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We examine partial frequency locked weak chimera states in a network of six identical and indistin-
guishable phase oscillators with neighbour and next-neighbour coupling and two harmonic coupling
of the form g(φ) = − sin(φ−α) + r sin 2φ. We limit to a specific partial cluster subspace, reduce to
a two dimensional system in terms of phase differences and show that this has an integral of motion
for α = π/2 and r = 0. By careful analysis of the phase space we show there is a continuum of
neutrally stable weak chimera states in this case. We approximate the Poincaré return map for these
weak chimera solutions and demonstrate several results about the stability and bifurcation of weak
chimeras for small β = π/2− α and r that agree with numerical path following of the solutions.

Patterns of coherence and incoherence appear
spontaneously due to self-organization in systems
of coupled oscillators. For a particular class of
solutions called chimera states, the coherence
and incoherence can appear at the same time
in different parts of the pattern. These pat-
terns have inspired a lot of work since Kuramoto
and Battogtokh found coupled oscillator systems
with non-local coupling that reorganize them-
selves into such state [16]. These states were
named chimeras in [2] and since then they been
found numerically in a wide variety of coupled
systems and in applications to a wide variety of
areas, from chemical oscillations to brain dynam-
ics. In an attempt to characterise such states
more precisely, the second author and Burylko [4]
characterised weak chimera states more generally
as a form of partial frequency desynchronization.
Also, they presented a minimal system of six os-
cillators that, from numerical simulations, seem
to have nontrivial weak chimeras. In this paper
we re-investigate this system and rigorously prove
existence of weak chimeras and a nontrivial inte-
grable case. We also show some stability results
and bifurcations of weak chimeras near this inte-
grable limit, and find good agreement with nu-
merical path-following.

I. INTRODUCTION

Dynamical states where coherence (synchrony) and in-
coherence (asynchrony) occur at the same time have re-
cently been studied under the name of chimera states.
Such mixed states have been found in an increasingly
wide range of nonlinear systems [9, 15, 18, 31, 32] since
their original discovery in coupled phase oscillators [16]
and being named “chimeras” by Abrams and Strogatz
[3]. Non-local interactions were originally regarded as es-
sential for chimeras to emerge [11, 25]. However, chimera
states have been found for systems with global coupling
[24, 28–30], mean-field coupling [6] and even local cou-

pling [7, 19]. Wolfrum and Omelchenko examined the
detailed dynamical properties of chimera states in small
populations of coupled phase oscillators [34]. However,
exact solutions for chimera state have, in general, only
been found at a population level [1].

Chimeras have been studied for a wide range of system
sizes [16, 35] and they play an important role that help to
understand many complex behaviour systems in the real
world. There are a wide range of applications including
to chemical oscillations [17, 33], electronic circuits [10,
29], mechanical oscillators [23], brain dynamics [20] and
optical experiments [12].

Whether a particular system state is a chimera depends
critically on the definition of coherence and incoherence.
A particular approach was introduced by Ashwin and
Burylko [4] who define a weak chimera as a type of in-
variant set with partial frequency synchronization. They
showed (a) globally coupled identical phase oscillators
cannot have weak chimera states and (b) there can be
weak chimera state in some small networks of identical
phase oscillators.

In this paper, we present some analysis and numeri-
cal investigations of weak chimera states in a particular
system of six coupled identical phase oscillators. In Sec-
tion I A we describe this network that was previously
considered in [4]. Section II shows that this system of
coupled phase oscillators has an integral of the motion for
a particular value of coupling parameters. This is used in
Theorem II.3 to show existence of an infinite number of
weak chimeras for this integrable case. This result is rig-
orously proved in Section III by using integrability and a
reversing symmetry to characterise motion in the phase
plane.

In Section IV we show that these chimera states persist
for nearby values of the parameters. We use the first re-
turn map to approximate these weak chimera solutions in
the near-integrable limit. Although these are not analyt-
ically solvable, we are able to approximate the integrals
numerically and compare them to numerical continuation
results in order to understand stability and bifurcation of
these weak chimera states. We finish with a discussion
in Section V.
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A. A minimal six oscillator network with weak
chimeras

Under sufficiently weak coupling, a system of N cou-
pled identical limit cycle oscillators can be reduced to a
system of coupled identical phase oscillators [5], i.e. an
ODE on the torus (θ1, ...θN ) ∈ TN = [R/(2πZ)]N of the
form

θ̇i = ω +

N∑
j=1

Kij g(θi − θj), (1)

where ω is the natural frequency of the oscillators, Kij

is the coupling strength from the jth to the ith oscillator
and g(ϕ) is a smooth 2π-periodic coupling or phase inter-
action function. If any oscillator can be replaced by any
other, after a suitable relabelling we say these oscillators
are indistinguishable [5].

The (angular) frequency Ωi of oscillator i in system (1)
is the average rate of rotation of θi, namely

Ωi := lim
T→∞

1

T
[θi(T )− θi(0)]. (2)

Clearly this depends on the system and initial condition
and indeed may not converge for some systems and initial
conditions [8]. The frequency difference between oscilla-
tor i and j is defined as

Ωij := lim
T→∞

1

T
[θi(T )− θj(T )] = Ωi − Ωj . (3)

We say there is frequency synchronization of oscillators
i and j on a trajectory (θ1(t), θ2(t), ..., θN (t)) if Ωij = 0.
We use the following definition of weak chimera state [4]
(rather than a more general version in [8]).

Definition 1. A flow-invariant set A ⊂ TN is a weak
chimera state for a coupled N phase oscillator system if
it is connected, chain-recurrent and such that for each
trajectory in A there are oscillators i, j and k such that
Ωij 6= 0 and Ωik = 0 [4].

FIG. 1. Three networks of six indistinguishable oscillators
that have weak chimera solutions for certain coupling: see [4].
We consider here the case (a) with non-global and non-local
coupling which corresponds to (4). Of the other cases, (b) has
local coupling while (c) has three inputs to each oscillator.

In [4] it was noted that all-to-all coupled (full permu-
tation symmetric) networks of identical phase oscillators
cannot have weak chimera solutions, but many networks
of indistinguishable oscillators do: Figure 1 shows three
coupling structures for six indistinguishable oscillators
where weak chimera states are reported in [4].

