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ABSTRACT

This thesis is an investigation of chimera states in a network of identical coupled phase

oscillators. Chimera states are intriguing phenomena that can occur in systems of coupled

identical phase oscillators, when synchronized and desynchronized oscillators coexist.

We use the Kuramoto model and coupling function of Hansel for a specific system of six

oscillators to prove existence of chimera states.

More precisely, we prove analytically there are chimera states in a small network of

six phase oscillators previously investigated numerically by Ashwin and Burylko [8]. We

can reduce to a two-dimensional system within an invariant subspace, in terms of phase

differences. This system is found to have an integral of motion for a specific choice of

parameters. Using this we prove there is a set of periodic orbits that is a weak chimera.

Moreover, we are able to confirm that there is an infinite number of chimera states at the

special case of parameters, using the weak chimera definition of [8].

We approximate the Poincaré return map for these weak chimera solutions and demon-

strate several results about their stability and bifurcation for nearby parameters. These agree

with numerical path following of the solutions.

We also consider another invariant subspace to reduce the Kuramoto model of six

coupled phase oscillators to a first order differential equation. We analyse this equation

numerically and find regions of attracting chimera states exist within this invariant subspace.

By computing eigenvalues at a nonhyperbolic point for the system of phase differences, we

numerically find there are chimera states in the invariant subspace that are attracting within

full system.
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1
DYNAMICAL SYSTEMS AND COUPLED OSCILLATORS

Neural systems can be thought of as networks of coupled cells, each of which has com-

paratively simple dynamics. This chapter gives some background on dynamical systems

and synchrony in the qualitative dynamics of networks and introduces to the concept of

a chimera state. Section 1.1 introduces types of dynamical system and essential objects in

the study of dynamics. In section 1.2, we introduce briefly literature review about weakly

coupled oscillators. Section 1.3 highlights the first steps for the Kuramoto model, a coupling

function and order parameter. Motivational examples in the study of chimera states and

different definitions for chimeras are presented in Section 1.4. Section 1.5 gives the main mo-

tivation for this work which is to prove existence of such states. Section 1.6 discusses relevant

information from two references [28, 86] and mentions numerical methods that are used to

analyse and simulate solutions. Other background references include [30, 33, 51, 95, 96].

1.1 Qualitative behaviour of ODEs

Differential equations play an important role in the sciences to model dynamic behaviours.

Any phenomenon can be written as a simple model of ODEs that have one or more variables.

These variables vary continuously depending on time [28]. Analytical solutions for some
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CHAPTER 1. DYNAMICAL SYSTEMS AND COUPLED OSCILLATORS

nonlinear ordinary differential equations are often difficult or impossible to determine.

Therefore, since the 1880s, scientists such as Poincaré developed methods to characterize

the qualitative aspects of long term behaviour for a solution of a system rather than the

quantitative analysis. The technique to study the qualitative behaviour of solutions of these

ODEs is called dynamical systems. Two main types of dynamical system are encountered

in applications. In the first type, the time variable is discrete (t ∈ Z or N) and there is a

map that represents function g : Rn → Rn , this map defines a discrete dynamical system

by xn+1 = g (xn) . The set of points {x, g (x), g (g (x)), ..., g n(x)} is the orbit of x under g . A

point x is a fixed point of the discrete system g if g (x) = x. The second type is where time is

continuous (t ∈R) [28]. In this thesis our focus will be on continuous dynamical systems

described as an ordinary differential equation

ẋ = d x

d t
= f (x, t ), x ∈Rn , t ∈R. (1.1)

Such equations are called autonomous differential equations if time does not be written

explicitly on the right hand side of the equation, whereas it is non-autonomous if time

does appear explicitly. Let x(0) = x0 be an initial condition for an autonomous differential

equation. Then a solution with given x0 can be thought as a continuous curve in Rn over

time and it is called integral curve, orbit or trajectory. This solution can be represented in

the space Rn called the phase space of the differential equation. Arrows on the curve (vector

field) represent the direction of increasing time.

The solution curves of (1.1) with the initial condition x0 defined on a phase space give a

flow ϕ(x, t ) which is a continuous function of x and t , ϕ :Rn ×R→Rn such

d

d t
ϕ(x0, t ) = f (ϕ(x0, t )) for all t ∈R,

such that the solution through x0 exists, and ϕ(x0, t ) = x0, at t = 0. This solution x is called

an equilibrium point of the flow iff ϕ(x∗, t ) = x∗ for all t . In such cases, f (x∗) = 0. An orbit

through x is periodic of (minimal) period T > 0 iff the solution x at time t has the same

value at time t +T , (i.e) ϕ(x, t +T ) =ϕ(x, t) for all t , and there is no 0 < s < T that satisfies

ϕ(x, t + s) =ϕ(x, t ). A periodic orbit J is the set of points {y : y =ϕ(x, t ),0 ≤ t < T } which is

16



1.2. WEAKLY COUPLED OSCILLATORS

a curve in phase space. A generalized notion of this is an invariant set. A set M ∈Rn is called

invariant under the flow ϕ(x, t) if for any x ∈ M , we have ϕ(x, t) ∈ M for all t ∈ R. A set is

positive (forward) or negative (backward) invariant if for all x ∈ M ,ϕ(x, t) ∈ M for all t > 0

or t < 0 respectively. That means trajectories beginning in an invariant set, remain in the

invariant set for all t ∈R [28, 95].

We define sets that are useful to understand asymptotic behaviour of a trajectory in a

dynamical system in the long term. Firstly, a point p is called an ω− limit point for x ∈Rn , if

there exists a sequence {tn} with tn →∞ such that ϕ(x, tn) → p as n →∞. Similarly, we can

define an α− limit point with a sequence {tn} and tn →−∞. Then, the ω-(resp. the α) limit

set is the set all ω− (resp. α) limit point of trajectory through x tends p in forward (resp.

backward) time,

Λ+(x) = {p ∈Rn : ∃{tn} with tn →∞ and ϕ(x, tn) → p as n →∞},

Λ−(x) = {p ∈Rn : ∃{sn} with sn →−∞ and ϕ(x, sn) → p as n →∞}.

1.2 Weakly coupled oscillators

The theory of coupled oscillators was pioneered by van der Pol [91, 92] but even before then,

Huygens observed “an odd kind of sympathy” between two pendulum clocks [18]. There are

many biological, chemical and physical motivations to study coupled oscillators. In term of

biological examples, heartbeat models have been studied by van der Pol and van der Mark

[93], and there have been studies on the synchronization of fireflies [99, 100] as coupled

oscillators. Furthermore, the mechanism for the formation of a living organism is regarded

as a fundamental issue in biology, called Morphogenesis. The first systematic theory of

synchronization between biological clocks was presented by Winfree [99, 100], and there are

now many researchers working in this area, for example: [23, 46, 58]. Murray [63] summa-

rized many applications of oscillator techniques to biology. Besides, biological researchers

have used oscillator models to understand the collective motion of fish schooling [70] and

emergent behaviour of animal flocking [34]. On the other hand, Assenza and et al. [12]

focused on social networks and the emergence of structural patterns out of synchronization
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CHAPTER 1. DYNAMICAL SYSTEMS AND COUPLED OSCILLATORS

in systems with competitive interactions. Coupled chemical oscillations were studied by

Kuramoto in [49] and Belousov-Zhabotinsky [36]. Electronic coupled oscillators have also

used the oscillator theory, for example, van der Pol [91] considered relaxation oscillators and

forced oscillators in a circuit with nonlinear resistance [92].

The theory of coupled oscillators can explain a large variety of phenomena in neuro-

science [94]. For example, oscillators play a role in feature binding [83, 90]. It has been

established that phase synchronization is essential in memory processes [24] and the gen-

eration of rhythmic motor output [84]. Meanwhile, serious diseases discussed in neural

oscillations are neurological disorders [61], such as excessive synchronization during seizure

activity in epilepsy, tremor experienced by patients with Parkinson’s disease [89] and cortical

coordination dynamics, and the disorganization syndrome in schizophrenia [16]. Further-

more, many problems in technology [77] concentrate on oscillatory activity and their effect

on the control of external devices in brain-computer interfaces.

The theory of weakly coupled oscillators is well developed. This uses perturbation theory

to investigate the dynamics [40] and reduces the dimension of phase space and allow us to

understand behaviour such as cluster synchronization in coupled oscillators. However, in

the weak coupling limit, certain qualitative dynamics cannot occur, for example, one can

not find “oscillator death” whereby the network action of the oscillations is completely sup-

pressed in one or more oscillators [22]. Hoppensteadt and Izkihevich [40] summarize some

techniques for weakly coupled oscillators and apply them to neural systems. Guckenheimer

and Holmes [33] use the averaging theorem to approximate dynamical systems that have

rapidly varying phases.

1.3 Kuramoto’s model and coupled phase oscillators

A self-sustained oscillator is a dynamical system (1.1) with a stable limit cycle in the phase

space [42]. Let Γ be a continuous function that maps every point on the trajectory of a

limit cycle to point on the unit circle, such that x0 represents θ = 0 and phase is point in

[0,2π) =S1. For an oscillator, we can choose this phase such that the phase has an equation
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1.3. KURAMOTO’S MODEL AND COUPLED PHASE OSCILLATORS

of motion

θ̇ =ω,

where θ̇ represents the rate of change of phase and ω the angular frequency. Note that this

description characterises the oscillator only in terms of phase [99, 100]: the amplitude does

not enter the description [42].

The dynamics of large populations of coupled oscillators have inspired many researchers.

Winfree significantly developed this area [99, 100]. In [47], Kuramoto noticed that dynamical

behaviour of a uniform system may have numerous coupled oscillators that reorganize

themselves with time. Kuramoto [48, 49] introduced a model of self- sustaining oscillators

which explains an interaction between every two phase oscillators in a N−globally coupled

system. This model is described as a non-linear first order differential equation of finite

global coupled phase oscillators,

θ̇i =ωi +
N∑

j=1
g (θ j −θi ), (1.2)

where θi ∈ [0,2π) =T and denotes the phase of the i th oscillator, and N is the total number

of oscillators. The model often considered in the limit N →∞, and the 1/N factor is present

to keep the model well- behaved in this limit, ωi is the natural frequency of the i th oscillator

that is distributed according to a probability density s(ω) (typically symmetric about some

frequencyΩ) and g is called the phase interaction or coupling function. Kuramoto studied

the system (1.2) in the simplest case, where we can write interaction function as

g (θ j −θi ) = K

N
sin(θ j −θi ), (1.3)

where K ≥ 0 is a coupling constant and N is the number of oscillators. Then the system (1.2)

becomes

θ̇i =ωi + K

N

N∑
j=1

sin(θ j −θi ). (1.4)

Noted that the oscillators are identical if ωi = ω, then any small coupling K > 0 leads to

synchronization (phases have the same frequency) [40].

In [100] Winfree suggested visualizing the dynamics of the phases as points in the unit

disk in the complex plane. As a result, the Kuramoto model can be written in terms of a
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CHAPTER 1. DYNAMICAL SYSTEMS AND COUPLED OSCILLATORS

complex order parameter:

r e iψ = 1

N

N∑
j=i

e iθ j , (1.5)

where r (t ) with 0 ≤ r (t ) ≤ 1 measures the coherence of oscillators population, and ψ is the

average phase, see Figure 1.1. We say that the order parameter describes the “mean field” of

the system. The order parameter r is often depicted as an arrow from the center to the point

r e iψ within the unit circle and each oscillator as a point moving around the unit circle. If r is

a small value that corresponds to the system being incoherent (oscillators separate around

the circle), while r = 1 implies the oscillators are in total synchronization ( the oscillators

rotate closer together with the same average phase ψ(t )).

Figure 1.1: Order parameter shows a synchrony relation between phase oscillators θ j by r and
the average phase ψ for (1.5). Reproduced from [87] with permission of the author.

Taking equation (1.5) and multiplying both sides by e−iθi , we get

r e i (ψ−θi ) = 1

N

N∑
j=i

e i (θ j−θi ), (1.6)

and equating imaginary parts, we obtain

r sin(ψ−θi ) = 1

N

N∑
j=1

sin(θ j −θi ). (1.7)

Substituting this into the equation (1.4) we can write it in terms of the order parameter,

θ̇i =ωi +K r sin(ψ−θi ), i = 1,2, ..., N . (1.8)

In this formulation each oscillator is coupled to the common average phase with coupling

strength given by K r . However, the phases θi move independently of each other. As a
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1.3. KURAMOTO’S MODEL AND COUPLED PHASE OSCILLATORS

consequence, the oscillator interacts with the others through the mean field r e iψ. This way

of imaging the moving oscillators around the circle greatly simplifies how we can think about

synchronization. Note that full synchronization corresponds to r = 1.

Sakaguchi and Kuramoto studied interaction between oscillators depending on phase

parameter α [78] by considering the coupling function,

g (φ) =−sin(φ−α). (1.9)

This reduces to (1.3) in the special case α= 0. Hansel, Mato and Meunier [37], inspired by

coupling between neural oscillators, considered the more general interaction function with

two parameters α and r that we consider in this work:

g (φ) = −sin(φ−α)+ r sin(2x)

= cos(φ+β)+ r sin(2x), (1.10)

with parameters r and α (or β). In Chapters four and five, we use β rather than α=π/2−β
because r =β= 0 is an integrable limit [1, 73].

In the limit N →∞, the sum in (1.2) is replaced by an integral, and the order parameter

(1.5) can be written as an integral for infinity many oscillators. If we allow coupling to vary

throughout the population then we can use this to investigate so- called chimera states

[2, 17, 50, 52, 69]. In this work, we do not need to ues the order parameter because we

consider a small network with a fixed number of oscillators [8, 73].

In 2002 Kuramoto and Battogtokh [50] extended the case of the phase oscillator model

with global coupling to finite range nonlocal coupling with distributed natural frequencies

[49, 87]. They brought attention to the fact that whole population of identical phase oscilla-

tors can separate into two groups with of qualitatively different dynamics: one consisting

of synchronized oscillators and the other desynchronized as shown in [50, Figure 1]. They

considered the system:

∂

∂t
φ(x, t ) =ω−

∫ 1

0
G(x −x ′)sin(φ(x, t )−φ(x ′, t )+α)d x ′, (1.11)
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where φ(x, t) is the phase of the oscillator at position x at time t , 0 ≤ x ≤ 1 and a spatial

coupling function or kernel G that varies with the distance.

G(x −x ′) = κ

2
exp(−κ|x −x ′|).

In 2004 [2], Abrams and Strogatz studied the same system (1.11) of nonlocal coupled

oscillators and used with different spatial coupling function function

G(x −x ′) = 1

2π
(1+ A cos(x −x ′)), 0 ≤ A ≤ 1 and −π≤ x ≤π.

This provides nonlocal coupling between the oscillators and allowed them to solve analyti-

cally this system. They named this phenomenon “chimera" because the solution involves

coherent and incoherent domains together which it is regarded as interesting and compli-

cated. They imagined this solution as a chimera which is a mythical Greek monster. This

animal has a lion’s head and a goat’s body and refers to anything with a strange or incredible

shape. They were also able to discover bifurcations where the chimera state was born and

vanishes [2, 3].

In [66] Omel’chenko et al. studied the behaviour of chimeras as a regular macroscopic

pattern in space, with irregular motion in time. They considered a ring of N identical

nonlocally coupled phase oscillators

φ̇i (t ) =ω− 2

N

N∑
j=1

G(xk −xi )sin(φi (t )−φ j (t )+α),

where α ∈ (0,π/2), xi are uniformly distributed of over [−1,1] and every phase has spatial

position xk =−1+2k/N , k = 1,2, ..., N and the spatial coupling function function[97] is

Gstep (x,r ) =


1/(2r ) if |x| ≤ r

0 if |x| > r.

In summary, there are different models of coupled phase oscillators depending on

number of oscillators, coupling strength etc. These ideas for designing models make them

more flexible to analyse and richly informative. This has motivated many studies of coupled

systems in a wide range of disciplines.
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1.4 Other examples of chimera states for phase oscillator

systems

Dynamical states where coherence (synchrony) and incoherence (asynchrony) occur at

the same time have been found in a wide variety of contexts [19, 44, 81, 82, 102]. Since

their original discovery in coupled phase oscillators [50] and being named “chimeras” by

Abrams and Strogatz [3], non-local interactions were originally regarded as essential for

chimeras to emerge [32, 67]. However, chimera states have been found for systems with

global coupling [65, 76, 79, 80], mean-field coupling [13] and even local coupling [14, 54].

Wolfrum and Omelchenko examined the detailed dynamical properties of chimera states in

small populations of coupled phase oscillators [101]. However, exact solutions for chimera

state have, in general, only been found at a population level [1]. There are a wide range of

applications including chemical oscillations [49, 88], electronic circuits [26, 79], mechanical

oscillators [60], brain dynamics [55] and optical experiments [35].

Recently, chimera states in a network of planar oscillators have been analysed by Laing

[53]. His analysis uses amplitude and phase. In addition, chimera states have been analysed

on the sphere surface. This analysis involves a demonstration of the existence of two distinct

types of chimera states spot and spiral in a network of identical coupled oscillators [72].

Whether a particular system state is a chimera depends critically on the definition of coher-

ence and incoherence. A particular approach was introduced by Ashwin and Burylko [8]

who define a weak chimera as a type of invariant set with partial frequency synchronization.

They showed (a) globally coupled identical phase oscillators cannot have weak chimera

states and (b) there can be weak chimera state in some small networks of identical phase

oscillators.

1.4.1 Definitions of a chimera state

Chimera states have been described in various ways. For example, the first definition was

“an array of identical oscillators splits into two domains: one coherent and phase locked,

the other incoherent and desynchronized” [2]. Another definition was “a chimera state
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is a spatiotemporal pattern in which a network of identical coupled oscillators exhibits

coexisting regions of synchronous and synchronous oscillation” [72]. A further definition

is that “chimera states occur in a spatially homogeneous system, as regions of irregular

incoherent motion coexist with regular synchronized motion, forming a self-organized

pattern in a population of non locally coupled oscillators” [101]. In yet another paper, Laing

inserted that “chimera states occur in networks of coupled oscillators, and are characterized

by having some fraction of the oscillators perfectly synchronized, while the remainder is

desynchronized” [53]. This motivated a precise definition of Ashwin and Burylko [8] that we

give in Definition 3.1.

1.5 Motivation of this work

Since the start of study of coupled oscillators, numerical methods have played a crucial

role in understanding the dynamics of networks and finding chimera states in dynamical

networks. In most cases, chimera states have been found numerically for large numbers of

oscillators [50, 53, 87]. Ashwin and Burylko [8] focused on a small number of oscillators and

have numerically shown that there is a weak chimera state for the six oscillator system we

study here. The motivation of this work is to give a rigorous proof of the existence of a weak

chimera solution in this network and to study bifurcations of this chimera.

1.6 Essential concepts from dynamics

In the theory of nonlinear dynamical systems, there are essential concepts used to describe

their properties and behaviour [28, 51, 57, 86, 95]. In order to introduce mathematical

definitions of stability concepts, we consider the differential equation (1.1).

A point x for (1.1) is Liapounov stable or stable iff for all ε> 0 and y ∈ Rn ; there exists

δ > 0 such that if |ϕ(x, t0)−ϕ(y, t0)| < δ then |ϕ(x, t)−ϕ(y, t)| < ε for all t ≥ t0, t0 ∈ R. This

point is quasi-asymptotically stable iff there exists δ> 0 such that if |ϕ(x, t0)−ϕ(y, t0)| < δ
then |ϕ(x, t)−ϕ(y, t)| converges to 0 as t goes to ∞. Finally, it is asymptotically stable or
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attracting iff it satisfies both Liapounov stable and quasi-asymptotically stable [28]. When

an equilibrium is Liapounov stable but not attracting it is called neutrally stable [86].

We now relate linear stability and asymptotic stability of nonlinear systems [57, 86].

Linearization about an equilibrium point x∗ is a fundamental technique that is followed to

analyse the nature of solutions for a nonlinear system close to this point. This follows from a

study of the Taylor expansion for (1.1) around the equilibrium x∗. Let x = x∗+ξ, then we

can use Taylor expansion to write

ξ̇= f (x∗+ξ) = f (x∗)+D f (x∗)ξ+O(|ξ|2),

where O(|ξ|2) refers quadratic terms which are very small when ξ is small. Consequently,

since x∗ is an equilibrium then f (x∗) = 0, hence

ξ̇= D f (x∗)ξ+O(|ξ|2), (1.12)

where D f (x∗) is the Jacobian matrix at an equilibrium point that is a matrix of partial

derivatives of f [86]. Note that

ξ̇= D f (x∗)ξ,

is called the Linearization at a fixed point, and we can get information about the stability of

the original system (1.1) by looking at how the perturbation grows or decays as time goes

on. For example, if all eigenvalues are λi > 0 or λi < 0 ( where λi are eigenvalues of D f (x∗)),

then the perturbation ξ(t ) grows or decays exponentially [86]. Now, we briefly state stability

for periodic orbits.

If J is a periodic orbit for period T of (1.1) and y ∈Rn on the J , thenϕ(x,T ) = y . Hence,

we can use the notation of the distance between a point and a set to define a neighbourhood

N (J ,ε) of the periodic orbit J is

N (J ,ε) = {x ∈Rn : |x − y | < ε for some y ∈J }.

A periodic orbit J is Liapounov orbitally stable if for all ε> 0 there exists δ> 0 such that

if |ϕ(x, t0)−ϕ(y, t0)| < δ then ϕ(x, t) ∈ N (J ,ε) for all t ≥ t0. Also, it is asymptotic orbitally

stable if it is Liapounov orbitally stable and there exists δ> 0 such that if x ∈ N (J ,δ) then

d(ϕ(x, t ),J ) → 0 as t →∞ [28, 95].
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1.6.1 Hyperbolic invariant sets and structural stability

An equilibrium x∗ of (1.1) is hyperbolic for a vector field (resp. map) iff D f (x∗) has no

eigenvalues with zero real parts (resp. has no multipliers on the unit circle) [28, 95]. If x∗ is

hyperbolic then it is persistent under sufficiently small perturbations of (1.1).

Initially, we concentrate on classification of hyperbolic solutions for an equilibrium.

Suppose that x∗ is a hyperbolic equilibrium point. Then x∗ is a sink or stable node if all

eigenvalues of D f (x∗) have strictly negative real part and a source or unstable node if all

eigenvalues of D f (x∗) have strictly positive real part. Otherwise, x∗ is a saddle point, i,e.

if some, but not all, of the eigenvalues have positive and negative real part. Finally, if the

eigenvalues of linearization are purely imaginary, then x∗ is the non-hyperbolic point and

called a center [95]. A periodic orbit J with minimal period T is a hyperbolic periodic

orbit if one Floquet multiplier for the periodic orbit has modulus one and the remaining

Floquet multipliers [28] do not have modulus one.

The neighbourhood of flows with a hyperbolic equilibrium will have a similar nearby

hyperbolic equilibrium: we say the equilibrium persists. However a nonhyperbolic equilib-

rium is not persistent under a small perturbation of the vector field. As a consequence, there

is a topological equivalence between the flow near a hyperbolic fixed point of a nonlinear

system and the linearization. This is expressed in the next theorem:

Theorem 1.1. [28, Theorem 4.9] If x∗ is a hyperbolic equilibrium point for (1.1) then on

some neighbourhood of this hyperbolic point there is a continuous invertible map H which

takes orbits of the nonlinear flow onto orbits of the linearized flow e(tD f (x∗)) and preserves the

direction of flow on these orbits.

