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Abstract

Model Predictive Control (MPC) has been effectively applied in process industries
since the 1990s. Models in the form of closed equation sets are normally needed for
MPC, but it is often difficult to obtain such formulations for large nonlinear systems.
To extend nonlinear MPC (NMPC) application to nonlinear distributed parameter
systems (DPS) with unknown dynamics, a data-driven model reduction-based
approach is followed. The proper orthogonal decomposition (POD) method is first
applied off-line to compute a set of basis functions. Then a series of artificial neural
networks (ANNSs) are trained to effectively compute POD time coefficients. NMPC,
using sequential quadratic programming is then applied. This paradigm combines
elements of gain scheduling, NMPC, model reduction and ANN for effective control
of nonlinear DPS. The novelty of this POD model reduction-based MPC is to apply
POD’s highly efficient linear decomposition and convert detailed space-state model to
reduced model with function of only 1 dimensional in time. The

stabilization/destabilisation of a tubular reactor with recycle is used as an illustrative
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example to demonstrate the efficiency of our methodology. Case studies with

inequality constraints are also presented.

Keywords: Proper Orthogonal Decomposition, Nonlinear Model Predictive Control,
sequence of Artificial Neural Networks, Distributed Parameter Systems, control of

highly nonlinear systems.

1. Introduction

Model Predictive Control (MPC) has been widely used in the process industries. With
this technique, online optimization is performed successively at each control timestep,
using the underlying model to predict future dynamics for a certain prediction horizon
and resulting in a sequence of (tentative) control moves for a given control horizon.
Of these moves only the first one is implemented and the rest are discarded. In
general, nonlinear MPC is mostly used in batch operations, while linear MPC is more
often applied in continuous operations [1]. At the same time, a high-dimensional non-
linear model is in general expensive to evaluate and utilizing it in a nonlinear MPC
control strategy incurs high computational cost, which may prove problematic in real-

time applications.

Model reduction can be used to significantly reduce the dimensionality of complex
nonlinear dynamic systems, which, in turn, can lead to the successful design and
implementation of nonlinear MPC [2 — 8]. Effective model reduction strategies for

control applications have the following features:

- are implemented in automated procedures,

- lead to a good approximation of the original system,
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- preserve the dynamic properties of the complex system and

- are highly efficient in reducing the computational cost.

Among the most effective model reduction methods is Proper Orthogonal
Decomposition (POD) that has been applied in a non-linear MPC framework [8 - 9]
and also for MPC in conjunction with mesoscopic simulators [10]. POD is also
termed Karhunen—Loéve expansion and Principal Component Analysis. Although this
class of methods may rely exclusively on equations-based reduction, usually what is
implemented is a variant of the reduction process employing the snapshot method

[11].

We recently proposed an off-line model reduction technique based on POD and
combined with Trajectory Piecewise-Linearization (TPWL) method for producing
low-order linear MPC controllers for nonlinear large-scale distributed parameter
systems of partial differential equations [2 - 5]. This POD-Finite Element (FEM)
based reduced model is nonlinear only in the time dimension. However, this method

requires the detailed governing equations and the application of Galerkin projection.

Artificial Neural Networks (ANN), inspired by the structure and functional properties
of biological neural networks, are composed of interconnected elements (neurons)
with certain functions. ANN models provide a response on the given information
from input layers. The first attempt to produce highly complex behaviors was made in
1943 by using many basic “all-or-none” artificial neurons [12]. Hebbian learning has
been introduced from the perspective of the psychologist [13], which opened the door
for associative learning for ANNSs. Since then, with the development of the modern
computers, applications of ANNs have been made in many areas including system

identification and control, process modeling, data processing, visualization etc. It has



been found that multilayer feed-forward networks with as few as one hidden layer can
be universal approximators for many nonlinear functions [14-15]. More recently,
ANN associated with POD has been developed for nonlinear dynamic models of
distributed reacting systems [4, 16]. A dynamic radial basis function (RBF) neural
network has been used to model distributed parameter systems (DPSs) and then

implemented in MPC configurations [17].

