:

f(x) =

n∑
i=1

n∑
j=1

pijxixj (8)

subject to the linear constraint

n∑
i=1

wixi ≤ C, x ∈ {0, 1}n (9)

where

C = λ

n∑
i=1

wi, 0 ≤ λ ≤ 1. (10)

The 0-1QKP is NP-hard in the strong sense (Garey and Johnson, 1979; Pisinger, 2007),
it cannot be solved by a pseudo-polynomial time algorithm unless P=NP (Garey and
Johnson, 1979). We only consider instances where the profit matrix is symmetric, i.e.
pij = pji. We study instances where pij and wi are positive integers drawn at random
from the set {1, 2, . . . ,M}. We only study instances where the profits and the weights
are uncorrelated. As with the 0-1KP and for the same motivation we study instances
where λ is set to 0.5.
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3.3.1 Constraint handling
As with the 0-1KP, we want to allow the infeasible solutions to be part of the search-
able space and we want to penalise them proportional to the degree of violation of the
constraint. Also, we want all infeasible solutions to have lower fitness values than all
the feasible solutions. To ensure that, we added the offset term

∑n
i=1

∑n
j=1 pij to the

penalty function. We ruled out the logarithmic penalty function as it creates a strict
local optimum in the infeasible region as in the 0-1KP case. We also ruled out the use
of the linear one as it was found to create a strict local optimum (the all ones solu-
tion x = (1, · · · , 1)) in the infeasible region of some instances with highly dense profit
matrix. It was also found to create some open and closed plateaux in the infeasible
region of some instances with various values of ∆. The quadratic penalty function was
found to induce a landscape with a smooth infeasible region that does not have any
local optima or plateaux. Therefore, we use the quadratic penalty function to handle
the constraint in this problem. The function is defined as follows:

Pen(x) =

(
ρ

(
n∑
i=1

xiwi − C

))2

+

n∑
i=1

n∑
j=1

pij , (11)

where ρ = maxi,j=1,...,n {pii + pij + pji} /mini=1,...,n {wi}.

3.4 Random Instance Generation

Most of the existing studies of these problems only consider instances where weights
are drawn at random from a uniform distribution. We are interested in studying if and
how the landscape properties of instances generated randomly from different distribu-
tions vary. Thus, we generate instances with weights drawn randomly from five differ-
ent discrete probability distributions: uniform, normal, negatively skewed, positively
skewed and bimodal distribution with peaks at both ends. We used arbitrary-precision
arithmetic for large ranges that exceed the fixed precision range. We investigate setting
the phase transition control parameter k to 0.4 and 1 in all the studied problems and ad-
ditionally to 1.2 in NPP. For the 0-1QKP we explore the effect of varying the profit ma-
trix density on the landscape by studying instances with ∆ = 0.1, 0.25, 0.5, 0.75, 0.95,
and 1. We study instances of size n = 14, 16, 18, 20, 22, 30, 100. For each parameter
combination, landscape properties are collected from exhaustively enumerated search
space of 600 instances for n < 30 and sampled from 500 instances for n ≥ 30 .

‘

4 Search Position Types

The common finding across all of three problems is that no configuration of type IPLAT
was found in either of the H1 or H1+2 landscapes across the different distributions of
the weights, the different values of k, and for all ∆ > 0.25 in the 0-1QKP. For a sparse
0-1QKP profit matrix ∆ ≤ 0.25, very few configurations of type IPLAT were found,
which is not surprising, since the very low density of the profit matrix results in many
solutions sharing similar objective values. The absence of IPLATs and NSLMAXs in
NPP is an implication of its elementary landscape.The NPP has an elementary land-
scape under the H1 operator when the objective function is the square of the discrep-
ancy(Grover, 1992). This has an implication on the types of plateaux and search po-
sitions in its landscapes (Whitley et al., 2008). The first implication is that configura-
tions of type IPLAT can only exist when the entire landscape is flat. The second im-
plication is that exits of open plateaux can only be LEDGEs not NSLMAXs. On both
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landscapes of NPP, there are always two configurations of type SLMAX: the all zeros
solution x = (0, · · · , 0) and its bitwise complement. In the infeasible region of 0-1KP ,
all the found configurations were of the following types: LEDGE, SLOPE, SLMIN and
NSLMIN. No strict optima or plateaux were found in the infeasible region. In the H1
landscape of the infeasible region, the configurations were mainly of type LEDGE with
both values of k. In the H1+2 landscape of the infeasible region, the configurations were
mainly of types LEDGE and SLOPE when k = 0.4, and mainly LEDGE when k = 1. In
the feasible region of the H1+2 landscape, when k = 0.4, the found configurations were
mainly of types LEDGE, SLOPE , NSLMAX and SLMAX in all the problem types. Apart
from the uncorrelated and uncorrelated spanner instances, where no configurations of
type NSLMAX or SLOPE were found. When k = 1, the SLOPE and NSLMAX types dis-
appear, aside from very few configurations in normal and negatively skewed instances
of the profit ceiling and circle problem types. The feasible region of the H1 landscape
is similar to its infeasible region, in that, no apparent changes were observed between
the values of k. In general, the configurations were of type SLMAX and LEDGE in this
region. The configurations in the infeasible region of 0-1QKP were of types: SLMIN,
LEDGE, and SLOPE. The SLOPE configurations seem to disappear in the infeasible
region of the H1+2 landscape when k goes from 0.4 to 1. Apart from that, not much
difference is found between the two values of k across all the different ∆ and for both
landscapes and regions.

