
1 

 

Data-driven Model Reduction-based Nonlinear MPC  

for Large-Scale Distributed Parameter Systems 

 

Weiguo Xie1, Ioannis Bonis, and Constantinos Theodoropoulos 

School of Chemical Engineering and Analytical Science, University of Manchester, 

Sackville Street, Manchester M13 9PL, UK. 

Abstract 

Model Predictive Control (MPC) has been effectively applied in process industries 

since the 1990s. Models in the form of closed equation sets are normally needed for 

MPC, but it is often difficult to obtain such formulations for large nonlinear systems. 

To extend nonlinear MPC (NMPC) application to nonlinear distributed parameter 

systems (DPS) with unknown dynamics, a data-driven model reduction-based 

approach is followed. The proper orthogonal decomposition (POD) method is first 

applied off-line to compute a set of basis functions. Then a series of artificial neural 

networks (ANNs) are trained to effectively compute POD time coefficients. NMPC, 

using sequential quadratic programming is then applied. This paradigm combines 

elements of gain scheduling, NMPC, model reduction and ANN for effective control 

of nonlinear DPS. The novelty of this POD model reduction-based MPC is to apply 

POD’s highly efficient linear decomposition and convert detailed space-state model to 

reduced model with function of only 1 dimensional in time. The 

stabilization/destabilisation of a tubular reactor with recycle is used as an illustrative 
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example to demonstrate the efficiency of our methodology. Case studies with 

inequality constraints are also presented. 

Keywords: Proper Orthogonal Decomposition, Nonlinear Model Predictive Control, 

sequence of Artificial Neural Networks, Distributed Parameter Systems, control of 

highly nonlinear systems. 

 

1. Introduction 

Model Predictive Control (MPC) has been widely used in the process industries. With 

this technique, online optimization is performed successively at each control timestep, 

using the underlying model to predict future dynamics for a certain prediction horizon 

and resulting in a sequence of (tentative) control moves for a given control horizon. 

Of these moves only the first one is implemented and the rest are discarded. In 

general, nonlinear MPC is mostly used in batch operations, while linear MPC is more 

often applied in continuous operations [1]. At the same time, a high-dimensional non-

linear model is in general expensive to evaluate and utilizing it in a nonlinear MPC 

control strategy incurs high computational cost, which may prove problematic in real-

time applications.  

Model reduction can be used to significantly reduce the dimensionality of complex 

nonlinear dynamic systems, which, in turn, can lead to the successful design and 

implementation of nonlinear MPC [2 – 8]. Effective model reduction strategies for 

control applications have the following features:   

- are implemented in automated procedures,  

- lead to a good approximation of the original system,  
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- preserve the dynamic properties of the complex system and  

- are highly efficient in reducing the computational cost.  

Among the most effective model reduction methods is Proper Orthogonal 

Decomposition (POD) that has been applied in a non-linear MPC framework [8 - 9] 

and also for MPC in conjunction with mesoscopic simulators [10]. POD is also 

termed Karhunen–Loève expansion and Principal Component Analysis. Although this 

class of methods may rely exclusively on equations-based reduction, usually what is 

implemented is a variant of the reduction process employing the snapshot method 

[11]. 

We recently proposed an off-line model reduction technique based on POD and 

combined with Trajectory Piecewise-Linearization (TPWL) method for producing 

low-order linear MPC controllers for nonlinear large-scale distributed parameter 

systems of partial differential equations [2 - 5]. This POD-Finite Element (FEM) 

based reduced model is nonlinear only in the time dimension. However, this method 

requires the detailed governing equations and the application of Galerkin projection.  

Artificial Neural Networks (ANN), inspired by the structure and functional properties 

of biological neural networks, are composed of interconnected elements (neurons) 

with certain functions. ANN models provide a response on the given information 

from input layers. The first attempt to produce highly complex behaviors was made in 

1943 by using many basic “all-or-none” artificial neurons [12]. Hebbian learning has 

been introduced from the perspective of the psychologist [13], which opened the door 

for associative learning for ANNs. Since then, with the development of the modern 

computers, applications of ANNs have been made in many areas including system 

identification and control, process modeling, data processing, visualization etc.  It has 



4 

 

been found that multilayer feed-forward networks with as few as one hidden layer can 

be universal approximators for many nonlinear functions [14-15]. More recently, 

ANN associated with POD has been developed for nonlinear dynamic models of 

distributed reacting systems [4, 16]. A dynamic radial basis function (RBF) neural 

network has been used to model distributed parameter systems (DPSs) and then 

implemented in MPC configurations [17]. 