This paper describes the development of a data-driven model reduction-based
artificial neural network technique for use within an NMPC framework. As mentioned
above, the POD-FEM-based reduced model converts nonlinear large systems into one
dimension, time being the single model variable, and then applies ANN for time
coefficients modeling. After these, a nonlinear MPC control strategy can be applied
for nonlinear large-scale distributed systems. This data-driven approach can be used
in any “black-box” system. An important feature of the proposed methodology is the
efficient handling of inequality constraints, by incorporating them in the formulation
of the reduced optimization problem. Generally speaking, one of the strengths of
MPC is its ability to handle constraints. Although not all control problems are
constrained, many do require the satisfaction of nonlinear inequalities. The need to
tackle inequalities is accommodated in purpose-designed algorithms for predictive
and optimal control [18-19]. Such constraints could express design constraints for

process operation [20], economic/environmental [21] or stability conditions [22].

The proposed methodology has two main features: the reduction in computational
time in comparison to NMPC based on first-principle models and the capability to
handle black-box systems. Computational savings are attributed to employing model
order reduction for the mathematical simplification of the system at hand. POD not

only reduces the dimensionality of the problem, but also results in a model consisting
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of a product of a (constant) term expressing the spatial variation and a time-varying
one. Usually engineering systems are dissipative and can be described with a
relatively low-dimensional reduced model, resulting in significant computational
savings over using the full order model. In the proposed strategy, the selection of
ANNs and switching rules also affect the online computational time. Of equal
importance to reducing cost is the ability to handle black-box systems, for which
either a numerical integrator exists that allows no explicit access to the equations, or
only experimental data are available. Hence, we effectively tackle with the problem of
controlling a black-box system non-neglecting its spatial variation and utilizing the

dominant dynamics identified offline.

The rest of the paper is organized as follows: In section 2, a brief introduction of POD
model reduction, artificial neural network, and procedure of POD-ANN is given. In
section 3, three nonlinear MPC control case studies based on a tubular reactor are
used to illustrate the features of this technique. Finally, the conclusions of this work

are discussed in section 4.

2. POD-ANN MODEL REDUCTION

2.1 Proper Orthogonal Decomposition (POD) Model Reduction

Proper orthogonal decomposition (POD) is based on the spectral theory of compact,
self-adjoint operators expressed in the Karhunen-Loeve decomposition theorem [23].
POD is a powerful method to capture the most “energy” in an average sense for
efficient linear decomposition in terms of data compression [24]. The “energy” of a
given mode is calculated from the magnitude of the eigenvalue corresponding to that

mode. The reduced set of global eigenfunctions (basis functions) can either be



obtained analytically or statistically, by employing the method of snapshots [11]. The
latter approach is used more often, as an analytical solution does not exist for all

classes of systems, and is the approach applied here.

The main feature of POD is that it distinguishes the temporal and the spatial variations
and approximates the original nonlinear system by a low-order nonlinear model that
comprises terms exhibiting only one kind of variation (time or space). Spatial
variation is captured by the basis functions, which roughly speaking constitute a basis
for the feasible point subspace of the original system, i.e. ideally all feasible solutions
can be expressed as a linear combination of these vectors. Starting from an initial
condition, the subsequent state variable vectors are computed as linear combinations
of the basis functions. Time coefficients express the time variation of the system at
hand and are the weights of the linear combination mentioned above. Generally
speaking these coefficients are given by nonlinear expressions that can be obtained
either analytically [3] or statistically. In this work, we employ appropriately trained

ANNSs for the calculation of these functions.