An equilibrium is said to be structurally stable if the topology of nearby orbits does

not change under an arbitrarily small C 1 perturbation of the system. Note that hyperbolic

equilibria are structurally stable, while orbits nonhyperbolic equilibria such as centres can

change considerably even for arbitrarily small perturbations [57, 95].
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1.6.2 Bifurcation theory

Consider a first-order autonomous differential equation with one parameter as,

ẋ = f (x,µ), (1.13)

where x ∈Rn and µ ∈R is a real parameter. The qualitative behaviour orbits of the flow can

change owing to variations in the value of a parameter µ. These behavioural changes of

the dynamics are called bifurcations, and a parameter value at which they occur is called

a bifurcation point. Formally, bifurcation theory is the study of the qualitative changes

that occur close to non-hyperbolic solutions of a dynamical system as a result of varying

the parameters [28]. There are many ways of understanding possible changes that occur

in differential equations, ranging from an analytic description to a topological feature of

a vector field, for example, the number of equilibrium points or periodic orbits. In this

section, we review some simple techniques to describe bifurcations of an equilibrium point

and limit cycle in a continuous and discrete dynamic. The theory for bifurcations of fixed

points of maps is very similar to the theory for vector fields. Therefore, we will not include

as much detail about bifurcations of fixed points but merely highlight the differences when

they occur.

Figure 1.2: Three sketches represent phase portraits of homoclinic bifurcation of a planar
system. Before this bifurcation when µ<µ0, the blue curve shows a stable periodic orbit and
the red/ green points correspond to unstable focus and saddle point respectively (Panel (A)).
The homoclinic bifurcation happens when a stable periodic orbit hits the green saddle point
and vanishes at µ=µ0: there is a trajectory that begins and ends at the same point (the green
saddle point)in Panel (B). The right panel shows a phase portrait after this bifurcation, there
is a trajectory that connects between the green saddle point and the unstable red focus point
when µ>µ0.
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1.6.3 Types of bifurcation

Bifurcations may involve equilibria, periodic orbits or both of them at the same time. The

information in this subsection can be found in many references, for example, [28, 51, 86,

95]. Bifurcation involving only equilibria occur at non hyperbolic points (x0,µ0), where

the Jacobian matrix has eigenvalues with zero real part at this point. The most common

bifurcation is a saddle node bifurcation, where two equilibria (one is a stable node, and

another is the saddle ) collide to create a linearly degenerate point before they vanish

as the parameter is varied. Another type of bifurcation is a transcritical in which two

equilibria exist at all nearby parameters except at the bifurcation point where they come

together. It occurs when two points (stable and unstable) swap their stability as a parameter

is varied. Finally, a pitchfork bifurcation can be found in the presence of symmetries. In

this bifurcation, the number of equilibria changes from one to three. There are two different

types of pitchfork bifurcation; a supercritical bifurcation in which there are stable branches

on both sides of the bifurcation, and a subcritical bifurcation where there are unstable

equilibria on both sides of the bifurcation.

Another type of a local bifurcation involves both an equilibrium and a limit cycle. The

Andronov-Hopf bifurcation for a vector field occurs when an equilibrium has a pair of

complex conjugate eigenvalues of D f (x,µ) that pass through the imaginary axis. Then the

equilibrium switches its stability, and a periodic solution appears. Similar to the pitchfork

there are two types: supercritical and subcritical Hopf bifurcation depending on branch

stabilities. A Saddle node bifurcation of periodic orbits involves two limit cycles. As a

parameter is varied, the limit cycles coalesce and create half stable limit cycle then annihilate.

The change in stability of limit cycle is associated with the appearance of two similar limit

cycles. A bifurcation that involves three limit cycles coming together and forming one limit

cycle is called a pitchfork bifurcation of periodic orbits.
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1.6.4 Global bifurcation theory

The previous subsection considers only bifurcations with changes near an equilibrium point

or a periodic orbit. There are however other bifurcations that can create large periodic

solutions and that are not reducible to a local analysis.

An interesting example of such bifurcations involve saddle connections. Bifurcations

of a Homoclinic orbit occur if there is a connection of trajectory to a saddle point (an

orbit ϕ(x, t) → x0 as t →∓∞) where x0 is an equilibrium of the flow. Shown in Figure 1.2,

this bifurcation occurs at a parameter µ0 in the two dimensional phase space. Homoclinic

bifurcation reveals changes to the invariant sets as a parameter is varied. Letµbe a parameter

such that for µ > µ0 there are three objects: an unstable focus (the red point) inside a

stable periodic orbit (blue curve) that closed to a saddle point (the green point) outside the

periodic orbit (see Figure 1.2(A)). This saddle point has two branches (stable and unstable

manifolds) as sketched in (A). At µ= µ0, a homoclinic orbit is created at a collision of the

limit cycle with the saddle, and the branches (stable and unstable manifold) of the saddle

point are connected together (Figure 1.2(B)). A small perturbation of the system can destroy

a homoclinic orbit because it is structurally unstable according to Peixoto’s [28, Theorem

4.13] that happen at µ<µ0 as sketched in Figure 1.2(C).

More complex global bifurcations are associated with a heteroclinic path in phase space

which joins different hyperbolic equilibrium points. If a trajectory connects one saddle

point to another or saddle to itself is called saddle connection, for example, if x0 and y0 are

saddle points then the flow ϕ(x, t ) → x0 as t →∞ and ϕ(x, t ) → y0 as t →−∞, [51].

1.6.5 Chain recurrent and invariant sets

Recurrence is a topological property of objects in the dynamical system. It describes aspects

of the eventual dynamical behaviour of the orbits of a map or flow. Both equilibria and

periodic orbits display recurrence in the sense that they return to their initial condition

infinitely often. There are different possible definitions for the recurrence according to

type of a flow. In [4], Alongi and Nelson discussed six types of recurrence and relate their
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properties. In this thesis, we consider the following chain recurrence.

Definition 1.1. [4, Definition 2.7.1] Suppose x, y ∈ X and ε,T > 0, and ϕ(x, t) is a flow on a

metric space (X , q). We say there is (ε,T )−chain from x to y with respect to ϕ(x, t ), if there is a

finite subset x = x0, x1, ..., xn−1, xn , yn = y of X and ti ∈ [T,∞), i = 0,1,2, ..,n such that

q(ϕ(xi , ti ), yi ) < ε for i = 1,2, ...,n −1, and xi+1 = yi .

Note that, the above definition is for forward time. Moreover, this chain is automatically

considered as an (ε,T )−chain from y to x for the time reversed flow. Under the same a

flow ϕt and metric q , we define three important notions that depend on a direction of the

flow [4, 10]. Firstly, forward chain limit set Ω+ of x is the set all y ∈ X such that there is

an (ε,T )−chain from x to y for the flow ϕ+t for all ε and T > 0. Also, for the reversed time,

backward chain limit setΩ− of x is the set all y ∈ X such that there is an (ε,T )−chain from x

to y for the flow ϕ−t for all ε and T > 0. Additionally, there is an equivalent relation between

x and y such that x, y ∈ X , if there is two forward chain limit setsΩ+(x) andΩ+(y) for (resp.

x, y), then these points are chain equivalent ∼ if x ∈Ω+(y) and y ∈Ω+(x). We can say x ∈ X

is chain recurrent point if x ∼ x. The set of all chain recurrent points of ϕt is called chain

recurrent set. We use this in our definition of a weak chimera in chapter three.

1.6.6 Poincaré section

The French mathematician Henri Poincaré (1854-1912) set up a connection between contin-

uous system and its discrete dynamics. Poincaré section allows one to study maps induced

by a flow [57] in a natural way. We will use this technique in Chapter five. Consider differen-

tial equation (1.1), and suppose that there are a periodic orbit J and a point x0 ∈J . The

aim from this method reduces the n-dimensional phase space into a (n −1)− dimensional

surface. Then, it is possible to find surface of a local cross-section Σ⊂Rn of dimension n −1

called a Poincaré section. It intersects transversely the orbit J at x0. A trajectory starting at

x0 ∈Σ returns to the same point x0. Nearby points also return nearby at the first return. We

represent this process as a map P . Suppose x0 has a sufficiently small neighbourhood U in
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Σ and define the map P : U →Σ by,

P (x) =ϕ(x,τ(x)),

where φ(x,τ(x)) ∈Σ, φ(x,T ) ∉Σ for 0 < T < τ(x), τ(x) is the time of first return of point x to

the section Σ. This map P is called the first return map or Poincaré map [28, 95]. The fixed

point x0 of Poincaré map satisfies P (x0) = x0 which correspond to periodic orbit for (1.1).

1.6.7 Numerical simulation continuation and bifurcation analysis

Generally, a mathematical model of a dynamical system involves two quantities: phase

space variables and parameters that change the behaviour of a dynamical system. For

example, the Kuramoto model with the coupling function is a nonlinear dynamical system

(1.10) with two parameters α and r . Such systems are often difficult to solve analytically,

even if we restrict to equilibria. Therefore, numerical methods are an important technique

to approximate solutions by numerical integration. There are many packages that can be

used to numerically approximate solutions, plot phase portrait and time series.

An algorithm to find equilibria or periodic solutions and examine how they change over

a range of values for parameters is called numerical continuation. This method involves

calculating the stability of equilibrium points or limit cycles for a solution when parameters

are varied. Numerical continuation deals with a nonlinear system has the similar form of

(1.13) such that f (y,µ) = 0, and choosing an observable F : Rn → R, F (x) = y , where we

plot the bifurcation diagram with coordinates (y,µ) [51]. This diagram displays qualitative

information about ODE at every value of a parameter, where y become as a function of µ.

Also, it has equilibria curve that its points satisfy f (y,µ) = 0.

Several continuation software packages have been developed to support the analysis of

bifurcation, for example, MATCONT, AUTO, XPPAUT. In addition, the lectures [20] explain

numerical methods that are used in these packages software. Several books [21, 68] pro-

vide theory and practical examples of continuation. In this thesis, we use XPPAUT to plot

bifurcation diagrams and MATLAB and MAPLE for simulations for the model.

31



CHAPTER 1. DYNAMICAL SYSTEMS AND COUPLED OSCILLATORS

1.7 Outline

This thesis is organized into seven chapters. This chapter describes briefly some essential

background for this work. We introduce some notions and definitions for dynamical sys-

tems, such as local and global bifurcations. A literature review is presented about weakly

coupled oscillators chimeras, the Kuramoto model and coupling function. We mention

some examples and definitions for chimera states. We use the Poincaré section to explain

the connection between continuous and discrete dynamics. Also, we refer to some methods

used to simulate and analyse results of this work.

Chapter two gives some background information beginning with a description of sym-

metry groups, isotropy subgroups and fixed point subspaces. We consider equivariance

which is a property of a dynamical system that means the elements of group commute with a

nonlinear vector field. This chapter highlights two approaches to find invariant subspaces in

coupled systems. The first one uses isotropy subgroups to get a flow invariant subspace and

the second considers balance colourings to get a flow invariant subspace. These balanced

colourings may be not associated with any symmetry in which case we call the balanced

colouring exotic. We consider exotic invariant subspace to find chimaera states in the next

chapter.

Chapter 3 concentrates on bifurcations of chimera states for a system of six coupled

phase oscillators studied in [8]. The chapter starts with some background on the existence

of chimera states. Then, we use invariant subspaces to reduce the system of six coupled

oscillators to a planar system. We also present a numerical bifurcation analysis of the

chimera in this system. To do this, we use the numerical continuation to plot bifurcation

diagrams and study stability.

Chapter 4 is restricted to find chimera states for a particular value of the parameters. We

use an analytical approach to prove that there is an integral of the motion of this system

of coupled phase oscillators when coupled parameters β and r equal zero. We prove some

lemmas to describe the motion of flow. Finally, the main topic for this chapter is to prove

that there is an infinite number of chimera states for this system when there is an integral of

the motion.
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The analysis of chimera states is extended in chapter 5 for the two parameters β and r

away from zero. We translate the parameters to the original to study stability and bifurcation

numerically for a chimera with sufficiently small parameters. In our study, the function of

the first return map is constructed to approximate chimera states near the integral motion.

Firstly, we use the Poincare map to find analytically chimera states at specific of level curve

and parameters. Then, the numerical integral is employed to prove approximately chimera

states. We find this result for various values of parameters that have a remarkable effect on

the number of chimeras. Also, this chapter introduces comparing between this approximate

findings and continuation results in chapter three to reveal the similarities between values

of bifurcation points for both methods.

In chapter 6, we consider another invariant subspace A6 to prove the existence of chimera

states by using numerical simulation. This subspace was suggested by Yuri Maistrenko (pers.

comm). We rewrite the system of six coupled phase oscillators within A6. Then, a reduction

of this system is by phase differences to get an ODE as a flow on a circle. The discussion

of dynamical of this equation help us to determine regions where chimera states exist.

Rewriting the full system of six oscillators in term of phase differences allows us to study the

dynamics near this bifurcation point. The sign of eigenvalues provides information about

the stability of the bifurcating solutions in A6. We find numerically there are chimera states

within A6 that are stable in the full system.

In chapter 7, we summarise our work and present a brief review of the primary results

and some possible future works. Some appendices include MAPLE code is used to solve an

integral equation for the chapter 5.

Note 1. The material in chapters 4 and 5 is under revision for publication in a journal, under

the title “Existence and stability of chimera states in a minimal system of phase oscillators”.
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SYMMETRIES AND THE DYNAMICS OF COUPLED SYSTEMS

We consider dynamical systems that consist of a number of simple systems coupled to-

gether as a network. Symmetries are of great interest in applications and impose interesting

structures on the dynamics of such coupled systems. In the particular case of symmetri-

cally coupled systems, there are flow invariant subspaces that can be characterized by the

symmetries. Note, these flow invariant subspaces constrain and provide a framework to

understand the dynamics. In 1992 Ashwin and Swift [11] introduced a strategy for symmetri-

cally coupled oscillators to find flow-invariant subspaces by characterizing their isotropy

subgroups and fixed-point subspaces. Later, Antoneli and Stewart [5] noticed that flow

invariant subspaces can also arise from balanced colouring for the network that are not

fixed-point space colourings and these called exotic balanced colourings. We introduce

both methods in this chapter.

A dynamical system has a symmetry if the structure of a system of ODEs is unchanged

under some transformations of the variables. The set of transformations form a group [30].

Therefore section 2.1 states some background about transformation under composition

groups and group representation. Section 2.2 discusses some tools for symmetries in the

system. We introduce coupled phase oscillators as a normal form for coupled oscillators

and discuss spatio-temporal symmetries for different groups in section 2.3. Finally, section
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2.4 uses symmetries in a network to explain the relation between symmetry and synchrony.

2.1 Group and representation theory

Representation theory [25, 43] studies the action of a group on a vector space. Here, we

concentrate on specific aspects of this theory that can be used to study the symmetry prop-

erties of a dynamical system [29, 30]. The map f : G → H is called a group homomorphism

between groups (G , ·) and (H ,∗) if f (a ·b) = f (a)∗ f (b) for all a,b ∈G . This map is called a

group isomorphism, if it is a homomorphism and bijective. Note that if there is an isomor-

phism between the groups (G , ·) and (H ,∗), we say that (G , ·) and (H ,∗) are isomorphic and

write (G , ·) ∼= (H ,∗).

Many interesting examples of groups are transformation groups. Let V be a vector space

over R or C. A general linear group GL(V ) over V is the group of all the invertible linear

transformations of V [27]. If V = Rn then we say that GLn(R) is a general linear group of

dimension n over the field R. Any matrix group on Rn is a subgroup of GLn(R). We will

concentrate on compact Lie groups Γwhich have the structure of a differentiable manifold

and can be thought of as closed subgroups of GLn(R). Compact Lie groups can be classified

as: continuous or finite. The main finite groups [27, 29, 75] that we shall consider the

following:

1. A group G is called cyclic of order n ∈ N if there exists an element g belonging to G

such that G = 〈g 〉 = {e, g , g 2, ..., g n−1 : g n = e}. The element g is called a generator of

the cyclic group because every element in the group can be written as a power of g .

This group is represented by the symbol Zn . Note that this is isomorphic to the group

of rotation by multiples of 2π
n about the origin on the plane.

2. The full permutation group of any finite set A is called the symmetry group or per-

mutation group of A, and it is represented by the symbol S(A). In the special case

A = {1,2, ..n}, we write Sn = S(A) and note the number of elements of Sn is n!.
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3. For every positive integer n ≥ 3, the regular polygon with n sides has a group of sym-

metries, called Dihedral group, which is generated by two elementsσ (rotation) and τ

(reflection). This group is denoted by Dn such that Dn = {e,σ, ...,σn−1,τ,στ, ...,σn−1τ :

τ2 = e,σn = e and στ = τn−1σ}. Note that if n ≥ 3 then Dn is not a commutative or

cyclic group. Dn has order 2n, and the group is isomorphic to rotations and reflections

in the plane that preserve a regular n − g on.

Some examples of compact Lie continuous groups [27] are:

1. Recall that an n ×n matrix B is called orthogonal in Rn if it is invertible and B−1 = B T

or (BB T = I ). These matrices form a subgroup of the group of GLn(R), called the

orthogonal group and denoted O(n).

2. A special orthogonal group, SO(n) consists of all orthogonal matrices with determi-

nant +1. Note dim(SO(n)) = n −1. When n = 2, the special orthogonal group SO(2)

consists of counterclockwise rotations about the origin,

B =
cosθ −sinθ

sinθ cosθ


in the plane, and is isomorphic to S1 =T1.

3. The n-dimensional torus is Tn = (S1)n , such that Tn = {(θ1,θ2, ...,θn) : θi ∈ S1, i =
1,2, ...,n} . This acts on Cn by the diagonal matrix,

B =


e iθ1 0 . . . 0

...
...

. . .
...

0 0 . . . e iθn


which can be seen as an action on R2n .

We are interested in how these groups act as a linear transformation on a vector field. A

linear action of a compact Lie group Γ on the vector space V is a smooth homomorphism

ρ : Γ→GL(V ) [29]. If we define γ.v = ρ(γ).v for γ ∈ Γ, then ρ is a homomorphism under

the following conditions:
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1. (γδ)v = γ(δv), for all γ, δ ∈ Γ and v ∈V.

2. ev = v where e is the identity element of Γ, for all v ∈V.

Note that the group ρ(Γ) is a group of matrices and a subgroup of GL(V ).

Equivalence relations play an important role in group theory. A relation ∼ on a set A is

called an equivalence relation if its elements satisfy three conditions, reflexive, symmetric

and transitive [27]. A particular example is called the conjugacy relation. For a,b ∈G we say

that a ∼ b or a is conjugate to b in G , if there exists an element x ∈G such that b = xax−1.

It partitions any group into classes called conjugacy classes, such that if a ∈ G then the

conjugacy class of a is [a] = {x ∈G : x ∼ a} [38].

2.2 Symmetries of dynamical systems

Golubitsky et al. [30] summarized ways to utilize group theory for analysing the bifurcation

of ordinary differential equations with symmetry. Approximate symmetries can be seen

in many natural phenomena and so they are often present in mathematical models. Once

we obtain general results for arbitrary symmetries, they are then also applicable to other

phenomenon. Moreover, they noted that bifurcation for a system with symmetry can be

quite different to bifurcations for a system without symmetry. Golubitsky et al. gave some

observations and definitions to study symmetry that will be stated here briefly. As in (1.1)

suppose that
d x

d t
= f (x), (2.1)

is a system of ODEs for x ∈ Rn , where f : Rn → Rn is smooth, and let Γ be a group acting

linearly on Rn . If

f (γx) = γ f (x),

for all x ∈ Rn and γ ∈ Γ, then we say Γ is the symmetry group for (2.1) and this system

is called Γ−equivariant. This means that the nonlinear vector field f commutes with the

linear action of Γ. One consequence is that if x(t) is a solution for (2.1) then so is γx(t).

We can apply this notion to a steady-state solution. If x(t) = x0 is an equilibrium point for
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(2.1) then there are two possibilities. Firstly, if γx0 6= x0, there γx0 is a new equilibrium point.

Secondly, if γx0 = x0, then γ is a symmetry of the equilibrium [30].

A similar result can be observed for a periodic solution. If x(t ) is a T−periodic solution

of (2.1) then γx(t ) is also a periodic solution. Hence, either there is a new periodic solution

due to the trajectories of x(t ) and γx(t ) being separated or we can say that these trajectories

are identical, meaning that x(t ) and γx(t ) are different because of a phase shift, that is

x(t ) = γx(t − t0) for some t0 ∈ (0,T ).

As a result, a symmetry of periodic solution x(t) is the pair (γ, t0) which has both a spatial

component γ and a temporal component t0, that will be stated later.

Although [30] consider symmetries of ODEs on Rn , it is possible to generalize this to

ODEs on a manifold M . In this case, the symmetry of elements belonging to manifold

M is expressed as the actions γ of group Γ acts on a manifold M. The set of all elements

γ ∈ Γ that leaves x ∈ M invariant is called an isotropy subgroup Σx of x. Thus, for any

x ∈ M , we can define Σx = {γ ∈ Γ : γx = x}. Note that the isotropy subgroup is defined for

any point x ∈ M , whether or not it is an equilibrium. Similarly, the set of points in M that

are invariant under the action of Σ⊆ Γ is called a fixed point subspace Fix(Σ) of Σ. That is

Fix(Σ) = {x ∈ M : γx = x for all γ ∈Σ}.

If x ∈ Fix(Σ), then Σ≤Σx , which means that the isotropy of the points in Fix(Σ) can be

larger thanΣ [29]. Note that the action of the group has no effect on the fixed-point subspace

of that group. The set Or b(x) = {γx : γ ∈ Γ} refers to all images of an element x ∈ M under

the action of Γ. This set is the group orbit of the action of Γ on x ∈ M . The following lemma

compares the isotropy subgroups of points on the same orbit.

Lemma 2.1. [30, Lemma 1.1] There are conjugate isotropy subgroups for all points on the

same group orbit of Γ. More precisely, for any x ∈ M and γ ∈ Γ then,

Σγx = γΣxγ
−1.

Lemma 2.2. [29, Theorem 1.17] Let f :Rn →Rn be Γ−equivariant and Σ⊂ Γ be a subgroup.

Then

f (F i x(Σ)) ⊂ F i x(Σ).
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Proof. Let v ∈Rn and σ ∈Σ. Then σv = v implies that

σ f (v) = f (σv) = f (v), so that f (v) ∈ F i x(Σ). �

The above lemma implies that the fixed-point spaces Fix(Σ) are flow-invariant for any

Γ−equivariant system.

2.3 Oscillators and reduction normal form

An oscillator [11] is a dynamical system that has an asymptotically stable limit cycle {γ(t )}

and is described by an ODE:

ẋ = g (x,λ), (2.2)

where x ∈ X is the phase space of the oscillator, and λ ∈R is a parameter.

Definition 2.1. [11, Definition 2.2] A network of weakly coupled identical oscillators C k is

a dynamical system corresponding to an ODE that has two parameters λ and ε and is formed

as:

ẋ = f (x,λ,ε), (2.3)

where x = (x1, x2, ..., xn) ∈ X n is the phase space variable, λ ∈R is the bifurcation parameter

and ε ∈R is the coupling interaction parameter. We assume :

• f is jointly C k in x,λ, and ε.

• f (x,λ,0) = (g (x1,λ), g (x2,λ), ..., g (xn ,λ)) for some g on X n that is an identical oscillator

with limit cycle {γ(t )} in each of the components.