This paper describes the development of a data-driven model reduction-based 

artificial neural network technique for use within an NMPC framework. As mentioned 

above, the POD-FEM-based reduced model converts nonlinear large systems into one 

dimension, time being the single model variable, and then applies ANN for time 

coefficients modeling. After these, a nonlinear MPC control strategy can be applied 

for nonlinear large-scale distributed systems. This data-driven approach can be used 

in any “black-box” system. An important feature of the proposed methodology is the 

efficient handling of inequality constraints, by incorporating them in the formulation 

of the reduced optimization problem. Generally speaking, one of the strengths of 

MPC is its ability to handle constraints. Although not all control problems are 

constrained, many do require the satisfaction of nonlinear inequalities. The need to 

tackle inequalities is accommodated in purpose-designed algorithms for predictive 

and optimal control [18-19]. Such constraints could express design constraints for 

process operation [20], economic/environmental [21] or stability conditions [22]. 

The proposed methodology has two main features: the reduction in computational 

time in comparison to NMPC based on first-principle models and the capability to 

handle black-box systems. Computational savings are attributed to employing model 

order reduction for the mathematical simplification of the system at hand. POD not 

only reduces the dimensionality of the problem, but also results in a model consisting 
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of a product of a (constant) term expressing the spatial variation and a time-varying 

one. Usually engineering systems are dissipative and can be described with a 

relatively low-dimensional reduced model, resulting in significant computational 

savings over using the full order model. In the proposed strategy, the selection of 

ANNs and switching rules also affect the online computational time. Of equal 

importance to reducing cost is the ability to handle black-box systems, for which 

either a numerical integrator exists that allows no explicit access to the equations, or 

only experimental data are available. Hence, we effectively tackle with the problem of 

controlling a black-box system non-neglecting its spatial variation and utilizing the 

dominant dynamics identified offline.  

The rest of the paper is organized as follows: In section 2, a brief introduction of POD 

model reduction, artificial neural network, and procedure of POD-ANN is given. In 

section 3, three nonlinear MPC control case studies based on a tubular reactor are 

used to illustrate the features of this technique. Finally, the conclusions of this work 

are discussed in section 4. 

 

2. POD-ANN MODEL REDUCTION 

2.1 Proper Orthogonal Decomposition (POD) Model Reduction 

Proper orthogonal decomposition (POD) is based on the spectral theory of compact, 

self-adjoint operators expressed in the Karhunen-Loeve decomposition theorem [23]. 

POD is a powerful method to capture the most “energy” in an average sense for 

efficient linear decomposition in terms of data compression [24]. The “energy” of a 

given mode is calculated from the magnitude of the eigenvalue corresponding to that 

mode. The reduced set of global eigenfunctions (basis functions) can either be 
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obtained analytically or statistically, by employing the method of snapshots [11]. The 

latter approach is used more often, as an analytical solution does not exist for all 

classes of systems, and is the approach applied here.  

The main feature of POD is that it distinguishes the temporal and the spatial variations 

and approximates the original nonlinear system by a low-order nonlinear model that 

comprises terms exhibiting only one kind of variation (time or space). Spatial 

variation is captured by the basis functions, which roughly speaking constitute a basis 

for the feasible point subspace of the original system, i.e. ideally all feasible solutions 

can be expressed as a linear combination of these vectors. Starting from an initial 

condition, the subsequent state variable vectors are computed as linear combinations 

of the basis functions. Time coefficients express the time variation of the system at 

hand and are the weights of the linear combination mentioned above. Generally 

speaking these coefficients are given by nonlinear expressions that can be obtained 

either analytically [3] or statistically. In this work, we employ appropriately trained 

ANNs for the calculation of these functions.  