This paper considers the system in Figure 1(a) with
nearest neighbour and next-nearest neighbour coupling:

θ̇i = ω +
∑

|j−i|=1,2

g(θi − θj), (4)

with indexes taken module 6, where θi ∈ [0, 2π) = T
denotes the phase oscillator, ω is the constant natural
frequency of θi. We use Hansel-Mato-Meunier coupling
[13] with parameters α (or β = π/2− α) [1, 26] and r:

g(ϕ) :=− sin(ϕ− α) + r sin(2ϕ)

= cos(ϕ+ β) + r sin(2ϕ). (5)

We use β rather than α because r = β = 0 is an inte-
grable limit. The study [4] found numerical evidence of
stable and unstable weak chimeras in a particular invari-
ant subspace A1 that is parametrized by three indepen-
dent phases:

(θ1, θ2, θ3, θ4, θ5, θ6) = (φ1, φ2, φ3, φ1, φ3, φ2). (6)

We aim here to prove existence and understand stability
of such states within A1. Rewriting system (4) within A1

in terms of (φ1, φ2, φ3) ∈ T3 gives

φ̇1 = ω + 2g(φ1 − φ2) + 2g(φ1 − φ3),

φ̇2 = ω + 2g(φ2 − φ1) + g(φ2 − φ3) + g(0),

φ̇3 = ω + 2g(φ3 − φ1) + g(φ3 − φ2) + g(0). (7)

For convenience we introduce phase difference coordi-
nates different to those in [4], that allow us to rep-
resent a time-reversal symmetry as a reflection. We
define phase difference coordinates (x, y) ∈ T2 using
x = φ1− (φ2 +φ3)/2, y = (φ2−φ3)/2 so that (7) can be
written

ẋ = 2[g(x− y) + g(x+ y)]− g(−x− y)

−g(0)− g(y − x)− [g(−2y) + g(2y)]/2,

ẏ = g(y − x)− g(−x− y) + [g(2y)− g(−2y)]/2. (8)

In the case β = r = 0, note that (5,8) reduces to

ẋ = f(x, y) = 2 cos y cosx− 2 cos2 y

ẏ = h(x, y) = 2 sin y sinx (9)

Numerical simulation and continuation in [4] concluded
there is a neutrally stable set of weak chimera states for
this system that can be stabilized for (β, r) near (0, 0).
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II. INTEGRABILITY AND WEAK CHIMERA
SOLUTIONS FOR A SYSTEM OF SIX

OSCILLATORS

In this section we first demonstrate there is an inte-
grable structure in the subspace A1 for (4) in the special
case r = β = 0 and use this to prove existence of weak
chimeras. More precisely:

Lemma II.1. The system (4, 5) of six oscillators for
β = r = 0 has an integral of motion within the subspace
A1 defined by (6).

Proof. For the system on A1 written as (9), we define

E(x, y) := y + cos y sin y − 2 sin y cosx. (10)

Taking partial derivatives of E(x, y) with respect to both
variables and using (9), the rate of change of E on tra-
jectories of (9) is

d

dt
[E(x(t), y(t))] =

∂E

∂x
ẋ+

∂E

∂y
ẏ = 0, (11)

for all x, y ∈ R2. Hence E(x, y) is constant on trajectories
of (9) in this case: E is an integral of the motion. �

Figure 2 illustrates the level curves of E(x, y) in the
(x, y) plane: each level curve is preserved by the dynam-
ics of (9) and hence is a union of trajectories. We denote

the level curve of Ẽ ∈ R by

C(Ẽ) =
{

(x, y) ∈ T2 : E(x, y) = Ẽ
}
.
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FIG. 2. The level curves for E(x, y) defined by (10) in the
region (x, y) ∈ [0, 2π] × [0, π]. Each connected component of
a level curve is invariant for the flow (9).

We consider the dynamics of (9) on the region

M := {(x, y) : 0 < y < π and 0 < x < 2π} = Hr ∪H`,

where Hr := {(x, y) : π < x < 2π and 0 < y < π} and
H` := {(x, y) : 0 < x < π and 0 < y < π}. Note that the
upper and lower boundaries of M are level curves for E
and hence invariant sets under the flow (see Figure 3).

The range of the integral of motion E(x, y) for (x, y) ∈
M comprises the interval [π/2 − 2, π/2 + 2]. The level

curves E(x, y) = Ẽ with Ẽ ∈ (0, π) correspond to weak

chimera states, while other level curves with Ẽ ≤ 0 or
Ẽ ≥ π correspond to frequency synchronized states. For
almost all Ẽ ∈ [0, π], the level curves in M consist of
periodic trajectories though there are exceptional level
curves that contain equilibria and connecting orbits.

The system (9) has a reversing symmetry R1 and a
symmetry R2, where

R1

(
x
y

)
:=

(
2π − x
y

)
, R2

(
x
y

)
:=

(
x

2π − y

)
,

in the sense that if we write (9) as(
ẋ
ẏ

)
= F

(
x
y

)
=

(
2 cos y cosx− 2 cos2 y

2 sin y sinx

)
then

F ◦R1

(
x
y

)
= −R1 ◦ F

(
x
y

)
and

F ◦R2

(
x
y

)
= R2 ◦ F

(
x
y

)
for all (x, y) ∈ T2. A consequence of this is that the flow
in Hr corresponds to the time reversed flow on R1(H`).
We now state two main results that show existence of

FIG. 3. The flow (9) on the invariant set M ⊂ T2, where
M = {(x, y) : 0 < y < π, 0 < x < 2π}. The regions Hr and
H` = R1(Hr) are shown as white and block of colored areas
respectively. We define a partition of Hr into a union of four
open regions: green M1, pink M2, blue M3, and purple M4,
points Qi, i = 1, 2, 3, 4, 5, 6, 7 and lines (without endpoints)
Li, i = 1, 2, ..., 10. The pink points Q3, Q6 are degenerate
saddles while the purple points Q2, Q5 are centre equilibria.
Trajectories are cyan, and black arrows represent direction of
ẋ, ẏ. Blue/red lines are nullclines where ẏ = 0 and ẋ = 0
respectively. The nullclines allow us to decompose M into a
collection of open sets, in each of which the vector field points
in one direction.

weak chimeras in the integrable case.
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Theorem II.2. Consider any 0 < Ẽ < π, then the level
curve C(Ẽ) for system (9) is a trajectory (x, y) ∈ R2 and
there is T such that x(T ) = x(0) − 2π and y(T ) = y(0).

More precisely, if (x, y) ∈ C(Ẽ) then

lim
t→∞

1

t
y(t) = 0 and lim

t→∞

1

t
x(t) 6= 0.

The proof of this is given in Section III C. A corol-
lary of Theorem II.2 is the following result which gives
existence of weak chimeras in this system.

Theorem II.3. The system (4,5) of six oscillators with
β = r = 0 has an infinite number of chimera states within
A1 that are neutrally stable.

The proof of this is deferred to Section III C.

III. DYNAMICS FOR THE INTEGRABLE CASE

In order to understand properties of trajectories inside
the set M , we partition the set into bounded areas using
nullclines for system (9). We define the following subsets
of Hr ⊂M (see Figure 3):

M1 = {(x, y) : π/2 < y < π and 2π − y < x < 2π},
M2 = {(x, y) : π/2 < y < π and π < x < 2π − y},
M3 = {(x, y) : 0 < y < π/2 and π < x < 2π − y},
M4 = {(x, y) : 0 < y < π/2 and 2π − y < x < 2π}.

We also define the following nullcline segments Li, i =
1, 2, ..., 10. (see Figure 3):

L1 = {(x, y) : π/2 < y < π and x = 2π − y},
L2 = {(x, y) : y = π/2 and 3π/2 < x < 2π},
L3 = {(x, y) : 0 < y < π/2 and x = 2π − y},
L4 = {(x, y) : y = π/2 and π < x < 3π/2},
L5 = {(x, y) : π/2 < y < π and x = 2π},
L6 = {(x, y) : 0 < y < π/2 and x = 2π},
L7 = {(x, y) : y = 0 and π < x < 2π},
L8 = {(x, y) : 0 < y < π/2 and x = π},
L9 = {(x, y) : π/2 < y < π and x = π},
L10 = {(x, y) : y = π and π < x < 2π}.