We can deduce from the definition that if ε= 0 then the oscillators are uncoupled. This

means that, for (2.2), each system has an asymptotically stable limit cycle (i.e. trajectories

within a sufficiently close neighbourhood of each xi ∈ γ(t) is attracted to the limit cycle

for all t > 0). Because the limit cycle is regarded as a 1−torus, then x = (x1, x2, ...xn) will

be attracted to an n−torus defined by {xi = γ(t +θi ) : Θ ∈ Tn}, where Θ = (θ1,θ2, ...,θn) is

defined as the coordinate of n-dimensional system for ε= 0 on the invariant n−torus.
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If ε is small enough then normal hyperbolicity [39, 40] implies persistence of the n−torus

as an asymptotically attracting invariant manifold. More precisely, for ε = 0, all periodic

solutions with period 2π (identical oscillators) have n Floquet multipliers which are equal to

one (neutrally stable), and the rest of the multipliers are within the unit circle (by assump-

tion). We note from [40, Theorem 4.1] that the torus is persistent under sufficiently small

perturbation.

The equation (2.3) is Γ−equivariant if f commutes with Γ < Sn on a system which is

described as (x1, x2, ..., xn ,ε) → (xσ(1), xσ(2), ..., xσ(n),ε) for all σ ∈ Γ,

This means that we can reduce a Γ−equivariant network of weakly coupled systems (2.3)

such that each uncoupled system equation ε= 0 has a stable limit cycle flow generated by

[40, Theorem 9.1],

Θ̇= 1+εF (Θ,λ)+O(ε2), (2.4)

where F is Γ−equivariant and C k−1 on the n−torus that represents the dynamics of the

equation (2.3) in phase coordinates. Ashwin and Swift [11] used averaging to introduce

an extra symmetry and so approximate the right hand side of the system as follows [40,

Theorem 9.4].

Definition 2.2. [11, Definition 2.4] Let the average of the function F over one period be

G(Θ,λ) = 1

2π

∫ 2π

0
F (Θ+ t1,λ) d t . (2.5)

Then the averaged system obtained from Equation (2.4) is

Θ̇= 1+εG(Θ,λ)+O(ε2). (2.6)

For ε¿ 1, the dynamics of the equation (2.4) can be shown to be ε−close to those of

equation (2.6) for time of order O(ε−1) [62]. The next theorem proves that the new system

(2.6) has an additional symmetry to (2.4), namely it is invariant under the action of T1 given

by

θi 7→ θi +ϕ for ϕ ∈T1.

Theorem 2.3. If θi (t) ∈ [0,2π)N , i = 1,2,3, ...,n is a solution for system (2.6), then θi (t)+ϕ,

(ϕ ∈ [0,2π) is a constant) is also a solution.
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Theorem 2.3 implies that after the system is reduced to (2.6), we have Γ×T1-equivariant

flow on Tn , or equivalently a Γ-equivariant flow on the phase differences Tn−1.

2.3.1 Spatio-temporal symmetries oscillators network

We summarize a framework for analysis of arbitrary symmetric networks of weakly coupled

oscillators [11]. By using the symmetry of the networks, Ashwin and Swift found dynamically

invariant regions in the phase space which exist only due to spatial-temporal symmetry.

Here, we discuss some definitions and results from [11].

The system (2.6) can be written as n phase equations

θ̇i = 1+εGi (Θ,λ), i = 1,2, ...,n, (2.7)

which is assumed equivariant under the action of Γ×T1 onTn defined by [(σ,ω)(z)]i =ωzσ(i )

for all i , any (σ,ω) ∈ Γ×T1 and z j = e iθ j . This action has many different fixed point subspaces

that are one-dimensional (i.e. they have a maximal isotropy) and there is no point that is

fixed by all elements of this action. Also, this action has spatial and temporal symmetry,

suppose Γ is a subgroup of Sn . The spatial projection πs on Γ is an isomorphism [30] when

restricted to any isotropy subgroup Σ < Γ×T1, defined by πs(Σ) = {σ : (σ,ω) ∈ Σ} for any

Σ⊆ Γ×T1. Note that two elements of Σ are the same if they have the same spatial symmetry.

Then, we can write any element belongs to an isotropy subgroup Σ < Γ×T1 as (σ,ω(σ)),

with σ ∈πs(Σ) [11, Definition 3.1]. The temporal symmetry πt on T1 is a homomorphism.

If πt (Σ) is nontrivial, we call Σ a twisted isotropy subgroup [30, p300]. Also, Ashwin and

Swift showed that the image of a temporal projection for any isotropy subgroup must have

order m dividing the number of oscillators n in the network [11, Lemma 3.1]. In the next

subsection, we introduce the isotropy structure of Sn ×T1- equivariant ODE on Tn using

[11].

2.3.2 The isotropy subgroups Sn ×T1

There is a one-to-one correspondence between conjugacy classes of isotropy subgroups

and different ways of writing n = m(k1 +k2 + ...+k`), where `,m and k j are integers, with
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k1 ≥ k2 ≥ ... ≥ k` ≥ 1, as shown in [11].

Theorem 2.4. [11, Theorem 3.1] Every isotropy subgroup of Sn×T1 is conjugate to a subgroup

of the form Σk ,m which is defined as :

(Sk1 ×Sk2 × ...×Sk`)m ⊗Zm , (2.8)

where n = mk and k = k1+k2+...+k`. The fixed point subspace F i x(Σk ,m) is an `−dimensional

torus and this torus T` is subset from Tn .

From the above theorem, each partition of the oscillators is divided into m collections,

with each having k oscillators. They are rotated by a phase shift of 2π/m. Moreover, another

partition in each collection divides it into ` sets of ki phase-locked oscillators ( two oscillators

θi (t ) and θi (t ) are phase-locked if |θi (t )−θi (t )| is bounded for all t > 0). This partition has

(Sk1 ×Sk2 × ...×Sk`) symmetry. The coordinates of the fixed-point space is

((z1, z1, ..., z1, z2, z3, ..., z`), (z1ω
k , z2ω

k , ..., z`ω
k ), ..., (z1ω

−k , z2ω
−k , ..., z`ω

−k )),

where ω= e2πi /n and that ω(m−1)k =ω−k . Because all fixed point subspaces are diffeomor-

phic to {(z1, z2, ..., zl ) : |zi | = 1}, they are `−dimensional tori. The permutation groups within

Σk ,m commute because the permutations Ski are disjoint sets. However, there is a semidirect

product between Zm and the permutations due to the fact that the phase shift does not

commute with them. As an example of an application of Theorem 2.4, we consider the next

example 2.1 with a network which has n = 8. This is similar to the example n = 9 in Ashwin

and Swift [11].

Example 2.1. Consider a network which has n = 8 oscillators and S8 ×T1 symmetry. Accord-

ing to Theorem 2.4, it can be written as n = 8 = 4×2 then m = 4, k = 2, k1 = 1, k2 = 1 and

`= 2. Since m,`> 1 we get the smallest a nontrivial isotropy subgroup. The two-dimensional

torus of points ((a,b), (aω2,bω2), (aω4,bω4), (aω6,bω6)) ∈T8 has isotropy (S1×S1)4⊗Z4. The

corresponding fixed-point subspace is

{(a,b, aω2,bω2, aω4,bω4, aω6,bω6) : (a,b) ∈T2}.
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n = m ×k Number of blocks Number of elements Dim Isotropy Fixed point spaces
n = 8 = 2×4 m = 2 κ= 4,κ1 = 1,κ2 = 3 `= 2 (S3 ×S1)2 ⊗Z2 {(a, a, a,b,−a,−a,−a,−b) : (a,b) ∈T2}
n = 8 = 2×4 m = 2 κ= 4,κ1 = 1,κ2 = 1,κ3 = 2 `= 3 (S2 ×S1 ×S1)2 ⊗Z2 {(a, a,b,c,−a,−a,−b,−c) : (a,b,c) ∈T3}
n = 8 = 2×4 m = 2 κ= 4,κ1 = 2,κ2 = 2, `= 2 (S2 ×S2)2 ⊗Z2 {(a, a,b,b,−a,−a,−b,−b) : (a,b) ∈T2}

Table 2.1: This table shows a few possible isotropy subgroups of S8 ×T1 and their fixed-point
spaces for n = 8.

This fixed-point subspace is represented in Figure 2.1 with other three possibilities to get

isotropy subgroups when n = 2×4 which are listed in Table 2.1.

Figure 2.1: This figure visualizes possible symmetries of periodic solutions for S8×T1 symmetry,
which are listed in Table 2.1. Four fixed point subspaces for an isotropy subgroup of eight
oscillators are represented on the unit circle in the complex plane. A illustrates that there is
no symmetry of phase oscillators and represents them by single phases a,b with green and
pink dots. B shows triple symmetry phases with pink dots which corresponds to conjugation
and single phases with the green dot. C is slightly different from B, it shows double phases
with purple dots and two singles phases with green and pink dots. Finally, in D, there are two
double phases with green and pink dots.
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2.3.3 The isotropy subgroups of Γ×T1

We will describe computation of the isotropy structure of Γ×T 1−equivariant systems for

any Γ < Sn using a result in [11]. The first step is to list generators of all subgroups of

Γ, then find the possible twist homomorphism associated with each of these generators.

One of the important properties of a group which is useful for indistinguishable oscillators

is transitivity. The group Γ is transitive if there is an element σ ∈ Γ that has a spatial

symmetry i =σ( j ) for all i , j in {1,2, ...,n}. A transitive network is indistinguishable in that

any oscillator can do the job of any other oscillator. In other words, if the symmetry group of

a network is transitive, then the oscillators are indistinguishable [11, definition 3.2].

This property enables us to determine the system using an equation for only one os-

cillator. Moreover, {(a, a, ..., a)} is a fixed-point space of Γ×T 1 if and only if Γ is transitive.

One can get indistinguishable oscillators within various symmetry groups, for example

Sn , Zn , Dn groups.

We next review isotropy subgroups for two symmetry groups discussed in [11].

The Isotropy structure of Zn ×T1

Consider a ring of oscillators with a specific orientation, and label the elements in the group

Zn to label the oscillators 1 to n around the ring. This means that we pick a generator of Zn

that is an n−cycle, σ= (1, ...,n).

Theorem 2.5. [11, Theorem 4.1] Let the isotropy subgroups of Zn ×T1 be one-to-one corre-

spondence with two integer positive numbers m and p where n = mk and p ∈ {0,1,2, ...,m−1}.

Under spatial projection, the isotropy subgroups Zm(p) are isomorphic to a cycle group Zm

and are generated by (σk ,ωkp ). Then, the fixed-point subspaces of Zm(p) can be written as,

F i x(Zm(p)) = {z ∈Tn : z j = a jω
j p }, such that a j = ai if j = i (mod k),

which have dimension k ∈Tn .

Note that if p 6= 0 then the isotropy subgroups have temporal projection. There is no

conjugate between the subgroups of Zn , if they have different p. These isotropy subgroups

can be partially ordered in the lattice according to [11, Lemma 4.1]. For example, we illustrate

the isotropy subgroups for Z4 ×T 1 as lattice in Figure 2.2.
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Figure 2.2: This figure shows the fixed-point subspace for Z4×T1. Their partial order is shown
by isotropy lattice of symmetry subspaces of Z4 ×T1, [11, Figure 3].

The Isotropy structure of Dn ×T1

The symmetry of an oscillator ring with no preferred direction is isomorphic to the symme-

tries of a regular n−gon including reflection, Dn . Recall that this group is defined by,

Dn ≡ 〈{σ,τ}| : σn = τ2 = 1, στσ= τ〉,

where τ = (1)(2,n)(3,n −1) ... and σ = (1,2, ...,n). Note that, τ fixes 1 and n/2 if n is even,

whereas τ fixes only 1 if n is odd. The classification of isotropy subgroups for the action of

Dn ×T1 is achieved by two steps. Firstly, we determine all subgroups of Dn . As known, the

subgroups of Dn are conjugate to one (or more) of the following subgroups:

Dm(k) ≡ 〈{σk ,τ}〉 = 〈{σk−1τ,τ}〉,

Dm(kσ) ≡ 〈{σk ,τσ}〉 = 〈{σk−1τ,τσ}〉,

Zm ≡ 〈{σk }〉,

where mk = n, for more details see [11]. Secondly, finding all twisted subgroup are of Dn×T1,

as illustrated in the next lemma.
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Lemma 2.6. [11, Lemma 4.2] All twisted isotropy subgroups of Dn ×Tn are conjugate to one

of the following:

Dm(+−) ≡ 〈{(σk−1τ,1), (τσ,−1)}〉, (m must be even)

Dm(−−) ≡ 〈{(σk−1τ,−1), (τσ,−1)}〉, (k must be even)

Zm(p) ≡ 〈{(σk ,ωpk )}〉, where p ∈ {1,2, ..., [m/2]}.

The isotropy subgroups of Dn ×Tn and their fixed point space are defined in [11, Table

2], where mk = n runs through all binary factorization of n. In 2015 [8], Ashwin and Burylko

reformulated this table for n = 6, as we discuss in the next chapter.

2.4 Synchrony and symmetry in networks

Symmetry groups can be used to formulate a theory that can be very helpful for studying

coupled dynamical systems. There are substantial effects of network symmetries on equilib-

ria, periodic orbits, heteroclinic cycles, and chaotic attractors. Particular aspects that can

usefully be understood using symmetries include synchrony and bifurcations.

2.4.1 Tools for symmetric networks

Stewart, Golubitsky and Pivato [85] introduced a new framework to understand coupled

cell system dynamics in term of their architecture. Dynamical systems (in the continuous

states of the coupled ODEs) are represented by a network N which is regarded as a directed

graph [64, 98]. This graph has nodes and edges which are classified according to labels or

"types" and correspond to cells and couplings respectively. Identical internal dynamics of

the cells mean these cells have the same label; identical couplings is a property for arrows

with the same label. Every cell c has a phase space Pc , and the cartesian product P =∏
c Pc

refers to the total phase space of the network. Therefore, we can say that points x ∈ P have

coordinates xc .

We give a definition of coupled cell networks based on equivalence relations between

cells, as follow.
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Definition 2.3. [5, Definition 2.1.] A coupled cell network N consists of:

1. A finite set of D = {1,2,3, ...N } of cells or nodes.

2. A finite set E of edges or arrows.

3. A cell-equivalence is an equivalence relation between cells in D and is denoted by ∼C .

The type or cell label of cell c is its ∼C - equivalence class.

4. An edge-equivalence is an equivalence relation on edges in E , and is denoted by ∼E .

The type or coupling label of edge e is its ∼E - equivalence class.

5. For e ∈ E , there are two maps H ,T : E →D such that H (e) is a head of e and T (e) is

a tail of e.

Also, we require a consistency condition that If there are two arrows e1,e2 ∈ E such that

e1 ∼E e2, then H (e1) ∼C H (e2), T (e1) ∼C T (e2).

In this definition, if T (e) is the same as H (e), then an arrow is a self-connection. If

distinct arrows e, é have T (e) =T (é) and H (e) =H (é) then multiple arrows. Associated

with each cell c ∈D, some notions can be used to prove the equivalence between cells.

An input of all edges to cell c ∈ D is called the input set of c and written I (c) = {e ∈
E : H (e) = c}. There is an input equivalence ∼I between these input arrows on D [31]. One

can say c ∼I d , if and only if there exists a bijection β : I (c) → I (d) such that for every

i ∈ I (c), i ∼E β(i ). Any such bijection β is called an input isomorphism from cell c to cell b.

The set B(c,d) denotes the collection of all input isomorphisms from cell c to cell d [5].

2.4.2 Balanced equivalence relations and symmetric networks

We now discuss an important type of equivalence relation between cells and edges in N .

In [5], note that, an equivalence relation 1 on D can be viewed as a “colouring” of cells,

that means c 1 d iff c and d have the same colour. An equivalence relation 1 on D is

balanced if for every cell c,d ∈D with c 1 d , then there exists bijection β ∈ B(c,d) such that
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T (i ) 1 T (β(i )) for all i ∈ I (c) [5, Definition 2.5]. In addition, the equivalent relation is a

balanced coloring if the equivalent cells receive the same colour input.

A unique partition (1-equivalence class) of D is determined by the equivalence relation

1 on D. This is shown in Figure 2.3, where the cells that receive the same colour belong

to the same equivalence class. Conversely, a unique equivalence relation can be found by

any partition. Any equivalence relation 1 on the set of cells of a network corresponds to

a polydiagonal, which for an equivalence relation 1 is the set for all x ∈ P such that c 1 d

implies that xc = xd . This written as,

41 = {x ∈ P : c 1 d ⇒ xc = xd }.

The set 41 is said to be a balanced polydiagonal if 1 is balanced. This depends only on

network structure and not on the details of the ODEs. If cells have the same colour then

they identical dynamics within the balanced polydiagonal as so it can be regarded as a

“pattern of synchrony". The dynamical meaning of synchrony is xc (t ) = xd (t ) for all times

t on a trajectory x(t) of an admissible vector field f if and only if there is an equivalence

relation c 1 d on set D. The implication of the above discussion is that the general network

architecture can be employed to create universal possibilities for synchrony by polydiagonal.

Antoneli and Stewart [5] discussed networks N that have a group of symmetries Γ. More

precisely, the set of permutations of the cells that preserve the network structure (including

types of cells and arrows) is the group Γ= Aut (N ) that is the automorphism group of the

network. Also, the permutations for cells coordinates of P occurs due to Γ group’s action.

The consequence of this is that every admissible vector field in the sense of ([85] Definition

4.1) is Γ−equivariant for this group.

Connections between the notions of fixed-point space Σ⊂ Γ and balanced polydiagonal

are also explained. Because equivalence classes of the relation 1 are the same as Σ−orbits, it

is easy to prove that every fixed-point space of a subgroup Σ⊂ Γ is a balanced polydiagonal.

The converse is incorrect, for example, consider a coupled cell network with four cells

and a trivial symmetry group illustrated in Figure 2.3. The shape of cell symbol (circle,

square, triangle) points to the type of cell and the arrow (solid, dotted, shape and colour of

arrowhead) refers to the arrow. Colours of the cells indicate equivalent classes which are {1},
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{2, 3}, {4}. An admissible vector field corresponding to a class of differential equations with

this network has the form

ẋ1 = f (x1; x3, x4)

ẋ2 = g (x2; x1)

ẋ3 = g (x3; x1)

ẋ4 = h(x4; x2, x3) (2.9)

where f , g ,h are arbitrary functions, x1 ∈ P f , x2, x3 ∈ Pg and x4 ∈ Ph such that P f ,Pg and Ph

are phase spaces. Because cells 2 and 3 have the same colour and input, the equivalence

relation gives to balance polydiagonal

∆1 = {(u, v, v, w) : u ∈ P f , v ∈ Pg , w ∈ Ph}.

As a result, networks with trivial symmetry group can possess nontrivial balanced equiva-

lence relations [85]. Networks with nontrivial symmetry can also possess "exotic" balanced

polydiagonals which do not give rise to fixed-point spaces, (more details are shown in the

subsection 2.4.3).

Figure 2.3: This figure shows a network of four with coupled cells. This network has trivial
symmetry. As seen, the cells are classified according to shape (circle, square, triangle), and
form of arrow (solid, dotted, shape and color of arrowhead), Figure(4)[5].

The next theorem articulates the main property of a balanced equivalence relation which

leads to a flow-invariant polydiagonal, as well as the converse. There are typically many

possible balance equivalence relations, just as there are many fixed point subspaces.
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Theorem 2.7. [5, Theorem 2.6] Suppose that 1 is an equivalence relation on the cells of a cou-

pled cell network. Then the polydiagonal 41 is flow-invariant if and only if the equivalence

relation is balanced.

A pattern of synchrony is one of dynamical consequences of flow-invariance. It is created

when there exist trajectories x(t) of the ODE such that c 1 d ⇒ xc (t) = xd (t), t ∈ R. Such

trajectories arise when initial conditions x(0) lie in 41. In this case, the whole trajectory

lies in 41 for all positive and negative times, and is a trajectory of the restriction f |41. The

associated dynamics can be steady-state, periodic, or even chaotic, depending on f and its

restriction to 41.

2.4.3 Symmetry group of networks

For a general network, [5] is devoted to finding an equivalent relation from subgroups of

the automorphism group Aut (N ). Antoneli and Stewart considered global symmetries of

networks as subgroups of Aut (N ). Also for simplicity, they do not allow self-connections or

multiple arrows in the network.

Definition 2.4. [5, Definition 3.1] An automorphism of a coupled cell network N with cells

D and arrows E consists of two bijective maps σD : D → D and σE : E → E , that satisfy the

four conditions:

(1) σD(H (e)) =H (σE (e)), for all e ∈ E .

(2) σD(T (e)) =T (σE (e)), for all e ∈ E .

(3) i ∼D σD(i ), for all i ∈D

(4) i ∼E σE (i ), for all e ∈D.

A group that contains the set of all automorphisms of N under composition operation is

called the automorphism group, or symmetry group of N , and is denoted by Aut (N ).
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Using subgroups of the automorphism group Aut(N ) of N , one can build balanced

equivalence relations on N . Suppose that there is a subgroupΩ⊆ Aut (N ) and the projec-

tion ofΩ into AutD(N ) isΩD . The relation 1Ω is defined by

c 1Ω d ⇔∃ ω ∈Ω :ωD(c) = d .

Then the 1Ω −class represents the ΩD−orbits of cells, as well as identifying a balanced

polydiagonal

4Ω =41Ω = F i x(Ω),

where F i x(Ω) refers to fixed-point space ofΩwhich acts on the total phase space P . As a

proposition, ifΩ is any subgroup of Aut (N ), then F i x(Ω) is a balanced polydiagonal.

Definition 2.5. [5, Definition 3.4] Suppose that a network N has a balanced equivalence

relation 1 and automorphism group Aut(N ). If 41 = F i x(H) for some subgroup H ⊂
Aut (N ), we can say that 1 is a fixed-point colouring, otherwise we say that 1 it is exotic.

We now consider a simple example of a symmetric network possessing exotic balanced

colourings; that is, balanced colourings that are not fixed-point colorings.

Example 2.2. [6] It is not true that in a group network, every balanced polydiagonal is the

fixed-point space of a subgroup of that group. A simple example occurs for the alternating

group A4 acting on C = 1,2,3,4 in its natural permutation action, as shown in Figure 2.4. This

action can be visualized as the group of rotations of a regular tetrahedron with vertices labelled

1, 2, 3, 4. The polydiagonal 41 = {x, x, z, w} for which 1 1 2 is easily seen to be balanced.

However, it is not the fixed-point space of any subgroup of A4. The only rotations of the

tetrahedron that fix the set 1,2 are the identity and the rotation (12)(34) of order 2. The fixed-

point spaces related to these rotations are (x, y, z, w) and (x, x, z, z). However, Aut (NA4 ) = S4,

and is a fixed-point colouring derived from a subgroup of S4 that is not contained in A4,

namely the Z2 subgroup generated by the reflection (12).

Also, Antoneli and Stewart [5] show that in general the fixed point subspaces of group Γ

are only the flow-invariant subspaces. They prove this in the next theorem which does not

include any explicit network structure.
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Theorem 2.8. [5, Theorem 4.1] Suppose a finite group Γ acts linearly on a finite-dimensional

real vector space X . Then, the fixed-point spaces of an isotropy subgroup of Γ are the only

subspaces of X that are flow-invariant for all Γ−equivariant vector fields.

For particular admissible vector fields there may be other flow-invariant subspaces, but

these depend on particular properties of the vector field.

Figure 2.4: Exotic balanced polydiagonal on a symmetric network (A4) that is not a fixed-point
space for any subgroup of (A4), Figure(4)[6].