In figure 1, the solid arrow pathway shows the common procedure for the POD model

reduction method. The steps of constructing the POD model are:

1. Empirically collect time evolving n data points from the dynamic model or
from experiments for the chosen appropriate range of parameters;

2. Express the snapshots as perturbations of their mean: calculate the mean

snapshot Y(z):EZX(z) and subtract X(z) from each sample so that the
n‘s

modified set has a mean of zero;



3. Construct a two-point correlation matrix, C, of size nxn from the sample set of
the previous step;

4. Calculate the m orthonormal empirical global basis functions =, j=1,...,m of

the POD model, where m<<N (N being the dimension of the full model and m

the dimension of the POD model). @, are calculated by solving an eigenvalue
problem of the correlation matrix: CW=AW and subsequently

(Pn(Z)ZZLWj X(z,t;), n=12..,m. The value of m is determined by
M
setting a threshold for capturing the system’s “energy”: E,, :Z/Ii ;
j=1
5. Express the state variables x(z,t) of the system (where z are spatial

coordinates) as linear combinations of @ (z) and some time coefficients a(t):
X(z,t) =Y a,(t)@,(z) +X(2) (1)
j=1

6. Compute expressions for the time coefficients. In this work, these expressions

are the appropriately trained ANNS.

As mentioned in the introduction, the reduced non-linear model from the POD
method is 1-dimensional, time being the only variable, irrespective of the
dimensionality of the original problem. POD has been applied on many systems e.g.
to produce low-order models for the nonlinear MPC of parabolic PDEs systems [25],
and for the optimization [26] and control [16] of reduced order models of transport-
reaction processes. However, the commonly used Galerkin-POD model reduction
methods is not suitable for “black-box” systems, since the equations of the system are
explicitly required for the derivation of expressions for the time-evolution of the time

coefficients via the Galerkin projection of the original set of equation onto the basis



functions. Employing ANNs hurdles this obstacle by rendering the procedure
completely data-driven. No access to the original set of equations is required, nor is
residual information used, as in other morel reduction techniques. Here only state
variable information is needed for a training set of data, but additional information

may be utilized if available as we will discuss in Section 2.3.

2.2 Artificial Neural Network

The backbone of this work is employing a sequence of ANNSs for the calculation of
the time coefficients. Because appropriately trained artificial neural networks can be
good approximators for any nonlinear function, ANN can be used to compute POD

time coefficients. The Galerkin projection step can then be potentially avoided.

A standard feed-forward artificial neural network without recurrence is shown in
figure 2. There are three main layers including the input layer, hidden layers, and the
output layer. Although, it has been found that this kind of feed-forward network with
one hidden layer can approximate any nonlinear function [14-15], it is quite difficult

to capture the dynamic behaviour of nonlinear systems using limited neurons.

An Elman neural network [27] from the Neural Network Tool-box in MATLAB,
shown in figure 3, is a type of recurrent neural network. Where, p is the control input

and y is the output; all LW, IW, ai(k-1), and b are obtained by network training;

tansig(x) = m —1and purelin(x) = x.

This neural network can recognize and generate a temporal pattern, which is suitable
for simulation of dynamic systems. The advantage of Elman Neural Network

comparing to feed-forward networks is the recurrent connections of the context layer



provide the system with a short-term memory. The hidden units do not only observe
the actual input but, via the context layer, also obtain information on their own state at
the last time step [28]. This feature can be useful in model predict control. Therefore,
the Elman neural network has been chosen for the POD-ANN model reduction

method for the non-linear dynamic large-scale distributed system in this research.

In this work, rather than having one ANN that yields values for the time coefficients,
given the time and the values of the control variables, we consider having a sequence
of ANNs in a gain-scheduling approach. Namely, although the structure of the
nonlinear predictive controller does not alter at run-time, the underlying model does.
It is outside the scope of this work to optimize the regions of validity for each ANN.
Ideally, one would analyze the dynamics of the original system and identify regions of
similar dynamics that can be modelled using the same ANN. The boundaries between
regions are model switching points. The trivial solution to this consideration is to
partition the temporal domain evenly and disregard the dynamics of the system. This
is the approach followed in this paper and in practice it may prove the only realistic
approach for a real system, the analysis of which would be difficult and time
consuming, or even impossible if only a black-box simulator is available. As far as the
system of the case study is concerned, in recent works we explored optimal (linear)

model switching, both based on position in state space [29], and time [4].