Note that the boundary of each Mi is a union of Li as
shown in Figure 3. Finally, we define the following points:
Q1 = (3π/2, π/2), Q2 = (π, π/2), Q3 = (π, π), Q4 =
(2π, π), Q5 = (2π, π/2), Q6 = (2π, 0) and Q7 = (π, 0)
(see Figure 3). Note that the only equilibria in Hr are
Qi, for i = 3, 2, 5, 6.

Lemma III.1. Note that Hr = ∪4i=1M i, where the clo-
sures of the regions Mi, i = 1, 2, 3, 4 are as follows

M1 = L1 ∪ L2 ∪ L5 ∪ L10 ∪Q1 ∪Q3 ∪Q4 ∪Q5 ∪M1,

M2 = L1 ∪ L4 ∪ L9 ∪Q1 ∪Q3 ∪Q2 ∪M2,

M3 = L4 ∪ L8 ∪ L3 ∪ L7 ∪Q1 ∪Q2 ∪Q7 ∪Q6 ∪M3,

M4 = L2 ∪ L3 ∪ L6 ∪Q1 ∪Q5 ∪Q6 ∪M4.

Proof. This proof is a verification that the sets define
above have closures as stated. �

A. Dynamics of the integrable system on Mi

We present a sequence of lemmas that analyse and de-
scribe the motion of trajectories on Hr ⊂ M . These
lemmas are divided into three groups. The first two
Lemmas III.2, III.3 identify the direction of trajectory
inside the bounded areas M1,M2,M3 and M4. The sec-
ond group gives conditions that implies the components
of the solution of (9) are monotonic decreasing or in-
creasing ( Lemma III.4). The third shows what happens
when the trajectory reaches the boundary of each area
after some finite time ( Lemmas III.5, III.6, III.7, III.8).

Lemma III.2. If (x, y) ∈ M1 or M3 then f(x, y) < 0
and h(x, y) < 0 for (9), (see Figure 3).

Proof. After factorizing (9), we note

ẋ = 2 cos y(cosx− cos y),

ẏ = 2 sin y sinx. (12)

Suppose (x, y) ∈ M1 then π/2 < y < π and 2π − y <
x < 2π. Then, we get cos y < 0 and cos(2π−y) < cosx <
cos(2π), and simplifying, cos y < 0 and 0 < cosx−cos y <
1 − cos y. Because cosx is monotonic increasing on x ∈
(π, 2π), then cos y < 0 and cosx − cos y > 0 and we get
that f(x, y) < 0.

Also for the same point, we obtain sin y > 0 and
− sin y < sinx < 0 then sin y > 0 and sinx < 0 and
we get that h(x, y) < 0.

The statement for M3 has a similar proof. �

Lemma III.3. If (x, y) ∈ M2 or M4 then f(x, y) > 0
and h(x, y) < 0 for (12).

Proof. Suppose (x, y) ∈M2, this means π/2 < y < π and
π < x < 2π − y. Then, we get cos y < 0 and cos(π) <
cosx < cos(2π − y), This is the same cos y < 0 and
−1−cos y < cosx−cos y < 0 which implies that f(x, y) >
0.

Following that, at the same point (x, y) ∈ M2, we get
sin y > 0 and − sin y < sinx < 0. Hence sin y > 0 and
sinx < 0 which implies that h(x, y) < 0.

The statement for M4 has a similar proof. �

In the next lemma, we prove that the solution of (9)
monotonically decreases or monotonically increases along
the trajectory within a region such as Mi.
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Lemma III.4. Suppose R is a connected region in R2

such that f(x, y) and h(x, y) have no zero in R. Suppose
(x(t), y(t)) is a solution of ẋ = f(x, y), ẏ = h(x, y) such
that (x(t), y(t)) ∈ R for 0 < t < T . The following holds

(i) if f(x, y) < 0 and h(x, y) < 0, then x(t) and y(t)
are monotonically decreasing with t for 0 < t < T .

(ii) if f(x, y) > 0 and h(x, y) < 0, then x(t) is mono-
tonically increasing and y(t) is monotonically de-
creasing for 0 < t < T .

Proof. We begin by proving (i). From the system (9), we
consider the first component

dx

dt
= f(x, y).

Consider any 0 < t0 < t1 < T and integrate both sides
with respect to t we get,∫ t1

t0

dx

dt
(t) dt =

∫ t1

t0

f(x(t), y(t))dt,

for all 0 < t0 < t1 < T . Hence x(t1) − x(t0) =∫ t1
t0
f(x(t), y(t))dt. Since f(x(t), y(t)) < 0 for all t0 <

t < t1, then x(t1) − x(t0) =
∫ t1
t0
f(x(t), y(t))dt < 0.

Then x(t1) < x(t0) is monotonically decreasing for all
0 < t0 < t1 < T .

Using similar steps and the assumption h(x, y) < 0 we
prove y(t1) < y(t0) is also monotonically decreasing for
all 0 < t0 < t1 < T .

The proof for (ii) follows similarly. �

The following Lemmas III.5, III.6, III.7 and III.8 ex-
plain what happens for an initial condition after time T
for (9).

Lemma III.5. If an initial condition (x(0), y(0)) ∈M1∪
L5, then there exist T > 0 such that (x(T ), y(T )) ∈ L1 ∪
L2 ∪Q1.

Proof. Suppose (x(0), y(0)) ∈ M1, then x(t) and y(t)
are monotonically decreasing as long as they remain in
M1 (Lemma III.4(i)). Either there exists T > 0 such
that (x(T ), y(T )) ∈ M1 \M1 or (x(t), y(t)) ∈ M1 for all
t > 0. In the first case there are two possibilities to de-
scribe the path of trajectory. Firstly, if the initial point
(x(0), y(0)) ∈ M1 then the trajectory of this point will
eventually hit the boundary of M1 at (L1∪L2∪Q1). Sec-
ondly, if the initial point (x(0), y(0)) ∈ L5 then we still
have f(x(0), y(0)) < 0 so x(t) is monotonically decreasing
for initial condition on L5. Here for arbitrary small t > 0,
(x(t), y(t)) ∈M1 and we apply the argument above.

In the second case, let the greatest lower bound of x(t)
and y(t) be x∞ and y∞ respectively, (according to theo-
rem of limits of monotone functions [14]). We get that

lim
t→∞

(x(t), y(t)) = (x∞, y∞).

Then (x∞, y∞) is a limit point. Since a limit set is
an invariant set which has a single point then it is an
equilibrium point [27]. Note there are no equilibrium
points in M1 so (x∞, y∞) ∈ M1 \M1. By monotonic-
ity for (x(t), y(t)), it would be in L1 ∪ L2 ∪ Q1 which is
a contradiction because no equilibrium point belongs to
L1 ∪L2 ∪Q1. As a consequence, the second case can not
happen. �

Lemma III.6. If an initial condition (x(0), y(0)) ∈M2∪
L1, then there exist T > 0 such that (x(T ), y(T )) ∈ L4.

Proof. Suppose (x(0), y(0)) ∈ M2, then x(t) is mono-
tonically increasing and y(t) is monotonically decreas-
ing as long they remain in M2 (Lemma III.4(ii)). Either
there exists T > 0 such that (x(T ), y(T )) ∈ M2 \ M2

or (x(t), y(t)) stay in M2 for all t > 0. In the first case
there are two possibilities. Firstly, if the initial point
(x(0), y(0)) ∈ M2 then the trajectory of (x(0), y(0)) will
eventually hit the boundary of M2 at L4. Secondly,
if the initial point (x(0), y(0)) ∈ L1 then we still have
h(x, y) < 0 so y(t) is still monotonically decreasing for
initial condition on L1. Here for arbitrary small t > 0,
(x(t), y(t)) ∈M2 and we apply the argument above.