In figure 1, the solid arrow pathway shows the common procedure for the POD model 

reduction method. The steps of constructing the POD model are: 

1. Empirically collect time evolving n data points from the dynamic model or 

from experiments for the chosen appropriate range of parameters;  

2. Express the snapshots as perturbations of their mean: calculate the mean 

snapshot 
1

1
( ) ( )



 
n

j

x z x z
n

 

and subtract ( )x z from each sample so that the 

modified set has a mean of zero; 
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3. Construct a two-point correlation matrix, C, of size nn from the sample set of 

the previous step;  

4. Calculate the m orthonormal empirical global basis functions  j
, j=1,…,m of 

the POD model, where m<<N (N being the dimension of the full model and m 

the dimension of the POD model).  j
 are calculated by solving an eigenvalue 

problem of the correlation matrix: CW=λW and subsequently 

1
( ) ( , ), 1,2,...,


 

M

n j jj
z W x z t n m . The value of m is determined by 

setting a threshold for capturing the system’s “energy”: 
1





M

tot j

j

E ;  

5. Express the state variables x(z,t) of the system (where z are spatial 

coordinates) as linear combinations of ( ) z  and some time coefficients a(t): 

1

( , ) ( ) ( ) ( )


 
m

j j

j

x z t a t z x z                                 (1) 

6. Compute expressions for the time coefficients. In this work, these expressions 

are the appropriately trained ANNs. 

As mentioned in the introduction, the reduced non-linear model from the POD 

method is 1-dimensional, time being the only variable, irrespective of the 

dimensionality of the original problem.  POD has been applied on many systems e.g. 

to produce low-order models for the nonlinear MPC of parabolic PDEs systems [25], 

and for the optimization [26] and control [16] of reduced order models of transport-

reaction processes. However, the commonly used Galerkin-POD model reduction 

methods is not suitable for “black-box” systems, since the equations of the system are 

explicitly required for the derivation of expressions for the time-evolution of the time 

coefficients via the Galerkin projection of the original set of equation onto the basis 
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functions. Employing ANNs hurdles this obstacle by rendering the procedure 

completely data-driven. No access to the original set of equations is required, nor is 

residual information used, as in other morel reduction techniques. Here only state 

variable information is needed for a training set of data, but additional information 

may be utilized if available as we will discuss in Section 2.3.  

 

2.2 Artificial Neural Network 

The backbone of this work is employing a sequence of ANNs for the calculation of 

the time coefficients. Because appropriately trained artificial neural networks can be 

good approximators for any nonlinear function, ANN can be used to compute POD 

time coefficients. The Galerkin projection step can then be potentially avoided.  

A standard feed-forward artificial neural network without recurrence is shown in 

figure 2. There are three main layers including the input layer, hidden layers, and the 

output layer. Although, it has been found that this kind of feed-forward network with 

one hidden layer can approximate any nonlinear function [14-15], it is quite difficult 

to capture the dynamic behaviour of nonlinear systems using limited neurons. 

An Elman neural network [27] from the Neural Network Tool-box in MATLAB, 

shown in figure 3, is a type of recurrent neural network. Where, p is the control input 

and y is the output; all LW, IW, a1(k-1), and b are obtained by network training; 

2
tan ( ) 1

1 exp( 2 )
 

 
sig x

x
 and ( ) purelin x x . 

This neural network can recognize and generate a temporal pattern, which is suitable 

for simulation of dynamic systems. The advantage of Elman Neural Network 

comparing to feed-forward networks is the recurrent connections of the context layer 
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provide the system with a short-term memory. The hidden units do not only observe 

the actual input but, via the context layer, also obtain information on their own state at 

the last time step [28]. This feature can be useful in model predict control. Therefore, 

the Elman neural network has been chosen for the POD-ANN model reduction 

method for the non-linear dynamic large-scale distributed system in this research. 

In this work, rather than having one ANN that yields values for the time coefficients, 

given the time and the values of the control variables, we consider having a sequence 

of ANNs in a gain-scheduling approach. Namely, although the structure of the 

nonlinear predictive controller does not alter at run-time, the underlying model does. 

It is outside the scope of this work to optimize the regions of validity for each ANN. 