The structure of the ANNSs does not alter and therefore the number of neuron layers
and the number of neurons is the same throughout the sequence of ANNSs. Switching
between members of the sequence is time-based and is automatic. Therefore, the
proposed technique may be seen as multiple NMPC. Using a sequence of ANNSs
rather than a single one gives us more flexibility and enables us to handle systems of

higher nonlinearity and richer behavior in parametric space.
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2.3. POD-ANN Procedure

The procedure for the POD-ANN method includes similar steps to the typical
implementation the POD method (Figure 1) apart from the Galerkin projection step.
In the proposed strategy, the values for the POD time coefficients are given by a
sequence of ANNs. Training of the neural network is very important, as it determines
the quality of the approximation. In real time, whenever a function evaluation is
required in the context of the NMPC optimization problem, the suitable ANN from
the model pool is selected and is fed the values of the control variables. The output is
the values of the time coefficients, which are then combined with the basis function
vectors and the mean state vector as in Equation (1), to give an estimation for the state
variables vector. It is this (approximate) state vector that is used for the evaluation of

the objective function.

In order to train the neural network efficiently, a least square optimization has been
applied to sampling cases to catch the dynamics of the time coefficients in the POD-
ANN reduced model. Training is performed offline using process data (values for the
state variables) from purposefully-designed experiments. The optimal design of these
experiments is outside the scope of this work and indeed there are many ways that this
can be achieved. Here we use Taguchi’s orthogonal experimental design to obtain
values for the control variables in each of the experiments. Offline simulations using
the full-scale, high-dimensional, model are run and the resulting process data are used
in a least-squares problem which minimizes the distance between the actual state
vector and the POD-ANN estimation of it. This problem here is solved using the

Levenberg-Marquardt backpropagation method.
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2.4. Nonlinear MPC

The basis for the work presented here is Nonlinear Model Predictive Control.
Although linear MPC is widely used in process industry, its nonlinear variant is
usually avoided and applied only in cases where the nonlinearity cannot be
disregarded, either because the underlying system is indeed very nonlinear, or the
operating conditions vary significantly during normal operation. This is the reason
why NMPC is usually only used in batch operations, fine chemicals production and

other specialty applications.

The main concept of NMPC is the same as in its linear version: the controller is
predicting a sequence of future moves (values for the control variables), that minimize
the difference between the predicted state variables and the desired ones (reference
trajectory) and simultaneously minimize the required control energy, i.e. the size of
the subsequent control moves difference. This can be formulated in an objective

function, as follows:

J = min((x(®) = %res(8) @ () = 2rey (1)) + (AUYT - R - A1) @
Where x(t) is the state variables vector, Xr(t) is the desired trajectory that need not be
constant, AU is the difference of value of a control variables from the previous one.
Matrices Q and R are weights that can be used as handles to signify the relative
importance of each state and control variable and the relative importance of path
following versus the control energy minimization. The optimization problem may
have inequality constraints, such as control variables rate of change limits, and state
variable constraints and equality constraints expressing physical relations between

variables.
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The vector x(t) is given by Equation (1), in which the constant (at run-time) quantities
w(z) and X(z) participate, as well as the time coefficients a(t,u) given by the

appropriate ANN model. The sequence of ANNSs is wrapped in a procedure that
selects the appropriate ANN, evaluates it and combines its output with the spatial part

of the POD maodel to yield a state vector estimate.

Solving the NMPC optimization problem is performed online using a deterministic
quasi-Newton method. The optimizer employs the wrapper mentioned above for
function evaluations. Typically, the size of the optimization problem is small and full
reconstruction of the state vector can be avoided as we will show in the next Section.
In such cases, the use of special optimizers that are meant for large-scale systems can

be avoided.

The proposed strategy is also compatible with stochastic and non-gradient-based
deterministic optimizers, which typically incur more function evaluations. This is
possible because model order reduction effectively reduces the cost of function
evaluations. Using a stochastic optimizer might also tackle the issue of getting trapped
at a local minimum and miss the global one, which is always a possibility when using

a local nonlinear optimization method.