In the second case, let the least upper bound x(t) and
the greatest lower bound y(t) be x∞ and y∞ respectively,
(according to theorem of limits of monotone functions
[14] ). We get

lim
t→∞

(x(t), y(t)) = (x∞, y∞).

Then (x∞, y∞) is an equilibrium point [27] and
(x∞, y∞) ∈ M2. Note that there is no equilibrium point
in M2 so (x∞, y∞) ∈ M2 \ M2. By monotonicity for
(x(t), y(t)), it would be in L4 which is a contradiction
because no equilibrium point belongs to L4. As a conse-
quence, the second case cannot happen. �

Lemma III.7. If (x(0), y(0)) ∈ M4 ∪ L2 then either
there exists T > 0 such that (x(T ), y(T )) ∈ L3 ∪ L6 or
limt→∞(x(t), y(t)) = Q6.

Proof. Suppose (x(0), y(0)) ∈ M2 then x(t) is monoton-
ically increasing and y(t) is monotonically decreasing as
long they remain in M4 (Lemma III.4(ii)). Either there
exists T > 0 such that (x(T ), y(T )) ∈M4 \M4 or it stays
in M4 for all T > 0. In the first case there are two pos-
sibilities. Firstly, if the initial point (x(0), y(0)) ∈ M4

then the trajectory of (x(0), y(0)) will eventually hit the
boundary of M4 at L3∪Q6∪L6. As Q6 is an equilibrium
point, we can only hit the boundary at L3 ∪ L6. Sec-
ondly, if the initial point (x(0), y(0)) ∈ L2 then we still
have h(x, y) < 0 so y(t) is still monotonically decreasing
for initial condition on L2. Here for arbitrary small t > 0,
(x(t), y(t)) ∈ M4 and we apply the argument above. In
the second case, monotonicity [14] implies that

lim
t→∞

(x(t), y(t)) = (x∞, y∞).

Thus, x∞ is the least upper bound of x(t) and y∞
is the greatest lower bound of y(t). This means that
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(x(t), y(t)) → (x∞, y∞) is a limit point and then it is
an equilibrium point as t → ∞ [27]. Since Q6 is the
only equilibrium point in M4 we have that (x∞, y∞) =
Q6. �

Lemma III.8. If (x(0), y(0)) ∈M3 ∪L4 ∪L3 ∪Q1, then
there exists T > 0 such that (x(T ), y(T )) ∈ L8.

Proof. Suppose (x(0), y(0)) ∈M2, then x(t) is monoton-
ically increasing and y(t) is monotonically decreasing as
long they remain in M3 (Lemma III.4(i)). Either there
exists T > 0 such that (x(T ), y(T )) ∈ M3 \M3 or they
stay in M3 for all T > 0. In the first case there are two
possibilities. Firstly, if the initial point (x(0), y(0)) ∈M3

then the trajectory of the of (x(0), y(0)) will eventu-
ally hit the boundary of M3 at L8 ∪ L7 ∪ Q7. However
(x(T ), y(T )) ∈ L7 ∪ Q7 as y = 0 because it is invariant
under the flow. Hence if it hits the boundary after finite
time, it can only hit L8. Secondly, if the initial point
(x(0), y(0)) ∈ L4, L3 or Q1 then we still have h(x, y) < 0
so y(t) is still monotonically decreasing for initial condi-
tion on L4, L3 and Q1. Here for arbitrary small t > 0,
(x(t), y(t)) ∈M3 and we apply the argument above.

In the second case, let the greatest lower bound of x(t)
and y(t) be x∞ and y∞ respectively, (according to theo-
rem of limits of monotone functions [14]). We get that

lim
t→∞

(x(t), y(t)) = (x∞, y∞).

Then (x∞, y∞) is limit point. Since a limit set is an
invariant set that is a single point then it is an equilibrium
point [27]. Note there are no equilibrium points in M3

so (x∞, y∞) ∈M3 \M3. By monotonicity for (x(t), y(t)),
it would be in L8 which is a contradiction because no
equilibrium points belong to L8. As a consequence, the
second case can not happen. �

B. Extending trajectories from Hr to H`

In this section, we discuss the structure of trajectories
on the set M . The first lemma gives a condition that
implies existence of a periodic orbit that winds in the
first component (x) of torus.

Lemma III.9. For any 0 < Ẽ < π there is an initial
condition (x(0), y(0)) ∈ C(Ẽ) and T > 0 such that if
(x(t), y(t)) is a trajectory of the system (9) then x(T ) =
x(0)− 2π and y(T ) = y(0).

Proof. Let 0 < Ẽ < π. We claim there is an (x(0), y(0)) ∈
C(Ẽ)∩L5. To see this, we consider (x(0), y(0)) = (2π, z),
z ∈ (π/2, π) which parametrizes L5. Note that

E(2π, z) = −2 + π/2 < 0 for z = π/2,

and

E(2π, z) = π for z = π.

Hence for any Ẽ ∈ (0, π) there exists z ∈ (π/2, π) such

that E(2π, z) = Ẽ by the Intermediate Value Theorem.
Indeed, from (10) one can show that E(2π, z), is a mono-
tonically increasing with z ∈ [π/2, π], and hence there is

a unique z such that E(2π, z) = Ẽ. Suppose (x(t), y(t))
is the trajectory of (9) that starts at (x(0), y(0)) ∈
C(Ẽ)∩L5. According to Lemma III.5, there exists T1 > 0
such that (x(T1), y(T1)) ∈ L1 ∪Q1 ∪L2. We have the fol-
lowing

1. If (x(T1), y(T1)) ∈ L1 then by Lemma III.6 there
exists T2 > T1 such that (x(T2), y(T2)) ∈ L4, and
then by Lemma III.8, there exists T3 > T2 such
that (x(T3), y(T3)) ∈ L8.

2. if (x(T1), y(T1)) ∈ Q1 then by Lemma III.8, there
exists T3 > T1 such that (x(T3), y(T3)) ∈ L8.

3. If (x(T1), y(T1)) ∈ L2 then by Lemma III.7 and

using the fact Ẽ ≤ 0 on L6 ∪ Q6 there exists
T2 > T1 such that (x(T2), y(T2)) ∈ L3. Accord-
ing to Lemma III.8, there exists T3 > T2 such that
(x(T3), y(T3)) ∈ L8.

We now show that this trajectory reaches x(T ) =
x(0) − 2π, y(T ) = y(0) at T := 2T3. Firstly, we have
defined Hr and H`, such that R1(Hr) = H`. Let the tra-
jectory (x(t), y(t)) ∈ Hr for all 0 < t < T3 and we define
(x̃(t), ỹ(t)) := R1(x(t), y(t)). Because R1 is a reversing
symmetry on the torus, note that ((x̃(−t), ỹ(−t)) is also
a trajectory. Moreover, we note that R1(L8) = L8 and
define

L̃5 := R1(L5) = {(2π − x, y) : π/2 < y < π, x = 2π}
= {(0, y) : π/2 < y < π}.