In a summary, we have two techniques to find flow invariant subspaces. Symmetrically

coupled oscillators have fixed-point spaces that are flow-invariant [11]. Antoneli and Stewart

[5] show networks can have exotic balanced polydiagonals that are not fixed-point subspaces

but depend on special properties of the network. They discuss balanced colouring equiv-

alence relations. Additionally, they concentrated on studying an example of symmetric

networks that have exotic balanced polydiagonals that are not a fixed-point subspaces.

Invariant subspaces help us to understand how symmetries constrain dynamics for

coupled oscillators and fixed-point subspaces will be fundamental to the rest of the thesis.
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3
WEAK CHIMERA AND BIFURCATIONS OF A SIX-OSCILLATOR

SYSTEM

In this chapter, we consider a network of six phase oscillators studied in [8] where weak

chimera solutions were found. Here we make a suitable change of coordinates for the phase

portrait and analyse bifurcations at specific values of parameters. Section 3.1 presents briefly

a literature review about the existence of weak chimera states on modular and non-modular

networks. Section 3.2 studies a generalized Kuramoto model for six phase oscillators system

within a particular invariant subspace. This section explains the reduction for a system of six

coupled phase oscillators for a non-modular network. We numerically find weak chimeras

and investigate the bifurcation diagrams for this six oscillator network, as illustrated in

Section 3.3. Section 3.4 investigates the effects of parameter, phase and time-reversal

symmetries on bifurcation diagrams.

3.1 Definition and existence of a weak chimera state

As discussed in sections 1.3 and 1.4, many factors play an essential role in the existence

of weak chimera state, for example, a network structure (global, local, nonlocal, modular,
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size), the number of oscillators (high, low), the coupling strength (weak, strong) and the type

of oscillators (indistinguishable, identical, homogeneous, etc.). Different studies assumed

different conditions to prove the appearance of weak chimera states. For instance, the first

observation of the chimera state in a system of infinitely many nonlocally coupled phase

oscillators was presented by Kuramoto and Battogtokh [50]. In 2004, Abrams and Strogatz [2]

called this phenomenon “chimera states” and investigated chimeras in a one-dimensional

ring of nonlocally coupled oscillators. In 2008, chimeras were found in a network of identical

global coupled oscillators [1]. Laing introduced the first analysis for the existence of chimera

states in two dimensional networks of coupled oscillators [53]. Asymptotic methods were

used by Panaggio and Abrams to identify under any condition that one can find chimera

states in the surface of a two-dimensional torus [71]. In 2015 the same previous authors

worked to prove the existence of chimeras consisting of spots and spirals of desynchrony

on the surface of a sphere [72]. Sethia and Sen [80] showed that both the weak coupling

approximation and nonlocal coupling are not essential conditions for the existence of

chimera states.

Ashwin and Burylko [8] introduced the notion of a weak chimera for finite networks of

indistinguishable phase oscillators for reasons discussed in Section 1.4. They defined a weak

chimera state as an invariant set that contains a form of partial frequency synchronization.

We will introduce a precise definition of weak chimera states in the next section. In the

same paper, it was also shown that weak chimeras can not occur in networks of the identical

phase oscillators if there is globally and identically coupled or if the system size too small. In

particular, [8, Theorem 1] states that it is not possible that weak chimera states exist for fully

symmetric coupling of N identical phase oscillators because in such a case, all trajectories

are frequency synchronized. In the same reference, the authors identified conditions for

the appearance of attracting weak chimera states in the system of indistinguishable phase

oscillators. These conditions mean that networks must have at least four oscillators, at least

two different coupling strength. They investigate systems where the coupling function has

at least two Fourier components (i.e., coupling functions of the form (1.10)).

Moreover, the paper [8] classifies networks into two types. The first type consists of
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modular networks which means that networks can be decomposed into a number of smaller

subnetworks. This type is used in [8] to explains the appearance of weak chimera states in

systems of four, six or ten oscillator modular networks (see Figure 3.1). Bick and Ashwin

[15] considered an example of weak chimeras in modular networks with non-zero coupling

between clusters of oscillators. The second type consists of non-modular networks with

non-global coupling structures (see Figure 3.2). Ashwin and Burylko [8] also found attracting

weak chimera states in the second type of networks.

Figure 3.1: Networks of (a) four, (b) six and (c) ten indistinguishable oscillators with modular
structure robust weak chimera state. This figure shows two types of coupling, the solid line has
a bidirectional coupling with strength equal 1 whereas the dashed line indicates bidirectional
coupling with strength ε [8].

3.2 Weak chimera in six- oscillators networks

In [8] Ashwin and Burylko numerically show that there is a weak chimera state in a finite

non-modular network of six oscillators (i.e. the network is bidirectionally coupled with

strength 1). They considered a generalized Kuramoto model of N coupled phase oscillators

as,

θ̇i =ωi +
N∑

j=1
Ki j g (θi −θ j ), (3.1)

where (θ1, ...θN ) ∈TN = [0,2π)N andωi is the natural frequency of the oscillator θi , Ki j is the

coupling strength, and g is the coupling function for Hansel-Mato-Meunier [9, 37] with two

parameters α and r. Recall we have

g (φ) =−sin(φ−α)+ r sin(2φ). (3.2)
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This is called Kuramoto-Sakaguchi coupling [78] for r = 0. The average frequency [45] of the

i th oscillator in the system (3.1) is defined as

Ωi = lim
T→∞

θi (T )

T
, (3.3)

and the frequency difference [8] between two oscillators i and j is :

Ωi j = lim
T→∞

1

T
[θi (T )−θ j (T )]. (3.4)

We define two oscillators as i and j as frequency synchronized if Ωi j = 0, and as not fre-

quency synchronized, otherwise. The formal definition of a weak chimera state is formulated

as follows in [8]. The next definition describes a weak chimera in a finite system.

Definition 3.1. [8] A set A ⊂TN for a coupled N phase oscillator system is a weak chimera

state if it is a connected chain-recurrent flow-invariant set such that for each trajectory in A

there are distinct oscillators i, j and k such thatΩi j 6= 0 andΩi k = 0.

After that, we do not consider any other chimera state in this thesis, from this point

on we will simply refer to weak chimera as a chimera. It is not surprising to find chimera

states in coupled phase oscillator networks with different natural frequencies of oscillators

or non-local coupled networks. However, the interesting case is a chimera state in coupled

indistinguishable phase oscillator networks. Indistinguishable oscillators which have the

same number and strength of input [11]. For example in Figure 3.2, there are three coupled

structures of six indistinguishable oscillators. Here, we concentrate in a network of six

indistinguishable oscillators (Figure 3.2(a)). Let the coupled oscillator network of this figure

be governed by

θ̇i =ω+ ∑
| j−i |=1,2

g (θi −θ j ), (3.5)

with the coupling (3.2) and indices taken modulo 6, where phase oscillators θi ∈ [0,2π) =T
and ω is the constant natural frequency of θi .
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We can expand the system (3.5) to get

θ̇1 = ω+ g (θ1 −θ2)+ g (θ1 −θ3)+ g (θ1 −θ5)+ g (θ1 −θ6),

θ̇2 = ω+ g (θ2 −θ1)+ g (θ2 −θ3)+ g (θ2 −θ4)+ g (θ2 −θ6),

θ̇3 = ω+ g (θ3 −θ1)+ g (θ3 −θ2)+ g (θ3 −θ4)+ g (θ3 −θ5),

θ̇4 = ω+ g (θ4 −θ2)+ g (θ4 −θ3)+ g (θ4 −θ5)+ g (θ4 −θ6),

θ̇5 = ω+ g (θ5 −θ1)+ g (θ5 −θ3)+ g (θ5 −θ4)+ g (θ5 −θ6),

θ̇6 = ω+ g (θ6 −θ1)+ g (θ6 −θ2)+ g (θ6 −θ4)+ g (θ6 −θ5). (3.6)

Figure 3.2: Three ways of coupling six oscillators into a network of indistinguishable oscillators
(a) Non-global coupling a system of six oscillators. (b) Local coupling in a system of six
oscillators. (c) Each oscillator is linked with three different oscillators in a system of six
oscillators [8].

In 1992, Ashwin and Swift presented Table 2 in [11] which illustrated fixed point sub-

spaces for D ×T1 with finite number n of oscillators. Then, in 2015, Ashwin and Burylko

restricted this table to the six oscillators (n = 6) and noted for this system there are additional

invariant subspaces, exotic sets [8, Table I]. These subspaces are not invariant due to symme-

tries, but are invariant as a consequence of exotic balanced polydiagonal between equivalent

oscillators [5]. We summarize in Table 3.1 the invariant subspaces and symmetry-forced

subspace for the system (3.5)(for more information see [8, Table I]). The balanced colouring

1 on networks A1, A2 determines the quotient network III in Figure 3.3. After restricting the

six oscillators to the subspace A1 we get

(θ1,θ2,θ3,θ4,θ5,θ6) = (φ1,φ2,φ3,φ1,φ3,φ2). (3.7)
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Subgroups Σ Fixed-point space Dim
D6 (a, a, a, a, a, a) 1
D−

6 (a, a +π, a, a +π, a, a +π) 1
Z 1

6 (a, a +ξ, a +2ξ, a +3ξ, a +4ξ, a +5ξ) 1
Z 2

6 (a, a +2ξ, a +4ξ, a, a +2ξ, a +4ξ) 1
D3 (a,b, a,b, a,b) 2
Z3 (a,b, a +2ξ,b +2ξ, a +4ξ,b +4ξ) 2
D2 (a,b, a, a,b, a) 2
D−

2 (a,b, a, a +π,b +π, a +π) 2
Z 1

2 (a,b,c, a,b,c) 3
Z 2

2 (a,b,c, a +π,b +π,c +π) 3
A0 (a,b,c, a,d ,e) 5
A1 (a,b,c, a,c,b) 3
A2 (a,b,b, a,c,c) 3
A3 (a,b,c, a +π,c +π,b +π) 3
A4 (a,b,b +π, a +π,c +π,c) 3
A5 (a, a +π,b, a, a +π,b) 2
A6 (a, a +π,b, a, a +π,b +π) 2
A7 (a, a +π,b, a +π, a,b) 2

Table 3.1: Isotropy subgroups and their fixed point spaces for the six oscillator system in Figure
3.2(a) with ξ=π/3 and arbitrary phases a,b,c,d ,e and f . This table is divided into two sets
of isotropy subgroups (green and yellow). Invariant sets due to symmetry are marked in green
and exotic balanced polydiagonal in yellow [8].

Figure 3.3: Quotient networks of the subgroups that have listed in Table 3.1 and correspond to
the nearest and next nearest neighbour coupling in Figure 3.2(a), There are two types of the
arrows: solid and dashed. Solid means an input between the original phases. Dashed denotes
an input with phase-shift by π. As seen that symmetry D3 is in the quotients for Z 1

2 and Z 2
2

and symmetry Z2 is in the quotients for A3 and A4.

Then, there was found a weak chimera state that is stable in the invariant subspace A1
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[8]. After rewriting the system (3.6) in the subspace A1 using (3.5), we get

φ̇1 = ω+2g (φ1 −φ2)+2g (φ1 −φ3),

φ̇2 = ω+2g (φ2 −φ1)+ g (φ2 −φ3)+ g (0),

φ̇3 = ω+2g (φ3 −φ1)+ g (φ3 −φ2)+ g (0). (3.8)

The quotient network (3.8) can be written using phase differences. Defining ξ = φ1 −
φ3, η=φ2 −φ3, and ξ−η=φ1 −φ2, we obtain

ξ̇ = 2g (ξ−η)+2g (ξ)−2g (−ξ)− g (−η)− g (0),

η̇ = 2g (η−ξ)+ g (η)−2g (−ξ)− g (−η). (3.9)

The special case of (3.2, 3.9) where α=π/2 and r = 0 is

ξ̇ = 2cos(η−ξ)−cos(η)−1,

η̇ = 2cos(η−ξ)−2cos(ξ), (3.10)

which was used in [8] to give a numerical observation of neutrally stable weak chimera states

within A1 (see Figure 3.4).

The family of solutions for the system (3.10) is shown in Figure 3.4. In this thesis we in-

troduce coordinates x, y such that ξ= x+ y, η= 2y (see Figure 3.4). Under these coordinates

the system has a time-reversing symmetry that can be represented as a reflection. We write

system (3.9) in the variables x, y :

ẋ = 2g (x − y)+2g (x + y)− g (−x − y)− (1/2)g (−2y)

−g (0)− g (y −x)− (1/2)g (2y),

ẏ = g (y −x)+ (1/2)g (2y)− g (−x − y)− (1/2)g (−2y). (3.11)

By using (3.2), we obtain

ẋ = −2sin(α)cos2(y)+24r sin(x)cos(x)cos2(y)−6sin(x)cos(y)cos(α)

+ 2cos(x)cos(y)sin(α)−12r sin(x)cos(x),

ẏ = −2cos(x)sin(y)cos(α)+2sin(x)sin(y)sin(α)+8r cos2(x)sin(y)cos(y)

− 8r sin(y)cos(y)−2cos(α)sin(y)cos(y)+8r sin(y)cos3(y). (3.12)
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After substituting α=π/2,r = 0 and simplifying of the above equations, we get

ẋ = f (x, y) = 2cos(y)cos(x)−2cos2(y),

ẏ = g (x, y) = 2sin(y)sin(x), (3.13)

note that this system has a Hamiltonian structure which is investigated in Chapter four.

Figure 3.4: Panel A shows the phase portrait for the system (3.10)[8]. Changes on coordinates
for this system that are represented at phase portrait at panel B for the system (3.13). Note the
presence of a band of periodic solutions that wind around ξ and x coordinate, these solutions
correspond to weak chimeras of the system.

Numerical analysis of (3.9) is used in [8] to investigate the existence of birth and death of

weak chimera states. Here, we use a similar numerical method to illustrate phase portraits

for the system (3.11, 3.2) on varying α for r = 0 and r =−0.01(see Figures 3.5, 3.6 and 3.7).

Moreover, we choose arbitrarily two initial points, one is near an equilibrium point and

the other is far always, and simulate time series for these points to show where chimera

states can be found. There are many observations one can get from these figures, but we will

concentrate on the situation where the value of α=π/2. Observe there is a set of neutrally

stable weak chimera states that wind around x. There are also neutrally stable periodic

orbits that are not chimera, winding around a centre equilibrium point.
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3.3 Simulation and bifurcation of weak chimera in a six

oscillator system

This section describes the changes in phase portraits and bifurcation diagrams for the

system (3.12) within A1 as a result of changing values of parameters α and r. Also, birth

and death of weak chimera states are explained as α is varied. Bifurcation diagrams are

computed using XPPAUT, and phase portraits are drawn using MATLAB. Note that the phase

portraits of the new system (3.12) and of the old system (3.9) are different as illustrated in

Figure 3.4, while the bifurcation diagrams are similar for both systems (see Figures 3.9, 3.8

and Figure 9 in [8]).

Phase portraits for the system (3.12) for increasing values ofα and r = 0, −0.01 are shown

in Figures 3.5, 3.6 and 3.7 with labels Ai to Ci (i=1,2,...,12). Figures 3.8, 3.9 show bifurcation

diagrams with labels αi , i = lower case letters and sketches A, B, C, D.

There is no a weak chimera at α= 0.5 as shown in phase portrait C1, where a pitchfork

bifurcation appears for an equilibrium point (see Figures 3.8). In addition, initial conditions

pink/purple converge to a stable point at A1, B1. In C2 and C8, phase portraits present similar

dynamics but different stability. That is illustrated at time series A2 and B2 where typical

initial conditions converge to a non-chimera cycle while A8 and B8 show chimera states

for pink and purple initial conditions. After the transition from C2 to C3 where α= 1.13016,

unstable spiral point and saddle point come together to create a saddle-connection for the

weak chimera cycle at αa and sketch D (Figure 3.8). The same scenario but with different

stability happens at C 7 and αc in Figure 3.8D (i.e. stable spiral point and saddle point come

together to create a saddle-connection).

The significant case is at α= 1.5, 1.64. There are unstable and stable homoclinic bifurca-

tions (non-chimera) as shown in transition from C 3 to C 4 and C 5 to C 6 which corresponds

to branch (αn ,αm) and sketches A, B respectively. Purple point converges to homoclinic

orbits (non-chimera), while the pink point goes to a stable equilibrium point as shown in the

time series A4, B4 respectively. At A6, time series have the similar structure for A4, whereas

appearance of chimera state is clear at B6.
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The case α=αb :=π/2 is interesting as there exist two families of neutral stable periodic

orbits. One family consists of weak chimera state moves around x, and the other consists of

periodic orbits that are not chimera in C5. There is a degenerate Andronov-Hopf bifurcation

for the non-chimera cycle at branch αb ,αo (see sketch C in Figure 3.8) that appears as many

generic branches of periodic orbit for r 6= 0 in Figure 3.9. Purple initial condition converges

to stable periodic orbit at A5, whereas existence of the weak chimera solution is evident for

the limit of the pink initial condition B5.

In Figure 3.9, a slight change in the value of r from r = 0 to r =−0.01 leads to supercritical

hopf bifurcation of three weak chimera cycle at αb with the transition from α= 1.561 (C9) to

1.558 (C10). Moreover, there is a saddle node bifurcation of two weak chimera-cycles at α`

(C9). Also, there is a homoclinic bifurcation when transition from C10 to C11 that limits to

heteroclinic at C12. Saddle connection bifurcations appear for the weak chimera cycle at

αa ,αc ,αk and αe . Time series show convergence to an equilibrium point at A9, A10 and A11

and to an attracting chimera solution at B9, B10, B11, B12 and A12.

There is a saddle-node bifurcation for equilibrium point at C12 that corresponds to αi

and αh . At Figure 3.9, the pink/purple initial conditions converge to a weak chimera cycle.
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Figure 3.5: This figure illustrates the dynamics of the system (3.2, 3.13) in the plane x, y ∈ [0,2π)
with increasing values of parameters α and r = 0. The first two columns (Ai and Bi, i=1, 2, 3,
4) of panels show the time series (x(t ), y(t )) for initial conditions shown as purple/pink dots in
the third column (Ci, i=1, 2, 3, 4) which illustrate phase portraits. Arrows indicate the direction
of flow in the phase plane. Noted in α= 0.5−1.3016 the pink/ purple initial conditions have
the similar dynamics and there are no chimera states. Nearly the same situation is at α= 1.5
with slightly change that the purple point converges to a periodic orbit.
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Figure 3.6: (Description is as in Figure 3.5 except for further increasing values of α ). For the
conservative case α=π/2 at A5, B5, C5 shows the pink initial condition that evolves towards a
weak chimera at B5, whereas purple initial condition is on a neutrally stable periodic orbit in
C5. There is a homoclinic bifurcation at the transition from C6 to C7, and a saddle connection
appears at C8. There is a weak chimera solution in the panels B5-B8 and A8 while the purple
point converges to periodic orbit in (A5-A7).
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Figure 3.7: (Description is as in Figure 3.5 except for further increasing values of α ). Time
series and phase portrait for the system (3.2, 3.12) depict what happens at r=-0.01 and α ∈
[1.561,1.97794]. At the left column, the initial condition (purple point) converges to a fixed
point at A9, A10, A11, while a weak chimera still appears in A12 and the second column.
Phase portraits (C9-C12) show different behaviours of trajectories as values of α vary.
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Figure 3.8: Bifurcation diagram shows α against y for the system (3.2, 3.13) with Kuramoto-
Sakaguchi coupling (r = 0) recomputed from [8]. Red/black lines refer to stable/unstable
equilibria, green/blue lines indicate maxima/minima of y on stable/unstable periodic orbits
and cyan line shows neutral periodic orbits. Red points in the sketches A, B, C, D refer to the
saddle, spiral or center equilibria point. Purple lines for the sketch D refer to weak chimera
cycles.
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Figure 3.9: (For details of the figure format, see Figure 3.8) Bifurcation diagram for the system
(3.12) with r=-0.01 and varyingα recomputed from [8]. The top right panel shows some details
of the top left panel. The equilibria have saddle-node bifurcations at αi ,αh shown in C 12.

67



CHAPTER 3. WEAK CHIMERA AND BIFURCATIONS OF A SIX-OSCILLATOR SYSTEM

3.4 Using parameter symmetries to relate r > 0 and r < 0

Ashwin and et al. [7] considered the dynamics of globally coupled phase oscillators de-

pending on the coupling function (3.2) and the number of oscillators N . They showed that

there are time-reversal symmetries for the behaviour of phase difference when the coupling

function g is even. In addition, they concentrated on studying of parameter symmetries for

two harmonic coupling

g (φ) = q sin(φ−α)+ r sin(2φ−β)

where q,r,α and β are arbitrary constants. One can show [7] that there are symmetries that

keep the coupling function g (φ) → g (φ) for all φ if

(q,r,α,β) → (−q,r,α+π,β),

(q,r,α,β) → (q,−r,α,β+π).

Moreover, there is a time-reversal parameter symmetry such that g (φ) →−g (φ) for allφwith

q =−1 and (r,α,β) = (r,α+π,β+π). They also find a phase-reversal parameter symmetry

(g (φ) →−g (−φ)) for all φ with assuming q =−1 and (r,α,β) = (r,−α,−β).

Some parameter symmetry implications for (3.1) are studied in [7]. They can be used

to reduce the number of parameters and to help understand the behaviour of the system

on changing the sign of a parameter. We study effects of a particular parameter symmetry

that has phase and time-reversal on the system (3.1). A parameter reversal occurs under

reversing r and shifting α:

S1(r,α,θi , t ) → (−r,π−α,θi , t ).

Also, phase and time reversal happen at

S2(r,α,θi , t ) → (r,α,−θi ,−t )

such that (g (φ) → g (−φ)). The system (3.1) has symmetry S = S1 ◦S2 so that S(r,α,θi , t ) =
(−r,π−α,−θi ,−t ). One can check that the equation (3.2) is invariant under the symmetries of

S. Using this symmetry, we can understand the behaviour of the system (3.1) just examining

part of the entire parameter space.
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Figure 3.10: Left column is bifurcation diagrams for the system ( 3.12) with parameters
r = −0.01 and −0.05. Right column shows bifurcation diagrams for r = 0.01,0.05. Note
the presence of the parameter reversing symmetry given by r,α goes to −r,π−α represents
parameter reversing symmetry of this system with π−α and r = 0.01, 0.05. Red/black lines
refer to stable/unstable equilibria, green/blue lines indicate stable/unstable periodic orbits.

A reflection of the diagram but with changes in the stability of the system (3.12) can be

seen on changing the sign of r in the bifurcation diagram (Figure 3.10). These modifications

of stability for equilibria points and periodic orbits are the implications of symmetry S.

Suppose that ϕr,α(t , x(0), y(0)) is time-t solution for (3.12) with parameters (r,α) and initial

condition at (x(0), y(0)). Then this solution with S-symmetry means

ϕr,α(t , x(0), y(0)) = (x(t ), y(t )) ⇔ϕ−r,π−α(−t ,π−x(0), y(0)) = (π−x(t ), y(t )),

for all t , x(0), y(0),r,α. In particular, if (x∗, y∗) is an equilibrium point for (3.12) with (r,α)

i.e. ϕr,α(t , (x(0), y(0)) = (x∗, y∗) for all t , then ϕ−r,π−α(t ,π− x(0), y(0)) = (π− x∗, y∗) for all

t is an equilibrium point for (−r,π−α). Moreover, if (x(0), y(0)) is a saddle at αh for (r,α)
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with eigenvalues, λ0 < 0 < µ0, then (π− x(0), y(0)) is still a saddle at αh∗ for (−r,π−α)

with eigenvalues −µ0 < 0 <−λ0. Also, if (x(0), y(0)) is a linearly stable equilibrium for (r,α)

with eigenvalue Rr (λ0),Rr (µ0) < 0, on the branches αb ,αc , then (π−x(0), y(0)) is a linearly

unstable equilibrium for (−r,π−α) with eigenvalue −Rr (λ0),−Rr (µ0) < 0 at αb∗ ,αc∗ .