5 Properties of Optima and Plateaux

5.1 Number of optima and plateaux

In NPP, the number of global optima is highest when k = 0.4 and it starts to decrease
as we approach the critical phase transition point and keeps decreasing as we cross the
point until we have only two optimal solutions. Similar behaviour has been observed
for the number of non-strict local optima, where it starts to decrease as we approach the
phase transition until it reaches zero in the phase beyond the critical point. That is true
for both the H1 and H1+2 landscapes and for all the different distributions. The results
can be found in our paper (Alyahya and Rowe, 2014). In the 0-1QKP and in all problem
types of the 0-1KP apart subset sum, the number of global optima is not effected by
the different values of k. In general there was only one global optimum apart from few
exceptions with slightly higher number in very sparse 0-1QKP profit matrix (∆ = 0.1)
and in strongly correlated, multiple strongly correlated, and profit ceiling problems. In
subset sum, similar to NPP, the optimal solutions number is highest (around 103 for
n = 20) when k = 0.4, and it drops down to only one when k = 1.

The number of strict local optima does not change very much between the differ-
ent values of k regardless of the distribution from which the weights are chosen and
regardless of the used operator. This is true for all the three problems. In the 0-1KP
and in the 0-1QKP, the variation in the number of local optima in this landscape be-
tween the different problem types and between the different values of ∆ was found
to be very small (with the exception of slightly higher number in instances with very
sparse profit matrix ∆ = 0.1). The number of strict local optima was found however to
vary largely between distributions in the H1 landscape in all problems. In particular,
the negatively skewed and the normal distributions have the largest number of strict
local optima (between 8-15% of the search space) while the positively skewed and the
two peaks distributions have the fewest (around 1% of the search space). The number
of strict local optima drops in the H1+2 landscape compared to the H1, which is ex-
pected, however the difference between the two landscapes is large. The difference is
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in two orders of magnitude in the negatively skewed and the normal distributions and
in one orders of magnitude for the rest of the distributions. In the 0-1QKP and in the
uncorrelated, weakly correlated, uncorrelated and weakly correlated spanner instances
of 0-1KP the difference is around 4 orders of magnitude. The number of local optima
in the 0-1QKP and uncorrelated 0-1KP is very low in this landscape with medians < 10
for n = 20.

We believe that the underlying relation between the number of strict local optima
in the H1 landscape and the different distributions can be explained by the variability of
the weights. To capture this with a single parameter, that does not require the knowl-
edge of the underlying distribution of the weights, we propose using the coefficient
of variation (CV ) of the weights, which provides a measure of relative variability or
dispersion. Roughly speaking (see Figure 4), normal and negatively skewed instances
map to the region ≤ 0.3, uniform instances map to the region between 0.4 to 0.7, pos-
itively skewed and two peaks instances map to the region > 0.8. The density of the
region ≤ 0.3 is higher because both the normal and the negatively skewed map to this
small region. The CV seems to capture most of the variation in the number of strict lo-
cal optima in the H1 landscape as the two correlate very strongly and negatively across
the different values of n and k we studied. To explain the intuition behind this strong
correlation, consider an example of two extreme cases of NPP, the first is when all the
weights are the same (small CV ) and the second case is when one weight is equal to the
sum of the rest of the weights (large CV ). In the first case there are

(
2n
n

)
∼ 4n√

πn
possible

ways to split the weights into two subsets, while in the second case there are only two.

(a) Small neighbourhood (b) Large neighbourhood

Figure 3: A schematic illustration showing how applying a larger neighbourhood op-
erator as opposed to a smaller one, can reduce the number of optima, but can also
introduce plateaux. (a) Assuming minimisation and under the small neighbourhood
operator: the red diamond-shaped nodes are strict optima with the same fitness value,
and the green triangle-shaped node is a strict optimum with a higher fitness value than
the red optima. The rest of the nodes are either a local maximum, a slope or a ledge
at a higher fitness value than the four optima. The shaded areas indicate the neigh-
bourhood of the optimum at its centre. (b) After applying the larger neighbourhood
operator, the green optimum is no longer an optimum but a slope. The group of red
optima however have now formed a closed plateau.

In the phase below the phase transition point where plateaux exists in the NPP, the
majority of the plateaux in the H1 landscape were open plateaux with very few global
ones. The number of configurations in each plateau is very small, for example when
n = 20 the size of the global and closed plateaux was found to be only 2 to 3 non-strict
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local optima (remember all the plateaux are composed of NSLMIN only). All the open
plateaux we found are composed of only one non-strict local optimum and the majority
of them have only one exit. There are more global plateaux in the H1+2 landscape, but
fewer number of open and closed plateaux. The number of exits from open plateaux
is larger in this landscape as expected. The size of all the plateaux in this landscape
is also larger than that in the H1 landscape, it can reach up to 300 for global plateaux
and around 50 for open and closed ones. In the 0-1KP, plateaux were only found in the
H1+2 landscape and mainly when k = 0.4. For most of the problem types, the majority
of the found plateaux were closed plateaux. For the subset sum instances, the majority
of plateaux were global and closed plateaux. Most of the plateaux found in the profit
ceiling instances were open and closed plateaux. In all the problem types, most of the
found plateaux have very small sizes, around two or three configurations. The largest
found plateaux were less than 10 configurations in all n = 20 instances, apart from
the profit ceiling and circle instances where the largest found plateaux were composed
of around 30 configurations. However, these large plateaux were rarely found. The
number of exits in open plateaux was found to be also quite small in all the problem
types (mainly between 1-3 exits). In the 0-1QKP, similar results have been found, in
that the closed and open plateaux were of very small size, with exception of relatively
large number of exits in open plateaux in very sparse profit matrix. As the density
(∆ ) of the profit matrix increases, the plateaux decrease until they disappear in very
dense profit matrix instances. The observation that the H1+2 landscape have some-
times more plateaux than the H1 may seem counter-intuitive at first, since applying a
larger neighbourhood operator as opposed to a smaller one, usually has the positive
effect of reducing the number of optima and plateaux. However, it can also have an
effect of introducing new larger plateaux. A schematic illustration of this mechanism
is shown in figure 3. The figure shows how after applying the larger neighbourhood
operator, the same-fitness strict optima became connected forming a closed plateau. If
the green triangle-shaped optimum had a better fitness value than the red diamond-
shaped optima, then the figure shows how two open plateaux, sharing the same exit
and each of size one, can be formed.