Note that (x(0), y(0)) ∈ L5∩C(Ẽ) and (x(T3), y(T3)) ∈
L8. Now (x̃(−t), ỹ(−t)) is a trajectory on H` for −T3 <
t < 0. Also,

(x̃(0), ỹ(0)) = R1(x(0), y(0)) = (2π − x(0), y(0)) ∈ L̃5,

and

(x̃(T3), ỹ(T3)) = R1(x(T3), y(T3)) = (x(T3), y(T3)) = L8.

So if we define (x(T3+t), y(T3+t)) = (x̃(T3−t), ỹ(T3−
t)), 0 < t < T3 then (x(t), y(t)) is a trajectory for 0 < t <
2T3. In particular, we have shown there is a trajectory
such that x(T ) = x(0)− 2π and y(T ) = y(0). �

Recall that the ω-limit set Λ+(x, y), and the α-limit
set Λ−(x, y) are defined:

Λ+(x, y) :=
⋂
T>0

⋃
s>T

ϕ(x, y, s),

Λ−(x, y) :=
⋂
T<0

⋃
s<T

ϕ(x, y, s)

where ϕ(x, y, s) is the flow generated by (9).
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Lemma III.10. Suppose Ẽ = 0, then there is a point
(x(0), y(0)) ∈ C(Ẽ)∩L5 such that (x(t), y(t)) is a homo-
clinic orbit that limits to Q6 (see Figure 2).

Proof. For Ẽ = 0, we claim that there is an initial condi-
tion (x(0), y(0)) ∈ C(Ẽ)∩L5 such that E(x(0), y(0)) = 0.
Consider (x(0), y(0)) = (2π, z) where z ∈ (π/2, π). By
a similar argument to the proof of Lemma III.9 there
exists z ∈ (π/2, π) such that E(2π, z) = Ẽ. If we
write (x(t), y(t)) to be the solution of system (9) start-
ing at the point (x(0), y(0)) then E(x(t), y(t)) = 0 for all
t > 0. According to Lemma III.5, there is T1 > 0 such
that the trajectory of (x(t), y(t)) will hit L2. Depend-
ing on Lemma III.7, either there is T2 > T1 such that
(x(T2), y(T2)) ∈ L3 ∪L6 or (x(t), y(t)) ∈M4 stays at M4

for all t > 0 and converges to Q6 as t→∞. We will focus
just on the second possibility. Because the system (9) is
reversible then there is T2 < 0 such that the trajectory
of (x(−t), y(−t)) converges to Q6 for all 0 > t > −T2 .
More precisely , we have

lim
t→±∞

E(x(t), y(t)) = Q6,

so that Λ+(x, y) = Λ−(x, y) = Q6 This trajectory is
called a homoclinic orbit [22]. �

C. Proof of existence of weak chimeras

In this section we provide proofs of Theorems II.2
and II.3: namely the existence of an infinite number of
chimera states that are neutrally stable for the integrable
case (9).

Proof. (Theorem II.2) Define Y0 = {(x, 0) : 0 ≤ x ≤ 2π}
and Yπ = {(x, π) : 0 ≤ x ≤ 2π} as the lower and upper
boundaries of M . Note that Y0 and Yπ ⊂ M . These
boundaries are invariant sets for the system (9) since ẏ =
0 for all Y0 and Yπ, therefore

0 ≤ y(t) ≤ π,

for all t > 0 and

0 ≤ y(t)

t
≤ π

t
, ∀ t > 0.

We now take the limit and obtain

0 ≤ lim
t→∞

1

t
[y(t)] ≤ lim

t→∞

π

t
.

In consequence, limt→∞
1
t [y(t)] = 0 for any 0 < Ẽ < π

and (2π, y) ∈ C(Ẽ).
Now we will prove the second part of the result: Let

(x(0), y(0)) ∈ C(Ẽ) such that (x(0), y(0)) = (2π, y(0))
by Lemma III.9 there is a 0 < T < ∞ such that
(x(T ), y(T )) = (0, y(0)). If we define n = n(t) := bt/T c,
where bt/T c denotes the largest integer number less than
or equal t/T , then

nT ≤ t < (n+ 1)T (13)

and hence

−2πn < x(t) ≤ −2π(n− 1). (14)

Dividing (14) by (13), we get that

−2πn

(n+ 1)T
>
x(t)

t
>
−2π(n− 1)

nT
. (15)

By taking the limit for (15), we get

−2π

T
≥ lim
t→∞

x(t)

t
≥ −2π

T
,

which can be simplified as follows

lim
t→∞

x(t)

t
= −2π

T
6= 0.

�

Proof. (Theorem II.3) We know that y = 1
2 (φ2−φ3) and

x = φ1 − φ3 − y. Also, from Theorem II.2 with given
hypothesis, we have that for any 0 < Ẽ < π there is t
such that

lim
t→∞

1

t
y(t) = 0, (16)

which is expanded to

lim
t→∞

1

t
y(t) =

1

2
lim
t→∞

1

t
[φ2(t)− φ3(t)] =

1

2
Ω23. (17)

Then from (16) and (17), we obtain

1

2
Ω23 = lim

t→∞

1

t
[y(t)] = 0.

This means there is frequency synchronization between
φ2(T ) and φ3(T ). To show that φ1 and φ3 are not
frequency synchronized Ω13 6= 0. We need to prove
that a curve from x = 0 to x = 2π is continuous and
there is no an equilibrium point on the level curve. Let
(x(0), y(0)) ∈ C(Ẽ) and 0 < Ẽ < π be an initial condi-
tion for the system (9). Then there is T > 0 such that
(x(T ), y(T )) = (x(0)− 2π, y(0)) (Lemma III.9), (i.e. the
trajectory will return to its initial condition after time T ).
In addition, the solution for this initial condition satis-
fies limt→∞

1
t (x(t), y(t)) = (−2π/T, 0) 6= (0, 0), (Theo-

rem II.3 ). That means this trajectory does not converge
to a equilibrium point (Lemma III.10) and continuous.
According to Theorem II.2 we have

lim
t→∞

1

t
x(t) = −2π

T
< 0.

which implies that Ω13 6= 0. This means there is fre-
quency desynchronization between φ1 and φ3. From
above argument, we get a weak chimera solution (Def-

inition 1). As a consequence, for each Ẽ in the infi-
nite set (0, π) there is a distinct chimera state. As these
chimera periodic orbit are not isolated they are not hy-
perbolic. �
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IV. EXISTENCE AND STABILITY OF WEAK
CHIMERAS FOR (β, r) 6= (0, 0)

In this section we extend the analysis of the integrable
case (β, r) = (0, 0) to nearby (β, r) for the planar sys-
tem (8). We use perturbation techniques and the fact
that (10) is slowly varying to describe existence, stability
and bifurcation of weak chimera solutions for this regime
and compare with results from numerical simulations and
continuation in [4].

In Section IV A, we compute the period and other
properties for chimera solutions with β, r = 0. In Sec-
tion IV B approximates chimera solutions β, r 6= 0. Fi-
nally, Section IV C analyses bifurcation of chimera states
for this approximation and compare to the numerical re-
sults.