3. Case study

3.1 The tubular reactor with recycle

The tubular reactor with recycle depicted in figure 4 can be modeled by two sets of

partial differential equations [30] in a spatial domain z €[0,1] :
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Where, C and T are dimensionless concentration and dimensionless temperature,

respectively. Tc corresponds to the dimensionless temperature of the cooling medium
and f(C,T)=B.C exp(%) is the reaction term. The values of the parameters used
_|_

are: Pec=7.0, Per=7.0, Bc=0.1, Bt=2.5, y=10.0 and pr=2.0, with Pec, Per being the
Peclet numbers for mass and heat transport respectively, Bc being the (dimensionless)
heat transfer coefficient, Bt being the (dimensionless) temperature rise and y being the
activation energy. For a given recycling ratio r, the boundary conditions for

concentration and temperature at z =0are [31]:

C o Pe [(1-r)L+C,)+rC(t1)~C(t,0)]
oz 4
"2_1 = —Pe, [A-r)1+T,)+rT (t,1) - T (t,0)]

The boundary conditions at z=1 are dC/dz=0 anddT /dz=0. The reactor exhibits
oscillations at Co=To=T=0 for r=0.5 [32]. The model was discretized into 16 nodes
for spatial domain, and the FEM has been applied to solve the resulting ordinary
differential equations. The data from the FEM solution of the full-scale model above

are used to train and/or test the ANNSs used in our methodology.

3.2 Control Objective
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It can be seen that the tubular reactor shows stable behavior for r=0 (Fig. 5a) while it

undergoes sustained oscillations for r=0.5 (Fig. 5b).
Here we present three case studies with different control objectives:

For the first case study the control objective was to stabilize the reactor with r=0.5 to
behave like the system with r=0 by introducing a number of jacket temperature zones

(actuators). The objective function is as follows:
J = n'Alln (T (t) _Tref (t))T Q(T (t) _Tref (t))+ AU'RAU (5)

Where, Tr(t) is the reference temperature (r=0) and AU is the control on the

actuators.
Then, the following objective function can be obtained by applying equation 1 to

replace temperature term.

J= nlin[(iak_T Oz, (%) ‘FE) et (t)J Q((iak_T Oz, (%) ‘FE) et (t)J +AU"RAU (6)

k=1

Subject to:

a,(t) = tanh(IW,, -U + LW, -a, (t—1) + ) )
a, (t) = tanh(LW,, -a, (t) + LW, , -a, (t —1) +b,) ®)
o 7 (1) = LW, -a,(t) +b; ©)

The above equations (7), (8) and (9) are from Figure 3 with 3 layers Elman neural
network (tansig/tansig/purlin), in which tansig was replaced by tanh of the
mathematical form. Where, LW, IW, and b are obtained by ANN training, and ai(t),

ax(t) are internal output parameters of the first two layers of the neural network.

14



For the second case study the control objective was to destabilize the reactor with r=0
to behave like the system with r=0.5 by introducing a number of jacket temperature
zones. The objective function and constraints have a similar form to equations 4 to 8.
Here Tref(t) is the reference state (r=0.5). This case study illustrates the capability of
the proposed method to enforce the desired dynamic behavior on the closed-loop
system. Whereas the first case was about stifling the dynamics, here we consider
exciting them. Although this case was designed on academic merits rather than
engineering relevance, in some cases it may be desired that the advanced controller
excites the system dynamics to a point, so that parameter identification may be

performed simultaneously to control [33].

For the third case study the control objective was based on the second case study and
nonlinear inequality constraints were added to limit the variance of the state variables

within the predictive horizons.
Var(CA)=E[CA]?-(E[CA])? and Var(TA)=E[TA]*(E[TA])? (10)

Where, E[CA] (or E[TA]) is the expected (mean) value of CA (or TA),

m m

CA=[Ea_cj(tl)w_cj(z), - Ea_cj(tp)w_cj(z)] and
TA=[ia_tj(tl)w_tj(z), e ia_tj(tp)w_tj(z) ],

@ _c;(z) (or @ _t;(z)) is the j™ basis function for concentration (or temperature) at
space point z, and o _c;(t;) (or e_t,(t;)) is the j'" time coefficient corresponding to

the j™ basis function for concentration (or temperature) at time point t; (i=1, tp) where

tp is the predictive time horizon.