Ideally, one would analyze the dynamics of the original system and identify regions of 

similar dynamics that can be modelled using the same ANN. The boundaries between 

regions are model switching points. The trivial solution to this consideration is to 

partition the temporal domain evenly and disregard the dynamics of the system. This 

is the approach followed in this paper and in practice it may prove the only realistic 

approach for a real system, the analysis of which would be difficult and time 

consuming, or even impossible if only a black-box simulator is available. As far as the 

system of the case study is concerned, in recent works we explored optimal (linear) 

model switching, both based on position in state space [29], and time [4].  

The structure of the ANNs does not alter and therefore the number of neuron layers 

and the number of neurons is the same throughout the sequence of ANNs. Switching 

between members of the sequence is time-based and is automatic. Therefore, the 

proposed technique may be seen as multiple NMPC. Using a sequence of ANNs 

rather than a single one gives us more flexibility and enables us to handle systems of 

higher nonlinearity and richer behavior in parametric space.  
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2.3. POD-ANN Procedure 

The procedure for the POD-ANN method includes similar steps to the typical 

implementation the POD method (Figure 1) apart from the Galerkin projection step. 

In the proposed strategy, the values for the POD time coefficients are given by a 

sequence of ANNs. Training of the neural network is very important, as it determines 

the quality of the approximation. In real time, whenever a function evaluation is 

required in the context of the NMPC optimization problem, the suitable ANN from 

the model pool is selected and is fed the values of the control variables. The output is 

the values of the time coefficients, which are then combined with the basis function 

vectors and the mean state vector as in Equation (1), to give an estimation for the state 

variables vector. It is this (approximate) state vector that is used for the evaluation of 

the objective function.  

In order to train the neural network efficiently, a least square optimization has been 

applied to sampling cases to catch the dynamics of the time coefficients in the POD-

ANN reduced model. Training is performed offline using process data (values for the 

state variables) from purposefully-designed experiments. The optimal design of these 

experiments is outside the scope of this work and indeed there are many ways that this 

can be achieved. Here we use Taguchi’s orthogonal experimental design to obtain 

values for the control variables in each of the experiments. Offline simulations using 

the full-scale, high-dimensional, model are run and the resulting process data are used 

in a least-squares problem which minimizes the distance between the actual state 

vector and the POD-ANN estimation of it. This problem here is solved using the 

Levenberg-Marquardt backpropagation method.  
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2.4. Nonlinear MPC 

The basis for the work presented here is Nonlinear Model Predictive Control. 

Although linear MPC is widely used in process industry, its nonlinear variant is 

usually avoided and applied only in cases where the nonlinearity cannot be 

disregarded, either because the underlying system is indeed very nonlinear, or the 

operating conditions vary significantly during normal operation. This is the reason 

why NMPC is usually only used in batch operations, fine chemicals production and 

other specialty applications. 

The main concept of NMPC is the same as in its linear version: the controller is 

predicting a sequence of future moves (values for the control variables), that minimize 

the difference between the predicted state variables and the desired ones (reference 

trajectory) and simultaneously minimize the required control energy, i.e. the size of 

the subsequent control moves difference. This can be formulated in an objective 

function, as follows: 

 

𝐽 = min
𝛥𝑈

((𝑥(𝑡) − 𝑥𝑟𝑒𝑓(𝑡))
𝑇

∙ 𝑄 ∙ (𝑥(𝑡) − 𝑥𝑟𝑒𝑓(𝑡)) + (𝛥𝑈)𝑇 ∙ 𝑅 ∙ 𝛥𝑈)                        (2) 

Where x(t) is the state variables vector, xref(t) is the desired trajectory that need not be 

constant, U  is the difference of value of a control variables from the previous one. 

Matrices Q and R are weights that can be used as handles to signify the relative 

importance of each state and control variable and the relative importance of path 

following versus the control energy minimization. The optimization problem may 

have inequality constraints, such as control variables rate of change limits, and state 

variable constraints and equality constraints expressing physical relations between 

variables. 
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The vector x(t) is given by Equation (1), in which the constant (at run-time) quantities 

( ) z  and ( )x z  participate, as well as the time coefficients ( , )a t u  given by the 

appropriate ANN model. The sequence of ANNs is wrapped in a procedure that 

selects the appropriate ANN, evaluates it and combines its output with the spatial part 

of the POD model to yield a state vector estimate.  