A. Properties of integrable weak chimeras

We write (5,8) as the following system for (x, y) ∈ T2

depending on two parameters β and r,

ẋ = 24r sinx cosx cos2 y − 6 sinx cos y sinβ

+ 2 cosx cos y cosβ − 12r sinx cosx

− 2 cosβ cos2 y,

ẏ = 2 sin y(4r cos2 x cos y + 4r cos3 y + sinx cosβ

− cosx sinβ − cos y sinβ − 4r cos y). (18)

The above system has an integral of motion for β = r =
0: see Lemma II.1 and E(x, y) as in (10).

In order to describe the stability of weak chimera solu-
tions for β, r 6= 0 and any level curve 0 < Ẽ < π we first
need to understand properties of the level curves C(Ẽ)

for 0 < Ẽ < π. As can be seen in Figure 3, the level
curves are not graphs over x or y for the whole period
T ∈ (0, 2π). Therefore, we highlight the region Hr from
x(0) = 2πk to x(T/2) = 2πk− π. The geometric proper-
ties of all the level curves on half period Hr is that each
of these levels pass through maxima of y at (2πk, y+(Ẽ))

to minima of y at (2πk− π, y−(Ẽ)) for k ∈ N. In partic-

ular, in this range of Ẽ, the curve (x, y) ∈ C(Ẽ) ∩Hr is
a graph over

y−(Ẽ) ≤ y ≤ y+(Ẽ) (19)

given by the unique solution of E(x, y) = Ẽ with x ∈
[π, 2π]. This can be written

x = ∆Ẽ(y) := 2π − arccos

[
cos y sin y + y − Ẽ

2 sin y

]
(20)

where arccos is the usual inverse on [0, π]. To find y+(Ẽ)

and y−(Ẽ) we substitute x(0) = 2π and x(T/2) = π
in (10) and solve for y. Maple’s fsolve is used to give

numerical approximations of y+(Ẽ) and y−(Ẽ).

The period T (Ẽ) of the trajectory on the level curve

0 < Ẽ < π is found for the system (9). We eliminate x
by substituting (20) in the equation for ẏ of (9) to give

ẏ = h(∆E0(y), y) = −
√

4 sin2 y − (cos y sin y + y − Ẽ)2.

If we integrate this over the half period within Hr we
obtain

T (Ẽ)

2
= −

∫ T (Ẽ)
2

t=0

1√
4 sin y2 − (cos y sin y + y − Ẽ)

dy.

Writing the integration limits in terms of y then gives

T (Ẽ) = 2

∫ y+(Ẽ)

y−(Ẽ)

1√
4 sin y2 − (cos y sin y + y − Ẽ)

dy. (21)

Figure 4 shows numerical approximation of T (Ẽ) for

Ẽ ∈ (0, π), computed using Maple’s fsolve. Note that

T (Ẽ)→∞ as Ẽ → 0+ or Ẽ → π−. There is a symmetry

T (Ẽ) = T (−Ẽ+π), and T (Ẽ) has a unique minimum at

Ẽ = π/2.

FIG. 4. Period T (Ẽ) of the weak chimera solution of (9) for

Ẽ ∈ (0, π) in the integrable case β = r = 0, computed using
(21). Observe that the period tends to infinity as the level

curve approaches the homoclinic orbits at Ẽ = 0 and π.

B. Approximation of chimeras for (β, r) 6= (0, 0)

The aim of this section is to find an approximate
Poincaré map for the more general case (18) and use this
map to prove existence of chimera states for β, r 6= 0.

We choose a Poincaré section Σp ⊆ T2 where

Σp = {(x, y) ∈ T2 : x = 2π and y ∈ (0, π)}.

The time of first return of (x, y) ∈ Σp is defined by

τ(x, y) := inf{t > 0 : ϕ(x, y, t) ∈ Σp and (x, y) ∈ Σp},

where ϕ(x, y, t) is the flow of the system (18). The
Poincaré first return map P : Σp → Σp is then defined
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by P (x, y) = ϕ(x, y, τ(x, y)). Let us write P (2π, y) =

P (2π, y+(Ẽ)) and parametrize the chimera using Ẽ ∈
(0, π). Then P (2π, y) = P (2π, y+(Ẽ)) = (2π, y+(P̃ (Ẽ))).

So the first return P can be understood as a map P̃ :
(0, π)→ (0, π),

En+1 = P̃ (En). (22)

We know in the integrable case, the chimera periodic
orbits intersect Σp at fixed points of the Poincaré map,

i.e P̃ (Ẽ) = Ẽ for all Ẽ and β = r = 0. More generally,
note that

d

dt
[E(x(t), y(t))] =

∂E

∂x
ẋ+

∂E

∂y
ẏ, (23)

for all (x, y) ∈ R2. Combining (18) and (23) we get

dE

dt
(x, y) = G(x, y) sinβ + F (x, y)r, (24)

where

G(x, y) := 4 sin y
[
4 cos y cos2 x− cos3 y − 3 cos y

]
,

F (x, y) := 4 sin y
[
4 cos5 y − 4 cos4 y cosx

+ 4 cos3 y cos2 x− 16 cos2 y cos3 x− 4 cos3 y

+ 16 cos2 y cosx+ 6 cos3 x− 6 cosx
]
.

Substituting (20) in (24) and defining GẼ(y) :=
G(∆Ẽ(y), y) and FẼ(y) := F (∆Ẽ(y), y) we get

dẼ

dt
=
dE

dt
(∆Ẽ(y), y) = GẼ(y) sinβ + FẼ(y)r. (25)

Now assume that (β, r) = (εβ̃, εr̃) and consider the
behaviour of (18) in the limit 0 < ε � 1 for fixed

(β̃, r̃) 6= (0, 0). Note

dE

dt
(∆Ẽ(y), y) = ε[GẼ(y)β̃ + FẼ(y)r̃], (26)

and so on trajectories (x(t), y(t)), Ẽ(t) varies slowly with
t if ε is small.

Suppose now that E0 ∈ (0, π) and (x(0), y(0)) ∈ Σp ∩
C(E0). For any T > 0 such that (x(t), y(t)) ∈ Hr for all
0 < t < T , we can approximate (20) to get

x(t) = ∆Ẽ(t)(y(t)) = ∆E0
(y(t)) +O(ε), (27)

where the error term also depends linearly on t. More-
over, if T (E0) < ∞ then (using the symmetry between
Hr and H`) there will be first return to Σp after time
T (E0) +O(ε) that is close to E0.

We approximate this first return (22) in the case ε > 0:
for (x(t), y(t)) ∈ Hr, note that using (27) in (26) we have

dE

dt
(∆Ẽ(y), y) = ε[GE0

(y)β̃ + FE0
(y)r̃] +O(ε2). (28)

If the trajectory next intersects Σp at (0, y+(E1)) after
time T = T (E0) +O(ε) then we can approximate

E1 − E0 =

∫ T

t=0

dE

dt
dt

= 2ε

∫ T (E0)
2

t=0

[GE0
(y)β̃ + FE0

(y)r̃] dt+O(ε2)

= εΛ(E0, β̃, r̃) +O(ε2). (29)

where (changing the limits of integration) and defining
hE0(y) := h(∆E0(y), y) we can write

Λ(E0, β̃, r̃) := −2

∫ y+(E0)

y−(E0)

GE0
(y)β̃ + FE0

(y)r̃

hE0(y)
dy

= −2(Λ1(E0)β̃ + Λ2(E0)r̃), (30)

where

Λ1(E0) :=

∫ y+(E0)

y−(E0)

GE0(y)

hE0
(y)

dy,

Λ2(E0) :=

∫ y+(E0)

y−(E0)

FE0
(y)

hE0(y)
dy.