5.2 Average number of strict local optima

The average proportion of the strict local optima in the H1 landscape when the NPP

weights are drawn from uniform distribution follows this formula
√

24
π n
−3/2, derived

using statistical mechanics (Ferreira and Fontanari, 1998). Based on the strong and
negative correlation between the CV and the strict local optima number in all the three
problems, we propose a generalised formula for estimating the average proportion of
strict local optima in the H1 landscape, which depends only on the CV of the weights
and the size of the problem: a e−bCV , where the values of the coefficients a and b de-
pend on the problem and on n. Figure 4 shows the estimation of the fraction of the strict
local optima using this formula. The values of a and bwere determined by least-squares
regressions. The proposed formula seems to be a good approximate fit of the average
number of strict optima in all the problem sizes we studied, in particular for the NPP.
In the 0-1KP and 0-1QKP, it seems to be noisier around small CV values (≤ 0.3).

In the 0-1KP, the correlation between the CV and the number of strict local optima
in the H1 landscape is strong and negative apart from highly constrained instances
(λ ≤ 0.2) and weakly constraint instances (λ > 0.8) where the correlation is strong
and positive. In small CV instances, most of the solutions are infeasible when highly
constrained and feasible when weakly constrained. This consequently decreases the
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Figure 4: The fraction of strict local optima in the H1 landscape versus CV. The results
are for 600 instances of size n = 20. k = 1 for 0-1KP and 0-1QKP. Pearson’s correlation
coefficient r between the two quantities is shown for each plot.

boundary size and thus the number of strict local optima. On the other hand, the larger
weights in large CV instances, prevent many solutions from becoming feasible when
weakly constrained and allow many solutions to be feasible when highly constrained.
This makes the boundary size in large CV instances relatively larger in both cases,
causing the optima number to be higher than that in small CV instances. In fact, when
highly constrained, the mechanism of solving large CV instances becomes similar to
that of solving small CV instances, in that the problem becomes about fitting the small
similar weights into the knapsack.

To easily study the growth behaviour of the number of strict local optima as the
problem size increases, we grouped the instances based on their CV values into three
intervals: (0, 0.3], (0.3, 1), and [1, 2). Figure 5 shows the decay of the proportion of
number of strict local optima as n increases. The results for n = 30, 100 are the SRS
(Alyahya and Rowe, 2016) estimates obtained with the sample sizes s = 105, 5 × 105

respectively. All the proportions seems to decrease polynomially with n in the form
an−b. The largest decay happens in the landscape of H1+2 and the smallest in the H1
landscape of the interval (0, 0.3]. The proportion of the strict local optima appears to
decay faster in the H1+2 landscape compared to the H1 across all the intervals. The pro-
portion in the H1+2 landscape of 0-1QKP and the following 0-1KP types: uncorrelated,
weakly correlated, uncorrelated spanner, weakly correlated spanner, strongly corre-
lated spanner, and multiple strongly correlated, seems to be smaller than what the SRS
with the above sample sizes can detect. This was evident by the negative lower bound
of the 95% CIAC of the obtained estimates indicating that the point estimates are greatly
overestimating the real proportions. Therefore, we did not include these estimates in
figure. We also did not fit the decay of the proportions with the form an−b, since we are
only left with four close data points. We are unable to comment on the growth of the
number of strict local optima in the H1+2 landscapes of these instances. However, the
growth of the strict local optima in the H1+2 landscape of all the remaining problems
and the growth in all the H1 landscapes seems to be exponential with n.

5.3 Quality of optima and plateaux

The difference in the number of optima between the two landscapes is no doubt an
important feature, but another equally important one is the difference in quality of op-
tima between the two. Obviously, the quality of the optima in the H1+2 landscape is
at least as good or better than that in the H1 as every optimum in the H1+2 landscape
is also an optimum in the H1. However, we want to examine how the difference in
quality between the two landscape changes across the CV values. To obtain a measure
of quality that is independent of the problem instance and that does not require the
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Figure 5: The decay of the strict local optima proportion as n grows (k = 1). The results
are averaged over 600 instances for each n ≤ 22 and over 500 instances for n = 30, 100.
The number of strict optima is estimated for n = 30, 100 using SRS, the sample sizes are
s = 105, 5×105 respectively. The solid lines in (b) were obtained using least-squares fit.

knowledge the optimal solution, we measure the quality of an optimum x in a given
instance as f(x)/