Solving the NMPC optimization problem is performed online using a deterministic 

quasi-Newton method. The optimizer employs the wrapper mentioned above for 

function evaluations. Typically, the size of the optimization problem is small and full 

reconstruction of the state vector can be avoided as we will show in the next Section. 

In such cases, the use of special optimizers that are meant for large-scale systems can 

be avoided. 

The proposed strategy is also compatible with stochastic and non-gradient-based 

deterministic optimizers, which typically incur more function evaluations. This is 

possible because model order reduction effectively reduces the cost of function 

evaluations. Using a stochastic optimizer might also tackle the issue of getting trapped 

at a local minimum and miss the global one, which is always a possibility when using 

a local nonlinear optimization method.  

 

3. Case study 

3.1 The tubular reactor with recycle 

The tubular reactor with recycle depicted in figure 4 can be modeled by two sets of 

partial differential equations [30] in a spatial domain [0,1]z : 
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Where, C and T are dimensionless concentration and dimensionless temperature, 

respectively. TC corresponds to the dimensionless temperature of the cooling medium 

and ( , ) exp( )
1





C

T
f C T B C

T
is the reaction term. The values of the parameters used 

are: PeC=7.0, PeT=7.0, BC=0.1, BT=2.5, γ=10.0 and βT=2.0, with PeC, PeT being the 

Peclet numbers for mass and heat transport respectively, BC being the (dimensionless) 

heat transfer coefficient, BT being the (dimensionless) temperature rise and γ being the 

activation energy. For a given recycling ratio r, the boundary conditions for 

concentration and temperature at 0z are [31]: 

0

0

[(1 )(1 ) ( ,1) ( ,0)]

[(1 )(1 ) ( ,1) ( ,0)]


     




     



C

T

C
Pe r C rC t C t

z

T
Pe r T rT t T t

z

                   (4) 

The boundary conditions at 1z  are / 0dC dz  and / 0dT dz . The reactor exhibits 

oscillations at C0=T0=Tc=0 for r=0.5 [32]. The model was discretized into 16 nodes 

for spatial domain, and the FEM has been applied to solve the resulting ordinary 

differential equations. The data from the FEM solution of the full-scale model above 

are used to train and/or test the ANNs used in our methodology. 

 

3.2 Control Objective 
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It can be seen that the tubular reactor shows stable behavior for r=0 (Fig. 5a) while it 

undergoes sustained oscillations for r=0.5 (Fig. 5b). 

Here we present three case studies with different control objectives: 

For the first case study the control objective was to stabilize the reactor with r=0.5 to 

behave like the system with r=0 by introducing a number of jacket temperature zones 

(actuators). The objective function is as follows: 

    URUtTtTQtTtTJ T

ref

T

ref
u




)()()()(min         (5) 

Where, Tref(t) is the reference temperature (r=0) and U  is the control on the 

actuators. 

Then, the following objective function can be obtained by applying equation 1 to 

replace temperature term. 
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Subject to: 

1 1,1 1,1 1 1( ) tanh( ( 1) )     a t IW U LW a t b                          (7) 

2 2,1 1 2,2 2 2( ) tanh( ( ) ( 1) )     a t LW a t LW a t b                 (8) 

_ 3,2 2 3( ) ( )   k T t LW a t b                                                   (9) 

The above equations (7), (8) and (9) are from Figure 3 with 3 layers Elman neural 

network (tansig/tansig/purlin), in which tansig was replaced by tanh of the 

mathematical form. Where, LW, IW, and b are obtained by ANN training, and a1(t), 

a2(t) are internal output parameters of the first two layers of the neural network. 
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For the second case study the control objective was to destabilize the reactor with r=0 

to behave like the system with r=0.5 by introducing a number of jacket temperature 

zones. The objective function and constraints have a similar form to equations 4 to 8. 

Here Tref(t) is the reference state (r=0.5). This case study illustrates the capability of 

the proposed method to enforce the desired dynamic behavior on the closed-loop 

system. Whereas the first case was about stifling the dynamics, here we consider 

exciting them. Although this case was designed on academic merits rather than 

engineering relevance, in some cases it may be desired that the advanced controller 

excites the system dynamics to a point, so that parameter identification may be 

performed simultaneously to control [33].  

For the third case study the control objective was based on the second case study and 

nonlinear inequality constraints were added to limit the variance of the state variables 

within the predictive horizons. 