Hence the Poincaré map E1 = P̃ (E0) satisfies

P̃ (E0) = E0 + εΛ(E0, β̃, r̃) +O(ε2)

= E0 − 2ε[Λ1(E0)β̃ + Λ2(E0)r̃] +O(ε2). (31)

In the next theorem, we show the existence of a sym-
metric weak chimera state for Λ(En, β̃, r̃) at E0 = π/2
and (β, r) 6= (0, 0).

Theorem IV.1. For almost all (β̃, r̃), if ε is small

enough then system (18) with (β, r) = (εβ̃, εr̃) has a pe-
riodic orbit that is close to the level curve of (10) corre-
sponding to E0 = π/2. This periodic orbit corresponds to
a weak chimera state of (30).

Proof. Note that in the special case E0 = π/2, (30) gives

Λ(π/2, β̃, r̃) = −2[Λ1(π/2)β̃ + Λ2(π/2)r̃]. (32)

In this case, y+ = π − y− can be found from (19) and
(10) using E0 = π/2 to give

π/2 = y+ + cos y+ sin y+ − 2 sin y+,

π/2 = π − y+ − cos y+ sin y+ + 2 sin y+.

Hence y+ = π − y− for E = π/2. We now compute

Λ1(π/2) =

∫ π/2

y−

Ĝ(y) dy +

∫ y+

π/2

Ĝ(y) dy,

Λ2(π/2) =

∫ π/2

y−

F̂ (y) dy +

∫ y+

π/2

F̂ (y) dy,

where we define

Ĝ(y) =
Gπ/2(y)

hπ/2(y)
, F̂ (y) =

Fπ/2(y)

hπ/2(y)
.
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Because Ĝ(y) = −Ĝ(π − y) and F̂ (y) = −F̂ (π − y) we
can compute

Λ1(π/2) = Λ2(π/2) = 0. (33)

Hence, Λ(π/2, β̃, r̃) = 0 for all β̃, and r̃. On the other
hand, one can check numerically that neither of Λ′1(π/2)
or Λ′2(π/2) are zero, which means that for every choice

of β̃, r̃ such that

Λ′1(π/2)β̃ + Λ′2(π/2)r̃ 6= 0. (34)

We approximate the derivative by using small h in

Λ′1(π/2) ≈ Λ1(π/2 + h)− Λ1(π/2)

h
,

and

Λ′2(π/2) ≈ Λ2(π/2 + h)− Λ2(π/2)

h
.

Using h = 0.0001, we obtain Λ′1(π/2) = 10.1374 and

Λ′2(π/2) = 16.1335. Hence the derivative Λ′(π/2, β̃, r̃)

is non-zero for almost all β̃, r̃. For these cases and small
enough ε the Poincaré map P̃ will have a hyperbolic fixed
point that limits to E0 = π/2 as ε→ 0. The flow trajec-
tory corresponding to this fixed point is a periodic orbit
will remain close to the contour C(π/2): hence there is a
chimera state for small enough ε > 0. �

Note that if (34) is not satisfied this implies that β̃ ≈
−1.5914r̃ which corresponds to a pitchfork bifurcation of
chimera states: this is discussed in the next Section.

C. Bifurcation of weak chimera solutions

It is well known that if the Poincaré map P̃ given in
(31) has a fixed point E∗ then the fixed point will be

stable if |P̃ ′(E∗)| < 1 (resp. unstable if |P̃ ′(E∗)| > 1) (
see e.g. [21, Theorem 9.3]). Because

P̃ ′(E0) = 1 + εΛ′(E0, β̃, r̃) +O(ε2)

(and the error term is uniform in any closed subinterval
of E0 ∈ (0, π)) it follows that if there is an E0 ∈ (0, π)

such that Λ(E0, β̃, r̃) = 0 and Λ′(E0, β̃, r̃) < 0 (resp.

Λ′(E0, β̃, r̃) > 0) then there is a stable (resp. unstable)
chimera periodic orbit near C(E0) for small enough ε >
0. This means that bifurcations condition of chimera
periodic orbits near ε = 0 correspond to a nonhyperbolic
fixed point E0 such that Λ(E0, β̃, r̃) = Λ′(E0, β̃, r̃) = 0.

Figure 5 shows Λ(E0, β̃, r̃) on varying E0 for a range

of β̃ ∈ (−1, 1) and fixed r̃ = −0.01 computed using (30)
and Maple’s numerical integration evalf/int. The ze-
ros of this clearly show the location of nontrivial zeros
Λ(E0, β̃, r̃) = 0 that may be stable (negative slope) or
unstable (positive slope) in the limit of small ε.

We also compute an asymptotic bifurcation diagram
by numerically locating the zero contour

Λ(E0, β̃, r̃) = 0 (35)

on varying β̃ and E0 for fixed r̃, using Maple’s fsolve.
This is shown in Figure 6: the lower case letters and
index of i = 1, . . . , 5 refer to fixed points in Figure 5.
Bifurcation points in Figure 6 can be identified as three
types: there are saddle-node, pitchfork and homoclinic
bifurcations that occur (for r̃ < 0 at parameter values

β̃Sn < β̃Pf < β̃Hm respectively in the limit ε→ +0.

The scenario for a saddle-node bifurcation has three
stages: there is only one stable point b1 for β̃ < β̃Sn.
A saddle-node or tangent bifurcation of symmetrically
placed fixed points for the Poincaré map at β̃ = β̃Sn
creates degenerate fixed points a2, c2 (red curve for Fig-
ure 5) with |P ′(Ea2)| = |P ′(Ec2)| = 1. At these points
(where the red curve is tangent to the E-axis) the quali-
tative behaviour of the system becomes structurally un-
stable, in that an arbitrarily small perturbation leads to
a change of the qualitative dynamics of system. Finally,
for β̃Sn < β̃ < β̃Pf , two pairs of fixed points (unstable
and stable) a1, a3 and c1, c3 appear as zeros of the green
curve.

The pairs of fixed points a1 and c1 collide with b1 on
the cyan line at β̃ = β̃Pf where the pitchfork bifurcation
occurs. This is where the fixed point b1 is marginally
stable, |P ′(Eb1)| = 1 and Λ′(Eb1 , β̃, r̃) = 0. For β̃Pf <

β̃ there are three fixed points (for example, a5, c5 and
b1 where the orange curve has zeros. The point b1 is
unstable while a5 and c5 are stable.

The two fixed points a6 and c6 hit the boundary of the
domain E ∈ [0, π] at the homoclinic bifurcation where

β̃Hm
= β̃. At this point the period of the weak chimera

solution becomes infinite in the limit: see Figure 4 and
the magenta line for Figure 5. At the homoclinic bifur-
cation the points a7 and c7 move to the boundary and
for β̃Hm

< β̃ the only remaining fixed point is at b1. A
similar scenario of bifurcations is found for r̃ > 0 though
with the stabilities reversed: there is a parameter-time
reversing symmetry given by (β, r, t) 7→ (−β,−r,−t).