In summary, this time-reversal parameter symmetry provides qualitative information

about changes in behaviour and stability of equilibria or periodic orbits of the system (3.1)

for suitably transformed parameters.
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WEAK CHIMERA SOLUTIONS AND INTEGRABILITY FOR A SYSTEM

OF SIX OSCILLATORS

In [8], the authors have shown numerically that there are weak chimera states for a six

oscillator networks (3.5, 3.2) with a range of parameters, and this is investigated in Chapter

three 3. This chapter aims to give a rigorous analytical justification of this statement in the

special case when β= r = 0. It consists of four sections. In Section 4.1 we prove the system

of coupled phase oscillators has an integral of motion E(x, y) when β= r = 0 working on a

subset M ⊆T2. Section 4.2 proves properties of the flow on subsets of M using a number of

lemmas. Then, Section 4.3 illustrates the motion of trajectory in the whole M by reversing

symmetry. Finally, Section 4.4 proves there is an infinite number of chimera states on the

trajectories in A1 for the special case.

4.1 Integrability and reversibility of the system in A1 for

β= r = 0

In this section we first demonstrate there is an integrable structure in the subspace A1 for

(3.5, 3.2) in the special case r =β= 0 and use this to prove existence of weak chimeras. More
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precisely:

ẋ = f (x, y) = 2cos(y)cos(x)−2cos2(y),

ẏ = g (x, y) = 2sin(y)sin(x). (4.1)

Lemma 4.1. The system (3.5, 3.2) of six oscillators with β= r = 0 has an integral of motion

within the subspace A1 listed in Table 3.1.

Proof. For the system on A1 written as (4.1), we define

E(x, y) := y +cos y sin y −2sin y cos x. (4.2)

Taking partial derivatives of E(x, y) with respect to both variables

∂E

∂y
= −2sin y sin x,

∂E

∂y
= 2cos y cos x + sin2 y −cos2 y −1. (4.3)

Combining (4.1) and (4.3), the rate of change for E on trajectories of (4.1) is

d

d t

[
E(x(t ), y(t ))

]= ∂E

∂x
ẋ + ∂E

∂y
ẏ = 0, ∀x, y ∈R2. (4.4)

Hence E(x, y) is constant on trajectories of (4.1) and does not depend explicitly on time

(see Figure 4.1). Therefore, E(x, y) is an integral of the motion. �

Figure 4.1 illustrates the level curves of E(x, y) in the (x, y) plane: each level curve is

preserved by the dynamics of (4.1) and hence is a union of trajectories. We denote the level

curve of Ẽ ∈R by

C (Ẽ) = {
(x, y) ∈T2 : E(x, y) = Ẽ

}
.
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Figure 4.1: Every level for E(x, y) defined by (4.2) in the region (x, y) ∈ [0,2π]× [0,π] has a
constant value on the domain M. Each connected component of a level curve is invariant for
the flow (4.1).

We consider the domain of (4.1) on the region M = {(x, y) : 0 < y < π and 0 < x < 2π} =
Hr ∪H`, where Hr := {(x, y) : π< x < 2π and 0 < y < π} and H` := {(x, y) : 0 < x < π and 0 <
y <π}. Note that the upper and lower boundaries of M are level curves for E and hence Hr

and H` are invariant sets under the flow (see Figure 4.2). For almost all Ẽ ∈ [0,π], the level

curves in M consist of periodic trajectories though there are exceptional level curves that

contain equilibria and connecting orbits.

In the reminder of this section, we prove there is periodic trajectories wind around the

torus in the following sense,

Lemma 4.2. For any 0 < Ẽ <π there is an initial condition (x(0), y(0)) ∈C (Ẽ ) and T > 0 such

that if (x(t ), y(t )) is a trajectory of the system (4.1) then x(T ) = x(0)−2π and y(T ) = y(0).

A prove of the above Lemma is in the section 4.3. The system (4.1) consists of coupled

first-order differential equation and has an integral of motion. Also, this system has a

reversing symmetry R1 and a symmetry R2 (see [56]) as follow,

R1

x

y

 :=
2π−x

y

 , R2

x

y

 :=
 x

2π− y

 ,

in the sense that if we write (4.1) asẋ

ẏ

= F

x

y

=
2cos y cos x −2cos2 y

2sin y sin x

 ,
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then

F ◦R1

x

y

=−R1 ◦F

x

y

 ,

and

F ◦R2

x

y

= R2 ◦F

x

y

 ,

for all (x, y) ∈T2 (see Appendix A.1 for details). A consequence of this is that the flow in Hr

corresponds to the time reversed flow on R1(H`).

Figure 4.2: The flow (4.1) on the invariant set M ⊂T2, where M = {(x, y) : 0 < y <π,0 < x < 2π}.
The regions Hr and H` = R1(Hr ) are shown as white and block of colored areas respectively.
We define a partition of Hr into a union of four open regions: green M1, pink M2, blue M3, and
purple M4, points Qi , i = 1,2,3,4,5,6,7 and lines (without endpoints) Li , i = 1,2, ...,10. The
pink points Q3, Q6 are degenerate saddles while the purple points Q2, Q5 are centre equilibria.
Trajectories are cyan, and black arrows represent direction of ẋ, ẏ . Blue/red lines are nullclines
where ẏ = 0 and ẋ = 0 respectively. The nullclines allow us to decompose M into a collection
of open sets, in each of which the vector field points in one direction.

4.1.1 Partition of the set M

In order to understand properties of trajectories inside the set M , we partition the set into

bounded areas using nullclines for system (4.1). Then, some definitions will be introduced

that describe the regions of Hr ⊂ M (see Figure 4.2) as follow:
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Definition 4.1. The bounded areas of the set Hr ⊂ M are:

M1 = {(x, y) :π/2 < y <π and 2π− y < x < 2π},

M2 = {(x, y) :π/2 < y <π and π< x < 2π− y},

M3 = {(x, y) : 0 < y <π/2 and π< x < 2π− y},

M4 = {(x, y) : 0 < y <π/2 and 2π− y < x < 2π}.

Definition 4.2. The following nullclines segments Li , i = 1,2, ...,10. (see Figure 4.2) are:

L1 = {(x, y) :π/2 < y <π and x = 2π− y},

L2 = {(x, y) : y =π/2 and 3π/2 < x < 2π},

L3 = {(x, y) : 0 < y <π/2 and x = 2π− y},

L4 = {(x, y) : y =π/2 and π< x < 3π/2},

L5 = {(x, y) :π/2 < y <π and x = 2π},

L6 = {(x, y) : 0 < y <π/2 and x = 2π},

L7 = {(x, y) : y = 0 and π< x < 2π},

L8 = {(x, y) : 0 < y <π/2 and x =π},

L9 = {(x, y) :π/2 < y <π and x =π},

L10 = {(x, y) : y =π and π< x < 2π}.

Note that the boundary of each Mi is a union of Li as shown in Figure 4.2.

Definition 4.3. Define the following points: Q1 = (3π/2,π/2), Q2 = (π,π/2), Q3 = (π,π), Q4 =
(2π,π), Q5 = (2π,π/2), Q6 = (2π,0), and Q7 = (π,0), (see figure 4.2).

Lemma 4.3. Note that H r =∪4
i=1M i , where the closures of the regions Mi , i = 1,2,3,4 are as

follows: M 1 = L1 ∪L2 ∪L5 ∪L10 ∪Q1 ∪Q3 ∪Q4 ∪Q5 ∪M1,

M 2 = L1 ∪L4 ∪L9 ∪Q1 ∪Q3 ∪Q2 ∪M2,

M 3 = L4 ∪L8 ∪L3 ∪L7 ∪Q1 ∪Q2 ∪Q7 ∪Q6 ∪M3,

M 4 = L2 ∪L3 ∪L6 ∪Q1 ∪Q5 ∪Q6 ∪M4.

Proof. This proof is a verification that the sets defined above in 4.2 have closures as stated.

�

Note 4.1. There are only four equilibria points Qi , i = 3,2,5,6 of the system (4.1) in H r .
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4.2 Dynamics for the integrable case

We present a sequence of lemmas that analyse and describe the motion of trajectories on

Hr ⊂ M . These lemmas are divided into two groups. The first two Lemmas 4.4, 4.5 identify

the direction of trajectory inside the bounded areas M1, M2, M3 and M4. The second shows

what happen when the trajectory reaches the boundary of each area after some finite time (

Lemmas 4.6, 4.7, 4.8, 4.9).

Lemma 4.4. If (x, y) ∈ M1 or M3 then f (x, y) < 0 and g (x, y) < 0 for (4.1), (see Figure 4.2).

Proof. After factorizing (4.1), we get

ẋ = f (x, y) = 2cos(y)(cos(x)−cos(y)),

ẏ = g (x, y) = 2sin(y)sin(x). (4.5)

Suppose (x, y) ∈ M1 then π/2 < y < π and 2π− y < x < 2π. Then, we get cos(y) < 0 and

cos(2π−y) < cos(x) < cos(2π), and simplifying, cos(y) < 0 and 0 < cos(x)−cos(y) < 1−cos(y).

Because cos(x) is monotonic increasing on x ∈ (π,2π), then cos(y) < 0 and cos(x)−cos(y) > 0

and we get that f (x, y) < 0.

Also for the same point, we obtain sin(y) > 0 and −sin(y) < sin(x) < 0 then sin(y) > 0

and sin(x) < 0 and we get that g (x, y) < 0.

The statement for M3 has a similar proof. �

Lemma 4.5. If (x, y) ∈ M2 or M4 then f (x, y) > 0 and g (x, y) < 0 for (4.5).

Proof. Suppose (x, y) ∈ M2, this means π/2 < y < π and π < x < 2π− y . Then, we get

cos(y) < 0 and cos(π) < cos(x) < cos(2π− y), This is the same cos(y) < 0 and −1−cos(y) <
cos(x)−cos(y) < 0 which implies that f (x, y) > 0.

Following that, at the same point (x, y) ∈ M2, we get sin(y) > 0 and −sin(y) < sin(x) < 0.

Hence sin(y) > 0 and sin(x) < 0 which implies that g (x, y) < 0.

The statement for M4 has a similar proof. �

Note that the solution of (4.1) monotonically decreases or monotonically increases along

the trajectory within a region such as Mi .
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The following Lemmas are 4.7, 4.8 and 4.9 explain what happens for an initial condition

after time T for (4.1).

Lemma 4.6. If an initial condition (x(0), y(0)) ∈ M1 ∪L5, then there exist T > 0 such that

(x(T ), y(T )) ∈ L1 ∪L2 ∪Q1.

Proof. Suppose (x(0), y(0)) ∈ M1, then x(t ) and y(t ) are monotonically decreasing as long as

they remain in M1. Either there exists T > 0 such that (x(T ), y(T )) ∈ M1 \ M1 or (x(t ), y(t )) ∈
M1 for all t > 0. In the first case there are two possibilities to describe the path of trajectory.

Firstly, if the initial point (x(0), y(0)) ∈ M1 then the trajectory of this point will eventually

hit the boundary of M1 at (L1 ∪L2 ∪Q1). Secondly, if the initial point (x(0), y(0)) ∈ L5 then

we still have f (x(0), y(0)) < 0 so x(t ) is monotonically decreasing for initial condition on L5.

Here for arbitrary small t > 0, (x(t ), y(t )) ∈ M1 and we apply the argument above.

In the second case, let the greatest lower bound of x(t) and y(t) be x∞ and y∞ respec-

tively, (according to theorem of limits of monotone functions [41]). We get that

lim
t→∞(x(t ), y(t )) = (x∞, y∞).

Then (x∞, y∞) is a limit point. Since a limit set is an invariant set which has a single point

then it is an equilibrium point [74]. Note there are no equilibrium points in M1 so (x∞, y∞) ∈
M 1 \ M1. By monotonicity for (x(t ), y(t )), it would be in L1∪L2∪Q1 which is a contradiction

because no equilibrium point belongs to L1 ∪L2 ∪Q1 . As a consequence, the second case

can not happen. �

Lemma 4.7. If an initial condition (x(0), y(0)) ∈ M2 ∪L1, then there exist T > 0 such that

(x(T ), y(T )) ∈ L4.

Proof. Suppose (x(0), y(0)) ∈ M2, then x(t ) is monotonically increasing and y(t ) is monoton-

ically decreasing as long they remain in M2. Either there exists T > 0 such that (x(T ), y(T )) ∈
M2 \ M2 or (x(t), y(t)) stay in M2 for all t > 0. In the first case there are two possibilities.

Firstly, if the initial point (x(0), y(0)) ∈ M2 then the trajectory of (x(0), y(0)) will eventually

hit the boundary of M2 at L4. Secondly, if the initial point (x(0), y(0)) ∈ L1 then we still
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have g (x, y) < 0 so y(t ) is still monotonically decreasing for initial condition on L1. Here for

arbitrary small t > 0, (x(t ), y(t )) ∈ M2 and we apply the argument above.

In the second case, let the least upper bound x(t ) and the greatest lower bound y(t ) be

x∞ and y∞ respectively, (according to theorem of limits of monotone functions [41] ). We

get

lim
t→∞(x(t ), y(t )) = (x∞, y∞).

Then (x∞, y∞) is an equilibrium point [74] and (x∞, y∞) ∈ M2. Note that there is no equilib-

rium point in M2 so (x∞, y∞) ∈ M2 \ M2. By monotonicity for (x(t), y(t)), it would be in L4

which is a contradiction because no equilibrium point belongs to L4 . As a consequence, the

second case can not happen. �

Lemma 4.8. If (x(0), y(0)) ∈ M4 ∪L2 then either there exists T > 0 such that (x(T ), y(T )) ∈
L3 ∪L6 or limt→∞(x(t ), y(t )) =Q6.

Proof. Suppose (x(0), y(0)) ∈ M2 then x(t ) is monotonically increasing and y(t ) is monoton-

ically decreasing as long they remain in M4. Either there exists T > 0 such that (x(T ), y(T )) ∈
M4 \ M4 or (x(t ), y(t )) belongs to M4 for all t > 0. In the first case there are two possibilities.

Firstly, if the initial point (x(0), y(0)) ∈ M4 then the trajectory of (x(0), y(0)) will eventually

hit the boundary of M4 at L3 ∪Q6 ∪L6. As Q6 is an equilibrium point, we can only hit the

boundary at L3∪L6. Secondly, if the initial point (x(0), y(0)) ∈ L2 then we still have g (x, y) < 0

so y(t ) is still monotonically decreasing for initial condition on L2. Here for arbitrary small

t > 0 (x(t ), y(t )) ∈ M4 and we apply the argument above. In the second case, monotonicity

[41] implies that

lim
t→∞(x(t ), y(t )) = (x∞, y∞).

Thus, x∞ is the least upper bound of x(t) and y∞ is the greatest lower bound of y(t). This

means that (x(t), y(t)) → (x∞, y∞) is a limit point and then it is an equilibrium point as

t →∞ [74]. Since Q6 is the only equilibrium point in M 4 we have that (x∞, y∞) =Q6. �

Lemma 4.9. If (x(0), y(0)) ∈ M3 ∪L4 ∪L3 ∪Q1, then there exists T > 0 such that (x(T ), y(T )) ∈
L8.
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Proof. Suppose (x(0), y(0)) ∈ M2, then x(t ) is monotonically increasing and y(t ) is monoton-

ically decreasing as long they remain in M3. Either there exists T > 0 such that (x(T ), y(T )) ∈
M 3 \ M3 or (x(t ), y(t )) belongs to M3 for all t > 0. In the first case there are two possibilities.

Firstly, if the initial point (x(0), y(0)) ∈ M3 then the trajectory of the of (x(0), y(0)) will eventu-

ally hit the boundary of M3 at L8 ∪L7 ∪Q7. However (x(T ), y(T )) ∈ L7 ∪Q7 as y = 0 because

it is invariant under the flow. Hence if it hits the boundary after finite time, it can only hit L8.

Secondly, if the initial point (x(0), y(0)) ∈ L4,L3 or Q1 then we still have g (x, y) < 0 so y(t ) is

still monotonically decreasing for initial condition on L4,L3 and Q1. Here for arbitrary small

t > 0 (x(t ), y(t )) ∈ M3 and we apply the argument above.

In the second case, let the greatest lower bound of x(t) and y(t) be x∞ and y∞ respec-

tively, (according to theorem of limits of monotone functions [41]). We get that

lim
t→∞(x(t ), y(t )) = (x∞, y∞).

Then (x∞, y∞) is limit point. Since a limit set is an invariant set that is a single point then it is

an equilibrium point [74]. Note there are no equilibrium points in M3 so (x∞, y∞) ∈ M3 \ M3.

By monotonicity for (x(t), y(t)), it would be in L8 which is a contradiction because no

equilibrium point belong to L8. As a consequence, the second case can not happen. �

4.3 Extending the trajectories on Hr to trajectories on M

In this section, we discuss the structure of trajectories on the set M . The first lemma gives a

condition that implies existence of a periodic orbit that winds in the first component (x) of

torus.

Proof. (Lemma 4.2) Let 0 < Ẽ <π. We claim there is an (x(0), y(0)) ∈C (Ẽ)∩L5. To see this,

we consider (x(0), y(0)) = (2π, z), z ∈ (π/2,π) which parametrizes L5. Note that

E(2π, z) =−2+π/2 < 0 for z =π/2,

and

E(2π, z) =π for z =π.
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Hence for any Ẽ ∈ (0,π) there exists z ∈ (π/2,π) such that E(2π, z) = Ẽ by the Intermediate

Value Theorem. In fact this is unique in the sense the derivative dE/d z does not change

sign in (0,π). Suppose (x(t ), y(t )) is the trajectory of (4.1) that starts at (x(0), y(0)) ∈C (Ẽ )∩L5.

According to Lemma 4.6, there exists T1 > 0 such that (x(T1), y(T1)) ∈ L1 ∪Q1 ∪L2. We have

the following

1. If (x(T1), y(T1)) ∈ L1 then by Lemma 4.7 there exists T2 > T1 such that (x(T2), y(T2)) ∈
L4, and then by Lemma 4.9, there exists T3 > T2 such that (x(T3), y(T3)) ∈ L8.

2. If (x(T1), y(T1)) ∈Q1 then by Lemma 4.9, there exists T3 > T1 such that (x(T3), y(T3)) ∈
L8.

3. If (x(T1), y(T1)) ∈ L2 then by Lemma 4.8 and using the fact Ẽ ≥ 0 on L6∪Q6 there exists

T2 > T1 such that (x(T2), y(T2)) ∈ L3. According to Lemma 4.9, there exists T3 > T2 such

that (x(T3), y(T3)) ∈ L8.

We now show that this trajectory reaches x(T ) = x(0)−2π, y(T ) = y(0) at T := 2T3. Firstly,

we have defined Hr and H`, such that R1(Hr ) = H`. Let the trajectory (x(t ), y(t )) ∈ Hr for all

0 < t < T3 and we define (x̃(t ), ỹ(t )) := R1(x(t ), y(t )). Because R1 is a reversing symmetry on

the torus, note that (x̃(−t ), ỹ(−t )) is also a trajectory. Moreover, we note that R1(L8) = L8 and

define

L̃5 := R1(L5) = {(2π−x, y) :π/2 < y <π, x = 2π}

= {(0, y) :π/2 < y <π}. (4.6)

Note that (x(0), y(0)) ∈ L5∩C (Ẽ ) and (x(T3), y(T3)) ∈ L8. Now (x̃(−t ), ỹ(−t )) is a trajectory

on H` for −T3 < t < 0. Also,

(x̃(0), ỹ(0)) = R1(x(0), y(0)) = (2π−x(0), y(0)) ∈ L̃5,

and

(x̃(T3), ỹ(T3)) = R1(x(T3), y(T3)) = (x(T3), y(T3)) = L8.
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So if we define (x(T3 + t), y(T3 + t)) = (x̃(T3 − t), ỹ(T3 − t)), 0 < t < T3 then (x(t), y(t)) is

a trajectory for 0 < t < 2T3. In particular, we have shown there is a trajectory such that

x(T ) = x(0)−2π and y(T ) = y(0). �

Recall that the ω-limit setΛ+(x, y), and the α-limit setΛ−(x, y) are defined:

Λ+(x, y) := ⋂
T>0

⋃
s>T

ϕ(x, y, s),

Λ−(x, y) := ⋂
T<0

⋃
s<T

ϕ(x, y, s),

where ϕ(x, y, t ) is the flow generated by (4.1).

Lemma 4.10. Suppose Ẽ = 0, then there is a point (x(0), y(0)) ∈C (Ẽ )∩L5 such that (x(t ), y(t ))

is a homoclinic orbit that limits to Q6 (see Figure 4.2).

Proof. For Ẽ = 0, we claim that there is an initial condition (x(0), y(0)) ∈C (Ẽ )∩L5 such that

E(x(0), y(0)) = 0. Consider (x(0), y(0)) = (2π, z) where z ∈ (π/2,π). By a similar argument to

the proof of Lemma 4.2 there exists z ∈ (π/2,π) such that E (2π, z) = Ẽ . If we write (x(t ), y(t ))

to be the solution of system (4.1) starting at the point (x(0), y(0)) then E(x(t), y(t)) = 0 for

all t > 0. According to Lemma 4.6, there is T1 > 0 such that the trajectory of (x(t ), y(t )) will

hit L2. Depending on Lemma 4.8, either there is T2 > T1 such that (x(T2), y(T2)) ∈ L3 ∪L6 or

(x(t ), y(t )) ∈ M4 stays at M4 for all t > 0 and converges to Q6 as t →∞. We will focus just on

the second possibility. Because the system (4.1) is reversible then there is T2 < 0 such that

the trajectory of (x(−t ), y(−t )) converges to Q6 for all 0 > t >−T2 . More precisely , we have

lim
t→±∞E(x(t ), y(t )) =Q6,

so thatΛ+(x, y) =Λ−(x, y) =Q6 This trajectory is called a homoclinic orbit [59]. �

4.4 Dynamics on A1 and weak chimeras

This section relates the dynamics of (4.1) to synchrony and desynchrony of the phase

oscillators. In particularly, we show existence of an infinite number of chimera states that

are neutrally stable for integrable case (4.1).
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Theorem 4.11. Consider any 0 < Ẽ <π, then the level curve C (Ẽ ) for system (4.1) is a trajectory

(x, y) ∈R2 and there is T = T (Ẽ ) such that x(T ) = x(0)−2π and y(T ) = y(0). More precisely, if

(x, y) ∈C (Ẽ) then

lim
t→∞

1

t
y(t ) = 0 and lim

t→∞
1

t
x(t ) = 2π

T
6= 0.

Proof. Define Y0 = {(x,0) : 0 ≤ x ≤ 2π}, Yπ = {(x,π) : 0 ≤ x ≤ 2π} as the lower and upper

boundaries of M . Noted that Y0 and Yπ ⊂ M . These boundaries are invariant sets for the

system (4.1) since ẏ = 0 for all Y0 and Yπ, therefore

0 ≤ y(t ) ≤π, ∀ t > 0,

and

0 ≤ y(t )

t
≤ π

t
, ∀ t > 0.

We now take the limit and obtain

0 ≤ lim
t→∞

1

t
[y(t )] ≤ lim

t→∞
π

t
.

In consequence, limt→∞ 1
t [y(t )] = 0 for any 0 < Ẽ <π and (2π, y) ∈C (Ẽ).