∑n
i=1 wi in NPP, f(x)/

∑n
i=1 pi in 0-1KP, and f(x)/

∑n
i=1

∑n
j=1 pij in

0-1QKP. Figure 6 shows selective results of the three problems 3. Note that the distribu-
tions in the figure cannot be used directly to infer the quality of the local optima relative
to the global since the distributions are calculated over multiple instances. In NPP, the
number of optima with relatively poor quality in the H1 landscape of instances with
very small CV is very high. The number starts to decrease as the CV values increases.
This behaviour is consistent across all k values and all n. In the 0-1KP, there is a clear
difference among the various problem types in terms of the overall quality of the op-
tima and in the difference between the quality of the optima in the two landscapes. For
example, in the uncorrelated and the uncorrelated spanners instances there is a large
difference in the quality of optima between the two landscapes and that difference does
not seem to change much across the CV intervals. On the other hand, the quality of the
optima in the two landscapes seems to be similar in the circle instances and that simi-
larity seems to increase as the CV value increases. The case in the subset sum instances
is perhaps the most similar to that in the NPP, in that the quality of the optima in the H1
landscape gets better as the CV value increases, which in turn decreases the difference
in the quality between the two landscapes. In general, and apart from the uncorrelated
and the uncorrelated spanner instances, the difference in the quality of optima between
the two landscapes appears to decrease as the CV value increases. The 0-1QKP is sim-
ilar to the uncorrelated problem types in the 0-1KP, across all values of ∆, the quality
of optima in the H1+2 landscape is better than that in the H1, and this difference in the
quality does not seem to change much across the CV values.

6 Basins of Attraction

6.1 Basin size

In the NPP, as with the number of strict optima, the basin sizes do not seem to change
much across different values of k for all the different distributions and for both land-
scapes. In all the problems, the size of the basins in the H1+2 landscape is as expected
larger than that in the H1. For both landscapes, the distribution of the basin sizes in all
the instances we studied was found to be highly skewed to the right, with many small
basins and only few large ones. Similar skewness in the distribution of basin sizes was
reported in other combinatorial problems, for example in the flow-shop scheduling

3See supplementary material for the full results.
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Figure 6: The quality of optima and plateaux in the H1 and H1+2 landscapes across the
different values of CV : 0 < CV ≤ 0.3 (left), 0.3 < CV < 1 (middle), 1 ≤ CV < 2
(right). The rows show respectively, starting from the top, the results for n = 20 and
k = 1 of NPP, 0-1KP profit ceiling, and 0-1QKP with ∆ =0.75. The data in each plot
includes all optima and plateaux found in 600 instances of the respective problem.

problem where the log-normal distribution was found to be a plausible model of the
basin size (Reeves and Eremeev, 2004). The basin sizes in the H1 landscape of all the
problems increases with the CV until their sizes become similar to those of the H1+2
landscape. In the H1 landscape of NPP, 20% of the basins cover around 60-70% of the
search space in instances with CV ≤ 0.3, while they cover around 35-50% of the search
space in instances with CV > 1. This discrepancy between the two CV intervals seems
to continue to exist in the H1+2 landscape, though at a lower degree. In the 0-1KP, the
largest basins in the uncorrelated problem type quickly covers large area of the search
space in the H1 landscape, where around 60% to 90% of the search space is covered by
only 20% of the basins. The same percentage of the basins covers around 40% to 70%
of the search space in the weakly correlated problem type, and around 40% to 60% in
the subset sum problem type. For the H1+2 landscape. The results of the uncorrelated
spanner are similar to the results of the uncorrelated problem type. The results of the
weakly correlated spanner are similar to the results of the weakly correlated problem
type. The rest of the problem types have similar results to that of subset sum. The
results of subset sum is again similar to the results of NPP. In the H1 landscape of the 0-
1QKP like in the uncorrelated 0-1KP, the largest basins quickly covers large part of the
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search space. In instances from the large CV interval [1, 2), large portion of the search
space gets covered by very few basins, where only 10% of the basins cover between
70% to 90% of the search space. The same percentage of the basins cover around 50%
to 70% of the search space in instances with CV ∈ (0.3, 1), and cover around 50% of
the search space in instances with CV ∈ (0, 0.3]. In all the problems, the search space
is covered by fewer basins in the H1 landscape compared to the H1+2 one (in NPP, in
instances with CV ≤ 0.3, in particular). For instance, around 90% of the search space
is covered by half of the basins in the H1 landscape, while it takes around 70% of the
basins to cover the same amount of the search space in the H1+2 landscape.