Asymptotic approximations of the bifurcations from
(30) are compared to continuation results for the origi-
nal system (18) on varying β, for r = −0.01 using XPPAUT
as in [4]: see Figure 6 and Table I. We find good agree-
ment for saddle-node and pitchfork bifurcations of weak
chimeras from the asymptotic theory and from numerical
continuation respectively, while the homoclinic bifurca-
tion seems to have errors that grow faster with ε. This is
not too surprising, as we expect the approximation errors
to be larger in the high period limit. Figure 7 summarises
and compares the bifurcations of chimeras for (30) and
(18) in the parameter space (β, r).
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Chimera states have attracted researchers’ attentions because they appear
in a wide range of coupled oscillator systems. At chimeras, the oscillators sep-
arate into two clusters, one and synchronized and the other desynchronized.
Chimera states correspond to broken spatiotemporal symmetry and are helpful
to understand many real-world phenomena. This thesis is an investigation of
chimera states in a network of six identical and indistinguishable phase oscilla-
tors with neighbour and next-neighbour coupling. Our analysis and numerical
calculation of chimeras uses a generalization of the Kuramoto model with two
harmonic coupling.

1

FIG. 5. Approximations of (30) for various values of β̃ and r̃ = −0.01, where zeros of Λ(E) = −2[Λ1(E)β̃ + Λ2(E)r̃]
correspond to fixed points of the approximate Poincaré map. The points b1 and ai, ci, i = 1, .., 6 represent various
fixed points on varying β̃. The coloured curves (blue, red, green, cyan, orange, magenta and black) correspond to β̃ =
0.0062, 0.0081, 0.0125, 0.0159, 0.028, 0.063 and 0.08 respectively. The red curve is at the saddle-node bifurcation while
the cyan curves is at the pitchfork bifurcation. The homoclinic bifurcation can be seen for the magenta curve.

Type of Bif. β using (30) β using (18)

Sn of LC 0.0081 0.0081

Pf of LC 0.0159 0.0158

Hom of LC 0.063 0.0192

TABLE I. Comparison of the approximations of β at saddle
node of limit cycle, pitchform and homoclinic bifurcations of
weak chimeras for r = −0.01. The first column gives the
asymptotic approximate system (30) for the limit ε→ 0. The
second column gives values from continuation of (18) using
XPPAUT. Observe there is very good agreement for the first
two bifurcations while the third only gives better agreement
closer to the integrable limit: see Figure 7.

V. DISCUSSION

For a non-locally coupled network of six identical and
indistinguishable oscillators with nearest neighbour and
next-nearest neighbour coupling (4,5) and a particular
value of the coupling parameters r = β = 0, we prove
existence of an infinite number of neutrally stable weak
chimera states. We examine nullclines of the system (9)
and use a reversing symmetry in this integral case to un-
derstand the structure of phase space. We use nullclines
for the system (9) and a reversing symmetry is used to
prove a sequence of lemmas on the structure of phase
space. This is used in Theorem II.3 to prove the exis-
tence of infinitely many neutrally stable weak chimeras.

In this paper we restrict from the full system (4 of six
phases) (5) to a two dimensional system of phase dif-
ferences in a three dimensional invariant subspace (8).

FIG. 6. Left panel (A) shows bifurcation digram (β̃ against
E) for system (30) when r̃ = −0.01 (numerically approxi-
mated by Maple for the limit ε → 0), while right panel (B)
shows bifurcation diagram (β against y) for system (18) and
r = −0.01 (numerically approximated by XPPAUT). Blue and
green lines denote unstable/stable periodic orbit. In both Pan-
els A and B, there is saddle-node bifurcation for limit cycle
at points β̃Sn and βSn and pitchfork at points β̃Pf and βPf .

The points β̃Hm and βHm indicate homoclinic bifurcation.

The reduced system (9) has an integrable structure in
the special case when r = β = 0 which means every level
curve of the phase portrait has a specific value. We have
not yet determined the stability of any of the solutions
to perturbations away from the invariant subspace, but
this should be possible, at least numerically.

On changing the parameters r and β we continue and
find bifurcations of certain weak chimeras. Section IV
considers weakly dissipative perturbations of the inte-
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FIG. 7. Bifurcation diagrams for the asymptotic approximation (30) computed with Maple and the contination (18) computed
with XPPAUT in the parameter space (β, r) close to the integral case (0, 0). Bifurcations for (18) are computed varying β for
r = ±0.001, ±0.005 and ±0.01: these are shown as coloured points. Bifurcation lines for (30) are computed using Maple and

represented by the blue and green lines showing (β, r) = ε(β̃, r̃) for ε ∈ R. Note that quadrants A (resp. B) and C (resp. D) have
the same qualitative dynamics on reversing time because of the time-reversing parameter symmetry (β, r, t) 7→ (−β,−r,−t).
There are four coloured regions (green and purple) where multiple chimera states coexist in the asymptotic limit. There is only
one chimera within the white regions: this is stable in I and unstable in I∗. Five branches of chimera (three stable and two
unstable) are in the green area V , (also, two stable and three unstable at V ∗), bounded by a saddle node of limit cycles (green
line) and a pitchfork of limit cycles (blue line). There are two stable chimera and one unstable in purple area III, (also, one
stable and two unstable at III∗), bounded by the pitchfork and the homoclinic bifurcation (black curve) that are only present in
the XPPAUT calculations, (homoclinic bifurcation: the red line is computed using Maple).

grable system with (β, r) = (0, 0). By constructing an
approximate first return map (31) we are able to continue
certain weak chimera states for sufficiently small change
of parameters. We note that depending on the ratio of
β/r, the number of chimeras and their type changes as
we approach the integrable limit (see Figure 6). These
computations still require computation of integrals that
we approximate numerically: it would clearly be of inter-
est to find a completely analytical explanation of these
bifurcations.

Although it is not clear which of these methods will
generalize to more complex and higher dimensional sys-
tems with weak chimeras, but it seems very likely that

considering the dynamics of systems near β = r = 0 as
weakly dissipative perturbations of a degenerate system
with integrals of the motion (as here and in [26]) will still
be helpful.
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Krischer, and Vladimir Garćıa-Morales. Coexistence of
synchrony and incoherence in oscillatory media under
nonlinear global coupling. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 24(1):013102, (2014).

[30] Gautam C Sethia and Abhijit Sen. Chimera states:
the existence criteria revisited. Physical Review Letters,
112(14):144101, (2014).

[31] Gautam C Sethia, Abhijit Sen, and Fatihcan M Atay.
Clustered chimera states in delay-coupled oscillator sys-
tems. Physical Review Letters, 100(14):144102, (2008).

[32] Jan Sieber, E Omelchenko, and Matthias Wolfrum. Con-
trolling unstable chaos: stabilizing chimera states by
feedback. Physical Review Letters, 112(5):054102, (2014).

[33] Mark R Tinsley, Simbarashe Nkomo, and Kenneth
Showalter. Chimera and phase-cluster states in popu-
lations of coupled chemical oscillators. Nature Physics,
8(9):662, (2012).

[34] Matthias Wolfrum and E Omelchenko. Chimera states
are chaotic transients. Physical Review E, 84(1):015201,
(2011).

[35] Matthias Wolfrum, Oleh E Omel’chenko, and Jan Sieber.
Regular and irregular patterns of self-localized excitation
in arrays of coupled phase oscillators. Chaos: An Inter-
disciplinary Journal of Nonlinear Science, 25(5):053113,
(2015).