Now we will prove the second part of the result: Let (x(0), y(0)) ∈C (Ẽ ) such that (x(0), y(0)) =
(2π, y(0)) by Lemma 4.2 there is a 0 < T <∞ such that (x(T ), y(T )) = (0, y(0)). If we define

n = n(t ) := bt/T c then

nT ≤ t < (n +1)T, (4.7)

and hence

−2π(n +1) < x(t ) ≤−2πn. (4.8)

Dividing (4.8) by (4.7), we get that

−2πn

(n +1)T
> x(t )

t
> −2π(n +1)

nT
. (4.9)

By taking the limit for (4.9), we get

−2π

T
≥ lim

t→∞
x(t )

t
≥ −2π

T
,
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which can be simplified as follows

lim
t→∞

x(t )

t
= −2π

T
6= 0.

�

Theorem 4.12. The system (3.5, 3.2) of six oscillators with β= r = 0 has an infinite number of

chimera states within A1 that are neutrally stable.

Proof. We know that y = 1
2 (φ2−φ3) and x =φ1−φ3− y . Also, from Theorem 4.11 with given

hypothesis, we have that for any 0 < Ẽ <π there is t such that

lim
t→∞

1

t
y(t ) = 0, (4.10)

which is expanded to

lim
t→∞

1

t
y(t ) = 1

2
lim

t→∞
1

t
[φ2(t )−φ3(t )] = 1

2
Ω23 [Frquency differnce (3.4)]. (4.11)

Then from (4.10) and (4.11), we yield

1

2
Ω23 = lim

t→∞
1

t
[y(t )] = 0.

This means there is frequency synchronization between φ2(T ) and φ3(T ). To show

that φ1 and φ3 are not frequency synchronized (Ω13 6= 0), we need to prove that a curve

from x = 0 to x = 2π is continuous and there is no an equilibrium point on the level curve.

Let (x(0), y(0)) ∈ C (Ẽ) and 0 < Ẽ < π be an initial condition for the system (4.1). Then

there is T > 0 such that (x(T ), y(T )) = (x(0)− 2π, y(0)) (Lemma 4.2), (i.e. the trajectory

will return to its initial condition after time T ). In addition, since the solution for this

initial condition limt→∞ 1
t (x(t), y(t)) = (−2π/T,0) 6= (0,0), (Theorem 4.11 ). That means

this trajectory does not converge to a equilibrium point (Lemma 4.10) and continuous.

According to our previous result we have

lim
t→∞

1

t
x(t ) = −2π

T
< 0.

which implies to

lim
t→∞

x(t )

t
= lim

t→∞
φ1 −φ3 + y(t )

t
= lim

t→∞
φ1 −φ3

t
+ lim

t→∞
y(t )

t
= lim

t→∞
φ1 −φ3

t
= −2π

T
< 0,
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which implies that Ω13 6= 0. That refers to exist frequency dsynchronization between φ1

and φ3. From the above argument, we get a weak chimera solution (Definition 3.1). As a

consequence, for each Ẽ in the infinite set (0,π) there is a distinct chimera state. As these

are not isolated they are not hyperbolic. �
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5
STABILITY OF WEAK CHIMERA CHIMERA SOLUTIONS FOR

β,r 6= 0

In chapter 3, we found and studied chimera solutions for various values of α with r =
0 and −0.01 for system (3.12) by using XPPAUT (Numerical Continuation Methods). While

in chapter 4, a weak chimera state was found analytically for β = r = 0. In this chapter,

we analytically and numerically investigate chimera states for β,r 6= 0. In Section 5.1, the

system (3.12) is translated from (α,r ) = (π/2,0) to the origin β = π/2−α = 0 and r = 0 in

the parameters space. This enable us to study stability and bifurcation for chimera states

when the parameters are sufficiently small. We also deduce an equation with one variable

and two parameters from the planar system (3.12) and integral of motion (4.2). In addition,

we compute an approximation for the period and other properties for chimera solutions.

In Section 5.2, we use the first return map to approximate these weak chimera solutions

in the near-integrable limit. Although these are not analytically solvable, we are able to

approximate the integrals numerically and compare them to numerical continuation results

(in section 3.3) in order to understand stability and bifurcation of these weak chimera states

in the final section 5.3.
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5.1 Calculating the period for the chimera solutions with

β,r = 0

We simplify system (3.12) forα=π/2−β to get the following system for (x, y) ∈T2 depending

on two parameters β and r ,

ẋ = 24r sin(x)cos(x)cos2(y)−6sin(x)cos(y)sin(β)

+ 2cos(x)cos(y)cos(β)−12r sin(x)cos(x)−2cos(β)cos2(y),

ẏ = 2sin(y)(4r cos2(x)cos(y)+4r cos3(y)+ sin(x)cos(β)

− cos(x)sin(β)−cos(y)sin(β)−4r cos(y)). (5.1)

The above system has an integral motion for β= 0, r = 0 (according to Lemma 4.1) and

the same function E(x, y) as in (4.2), recall

E(x, y) := y +cos y sin y −2sin y cos x. (5.2)

Figure 5.1: This figure shows cyan level curves C (Ẽ) for (5.2 ) at some values of E on the set
M ∈T2 that is divided into two areas left H` and right Hr . Note that any value of Ẽ , C (Ẽ ) is a
graph over y within H` and Hr , but C (Ẽ) is not a graph over x or over y on M.

In order to describe stability of chimera solutions for β,r 6= 0 and any level curves 0 < Ẽ <
π, we first need to understand properties of the level curves C (Ẽ) for 0 < Ẽ <π. According
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to Figure 5.1, the level curves are not graphs over x or y for the whole period 0 < t < T (Ẽ),

where T (Ẽ) is as in Theorem 4.11. Therefore, we highlight the region Hr from x(0) = 2πk

to x(T /2) = 2πk −π (see the green right part Hr in Figure 5.1). The geometric properties

of all the level curves on half period Hr is that each of these levels nullclines pass through

maximum of y at (2πk, ymax(Ẽ)) to minimum of y at (2πk −π, ymi n(Ẽ)),k = 0,1, ...,n ∈N. In

particular, in this range of Ẽ , the curve (x, y) ∈C (Ẽ)∩Hr is a graph over

ymi n(Ẽ) ≤ y ≤ ymax(Ẽ) (5.3)

given by the unique solution of (5.2) E(x, y) = Ẽ with x ∈ [π,2π], This can be written

x =∆Ẽ (y) := 2π−arccos
[cos y sin y + y − Ẽ

2sin y

]
, (5.4)

where arccos is the usual inverse on [0,π]. In order to compute a numerical approximation

for the period T (Ẽ), we firstly find the values of ymax , ymi n ∈ (0,π). Hence, substituting

x(0) = 2π and x(T /2) =π in (5.2), we obtain

E(2π, ymax) = ymax +cos(ymax)sin(ymax)−2sin(ymax) = Ẽ ,

E(π, ymi n) = ymi n +cos(ymi n)sin(ymi n)+2sin(ymi n) = Ẽ . (5.5)

Then we solve above equations for y and note that the root is unique and smoothly

depends on Ẽ in this range. However the equations (5.5) are transcendental, we need to

solve using Maple’s evalf to get numerical approximation for values of ymax and ymi n (see

Figure 5.2 and Appendix A.2.1).
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Figure 5.2: The values of ymax and ymi n against E for (5.5) are shown as curves.

Now, we will compute the time of period T (Ẽ) of every level curve 0 < Ẽ < π for the

system (5.1) with β= r = 0,

ẋ = f (x, y) = 2cos(y)cos(x)−2cos2(y), (5.6)

ẏ = g (x, y) = 2sin(y)sin(x). (5.7)

From the equation (5.2), we have

cos(x) = cos(y)sin(y)+ y − Ẽ

2sin(y)
, (5.8)

sin(x) = ∓
√

4sin2(y)− (cos(y)sin(y)+ y − Ẽ)2

2sin(y)
. (5.9)

On the level curve (x, y) ∈C (Ẽ), we can eliminate the variable x by substituting (5.9) in

(5.7) to become

ẏ = g (∆Ẽ (y), y) =−
√

4sin2(y)− (cos(y)sin(y)+ y − Ẽ)2 . (5.10)

The core result for removing x is that all trajectories on the domain M ∈T2 (see Figure 5.1)

will be governed by the equation (5.10) with one variable y . If we integrate (5.10) over the

88
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half period within Hr we obtain∫ T (Ẽ)

t=0
d t = −2

∫ T (Ẽ)/2

t=0

1√
4sin(y)2 − (cos(y)sin(y)+ y − Ẽ)2

d y.

Writing the integration limits in terms of y then gives

T (Ẽ) = 2
∫ ymax (Ẽ)

ymi n (Ẽ)

1√
4sin(y)2 − (cos(y)sin(y)+ y − Ẽ)2

d y. (5.11)

Figure 5.3 shows a numerical approximation of T (Ẽ) for Ẽ ∈ (0,π) computed using Maple’s

evalf. Note that, T (Ẽ ) →∞ as Ẽ → 0+ or Ẽ →π− and T is finite between these limits. There

is a symmetry T (Ẽ) = T (−Ẽ +π) and T (Ẽ) has a unique minimum value at Ẽ =π/2.

Figure 5.3: Period T (Ẽ) of the weak chimera solution of (5.1) for Ẽ ∈ (0,π) in the integrable
case β= r = 0, computed using (5.11). Observe that the period tends to infinity as the level
curve approaches the heteroclinic orbits at Ẽ = 0 and π..

5.2 Approximation of chimera solutions for β,r 6= 0

In the previous chapter, weak chimera states were analytically observed for the system

(5.1) at specific parameter values β,r = 0. The aim of this section is to find an approximate

Poincaré map for the more general case (5.1). Then, we use this map to prove existence of

chimera states for β,r 6= 0. Let us choose a Poincaré section Σp ⊆T2 where

Σp = {(x, y) ∈T2 : x = 2π and y ∈ (0,π)}.

89



CHAPTER 5. STABILITY OF WEAK CHIMERA CHIMERA SOLUTIONS FOR β,r 6= 0

The time of first return of (x, y) ∈Σp is defined by

τ(x, y) = inf{t > 0 :ϕ(x, y, t ) ∈Σp and (x, y) ∈Σp },

where ϕ(x, y, t) is the flow of the system (5.1). The Poincaré first return map P : Σp →
Σp is defined by P (x, y) = ϕ(x, y,τ(x, y)). Let us write P (2π, y) = P (2π, ymax(E)) so that we

parametrize the chimera using E ∈ (0,π). Then

P (2π, y) = P (2π, ymax(E)) = (2π, ymax P̃ (E))). (5.12)

So the first return P can be understood as a map P̃ : (0,π) → (0,π),

En+1 = P̃ (En). (5.13)

We know in the integrable case, the chimera periodic orbits intersect Σp at fixed points

of the Poincaré map, i.e P̃ (Ẽ ) = Ẽ for all Ẽ and β= r = 0. More generally, note from (5.2) that

d

d t

[
E(x(t ), y(t ))

]= ∂E

∂x
ẋ + ∂E

∂y
ẏ , (5.14)

for all (x, y) ∈R2. Combining (5.1) and (5.14) we get

dE

d t
(x, y) =G(x, y)sinβ+F (x, y)r (5.15)

where

G(x, y) := 4sin y
[
4cos y cos2 x −cos3 y −3cos y

]
,

F (x, y) := 4sin y
[
4cos5 y −4cos4 y cos x

+4cos3 y cos2 x −16cos2 y cos3 x −4cos3 y

+16cos2 y cos x +6cos3 x −6cos x
]
.

Substituting (5.4) in (5.15) and defining GẼ (y) :=G(∆Ẽ (y), y) and FẼ (y) := F (∆Ẽ (y), y), such

that ∆Ẽ is the x−component of the level curve for Ẽ at y (given in (5.4)), we get

dE

d t
(∆Ẽ (y), y) =GẼ (y)sinβ+FẼ (y)r, (5.16)
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where

GẼ (y) = 4sin(y)
[

cos3(y)−cos(y)
(cos(y)sin(y)+ y − Ẽ)2

sin2(y)

+ 3cos(y)
]
,

FẼ (y) = 4sin(y)
[−4cos5(y)+2cos4(y)

(cos(y)sin(y)+ y − Ẽ)

sin(y)

− cos3(y)
(cos(y)sin(y)+ y − Ẽ)2

sin2(y)

+ 2cos2(y)
(cos(y)sin(y)+ y − Ẽ)3

sin3(y)

+ 4cos3(y)−8cos2(y)
(cos(y)sin(y)+ y − Ẽ)

sin(y)

− 3/4
(cos(y)sin(y)+ y − Ẽ)3

sin3(y)

+ 3
(cos(y)sin(y)+ y − Ẽ)

sin(y)

]
.

(5.17)

Now assume that (β,r ) = (εβ̃,εr̃ ) and consider the behaviour of (5.1) in the limit 0 < ε¿ 1

for fixed (β̃, r̃ ) 6= (0,0). Note that in this case the system is nearly Hamiltonian and we can

use perturbations theory [95], [86] as follows,

dE

d t
(∆Ẽ (y), y) = ε[GẼ (y)β̃+FẼ (y)r̃ ]+O(ε2), (5.18)

and so on trajectories (x(t ), y(t )), E varies slowly with t if ε is small.

Suppose now that E0 ∈ (0,π) and (x(0), y(0)) ∈ Σp ∩C (E0). For any T > 0 such that

(x(t ), y(t )) ∈ Hr for all 0 < t < T , we can approximate (5.4) to get

x(t ) =∆Ẽ (y(t )) =∆E0 (y(t ))+O(ε), (5.19)

where the error term also depends linearly on T . Moreover, if T (E0) <∞ then (using the

symmetry between Hr and H` there will be first return to Σp after time T (E0)+O(ε) that is

close to E0.

We approximate this first return (5.13) in the case ε> 0: for (x(t), y(t)) ∈ Hr , note that

using (5.19) in (5.18) we have

dE

d t
(∆Ẽ (y), y) = ε[GE0 (y)β̃+FE0 (y)r̃ ]+O(ε2). (5.20)
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If the trajectory next intersects Σp at (0, ymax(E1)) after time T = T (E0)+O(ε) then we can

approximate

E1 −E0 =
∫ T

t=0

dE

d t
d t

= 2ε
∫ T (E0)

2

t=0
[GE0 (y)β̃+FE0 (y)r̃ ]d t +O(ε2)

= εΛ(E0, β̃, r̃ )+O(ε2). (5.21)

where (changing the limits of integration) and defining from (5.10) that gE0 (y) := g (∆E0 (y), y)

we can write

Λ(E0, β̃, r̃ ) := −2
∫ ym ax(E0)

ymi n (E0)

GE0 (y)β̃+FE0 (y)r̃

gE0 (y)
d y

= −2(Λ1(E0)β̃+Λ2(E0)r̃ ), (5.22)

where

Λ1(E0) :=
∫ ym ax(E0)

ymi n (E0)

GE0 (y)

gE0 (y)
d y =

∫ ymax (E0)

ymi n (E0)

G̃E0 (y)√
4sin2(y)− (cos(y)sin(y)+ y −E0)2

d y,

Λ2(E0) :=
∫ ym ax(E0)

ymi n (E0)

FE0 (y)

gE0 (y)
d y =

∫ ymax (E0)

ymi n (E0)

F̃E0 (y)√
4sin2(y)− (cos(y)sin(y)+ y −E0)2

d y.

Hence the Poincaré map E1 = P̃ (E0) satisfies

P̃ (E0) = E0 +εΛ(E0, β̃, r̃ )+O(ε2)

= E0 −2ε[Λ1(E0)β̃+Λ2(E0)r̃ ]+O(ε2). (5.23)

In the next theorem, we show the existence of a weak chimera state for Λ(En , β̃, r̃ ) at

E0 =π/2 and (β,r ) 6= (0,0).

Theorem 5.1. For the open set of (β̃, r̃ ) such that the first derivative of Λ(E0, β̃, r̃ ) does not

equal zero (i.e. Λ′
1(π/2)β̃+Λ′

2(π/2)r̃ 6= 0), if ε is small enough then system (5.1) with (β,r ) =
(εβ̃,εr̃ ) has a periodic orbit that is close to the level curve of (5.2 ) corresponding to E0 =π/2.

This periodic orbit corresponds to a weak chimera state of (5.22).

Proof. Note that in the special case E0 =π/2, (5.22) gives

Λ(π/2, β̃, r̃ ) =−2(Λ1(π/2)β̃+Λ2(π/2)r̃ ). (5.24)
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In this case, ymax =π− ymi n can be found from (5.5) and (5.2 ) using E0 =π/2 to give

π/2 = ymax +cos ymax sin ymax −2sin ymax ,

π/2 = π− ymax −cos ymax sin ymax +2sin ymax .

Hence ymax =π− ymi n for E =π/2. We now compute

Λ1(π/2) =
∫ π/2

ymi n

Ĝ(y)d y +
∫ ymax

π/2
Ĝ(y)d y,

Λ2(π/2) =
∫ π/2

ymi n

F̂ (y)d y +
∫ ymax

π/2
F̂ (y)d y,

where we define

Ĝ(y) = Gπ/2(y)

gπ/2(y)
,

F̂ (y) = Fπ/2(y)

gπ/2(y)
. (5.25)

Because Ĝ(y) =−Ĝ(π− y) and F̂ (y) =−F̂ (π− y) we can compute

Λ1(π/2) =Λ2(π/2) = 0. (5.26)

Hence,Λ(π/2, β̃, r̃ ) = 0 for all β̃, and r̃ . On the other hand, one can check numerically that

neither ofΛ′
1(π/2) orΛ′

2(π/2) are zero (see Figure 5.4), which means that there is an open

set of β̃ and r̃ such that

Λ′
1(π/2)β̃+Λ′

2(π/2)r̃ 6= 0. (5.27)

We approximate the derivative by using small h in

Λ′
1(π/2) ≈ Λ1(π/2+h)−Λ1(π/2)

h
,

and

Λ′
2(π/2) ≈ Λ2(π/2+h)−Λ2(π/2)

h
.

Using h = 0.0001, we obtainΛ′
1(π/2) = 10.1374 andΛ′

2(π/2) = 16.1335. Hence the derivative

∂Λ
∂E0

(π/2, β̃, r̃ ) is non-zero for almost all β̃, r̃ . For these cases and small enough ε the Poincaré

map P̃ will have a hyperbolic fixed point that limits to E0 =π/2 as ε→ 0. The flow trajectory

corresponding to this fixed point is a periodic orbit will remain close to the contour C (π/2):

hence there is a chimera state for small enough ε> 0. �
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Note that if (5.27) is not satisfied this implies that β̃≈−1.5914r̃ which corresponds to a

pitchfork bifurcation of chimera states: this is discussed in the next Section. Furthermore,

the periodic orbit corresponding to the fixed point E0 =π/2 has an extra symmetry of the

form (x(t + T
2 ), y(t + T

2 )) = (x(t )−π,π− y(t )), (mod2π). This symmetry is broken at pitchfork

bifurcation.

Figure 5.4: The blue and red curves respectively showΛ1(E) andΛ2(E) from (5.22). Note that
both functions have the symmetryΛi (π−E ) =−Λi (E ) and both curves apparently have finite
limit as E → 0 or π.

5.3 Bifurcation of the chimera solutions

It is well known [57, Theorem 9.3] that if the Poincaré map P̃ given in (5.23) has a fixed point

E∗ then the fixed point will be stable if |P̃ ′(E∗)| < 1 (resp. unstable if |P̃ ′(E∗)| > 1). Because

P̃ ′(E0) = 1+εΛ′(E0, β̃, r̃ )+O(ε2),

where

Λ′(E0, β̃, r̃ ) =Λ′
1(E0)β̃+Λ′

2(E0)r̃ ,
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(and the error term is uniform in any closed subinterval of E0 ∈ (0,π)) it follows that if there

is an E0 ∈ (0,π) such thatΛ(E0, β̃, r̃ ) = 0 andΛ′(E0, β̃, r̃ ) < 0 (resp. Λ′(E0, β̃, r̃ ) > 0) then there

is a stable (resp. unstable) chimera periodic orbit near C (E0) for small enough ε> 0. This

means that bifurcations condition of chimera periodic orbits near ε = 0 correspond to a

nonhyperbolic fixed point E0 such thatΛ(E0, β̃, r̃ ) =Λ′(E0, β̃, r̃ ) = 0.

Figure 5.5 shows Λ(E0, β̃, r̃ ) on varying E0 for a range of β̃ ∈ (−1,1) and fixed r̃ =−0.01

computed using (5.22) and Maple’s numerical integration evalf/int. The zeros of this

clearly show the location of nontrivial zeros Λ(E0, β̃, r̃ ) = 0 that may be stable (negative

slope) or unstable (positive slope) in the limit of small ε.

We also compute an asymptotic bifurcation diagram by numerically locating the zero

contour

Λ(E0, β̃, r̃ ) = 0, (5.28)

on varying β̃ and E0 for fixed r̃ , using Maple’s evalf. This is shown in Figure 5.6: the lower

case letters and index of i = 1, . . . ,5 refer to fixed points in Figure 5.5. Bifurcation points in

Figure 5.6 can be identified as three types: there are saddle-node, pitchfork and homoclinic

bifurcations that occur (for r̃ < 0) at parameter values β̃Sn < β̃P f < β̃Hm respectively in the

limit 0 < ε→ 0.

The scenario for a saddle-node bifurcation has three stages: there is only one stable point

b1 for β̃< β̃Sn . A saddle-node or tangent bifurcation of symetrically placed fixed points for

the Poincaré map at β̃= β̃Sn creates degenerate fixed points a2, c2 (red curve for Figure 5.5)

with |P ′(Ea2 )| = |P ′(Ec2 )| = 1. At these points (where the red curve is tangent to the E-axis)

the qualitative behaviour of the system becomes structurally unstable, in that an arbitrarily

small perturbation leads to a change of the qualitative dynamics of system. Finally, for

β̃Sn < β̃ < β̃P f , two pairs of fixed points (unstable and stable) a1, a3 and c1, c3 appear as

zeros of the green curve.

The pairs of fixed points a1 and c1 collide with b1 on the cyan line at β̃= β̃P f where the

pitchfork bifurcation occurs. This is where the fixed point b1 is marginally stable, |P ′(Eb1 )| = 1

and Λ′(Eb1 , β̃, r̃ ) = 0. For β̃P f < β̃ there are three fixed points (for example, a5, c5 and b1

where the orange curve has zeros. The point b1 is unstable while a5 and c5 are stable.
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The two fixed points a6 and c6 hit the boundary of the domain E ∈ [0,π] at the homo-

clinic bifurcation where β̃Hm = β̃. At this point the period of the weak chimera solution

becomes infinite in the limit: see Figure 5.3 and the magenta line for Figure 5.5. At the

homoclinic bifurcation the points a7 and c7 move to the boundary and for β̃Hm < β̃ the

only remaining fixed point is at b1. A similar scenario of bifurcations is found for r̃ > 0

though with the stabilities reversed: there is a parameter-time reversing symmetry given by

(β,r, t ) 7→ (−β,−r,−t ).

Figure 5.5: Approximations of (5.22) for various values of β̃ and r̃ = −0.01, where zeros of
Λ(E ) =−2[Λ1(E )β̃+Λ2(E )r̃ ] correspond to fixed points of the approximate Poincaré map. The
points b1 and ai , ci , i = 1, ..,6 represent various fixed points on varying β̃. The red curve is at
the saddle-node bifurcation at β̃= 0.0081 while the cyan curves is at the pitchfork bifurcation
where β̃= 0.0159. The homoclinic bifurcation can be seen for the magenta curve, β̃= 0.063.