15



3.3 Data Sampling

A method based on orthogonal experimental design methodology has been applied for
data sampling. There were 8 jacket temperature zones (actuators) for the
implementation of the computed control actions. In Taguchi’s orthogonal
experimental design, the use of the L12 orthogonal array has been highly
recommended and many successful cases have been reported [34]. The first 8
columns of the L12 (2'1) orthogonal array, as listed in Table 1, have been used in this

work.

If Heaviside step functions (whose value is 0 or 1) are applied to facilitate sampling,

then for 8 actuators we need 2° =256 runs. Therefore, only 12 runs for sampling
based on orthogonal experimental design have dramatically reduced the number for
experiments. Taking 11 samples over the range of (dimensionless) cooling
temperatures [-1, 1], we have 12*11=132 runs. The full-scale FEM model was used
for sampling and the sampling time was 15 time units. As far as ANN training is
concerned, the maximum number of epochs to train was 1,000 and the minimum
performance gradient was 10°°. In general, it will improve the accuracy of the method
by increasing the maximum number of epochs; however, the trade-off will be longer
training time. The number chosen was 1,000 due to manageability of the work with

considerable accuracy.

3.4 POD-ANN Model Reduction

In the first case study (reactor stabilization), it is shown in figure 6a and 6b that five

global basis functions for concentration and temperature were computed based on the
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132 samples collected, since m=5, eigenfunctions for concentration (or temperature)

capture 99.7% (or 98.3%) of the system’s energy.

The comparison between the full and reduced model for the dynamics of the reactor
middle and output points is shown in figure 7a (concentration) and 7b (temperature).

The reduced model gave good predictions of the complex reactor dynamics.

In the second and third case study to destabilize the reactor, it is shown in figure 8a
and 8b that five global basis functions for concentration and temperature were
computed based on the 132 samples collected with r=0. The number of eigenfunctions
considered was m=5, for concentration (or temperature) to capture 99.5% (or 98.4%)

of the system’s energy.

The comparison between the full and reduced model for the dynamics of the reactor
middle and output point is shown in figure 9a (concentration) and 9b (temperature).
The sequence of any one ANN was chosen by equally 5 time steps (with each time
step of 0.01 secs). The selection of ANN-based surrogate model follows is time-based
and results in an approach similar to gain scheduling. Since both the reference
trajectory and the open-loop system dynamics are known a priori, time-scheduling of
ANN can be performed offline. This strategy is based on the implicit assumption that
the closed-loop system dynamics would be reasonably similar to the reference.
Indeed, since a high-resolution surrogate model is employed, this assumption is
intuitively legitimate and can be practically validated with offline numerical
experiments, such as the ones in Figures 7 and 9. The reduced model again

successfully computed the complex reactor dynamics.
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3.5 Nonlinear MPC

Nonlinear MPC has been applied using the MATLAB NAG Toolbox to obtain the
control laws for the three case studies. Control time horizon is one time step (0.01
sec) in the case studies, and prediction time horizon is three time steps (0.03 sec). An
implementation of a quasi-Newton algorithm included in theMATLAB NAG
Toolbox, has been applied in the first case study. In Figure 10, results of the nonlinear
MPC using 8 actuators (cooling zones) to stabilize the tubular reactor system are
shown. Figure 10a shows the control law for the 1st and 8th actuators. The control
output and the reference profile are shown in Figure 10b, demonstrating that the

reactor can be efficiently stabilized using our technique.