6.2 Basin size and fitness

Another important aspect of the fitness landscape is the correlation between the basin
size and the fitness of the optimum. Previous studies have shown that in general, fitter
optima have larger basins (Stadler, 2002; Tayarani-N. and Prügel-Bennett, 2014), and
landscapes with this kind of feature usually tend to be easier to search. Figure 7 shows
the correlation between basin size and fitness of selected results of the three problems.
We measured the correlation between the two quantities using Spearman’s correlation
coefficient instead of the traditional Pearson’s correlation coefficient. The reason for
that is Pearson’s method assumes that both variables are drawn from normal distribu-
tion while Spearman’s method is a non-parametric method. As we have seen in the
previous section, the distribution of the fitness values and the basin sizes are highly
skewed and far from being normally distributed. In NPP, the correlation between the
objective and the basin size in both landscapes was found in general to be moderately
negative (0.4− 0.6) to strongly negative (> 0.6) (remember we are minimising here). If
we excluded the H1 with CV ≤ 0.3, the correlation appears to remain more or less the
same across the values of k and CV apart from few cases in the H1+2 landscape. The
correlation also appears to get slightly stronger with larger n. For the H1 landscape of
instances with CV ≤ 0.3, the correlation seems to be slightly stronger when k < kc
and it seems to get weaker with larger n in the hard phase. In the 0-1KP, the corre-
lation between the basin size and fitness was found to vary between weak to strong
positive in both landscapes and seems not to change much across the values of k or
CV . The few exceptions and the most surprising ones are of instances of type inverse
strongly correlated withCV > 0.3 and few other cases where the correlation was found
to be negative. This negative correlation is in fact unusual in the combinatorial opti-
misation problems studied in the literature, where in general fitter optima were found
have larger basins (ibid.). Similar to the uncorrelated 0-1KP problem types, the cor-
relation between the attraction basin size and the optimum fitness in both landscape
of the 0-1QKP is very strong and positive, indicating that indeed in this problem the
fitter optima tend to have larger basins. This does not seem to change much across
the CV values for all the values of ∆. However, as ∆ gets larger the correlation in the
H1+2 landscapes of some of the instances seems to get weaker and sometimes even
very strong negative (this is more noticeable in the small CV interval (0, 0.3]). This in-
dicates that, in such instances, fitter optima have smaller basins. Usually this feature
means that these landscapes are more difficult to search particularly for local search, as
the fitter optima has less probability of being found with a hill climber.
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Figure 7: Spearman’s rank correlation coefficient between basin size and fitness versus
CV . The results are for 600 instances of size n = 20. k = 1 for the 0-1QKP.
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Figure 8: The basin size proportion (in log scale) of all global optima in an instance for
each landscape against the CV . The results in each plot are for 600 instances of n = 20.

Figure 8 shows the global basins proportion out of the search space against the CV for
both landscapes and for some interesting instances of all the three problems. Clearly,
this proportion translates to the probability of finding the optimal solution. In general
and across all problems, the probability of finding the optimal solution is always higher
in the H1+2 landscape than in the H1 one. In NPP and 0-1KP subset sum, the probabil-
ity of finding the global optima in the H1+2 landscape drops down from almost around
∼ 1 in k < kc to around∼ 10−2 in k > kc. In H1 landscape the probability of finding the
global decreases from between around ∼ 0.1 in small CV instance and ∼ 0.8 in large
CV instances when k < kc, to reach around ∼ 10−4 and ∼ 15 × 10−3 when k > kc.
The probability of finding the global when k > kc, in both landscapes, decreases as the
problem size grows. This is not surprising since the number of local optima in both
problems grows exponentially with n. Like the previously studied features, the prob-
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Figure 9: Return probability pr(h) to the global optimum starting from a Hamming
sphere of radius h (y-axis) versus h (x-axis). The results are for 3 instances with k = 1
and of size n = 20 and for 0-1KP and 0-1QKP and n = 22 for NPP. Each legend entry
in 0-1KP and 0-1QKP plots shows respectively: the landscape type, the instance CV
value, and the number of optima in that landscape of that instance.

ability does not seem to change much across the CV values in the H1+2 landscape,
unlike the H1 landscape, where the probability of finding the global increases with the
CV in both phases. This increase can be attributed to the decrease in the number of lo-
cal optima in this landscape as theCV increases, and the strong correlation between the
basin size and fitness. In the inverse strongly correlated instances the opposite happens
as the probability decreases when the CV increases, despite the fact that the number
of local optima decreases as the CV increases. This reflects the results of the correla-
tion between the basin size and the fitness in this problem type, where the correlation
was found to be moderately to strongly positive in the small CV interval but it starts
to decease as CV increases to a strong negative sometimes. We continue to see the ef-
fect of this feature on the performance of local search to find the global in this problem
type in the next section. The probability of finding the global is very high in the H1+2
landscape of the 0-1QKP and the uncorrelated 0-1KP. In the 0-1QKP, the probability
of finding the global in the H1+2 landscape seems to decrease slightly as ∆ increases.
This again is a reflection of the correlation between basin size and fitness that we have
seen previously. The correlation was found to be strongly negative in some of these
instances, which explains the decrease in the global basin size.

In an attempt to study the shape of the global basin, we plot in Figure 9, the propor-
tion of the configurations that are part of its basin in every Hamming sphere of radius
h around it. In NPP, the plot shows the result for one of the two global found, as the
same result applies to the other global due to the search space symmetry. The results
are shown for three instances of size n = 22. Note that the global basin is not the largest
in all of these instances. For example, in the instance with the smallest CV value, the
global basin proportion in the H1 landscape is 1.98× 10−05 while the largest basin pro-
portion is 1.86 × 10−04. Similarly in the H1+2 landscape the global basin proportion is
0.001 while the largest basin proportion is 0.009. We can see that in both landscapes the
configurations in the global basin are concentrated in the immediate Hamming spheres
around it. This is true for the both landscapes of all the problems apart from the H1+2
landscape of the 0-1QKP, and 0-1KP the uncorrelated, weakly correlated, and uncorre-
lated spanner types, where the probability of returning to the global continues until the
last sphere sometimes. Interestingly, we see that the return probability in some of the
H1+2 landscapes does not decreases monotonically but have an oscillating behaviour
as h increases. This can be attributed to the very small number of optima in such land-
scapes and the nature of the H1+2 neighbourhood, as the neighbours of a configuration
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in a given sphere h would be spread over five spheres using this neighbourhood oper-
ator compared to only two spheres when using the H1 operator. Figure 10 presents an
example illustrating how this oscillating behaviour in the H1+2 landscape can occur. In
the 0-1QKP, we can see that the return to the global in the H1+2 landscape of instances
with small CV values approaches zero faster in larger values of ∆, where the return
probability is almost zero in configurations different than the global in half or more of
the dimensions. This agrees with the results obtained previously about the proportion
of the global basins and the correlation between the fitness and the basin size.