Asymptotic approximations of the bifurcations from (5.22) are compared to continuation

results for the original system (5.1) on varying β, for r =−0.01 using XPPAUT as in [8]: see

Figure 5.6 and Table 5.1. We find good agreement for saddle-node and pitchfork bifurcations

of weak chimeras from the asymptotic theory and from numerical continuation respectively,

while the homoclinic bifurcation seems to have errors that grow faster with ε. This is not

too surprising, as we expect the approximation errors to be larger in the high period limit.

Figure 5.7 summarises and compares the bifurcations of chimeras for (5.22) and (5.1) in the
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parameter space (β,r ).

Type of Bif. β using (5.22) β using (5.1)
Sn of LC 0.0081 0.0081
Pf of LC 0.0159 0.0158

Hom of LC 0.063 0.0192

Table 5.1: Comparison of the approximations of β at saddle node of limit cycle, pitchform
and homoclinic bifurcations of weak chimeras for r = −0.01. The first column gives the
asymptotic approximate system (5.22) for the limit ε→ 0. The second column gives values
from continuation of (5.1) using XPPAUT. Observe there is very good agreement for the first
two bifurcations while the third only gives better agreement closer to the integrable limit: see
Figure 5.7.

Figure 5.6: Left panel (A) shows bifurcation digram (β̃ against E) for system (5.22) when r̃ =
−0.01 (numerically approximated by Maple for the limit ε→ 0), while right panel (B) shows
bifurcation diagram (β against y) for system (5.1) and r =−0.01 (numerically approximated
by XPPAUT). Blue and green lines denote unstable/stable periodic orbit. In both Panels A
and B, there is saddle-node bifurcation for limit cycle at points β̃Sn and βSn and pitchfork at
points β̃P f and βP f . The points β̃Hm and βHm indicate homoclinic bifurcation.
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Figure 5.7: Bifurcation diagrams for the asymptotic approximation (5.22) computed with
Maple and the continuation (5.1) computed with XPPAUT in the parameter space (β,r ) close
to the integral case (0,0). Bifurcations for (5.1) are computed varying β for r =±0.001, ±0.005
and ±0.01: these are shown as coloured points. Bifurcation lines for (5.22) are computed
using Maple and represented by the blue and green lines showing (β,r ) = ε(β̃, r̃ ) for ε ∈R. Note
that quadrants A (resp. B) and C (resp. D) have the same qualitative dynamics on reversing
time because of the time-reversing parameter symmetry (β,r, t ) 7→ (−β,−r,−t ). There are four
coloured regions (green and purple) where multiple chimera states coexist in the asymptotic
limit. There is only one chimera within the white regions: this is stable in I and unstable in
I∗. Five branches of chimera (three stable and two unstable) are in the green area V , (also,
two stable and three unstable at V ∗), bounded by a saddle node of limit cycles (green line)
and a pitchfork of limit cycles (blue line). There are two stable chimera and one unstable in
purple area I I I , (also, one stable and two unstable at I I I∗), bounded by the pitchfork and
the homoclinic bifurcation (black curve) that are only present in the XPPAUT calculations,
(homoclinic bifurcation: the red line is computed using Maple).
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6
WEAK CHIMERAS AND BIFURCATIONS WITHIN A6

In chapter three, we listed in Table 3.1 a number of invariant subspaces for the six-oscillator

network (3.6) shown in Figure 3.2(a). This includes the exotic invariant subspaces Ai , i =
1, ...,7. In addition, we have rewritten the full system (3.6) in the subspace A1 to explore

chimera states and study their stability and bifurcation. As pointed by Yuri Maistrenko (pers.

comm.) there are other weak chimeras in this system, in particular within A6. In section 6.1,

we consider the network of six coupled phase oscillators (3.6) with coupling (3.2) within the

invariant subspace A6 and determine regions where a chimera state exists in the parameter

space. We find this is bounded by lines of saddle-node bifurcation. Section 6.2 explains the

reduction for the full system (3.6) in term of phase difference and computes eigenvalues

for the nonhyperbolic equilibrium on the bifurcation lines. Section 6.3 presents numerical

simulations that help us to prove that chimera states are not only stable within the invariant

set A6 but also can be found to be stable in the full system.

6.1 Bifurcation of chimera solution within A6

We consider the dynamics of the system (3.6) within the following invariant subspace

A6 = (θ1,θ2,θ3,θ4,θ5,θ6) = (φ1,φ1 +π,φ2,φ1,φ1 +π,φ2 +π),
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such that φ1, φ2 ∈T2. Note that the system (3.6) can be written in these coordinates as

φ̇1 = w +2g (−π)+ g (φ1 −φ2)+ g (φ1 −φ2 −π),

φ̇2 = w +2g (φ2 −φ1)+2g (φ2 −φ1 −π). (6.1)

Using the coupling function (3.2), we obtain

φ̇1 = w −2sin(α)+2r sin(2φ1 −2φ2),

φ̇2 = w −4r sin(2φ1 −2φ2), (6.2)

which can be formulated in term of phase difference ψ :=φ1 −φ2, so that

ψ̇=−2sin(α)+6 r sin(2ψ), (6.3)

a first order differential equation in ψ ∈T.

Now, we demonstrate the system (6.3) has chimera states for some parameter values of α

and r , which are born at a saddle-node bifurcation. The equilibria for the one-dimensional

system (6.3) satisfy

f (ψ) =−2sin(α)+6 r sin(2ψ) = 0.

Hence, equilibria are

sin(2ψ) = sin(α)/3r, cos(2ψ) =±
√

1− (sin(α)/3r )2 ,

which depend on two parameters α and r and these points can classified using linear

stability analysis by computing

f ′(ψ) = 12r cos(2ψ) =±12r
√

1− (sin(α)/3r )2 .

Recall that equilibrium ψ is linearly stable when f ′(ψ) < 0. The dynamical behaviour

for the system (6.3) is visualized in Figure 6.1. Panel (a) presents ψ̇ as a function of ψ

which shows three curves corresponding to three values for α and r = −0.01. There are

two equilibria points red/black are stable/unstable on the black curve when α = −0.015,

r =−0.01 (sin(α) < 3r ), hence |sin(α)/3r | < 1. That means the coupling between the two
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oscillators is strong which implies these oscillators move together with the same frequency

and are synchronized

All trajectories in Figure 6.1(a) are attracted to the red stable point as t goes to infinity.

As the parameter α is varied to the point where

r =±sin(α)

3
, (6.4)

the red/black points move toward each other then collide to appear as a pink bifurcation

point on the blue line. This point is a non-hyperbolic and f ′(ψ) = 0 for ψ=π/4 or ψ= 3π/4.

In this case the orbit is homoclinic because it starts and ends at the same equilibrium.

Finally, if |sin(α)/3r | > 1, (e.g. α=−0.045, r =−0.01), then the nonhyperbolic point vanishes

(magenta curve) and a limit cycle appears. This attracting periodic orbit corresponds to the

chimera state because in this caseψ, the phase difference between φ1 and φ2, grows linearly

with time. Note that all the points within A6 are in this chimera state and therefore it is the

typical behaviour for initial conditions.

The saddle node bifurcation at (6.4) is illustrated in Figure 6.1(b). Red/black lines indicate

stable/unstable equilibria in the bifurcation diagram shown in space (r,ψ). In the other

words, the red/black points on the black curve at (a) correspond to stable/unstable points

on red/black curves in (b), while the pink point is a bifurcation point at ψ=π/4 in both (a)

and (b).

We can examine the dynamics of phase oscillators on the circle by time series. Figure 6.1

also shows time series of φ1 and φ2 for the system (6.2) for several initial conditions near

two points (red/black) on the black curve (a). Note that all the initial conditions converge

to the same trajectory since they have frequency synchrony (c), (e). Also, time lines in (d)

for initial conditions around the pink point on the blue curve (a) have dynamics which is

similar to (e). Finally, the time series for initial conditions near the magenta curve (a) reveal

chimera states, because the time series for φ1 and φ2 separate at an approximately linear

rate ( f ).

The relation between strength coupled parametersα and r has remarkable effects on the

appearance of chimera states. The bifurcation diagram at Figure 6.1(g) for the parameters

space (α,r ) provides us important information about this relation. This figure is divided
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into three regions according to values of the coupled parameters and every region has a

different dynamical behaviour. Two yellow regions refer to −3r < sin(α) < 3r which implies

to exist stable and unstable equilibria, (i.e no chimera states). The blue area indicates to

exist chimera states because this region satisfies sin(α) > 3r or sin(α) <−3r . The boundary

of the blue area represents the pink bifurcation lines L1 and L2 for a saddle-node bifurcation

where sin(α) =±3r in (6.4).
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Figure 6.1: Panel (a) shows three curves for (6.3) magenta, blue and black that refer to
r = −0.01 with different values of α = −0.045,−0.03 and −0.015. The black curve has
red/black equilibria points that are stable/unstable, the blue curve has one saddle point
which is pink while there is a chimera state on at the magenta carve. Panel (b) shows saddle-
node bifurcation for (6.3) where r against ψ and α = −0.03. Red/black curves represent
stable/unstable branches for equilibrium point. The pink point is a saddle-node bifurcation
at (r,ψ) = (−0.01,0.747). The time series (c)/(e) show frequency synchrony of the different
initial conditions (φ1,φ2) for the system (6.2) around the red/black point. Time series (d) is
for starting points near the pink point At ( f ), the dynamics of the phases φ1,φ2 exposes a
chimera state by every phase go to the different path. Panel (g ) is a parameter diagram for r
againstα that illustrates the regions of existence of chimera states in the invariant subspaces
A6, bounded by the pink bifurcation lines L1, L2.

103



CHAPTER 6. WEAK CHIMERAS AND BIFURCATIONS WITHIN A6

6.2 Stability of chimera states near the saddle-node

bifurcation

In the previous section, the system of six coupled phase oscillators (3.6) is written within

invariant subspaces on A6 as ODE (6.3) in one dimension (as flow on the circle). In addition,

we identified the bifurcation lines and the regions where attracting chimera states exist. We

recall, this system (3.6) is described as ODEs on the torus (θ1, ...θ6) ∈T6.

Defining ξk = θk −θ6 , k = 1,2,3,4,5. The system (3.6) can be written in term of phase

differences,

ξ̇1 = g (ξ1 −ξ2)+ g (ξ1 −ξ3)+ g (ξ1 −ξ5)− g (−ξ1)

− g (−ξ2)− g (−ξ3)− g (−ξ4)− g (−ξ5),

ξ̇2 = g (ξ2 −ξ1)+ g (ξ2 −ξ3)+ g (ξ2 −ξ4)− g (−ξ1)

− g (−ξ2)− g (−ξ3)− g (−ξ4)− g (−ξ5),

ξ̇3 = g (ξ3 −ξ1)+ g (ξ3 −ξ2)+ g (ξ3 −ξ4)+ g (ξ3 −ξ5)

− g (−ξ1)− g (−ξ2)− g (−ξ4)− g (−ξ5),

ξ̇4 = g (ξ4 −ξ2)+ g (ξ4 −ξ3)+ g (ξ4 −ξ5)− g (−ξ1)

− g (−ξ2)− g (−ξ3)− g (−ξ4)− g (−ξ5),

ξ̇5 = g (ξ5 −ξ1)+ g (ξ5 −ξ3)+ g (ξ5 −ξ4)− g (−ξ1)

− g (−ξ2)− g (−ξ3)− g (−ξ4)− g (−ξ5). (6.5)

We use the equation (6.3) to demonstrate numerically the existence of stable chimera

states in the full system (6.5) for the coupling (3.2). Finding explicit solutions is often

impossible for such systems (6.5), so we use quantitative analysis and numerical simulations.

The first condition to analyse a stability near an equilibrium state is to specify a direction

of a slope at equilibria points using linearization. The nonhyperbolic points for the one

dimensional system (6.3) are ψ=π/4, 3π/4 at (6.4). We know that ψ=φ1 −φ2, if ψ=π/4 is

chosen, then we can say φ1 =π/4 and φ2 = 0. In terms of phase differences, the equilibrium

104



6.2. STABILITY OF CHIMERA STATES NEAR THE SADDLE-NODE BIFURCATION

point for (6.5) invariant set A6 becomes

ξ∗ = (ξ1,ξ2,ξ3,ξ4,ξ5) = (φ1 −φ2 −π,φ1 −φ2,−π,φ1 −φ2 −π,φ1 −φ2) (6.6)

= (−π/4,3π/4,−π,−π/4,3π/4) ∈T5.

This point corresponds to a periodic orbit of the system (3.6) which is

Θ∗ = {(φ1 +ϕ,φ1 +π+ϕ,φ2 +ϕ,φ1 +ϕ,φ1 +π+ϕ,φ2 +π+ϕ) : for all ϕ ∈T}.

If ϕ= 0, then we can choose an initial condition θ∗ ∈Θ such that θ∗ = (φ1,φ1+π,φ2,φ1,φ1+
π,φ2 +π) = (π/4,5π/4,0,π/4,5π/4,π) ∈T6.

We can understand the local behaviour of nonlinear system (6.5) through linear ap-

proximation around the equilibrium. The stability of this point is determined by sign of

eigenvalues of the Jacobian. Here, we want to examine stability of ξ∗ over a range of values

of parameter α ∈ (0,π) and (6.4), along the pink bifurcation lines L1, L2 of nonhyperbolic

points ψ=π/4 in Figure 6.2(b).

Numerically we find (using Maple) the eigenvalues of the Jacobian at the equilibrium

point ξ∗. This gives a set of five eigenvalues at every point on the bifurcation lines L1, L2

(see Table 6.1). The real parts of eigenvalues along these lines is plotted as a function of α in

Figure (6.2, (a), (c)). Red/black lines represent negative/positive eigenvalues that are real.

Green/blues lines indicate negative/positive real parts of eigenvalues that are complex. The

equilibrium ξ∗ is nonhyperbolic, because it has a zero eigenvalue at the bifurcation point.

Figures 6.2((a), (c)) are divided into five regions (a, b, c, d , e) and (a∗, b∗, c∗, d∗,e∗)

respectively, according to signs of eigenvalues that refer to appear or disappear stable and

unstable manifold. The invariant subspaces of the linearized system spanned by eigenvalues

E s , E u and E c are tangent to the stable, unstable and center manifold respectively at a, e, a∗

and e∗ for linearization of the system (6.5). Cases of two dimensional E u and E c can be seen

at b, c and b∗. There are only stable and center manifolds for d , c∗ and d∗.

As conclusion for these two sections above, we have analysed the system (6.3) over a

range values of α ∈ (0,π) and r . Before the saddle node bifurcation, almost every initial

condition ψ ∈ T converges to stable node, and the only initial that does not converge to
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this point is the unstable node (see yellow regions Figure 6.2 (b)). On the bifurcation curves

(see L1 and L2 in Figure 6.2(b)) all initial conditions in A6 go to bifurcating points. After the

saddle node, the initial conditions converge to a periodic orbit that is an attracting chimera

state. As a result, the bifurcation curves L1 and L2 indicate transition from a stable node to a

stable chimera in A6. Dividing curves of eigenvalues to five areas make the road easier to

detect a stable and unstable manifold.

L1, r = sin(α)/3 Eigenvalues λ L2, r =−sin(α)/3 Eigenvalues λ
α ∈ (0,0.78) Re(λ1) = Re(λ2) > 0, α ∈ (0,0.8) Re(λ1) = Re(λ2) > 0,

Re(λ3) > 0,Re(λ4) < 0, Re(λ3) < 0,Re(λ4) > 0,.
λ5 = 0. λ5 = 0.

α ∈ (0.8,1.28) Re(λ1) = Re(λ2) > 0, α ∈ (0.82,0.98) Re(λ1) = Re(λ2) > 0,C .No.
Re(λ3) > 0,Re(λ4) > 0, Re(λ3) = Re(λ4) > 0,

λ5 = 0. λ5 = 0.
α ∈ (1.30,2.14) Re(λ1) = Re(λ2) > 0, C.No. α ∈ (1,1.84) Re(λ1) = Re(λ2) < 0, C.No

Re(λ3) = Re(λ4) > 0, Re(λ3) = Re(λ4) < 0,
λ5 = 0. λ5 = 0.

α ∈ (2.16,2.32) Re(λ1) = Re(λ2) < 0, C.No. α ∈ (1.86,2.34) Re(λ1) = Re(λ2) < 0,
Re(λ3) = Re(λ4) < 0, Re(λ3) < 0,Re(λ4) < 0,

λ5 = 0. λ5 = 0.
α ∈ (2.36,3.14) Re(λ1) = Re(λ2) < 0, α ∈ (2.36,3.14) Re(λ1) = Re(λ2) < 0,

Re(λ3) > 0,Re(λ4) < 0, Re(λ3) < 0,Re(λ4) > 0,
λ5 = 0. λ5 = 0.

Table 6.1: Table of eigenvalues λi of the Jacobian at equilibrium point ξ∗ for system (6.5).
These are numerically computed using Maple in the range values of parameter α ∈ (0,π) and
r =±sin(α)/3 which correspond to L1 and L2.
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Figure 6.2: Panel (b) shows the bifurcation diagram described in Figure 6.1(b). The pink curves
L1/L2 refer to bifurcation points at (6.4). The real part of eigenvalues λ at bifurcation point ξ∗

and parameters values on L1,L2 against α ∈ (0,π) for the system (6.5) are plotted in panels (a)
and (c) respectively. Red/black lines are negative/positive real part of real number eigenvalues
at regions a,b,e, a∗,d∗ and e∗. Green/blue lines refer negative/positive real part of complex
number eigenvalues at c,d ,b∗ and c∗ and the cyan line is zero real part of eigenvalues for all
value of α.

6.3 Stability of chimera states in the full system

We find the stability regions for the bifurcation point ξ∗ in the previous section. There are

two interesting regions we examine. The first one, where eigenvalues of the saddle node

for the system (6.5), are not negative in parts b and c at Figure 6.2(a). The second is where
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there are eigenvalues that are not positive in the two parts c∗ and d∗ (Figure 6.2(c)). We

aim to understand this result in the full system (6.5). In particular, we examine if there are

attracting chimera states in some ranges of α and r .

Numerical simulation is used to examine this, by choosing an initial condition θ∗ ∈ A6

and comparing between dynamical behaviour for this point and a randomly chosen pertur-

bation that is within 0.1 of each component of θ∗. MATLAB simulations of this behaviour

are plotted in Figures 6.3, 6.4 and 6.5.

In the next steps, we concentrate on these two regions (b−c) and (c∗−d∗) at Figure 6.2(a),

(c). If we choose an initial condition θ∗ ∈ A6 at point v∗ corresponding to (α,r ) = (1.62,−0.35)

on L2 and two points u∗ = (1.62,−0.3329) and w∗ = (1.62,−031) on both sides of L2. These

points of parameters are where no unstable manifold, which correspond to the part c∗ in

Figure 6.2(c). The dynamical behaviour for θ∗ is depicted for parameter values v∗, u∗ and

w∗ by time series ((a), (d), (g)) , phase snapshots at the end of the simulation ((b), (e), (h))

and approximate frequency is

Ωi (T ) = θi (T )

T
, (6.7)

versus time ((c), ( f ), (i )) respectively at Figure 6.3.

We note that the time series (a) for all components of the initial condition at parameter

point u∗ go to −∞ at the same rate. We also note there is phase locking because the phase

differences are bounded along time t and then, there is frequency synchrony Ωi has the

same value for all θi . The similar state can be seen at v∗, (see Figure 6.3(d)). Snapshots of

the final stationary state confirm that this point still belongs to A6, (see Panels (b), (e)).

For the parameter value w∗, a chimera state is apparent in the time series Figure 6.3(g)

and frequency time (i ), such that θi , i = 1,2,4,5 have the same frequencyΩ1 =Ω2 =Ω4 =Ω5,

while θ3 and θ6 have a different frequencyΩ3 =Ω6. Note also that the final state of the time

series in Figure 6.3 ((b),(e),(h)) shows that the trajectory has in all cases remained within

A6: observe that θ1 = θ4, θ2 = θ5 = θ1+π and θ3 = θ6+π. This is expected as we start with an

initial condition in the invariant subspace A6.

We then examine stability of these solutions to a perturbation that is transverse to the

invariant subspace A6. In particular, we consider an initial condition that corresponds to
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θ∗ except that all components θi are perturbed by a random number multiplied by ζ= 0.1

away from θ∗. We plot simulations in Figure 6.4 in a similar way to Figure 6.3 at the same

parameters u∗, v∗ and w∗. Note by comparing between panels of time series at ((a), (d)

and (g )) in Figures 6.3 and 6.4, that in our perturbed case the trajectory converges to the

same behaviour as unperturbed case suggesting that the attracting dynamics within A6

is also stable within the full system. In particular, the dynamics of this perturbed initial

condition suggests that the chimera state in A6 shown in Figure 6.4 is an attractor for the full

system (3.6). Phase snapshots (b), (e) and (h) and frequency time (c),(f) and (i) assert these

consequences by the perpetuated point ends up within A6 and shows frequency states for

their components.

Whether the weak chimera within A6 is an attractor for the full system or not, depends

on whether there are only transversely stable directions to A6 or some transversely unstable

directions. For example, we consider the same initial condition that is perturbed close to

A6 for three parameter points (α,r ) = u := (1.02,0.3), v := (1.02,0.284) or w := (1.02,0.25) in

Figure 6.2(b) where there is no stable manifold. For the saddle-node bifurcation in this case,

there are additional unstable directions as shown in Figure 6.2(a). In this case we show in

Figure 6.5 that the initial condition evolves according to (3.6) away from A6 to a frequency

synchronized attractor that is far from A6. As a result, θi , i = 1,2, ..,6 have the similar time

series ((a), (d), (g )) and their approximate frequencies Ωi , i = 1,2, ...,6 at ((b), (e), (h)) are

equal. Both of these observations lead to deduce that chimera states in A6 are not attractors

in the full system where there is unstable manifold at the bifurcation point.

In a summary, we present numerical evidence of attracting chimera states in the full

system for specific parameters. These results are based on a linear approximation at a

critical solution ξ∗ and simulations at particular an initial condition θ∗ for the system (3.6).

Firstly, we analysed the full system within invariant subspace A6 and exposed a region in the

parameter space where the system has chimera states.

Linearization of the nonhyperbolic points ξ∗ at bifurcation allows us to determine the

stability of chimera states in the full system. In particular if the saddle node is transversally

stable, we find chimera states are also stable. In the case where there are center and unstable
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directions (see Figure 6.5 ) we find chimeras are not stable. In the case where there are only

stable directions, we find the chimeras are stable (see Figure 6.4).
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Figure 6.3: The first, second and third rows illustrate the dynamics of the system (3.6) starting
within A6 for a parameter at points u∗, v∗, w∗ respectively in Figure in Figure 6.2(b). The left
column shows time series for θi (t): different colours correspond to different i . The middle
column shows the final phases modulo 2π: observe that they remain in A6 in all case. Ap-
proximate frequencies for the (6.7) of oscillator i over the time interval [0, t ] are illustrated at
the right column. Note that in the bottom right panel there is partial frequency synchrony
corresponding to attraction to a weak chimera in A6.
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Figure 6.4: As Figure 6.3 except starting at a randomly chosen point that is within 0.1 of a
point in A6 in all coordinates. Observe the same long-term dynamics, indicating in particular
that the weak chimera in the lower right is stable to perturbations in the full system.
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Figure 6.5: Description as in Figure 6.4 for an initial condition started close to A6, except that
the top/middle/bottom panels correspond to points u, v, w in parameter space 6.2(b). In all
of these cases the solutions converge towards a frequency synchronized state that is not in
A6. This suggests that the weak chimera in A6 expected for w is not stable to perturbations
transverse to A6.
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CONCLUSION

In this final chapter, we summarise and discuss the results obtained in this thesis, and con-

clude an outline of further directions of research. Chimera states have attracted researchers’

attentions because they appear in a wide range of coupled oscillator systems. At chimeras,

the oscillators separate into two clusters, one and synchronized and the other desynchro-

nized. Chimera states correspond to broken spatiotemporal symmetry and are helpful

to understand many real-world phenomena. This thesis is an investigation of chimera

states in a network of six identical and indistinguishable phase oscillators with neighbour

and next-neighbour coupling. Our analysis and numerical calculation of chimeras uses a

generalization of the Kuramoto model with two harmonic coupling.