The same quasi-Newton algorithm has also been applied in the second case study. In
Figure 11, results of the nonlinear MPC using 8 actuators to destabilize the tubular
reactor system are shown. Figure 1la shows the control law for the 1st and 8th
actuators, respectively. The control output and the reference profile are shown in
Figure 11b. As it can be seen the closed-loop dynamics follow the reference trajectory
successfully. This illustrates that our nonlinear MPC control based on POD-ANN can

be used to track any kind of (arbitrary) reference profile.

An implementation of the sequential quadratic programming (SQP) method included
in the NAG Toolbox for MATLAB has been applied in the third case study. This
optimizer has been favored over the quasi-Newton Algorithm used for case studies 1
and 2 due to the existence of inequality constraints. This method allows constraints
including simple bounds on the variables, linear constraints, and smooth nonlinear
constraints. The inequality constraints, Var(CA)<0.1 and Var(TA)<0.1, have been used

in the third case study. In Figure 12, results of the nonlinear MPC using 8 actuators to
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destabilize the tubular reactor system are shown. Figure 12a shows the control law for
the 1% and 8™ actuators. The control output and the reference profile are shown in
Figure 12b, again demonstrating that the controlled system can successfully follow
reference trajectory. It can also be seen from figure 13 that only the first 5 time units

are affected by inequality constraints posed here.

4. Conclusions

A data-driven, model reduction-based, artificial neural network (ANN) approach has
been developed for nonlinear MPC applications to highly nonlinear, distributed
parameter systems of high dimensionality. This efficient model reduction-based
technique combines the proper orthogonal decomposition (POD) with ANNSs. The
POD-ANN methodology enables the use of nonlinear MPC for large scale non-linear
“black-box” systems. The key features of the proposed work are the reduction of
dimensionality using POD, the suitability for handling black-box systems exploiting
the data-driven nature of ANNs and the use of a sequence of low-order nonlinear
models within the NMPC framework. The existence of a sequence of ANN-based
models rather than a single one is a novelty of the work described here and enables
tackling systems of high nonlinearity, where training a single ANN would give an
insufficiently good approximation of the original system. This method can effectively
facilitate the use of nonlinear MPC for large scale distributed systems, as it was
demonstrated in three case studies, where stabilization of a tubular reactor undergoing
sustained oscillations was performed, destabilization of a tubular reactor, and
destabilization of a tubular reactor with inequality constraints. In a subsequent

publication, we plan to implement a piecewise linear MPC associated with POD-ANN
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for control of large-scale non-linear “black-box™ systems, by which even higher

computational efficiency can be achieved.
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1. L1z (2*) Orthogonal array from Taguchi’s orthogonal experimental design (Tsai,

1995), with symbol 1 being replaced by 0 and -1 being replaced by 1.
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Table 1. Li2 (2'!) Orthogonal array from Taguchi’s orthogonal experimental design

(Tsai, 1995), with symbol 1 being replaced by 0 and -1 being replaced by 1.

Run A B CDEZFGH I J K

10 1 1 1 0 0 0 0 1 1 0 1

1 1 1 0 1 0 1 0 0 0 1 1

12 1 1 0 0 1 0 1 0 1 1 O
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Figure 4. Tubular reactor with recycle.
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Figure 6. Global basis functions for (a) concentration (b) temperature from the

sampling data of tubular reactor with r =0.5.
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Figure 7. Comparison between (a) concentration (b) temperature predictions of full
model and POD-ANN reduced model at the middle and output points for tubular

reactor with r=0.5.
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Figure 8. Global basis functions for (a) concentration (b) temperature from the

sampling data of tubular reactor with r =0.
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Figure 9. Comparison between (a) concentration (b) temperature predictions of full
model and POD-ANN reduced model at the middle and output points for tubular

reactor with r=0.
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actuators (b) control and reference profile.
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Figure 11. Nonlinear MPC results for second case study (a) control law for 1% and 8™"

actuators (b) control and reference profile.
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Figure 12. Nonlinear MPC results for third case study (a) control law for 1% and 8"

actuators (b) control and reference profile.
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Figure 13. Results after implementing inequality constraint Var(CA)<0.1 and

Var(TA) <0.1 for third case study.
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