Figure 10: An example of an H1+2 landscape where the return probability to the global
starting from a Hamming sphere of radius h does not decrease monotonically as h
increases. Each node in the graph represents a configuration and each edge indicates
a neighbourhood relation. The objective value is shown for each node and is used to
proportionally scale the node size. The graph has been laid out such that the global
optimum (with objective value 121) is placed in the centre and the configurations that
are h Hamming distance away from the global lie on the h-th circle. The colours dark
green and light green indicate that a configuration is in the global’s basin, while the
colours pink and purple indicate that a configuration is not in the global’s basin. The
semi-transparent nodes with the colours dark green and purple are neighbours of the
highlighted node, with fitness -2053, in the 4th circle. In addition to the global, there
are two strict local optima with fitness 102 and 113. The results are for an instance of
weakly correlated knapsack of size n = 6, k = 1, CV = 0.25, and λ = 0.5.
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7 Local Search Performance

7.1 Cost of finding the global and quality of optima obtained with fixed budget

(a) NPP, k = 0.4 (b) NPP, k = 1
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(c) Subset sum, k = 0.4
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(d) Subset sum, k = 1
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(e) Inverse strongely corre-
lated, k = 1
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(f) Uncorrelated, k = 1
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(g) 0-1QKP, ∆ =0.1

14 16 18 20

n

10
2

10
3

10
4

10
5

M
e

a
n

 e
v
a

lu
a

ti
o

n
s
 n

u
m

b
e

r

(h) 0-1QKP, ∆ =0.95

Figure 11: Number of fitness evaluations used to find the global (in log scale) against n.
Each data point is an average of 30 runs of steepest ascent, averaged over the number
of instances in each CV interval. The results for each n are for 600 instances.

We ran local search with random restarts until the optimal solution is found for 30
times per instance for n ≤ 22. The cost of finding the global optima is then calculated
using the number of used fitness evaluations. Note that we treat the objective func-
tion as a black-box here, hence the number of times the objective function is queried
for each step taken equals the neighbourhood size of the employed operator. In NPP
and the 0-1KP subset sum, the average number of fitness evaluations used to find the
global increases as we approach the phase transition point and keep increasing as we
cross it for all the different distributions and for both landscapes. This is expected due
to the drastic decrease in the number of global optima in the phase with k > kc. As
we have seen before, the probability of finding the global is higher in instances with
k < kc, the algorithm quickly finds one of the many global optima while it struggles to
find the single (two in NPP due to symmetry) global optimum when k > kc. This in-
deed makes the phase transition in both of these problem a transition between ”easy” to
”hard” to solve for local search algorithms. In both the problems, the cost of finding the
global optimum grows exponentially with n in the hard phase as Figure 11 depicts. The
growth in the easy phase seems to be much slower but we are unable to comment on its
growth type as the trend is not very clear from the data. The cost of finding the global
in the rest of the problems is the same across all values of k. In almost all the problems
apart form the 0-1KP inverse strongly correlated and the 0-1QKP with ∆ < 0.5, the H1
operator has the lowest mean number of used fitness evaluations to find the global in
instances with CV ∈ [1, 2). The uncorrelated and uncorrelated spanner instances have
the lowest cost of finding the global in both landscapes. This is a reflection of the very
strong positive correlation between the basin size and fitness, and the higher proba-
bility of returning to the global in theses instances. Instances of type inverse strongly
correlated have the highest mean cost of finding the global, apart from the cost of the
CV ∈ (0, 0.3] interval. The increase in the cost in the instances with CV > 0.3 can be
attributed to the strong negative correlation between the basin size and fitness, which
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resulted in a lower probability of finding the global in these instances. In fact, we can
see that the cost of finding the global using the H1 operator in this problem type is the
lowest in the CV interval (0, 0.3]. Despite the fact that the number of local optima is
the highest in this interval, which translates in all the other problem types to having
the highest cost of locating the global out of all the CV intervals. This again empha-
sises the importance of the correlation between the basin size and fitness (remember the
correlation in the inverse strongly correlated was found to be moderately to strongly
positive in CV ∈ (0, 0.3] but it starts to decease as the CV increases to a strong negative
sometimes). The straight lines in almost all the observations in each problem type of
the 0-1KP and the 0-1QKP indicate that the cost of finding the global seems to grow
exponentially with n. In 0-1QKP, the cost of the H1+2 operator increases slightly as ∆
increases. In instances with CV ∈ (0, 0.3], the increase is almost one order of magni-
tude. This can be attributed to the negative correlation between basin size and fitness
and the decrease in the global basin proportion as ∆ increases in these instances. The
cost using the H1+2 operator, in particular in instances with CV ∈ (0, 0.3], is lower than
that when H1 is used. This might be surprising considering the quadratic (in n) cost
associated with every H1+2 step compared to the linear one in the H1 case. This, how-
ever, can be explained by the very big difference in the number of local optima between
the two landscapes, which suggest that the algorithm had to do far fewer number of
restarts when using the H1+2 operator. For the rest of theCV intervals, the H1 operator
seems to have a lower cost even though it still has more local optima than that in the
H1+2 landscape. However, the difference between the two here is less by one order of
magnitude, which makes it enough for the H1+2 quadratic cost to offset the advantage
of having lower number of local optima.