7.1 Summary and main results

In chapter two, we present introductory material on invariant subspaces as discussed in

[8] and summarised in Table 3.1. We focus on two exotic invariant subspaces that contain

chimeras: A1 was studied in [8] and in chapters three, four and five, while A6 is studied

in chapter six. A symmetry of a dynamical system is that a system unchanged under the

group action, (i.e. elements of group commutes with the vector field). Two methods are
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mentioned to explore flow invariant subspaces: the first one depends on finding an isotropy

subgroup of spatiotemporal symmetries of Sn ×T1 of networks of identical oscillators [11],

while the second considers balanced polydiagonal from an equivalence relation between

cells of networks (Exotic balanced colouring).

Chapter three investigates weak chimera states within invariant subspace A1 and follows

the analysis in Ashwin and Burylco [8] of phase space. We have written the system (3.6, 3.2)

within specific invariant subspace A1 to get a planar system of coupled phase oscillators.

The coordinates of the phase portrait for the system (3.10) from [8] have a time-reversing

symmetry that is not a reflection, rotation or translation at particular values of parameters α

and r . We change these coordinates so that our system (3.13) has a time-reversing symmetry

that is a reflection. Numerical simulations are used to plot phase portraits and time series

for various values of the parameters α and r.

We use numerical continuation software (XPPAUT) to plot the bifurcation diagram within

A1 for various values of interaction parameters. We investigated numerically a number of

weak chimeras state in the coupled phase system (3.12). In the bifurcation diagram, we

illustrate the effects of parameter symmetry and phase and time-reversal on stability and

bifurcation.

Chapter four focuses on proving analytically the existence of chimera states in the system

(3.5, 3.2) for the particular value of coupled parameters β,r within A1. We demonstrate

that there is an integrable structure E(x, y) for the system (3.5, 3.2) in the special case r = 0,

α= π/2 which corresponding to β= π/2−α working on the region M ⊂T2 split into two

halves H` and Hr . Also, at these values of parameters, this system has a reversing symmetry

R1 and a symmetry R2.

Nullclines for the system (3.13) are used to partition the set M into bounded areas and

prove a sequence of lemmas. These lemmas help us to understand the structure of phase

space within Hr ⊂ M . A reversing symmetry is employed to prove Lemma 4.2 that extends

the trajectories from Hr to H`, (i.e. describe the motion of the trajectories on the whole M).

This lemma is used to prove the appearance of a periodic orbit that winds around the first

component (x) on the torus. The main results of this chapter are stated in two essential
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theorems: Theorem 4.11 shows each level curve is a weak chimera according to Definition

3.1. Theorem 4.12 proves the existence of an infinite number of chimera states that are

neutrally stable for the integrable case.

In chapter five, we prove (or investigate) there are chimera states using the Poincare

return map near the integrable case E(x, y) when β,r 6= 0. We give an integral form for

the time of period for every level curves when 0 < Ẽ <π and other properties for chimera

solutions withβ,r = 0. Then, we approximate the first return map. Theorem (5.1) states there

is a periodic orbit forΛ(En , β̃, r̃ ) at E0 =−π/2 and almost all (β,r ) 6= (0,0), which corresponds

to chimera solutions. This procedure allows us to continue certain weak chimera states for

such nearby parameters.

We use these perturbation techniques and the fact that E(x, y) (5.2 ) is slowly varying

to describe existence, stability and bifurcation of weak chimera solutions for this regime.

Although these are not analytically solvable, we can approximate the integrals numerically

and compare them to numerical continuation results in chapter three in order to understand

stability and bifurcation of these weak chimera states. We note that depending on the ratio

of β/r , the number of chimeras and their type changes as we approach the integrable limit

(see Figure 5.7). These computations still require approximation of integrals: it would clearly

be of interest to find a completely analytical explanation of these bifurcations. XPPAUT and

Maple are used for drawing bifurcation diagram to investigate stability and bifurcations for

chimera states.

Chapter six highlights the existence of a stable chimera state within A6 that can be found

in the full system. We write the system (3.6, 3.2) within A6 and use phase differences to

get the ordinary differential equitation (6.3) for one variable ψ ∈T. This reveals there is a

weak chimera state in A6 at a particular region in parameter space (α,r ). We rewrite the

system (3.6) in term of phase differences to obtain the system (6.5). Linear approximation

at nonhyperbolic equilibrium point ξ is used to detect eigenvalues along bifurcation lines

L1 and L2. These eigenvalues gives us information about stable regions in the system (6.5).

This chapter reveals there can be attracting weak chimeras in the full system by using a

perturbed initial condition. We use MATLAB to plot time series as well as phase snapshots
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and approximate frequencies for the system (3.6)

7.2 Future work

There are a number of possible future research questions suggested by this work. These

include the following:

• Investigation of weak chimera states in this thesis and [8] is limited to the invariant

subspace A1 and A6. We have not checked if there are chimera states in other invariant

subspaces.

• The proof of existence of weak chimera states is restricted to one example of the

network of six oscillators. Future work could generalize this result other networks of

phase oscillators.

• It would be interesting to study other models, for example, Van der Pol with the

same network to see if similar behaviour can be obtained for an appropriate coupling

function.

• We find a number of bifurcations in A1 and A6 that give rise to weak chimeras but

have not fully analysed these. It would be good to do this, in particular for the saddle

node bifurcations in chapter 6 that have centre manifold of dimension more than one.

• In chapter four and five, we find multiple chimera solutions within A1. It would be

interesting to investigate their stability in the full system.

• We have investigated weak chimera solutions for a specific system and particular

definition. Another extension of the work worth considering would be found other

possible definition for chimera states.

• We have focussed on theory rather than applications in this thesis, but in would be

interesting to see how relevant this results found are in applications..
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A.1 Reversing symmetries of the six oscillator system for

r = 0, α=π/2

In order to prove the system (4.1) has a reversing symmetry with variables (x, y) ∈T2. We

define maps R1 and R2 as follows

R1

x

y

=
−x

y

=
2π−x

y

, R2

x

y

=
 x

−y

=
 x

2π− y


are reversing symmetry and a symmetry respectively. We write system (4.1) in the formẋ

ẏ

= F

x

y

=
2cos(y)cos(x)−2cos2(y)

2sin(y)sin(x)

 .

We begin to prove reversing symmetry R1,

F

R1

x

y

= F

−x

y

=
2cos(y)cos(x)−2cos2(y)

−2sin(y)sin(x)

 ,

and

R1

F

x

y

= R1

2cos(y)cos(x)−2cos2(y)

2sin(y)sin(x)

=
−(2cos(y)cos(x)−2cos2(y))

2sin(y)sin(x)

 .
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So

F ◦R1

x

y

=−R1 ◦F

x

y

 ∀(x, y) ∈T2.

Similar wary, we prove that R2 is symmetry,

F

R2

x

y

= F

 x

−y

=
2cos(y)cos(x)−2cos2(y)

−2sin(y)sin(x)

 .

and

R2

F

x

y

= R2

2cos(y)cos(x)−2cos2(y)

2sin(y)sin(x)

=
(2cos(y)cos(x)−2cos2(y))

−2sin(y)sin(x)

 .

So

F ◦R2

x

y

= R2 ◦F

x

y

 ∀x, y ∈T2.

Then R1 is a reversing symmetry and R2 is a symmetry for system (4.1).
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A.2 Maple code for the chapter 5

A.2.1 Code for Figures 5.2, 5.3 and 5.5

restart;

with(plots):

# increase infolevel to get more info on integration problems

# infolevel[`evalf/int`]:=0:

# integral for beta=r=0

EE:=(x,y)->y+cos(y)*sin(y)-2*cos(x)*sin(y);

# integrable limit

intlimit:={beta=0,r=0};

# equation 5

g:=phi->cos(phi+beta)+r*sin(2*phi);

# equation 8

dxdt:=(x,y)->2*(g(x-y)+g(x+y))-g(-x-y)-g(0)-g(y-x)-(g(-2*y)+g(2*y))/2;

dydt:=(x,y)->g(y-x)-g(-x-y)+(g(2*y)-g(-2*y))/2;

dEdt:=expand(simplify(diff(EE(x,y),x)*dxdt(x,y)+diff(EE(x,y),y)*dydt(x,y)));

# check: should be zero!

simplify(subs(intlimit,dEdt));

G0:=simplify(subs(beta=0,diff(dEdt,beta)));

F0:=simplify(subs(r=0,diff(dEdt,r)));

Emax:=EE(2*Pi,y);

Emin:=EE(Pi,y);

p1:=plot([Emin,Emax],y=0..Pi,color= ["blue","red"],thickness=3);

# Return solution in appropriate range

ymaxroot:=RootOf(Emax=E,y,2.0-0.00001*I..3.2+0.00001*I);

ymax:=E0->evalf(Re(subs(E=E0,ymaxroot)));
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# Return solution in appropriate range

yminroot:=RootOf(Emin=E,y,-0.001-0.0001*I..1.6+0.0001*I);

ymin:=E0->evalf(Re(subs(E=E0,yminroot)));

p2:=display([plot(['ymin(E)','ymax(E)'],E=0..Pi,color= ["blue","red"],thickness=3),

textplot([[0.7,2.7,"ymax",'font'=["times","roman",12]],

[0.7,0.4,"ymin",'font'=["times","roman",12]]])]);

# Integrand for period T(E) vs E

YY:=E->1.0/(4*sin(y)^2-(cos(y)*sin(y)+y-E)^2)^(1/2);

# Integral for period T(E) vs E

T:=E->int(YY(E),y=ymin(E)..ymax(E));

#infinite at endpoints so stop short of them

eta:=1e-4;

p3:=plot('T(E)', E=eta..Pi-eta, 1..8, labels=["E","T(E)"],

thickness=3,color=blue,numpoints=80,adaptive=false);

Dx:=(E,y)->evalf(2*Pi)-arccos((y+cos(y)*sin(y)-E)/(2.0*sin(y)));

#Dx:=(E,y)->arccos((y+cos(y)*sin(y)-E)/(2.0*sin(y)));

G0;

F0;

# These should be the same as G0 and F0

G1:=4.0*sin(y)*(4.0*cos(y)*cos(x)^2-cos(y)^3-3.0*cos(y));

F1:=4.0*sin(y)*(4.0*cos(y)^5-4.0*cos(y)^4*cos(x)+4.0*cos(y)^3*cos(x)^2-16.0*

cos(y)^2*cos(x)^3-4.0*cos(y)^3+16.0*cos(y)^2*cos(x)+6.0*cos(x)^3-6.0*cos(x);

gg:=2.0*sin(y)*sin(x);

Delta1:=(E,yy)->simplify(subs({x=Dx(E,yy),y=yy},G1/gg));

Delta2:=(E,yy)->simplify(subs({x=Dx(E,yy),y=yy},F1/gg));

eta:=1e-4;

# Computes the integral only to fixed digits accuracy

Lambda1:=xx->Int(Delta1(xx,y),y=subs(E=xx,ymin(xx))+eta..subs(E=xx,ymax(E))

-eta,digits=6); #,method =_NCrule);#,method=_d01ajc));#,method=_Gquad));
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Lambda2:=xx->Int(Delta2(xx,y),y=subs(E=xx,ymin(xx))+eta..subs(E=xx,ymax(E))

-eta,digits=6);#,method = _NCrule);#,method = _d01ajc));#,method=_Gquad));

N:=105;

Es:=Array([evalf((k-1)*Pi/(2*(N-1))) $ k=1..2*N-1]);

L1s:=Array([0 $ k=1..2*N-1]);

L2s:=Array([0 $ k=1..2*N-1]);

# compute the values of Lambda1 and Lambda2 at points Es

for kk from 1 to N do

L1s[kk] := evalf[25](Lambda1(Es[kk]));

L2s[kk] := evalf[25](Lambda2(Es[kk]));

if (kk<N) then

L1s[2*N-kk] := evalf(-L1s[kk]);

L2s[2*N-kk] := evalf(-L2s[kk]);

end if;

end do:

# Plot Lambda1 and Lambda2

p4:=plot(Es,L1s,color= "blue",thickness=3):

p5:=plot(Es,L2s,color= "red",thickness=3):

display({p4,p5})

p6:=plot(Es,-2*(0.0062*L1s-0.01*L2s),color= "blue",thickness=3,

labels=['E','Lambda(E)']):

p7:=plot(Es,-2*(0.0081*L1s-0.01*L2s),color= "red",thickness=3):

p8:=plot(Es,-2*(0.0125*L1s-0.01*L2s),color= "green",thickness=3):

p9:=plot(Es,-2*(0.0159*L1s-0.01*L2s),color= "cyan",thickness=3):

p12:=plot(Es,-2*(0.028*L1s-0.01*L2s),color= "orange",thickness=3):

p10:=plot(Es,-2*(0.063*L1s-0.01*L2s),color= "magenta",thickness=3):

p11:=plot(Es,-2*(0.08*L1s-0.01*L2s),color= "black",thickness=3):

display([p6,p7,p8,p9,p10,p11, p12]);
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A.2.2 Code for Figures 5.6

restart;

with(plots):

# increase infolevel to get more info on integration problems

# infolevel[`evalf/int`]:=0:

# integral for beta=r=0

EE:=(x,y)->y+cos(y)*sin(y)-2*cos(x)*sin(y);

# integrable limit

intlimit:={beta=0,r=0};

# equation 5

g:=phi->cos(phi+beta)+r*sin(2*phi);

# equation 8

dxdt:=(x,y)->2*(g(x-y)+g(x+y))-g(-x-y)-g(0)-g(y-x)-(g(-2*y)+g(2*y))/2;

dydt:=(x,y)->g(y-x)-g(-x-y)+(g(2*y)-g(-2*y))/2;

dEdt:=expand(simplify(diff(EE(x,y),x)*dxdt(x,y)+diff(EE(x,y),y)*dydt(x,y)));

# check: should be zero!

simplify(subs(intlimit,dEdt));

G0:=simplify(subs(beta=0,diff(dEdt,beta)));

F0:=simplify(subs(r=0,diff(dEdt,r)));

Emax:=EE(2*Pi,y);

Emin:=EE(Pi,y);

p1:=plot([Emin,Emax],y=0..Pi,color= ["blue","red"],thickness=3);

# Return solution in appropriate range

ymaxroot:=RootOf(Emax=E,y,2.0-0.00001*I..3.2+0.00001*I);

ymax:=E0->evalf(Re(subs(E=E0,ymaxroot)));

# Return solution in appropriate range

yminroot:=RootOf(Emin=E,y,-0.001-0.0001*I..1.6+0.0001*I);
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ymin:=E0->evalf(Re(subs(E=E0,yminroot)));

p2:=display([plot(['ymin(E)','ymax(E)'],E=0..Pi,color= ["blue","red"],

thickness=3),textplot([[0.7,2.7,"ymax",'font'=["times","roman",12]],

[0.7,0.4,"ymin",'font'=["times","roman",12]]])]);

# Integrand for period T(E) vs E

YY:=E->1.0/(4*sin(y)^2-(cos(y)*sin(y)+y-E)^2)^(1/2);

# Integral for period T(E) vs E

T:=E->int(YY(E),y=ymin(E)..ymax(E));

#infinite at endpoints so stop short of them

eta:=1e-4;

eta := 0.0001

p3:=plot('T(E)',E=eta..Pi-eta,1..8,labels=["E","T(E)"],

thickness=3,color=blue,numpoints=80,adaptive=false)

Dx:=(E,y)->evalf(2*Pi)-arccos((y+cos(y)*sin(y)-E)/(2.0*sin(y)));

#Dx:=(E,y)->arccos((y+cos(y)*sin(y)-E)/(2.0*sin(y)));

G0;

F0;

# These should be the same as G0 and F0

G1:=4.0*sin(y)*(4.0*cos(y)*cos(x)^2-cos(y)^3-3.0*cos(y));

F1:=4.0*sin(y)*(4.0*cos(y)^5-4.0*cos(y)^4*cos(x)+4.0*cos(y)^3*cos(x)^2

-16.0*cos(y)^2*cos(x)^3-4.0*cos(y)^3+16.0*cos(y)^2*cos(x)+6.0*cos(x)^3-6.0*cos(x));

gg:=2.0*sin(y)*sin(x);

Delta1:=(E,yy)->simplify(subs({x=Dx(E,yy),y=yy},G1/gg));

Delta2:=(E,yy)->simplify(subs({x=Dx(E,yy),y=yy},F1/gg));

#Delta2(2,y);

eta:=1e-4;

# Computes the integral only to fixed digits accuracy

Lambda1:=xx->Int(Delta1(xx,y),y=subs(E=xx,ymin(xx))+eta..subs(E=xx,ymax(E))-eta,

digits=6); #,method = _NCrule);#,method = _d01ajc));#,method=_Gquad));

125



APPENDIX A. APPENDICES

Lambda2:=xx->Int(Delta2(xx,y),y=subs(E=xx,ymin(xx))+eta..subs(E=xx,ymax(E))-eta,

digits=6);#,method = _NCrule);#,method = _d01ajc));#,method=_Gquad));

N:=101;

Es:=Array([evalf(k*Pi/(2*N)) $ k=0..N]);

L1s:=Array([0 $ k=0..N]);

L2s:=Array([0 $ k=0..N]);

# compute the values of Lambda1 and Lambda2 at points Es

for kk to N+1 do

L1s[kk] := evalf[25](Lambda1(Es[kk]));

L2s[kk] := evalf[25](Lambda2(Es[kk]))

end do:

L2s;

E2:=eta+(1-1)*(Pi-2*eta)/(nsteps-1);

E2:=eta+(101-1)*(Pi-2*eta)/(nsteps-1);

nbeta:=80;

b1:=Vector(nbeta);

nsteps:=102;

EE:=Vector(nsteps):

C1:=Vector(nsteps):

C2:=Vector(nsteps):

for i from 1 to nsteps do:

C1[i]:= L1s[i] ;

C2[i]:= L2s[i];

end:

C1;

C2;

F:=Matrix(nbeta,nsteps*2);

EEE:=Vector(nsteps*2);

forget(ii);
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for ii from 1 to nbeta do;

for jj from 1 to nsteps do;

b1[ii]:=0.001*ii;

F[ii,jj]:=2*(-(C1[jj]*sin(b1[ii])-0.01*C2[jj]));

F[ii,nsteps+jj]:=-2*(-(C1[nsteps+1-jj]*sin(b1[ii])-0.01*C2[nsteps+1-jj]));

EEE[jj]:=Es[jj];

EEE[nsteps+jj]:=Es[jj]+evalf(Pi/2);

od;

od;

print(F);

print(b1);

print(EEE);

# plots only zero contour

d1:=dataplot(b1,EEE,F,contours=[0],orientation=[-90,0,0],labels=["beta","E"," "],

'color' = "blue",thickness=4,filled="false",style="contour");

A.2.3 Code for Figures 6.2(a),(b)

# Find eigenvalues for chapter six

restart;

with(LinearAlgebra):

with(plots):

f1:=(theta1, theta2,theta3,theta4,theta5,theta6)->g(theta1-theta2)

+g(theta1-theta3)+g(theta1-theta5)+g(theta1-theta6);

f2:=(theta1,theta2,theta3,theta4,theta5,theta6)->g(theta2-theta1)+

g(theta2-theta3)+g(theta2-theta4)+g(theta2-theta6);

f3:=(theta1,theta2,theta3,theta4,theta5,theta6)->g(theta3-theta1)

+g(theta3-theta2)+g(theta3-theta4)+g(theta3-theta5);

f4:=(theta1,theta2,theta3,theta4,theta5,theta6)->g(theta4-theta2)

+g(theta4-theta3)+g(theta4-theta5)+g(theta4-theta6);
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f5:=(theta1,theta2,theta3,theta4,theta5,theta6)->g(theta5-theta1)

+g(theta5-theta3)+g(theta5-theta4)+g(theta5-theta6);

f6:=(theta1,theta2,theta3,theta4,theta5,theta6)->g(theta6-theta1)

+g(theta6-theta2)+g(theta6-theta4)+g(theta6-theta5);

xi1d:=f1(xi1, xi2, xi3, xi4, xi5, 0)-f6(xi1, xi2, xi3, xi4, xi5, 0);

xi2d:=f2(xi1, xi2, xi3, xi4, xi5, 0)-f6(xi1, xi2, xi3, xi4, xi5, 0);

xi3d:=f3(xi1, xi2, xi3, xi4, xi5, 0)-f6(xi1, xi2, xi3, xi4, xi5, 0);

xi4d:=f4(xi1, xi2, xi3, xi4, xi5, 0)-f6(xi1, xi2, xi3, xi4, xi5, 0);

xi5d:=f5(xi1, xi2, xi3, xi4, xi5, 0)-f6(xi1, xi2, xi3, xi4, xi5, 0);

g:=phi->-sin(phi-alpha)+r*sin(2*phi);

with(VectorCalculus):

D1:=Jacobian([xi1d, xi2d, xi3d, xi4d, xi5d],[xi1, xi2, xi3, xi4, xi5]=

[-3*Pi/4, Pi/4, -Pi, -3*Pi/4, Pi/4]);

with(plots):

upcurve:=sin(alpha1)/3;

downcurve:=-sin(alpha1)/3;

F:=plot(upcurve, alpha1 = 0 .. Pi,'color' = "blue"):

G:=plot(downcurve, alpha1= 0 .. Pi):

display([F,G]);

nvalues:=158:

alpha2:=Vector(nvalues):

rabove:=Vector(nvalues):

rdown:=Vector(nvalues):

for i from 1 to nvalues do:

aa:=evalf(Pi*(i-1)/(nvalues-1)):

alpha2(i):=aa;

rabove(i):=subs(alpha1=aa,upcurve);

rdown(i):=subs(alpha1=aa,downcurve);;

end do:
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A.2. MAPLE CODE FOR THE CHAPTER 5

eigabove:=Vector(nvalues):

eigdown:=Vector(nvalues):

for i from 1 to nvalues do;

eigabove(i):=Eigenvalues(map(evalf,subs(r=rabove(i),alpha=alpha2(i), D1)));

eigdown(i):=Eigenvalues(map(evalf,subs(r=rdown(i),alpha=alpha2(i), D1)));

end do:

nvalues2:=nvalues*5:

aa:=Vector(nvalues2):

ear:=Vector(nvalues2):

edr:=Vector(nvalues2):

eai:=Vector(nvalues2):

edi:=Vector(nvalues2):

printlevel := 2:

k:=0:

for i from 1 to nvalues do:

alpha=alpha2(i);

for j from 1 to 5 do:

k:=k+1;

aa(k):=alpha2(i);

ear(k):=Re(eigabove(i)(j));

edr(k):=Re(eigdown(i)(j));

eai(k):=Im(eigabove(i)(j));

edi(k):=Im(eigdown(i)(j));

end do:

end do:

# Real parts of eigenvalues on upper branch

plot(aa,ear,style=`point`);
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