To examine further the relation between the number of fitness evaluations needed
to explore the neighbourhood and the difference in the number of local optima be-
tween the two landscapes we compare the performance of the two operators in figure
12, where we determine the statistical significance between the two performances us-
ing Wilcoxon rank-sum test at the 5% level. In the NPP and subset sum, we can see that
in the hard phase, the H1 operator performs better when the CV is large ≥ 1. In the
easy phase, the H1 operator performs better across all the CV intervals, despite the fact
that the H1+2 landscape is always smoother and has a higher probability of finding the
global across all the values of the CV . This can be explained by the presence of many
global optima in the easy phase which mitigates the ruggedness of the H1 landscape,
even in the very rugged landscape of the (0, 0.3] CV interval. However, this behaviour
seems to fade away as n grows in the sizes we studied in n = 14 − 22, where the
H1+2 operator starts to win more instances. This can be attributed to the growth of the
number of local optima in the H1 landscape in the (0, 0.3] interval, which is the fastest
growth rate out of all the CV intervals, while the same interval has the lowest growth
rate in the H1+2 landscape. The trend of the H1+2 operator performing better in the
(0, 0.3] CV interval and the H1 operator performing better in the [1, 2) CV interval con-
tinues to show in larger problem sizes of n = 30, 100 as shown in figure 12. Now the
results show the quality of optima obtained by a fixed arbitrarily selected budget of fit-
ness evaluations. As we have seen before in the NPP and subset sum, the difference in
the quality between the two landscape decreases as the CV grows, which explains the
results for the wining case of the H1 operator, of course alongside the lower difference
in the number of local optima in this interval between the two landscape. Note that
these results are specific to the budget we selected, whether the same trends will con-
tinue to occur with other budget values remains an open question. In the 0-1KP, apart
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from subset sum, multiple strongly correlated, and profit ceiling types, the trends of
the winner operator were found to change between when searching for the global and
the quality of optima obtained by fixed budget search. They also were found to change
with n. In some of the problem types, the number of tie cases seems to decrease as n in-
creases, and a clear winner emerges. In terms of the quality of the obtained optima with
fixed budget search, the H1 operator performs better in the strongly correlated, inverse
strongly correlated and circle problem types, across all the CV intervals. The H1+2
operator performs better in the 0-1QK and the 0-1KP uncorrelated, weakly correlated,
and their spanner equivalent across all CV values. Theses results can be explained by
the large difference in the quality of the optima between the two landscapes that we
have seen in section 5.3, and the small number of optima and the faster decay of their
proportions in the H1+2 landscape.

7.2 Time to local optima

The time it takes steepest descent (ascent) starting from a random configuration until a
local optimum is reached can reveal interesting aspects of the underlying structure of
the landscape and particularly the shape of attraction basins. For each problem, we ran
1000 steepest descents per instance and collected the number of steps over 600 instances
for each n = 14, 16, 18, 20, 22 and 500 instances for n = 30, 100. In the NPP and most
problem types of the 0-1KP, this was found to be very small in both landscapes and
grows very slowly with n across all the CV values. The medians of steps were between
1-3 when n = 14 (with the step size increasing with the CV ) and only around 3 in
n = 100 with outliers reaching up to 10 in n = 14 and up to 20 in n = 100. This can
be partially attributed to the fact that the attraction basin sizes in both landscapes were
found to be mainly small. In the H1 landscape, we believe that this is additionally due
to the large number of local optima in this landscape. In the H1+2 landscape, even
though the number of optima is much smaller than that in the H1, its neighbourhood is
larger and its nature can allow it to take fewer number of steps by hopping over spheres
to reach the local optimum, which explains the small number of steps in this landscape.
The very slow growth of steps with n can be attributed to the exponential growth of
the number of local optima in both landscapes and across all the CV values. The steps
in the H1 landscape of the 0-1QKP, and the 0-1KP uncorrelated and the uncorrelated
spanner instances was found to be similar to the previous described results but slightly
higher, outliers around 30 in n = 100, which is believed to be due to the larger basin
sizes in these instances. However, the number of steps in the H1+2 landscape of these
problems and the weakly correlated, weakly correlated spanner, strongly correlated
spanner, and multiple strongly correlated problem types, seems to grow faster with n,
evident in the median steps being between 10 and 25 when n = 100. This supports
our observation that the decay of the number of local optima in the H1+2 landscape of
these problem types is faster than that in the rest of the problems. Note that although
the local search algorithm under study here considers only the best improving move,
that does not necessarily guarantee that the path, starting from a random configuration
x until a local optimum x∗ is found, will be the shortest path (i.e. the number of steps
taken from x until x∗ is reached is at most equal to the Hamming distance between x
and x∗). From the perspective of the Hamming spheres around an optimum x∗, this can
occur when the best improving move of a configuration xi in the path, which resides in
the Hamming sphere hi, is in a Hamming sphere hi+1 ≥ hi. The number of steps taken
in the H1 landscape was found to be always equal to the Hamming distance between
the initial random configuration and the found local optimum. In the H1+2 landscape
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this was found to be almost always smaller or equal to the Hamming distance with the
exception of extremely few cases where it was found to be one or five steps larger than
the Hamming distance (in n = 22).

8 Conclusions

This paper presents an extensive landscape analysis of three NP-hard binary packing
problems: the number partitioning problem (NPP), the binary knapsack problem (0-
1KP), and the quadratic binary knapsack problem (0-1QKP). We performed a compara-
tive study of the landscape induced by two neighbourhood operators, the H1 operator
with a neighbourhood that grows linearly with the problem size and a larger neigh-
bourhood operator H1+2 that has a quadratic growth neighbourhood. The set of prop-
erties that we studied includes: types of search position, number of local and global
optima and plateaux, quality of optima and plateaux, basin size and its correlation
with fitness, time to local optima, cost of finding the global solution, and quality of
optima obtained with a fixed budget search. Our work focuses on studying how these
properties vary with different values of problem parameters. Most of the existing stud-
ies of these problems only consider instances where the weights are drawn at random
from a uniform distribution. We studied instances generated by drawing the weights
at random from various distributions. In all of the three problems, we found that the
number of strict local optima and the cost of the local search to find the global, vary
greatly (most noticeably in the H1 landscape) between some of the distributions. We
proposed and demonstrated that the use of the CV of the weights, a single parameter
that is easy to calculate and does not require the knowledge of the underlying distribu-
tion of the weights, captures most of this variability. In all the investigated problems,
there is a very strong and negative correlation between the CV and the number of local
optima in the H1 landscape. We continued to see this trend in all the problem sizes
we studied. The average number of local optima in this landscape seemed to be well
approximated by the formula a

ebCV
2n, where a and b depend on the problem and n. We

believe that this phenomenon is particular to the binary packing problems related to
the 0-1 knapsack problem. Interestingly, we did not find any significant difference be-
tween landscapes of strong (0-1QKP) and weak (0-1KP) NP-hard problems. This raises
an important question concerning the difference between strong and weak NP-hard
problems from the point of view of meta-heuristics.

Only the NPP and the subset sum problems, which is a generalisation of the NPP
and a special case of the 0-1KP, have an identified phase transition. The only two prop-
erties that were found to change when the problem crosses the phase transition in these
two problems are the number of global optima (and consequently the probability of
finding the global) and the number of plateaux. The rest of the properties remained
oblivious to the phase transition. This result is in agreement with the results obtained
by Stadler et al. (2003), in which they found that the features of the uniform NPP land-
scape, that have been mapped into barriers trees, are insensitive to the phase transition.
However, recently Ochoa et al. (2017) noted that the global funnel structure of the uni-
form NPP landscape does change with the phase transition. The performance of local
search algorithms was found to be affected by the phase transition in both NPP and
subset sum, where a considerable increase in the cost of locating the global solution
occurs in instances with k > kc, confirming that it is indeed a transition between ”easy-
to-solve” to ”hard-to-solve” for local search algorithms.
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Tayarani-N., M.-H. and Prügel-Bennett, A. (2015c). Quadratic assignment problem: a landscape
analysis. Evolutionary Intelligence, 8(4):165–184.

Whitley, D., Sutton, A., and Howe, A. (2008). Understanding elementary landscapes. In proceed-
ings of the 10th Annual Conference on Genetic and Evolutionary Computation, pages 585–592.

26 Evolutionary Computation Volume x, Number x



Landscape Analysis of Binary Packing Problems

(0,0.3] (0.3,1) [1,2)
0

50

100

CV

%

 

 

H1
H1+2
Tie

(a) NPP, n = 20, k = 0.4

(0,0.3] (0.3,1) [1,2)
0

50

100

CV

%

 

 

H1
H1+2
Tie

(b) NPP, n = 20, k = 1
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(c) NPP, n = 30, k = 1
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(d) NPP, n = 100, k = 1
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(e) Subset sum, n = 20, k =
0.4
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(f) Subset sum, n = 20, k =
1
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(g) Subset sum, n = 30, k =
1
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(h) Subset sum, n = 100,
k = 1
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(i) Multiple strongly corre-
lated, n = 20, k = 0.4
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(j) Multiple strongly corre-
lated, n = 20, k = 1
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(k) Multiple strongly corre-
lated, n = 30, k = 1
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(l) Multiple strongly corre-
lated, n = 100, k = 1
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(m) Profit ceiling, n = 20,
k = 0.4
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(n) Profit ceiling, n = 20,
k = 1
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(o) Profit ceiling, n = 30,
k = 1
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(p) Profit ceiling, n = 100,
k = 1
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(q) 0-1QKP, n = 20, ∆ =0.1
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(r) 0-1QKP, n = 20,
∆ =0.95
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(s) 0-1QKP, n = 30,
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(t) 0-1QKP, n = 50,
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Figure 12: The percentage of instances where each operators performed significantly
better and the percentage where no significance difference was found (Tie). Signifi-
cance determined using Wilcoxon rank-sum (p−value ≤ 0.05). The results are for 600
instances for n = 20 and 500 for n = 30, 50, 100. Starting from the left, the first two
columns show the number of fitness evaluations used to find the global optimum aver-
aged over 30 runs per instance. The remaining two columns show the quality of optima
found with a fixed budget search. The quality of the solution found is averaged over
1000 runs of local search with fixed budget of 105 fitness evaluations.
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