Var(CA)=E[CA]2-(E[CA])2 and Var(TA)=E[TA]2-(E[TA])2          (10)                                                                                                                                                   

Where, E[CA] (or E[TA]) is the expected (mean) value of CA (or TA), 

                   and 

,  

_ ( ) jc z  (or _ ( ) jt z ) is the jth basis function for concentration (or temperature) at 

space point z, and _ ( ) j ic t  (or _ ( ) j it t ) is the jth time coefficient corresponding to 

the jth basis function for concentration (or temperature) at time point ti (i=1, tp) where 

tp is the predictive time horizon. 
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3.3 Data Sampling 

A method based on orthogonal experimental design methodology has been applied for 

data sampling. There were 8 jacket temperature zones (actuators) for the 

implementation of the computed control actions. In Taguchi’s orthogonal 

experimental design, the use of the L12 orthogonal array has been highly 

recommended and many successful cases have been reported [34]. The first 8 

columns of the L12 (211) orthogonal array, as listed in Table 1, have been used in this 

work. 

If Heaviside step functions (whose value is 0 or 1) are applied to facilitate sampling, 

then for 8 actuators we need 82 256  runs. Therefore, only 12 runs for sampling 

based on orthogonal experimental design have dramatically reduced the number for 

experiments. Taking 11 samples over the range of (dimensionless) cooling 

temperatures [-1, 1], we have 12*11 132  runs. The full-scale FEM model was used 

for sampling and the sampling time was 15 time units. As far as ANN training is 

concerned, the maximum number of epochs to train was 1,000 and the minimum 

performance gradient was 10-5. In general, it will improve the accuracy of the method 

by increasing the maximum number of epochs; however, the trade-off will be longer 

training time. The number chosen was 1,000 due to manageability of the work with 

considerable accuracy. 

 

3.4 POD-ANN Model Reduction  

In the first case study (reactor stabilization), it is shown in figure 6a and 6b that five 

global basis functions for concentration and temperature were computed based on the 
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132 samples collected, since m=5, eigenfunctions for concentration (or temperature) 

capture 99.7% (or 98.3%) of the system’s energy.  

The comparison between the full and reduced model for the dynamics of the reactor 

middle and output points is shown in figure 7a (concentration) and 7b (temperature). 

The reduced model gave good predictions of the complex reactor dynamics. 

In the second and third case study to destabilize the reactor, it is shown in figure 8a 

and 8b that five global basis functions for concentration and temperature were 

computed based on the 132 samples collected with r=0. The number of eigenfunctions 

considered was m=5, for concentration (or temperature) to capture 99.5% (or 98.4%) 

of the system’s energy. 

The comparison between the full and reduced model for the dynamics of the reactor 

middle and output point is shown in figure 9a (concentration) and 9b (temperature). 

The sequence of any one ANN was chosen by equally 5 time steps (with each time 

step of 0.01 secs). The selection of ANN-based surrogate model follows is time-based 

and results in an approach similar to gain scheduling. Since both the reference 

trajectory and the open-loop system dynamics are known a priori, time-scheduling of 

ANN can be performed offline. This strategy is based on the implicit assumption that 

the closed-loop system dynamics would be reasonably similar to the reference. 

Indeed, since a high-resolution surrogate model is employed, this assumption is 

intuitively legitimate and can be practically validated with offline numerical 

experiments, such as the ones in Figures 7 and 9. The reduced model again 

successfully computed the complex reactor dynamics. 
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3.5 Nonlinear MPC  

Nonlinear MPC has been applied using the MATLAB NAG Toolbox to obtain the 

control laws for the three case studies. Control time horizon is one time step (0.01 

sec) in the case studies, and prediction time horizon is three time steps (0.03 sec). An 

implementation of a quasi-Newton algorithm included in theMATLAB NAG 

Toolbox, has been applied in the first case study. In Figure 10, results of the nonlinear 

MPC using 8 actuators (cooling zones) to stabilize the tubular reactor system are 

shown. Figure 10a shows the control law for the 1st and 8th actuators. The control 

output and the reference profile are shown in Figure 10b, demonstrating that the 

reactor can be efficiently stabilized using our technique.  

The same quasi-Newton algorithm has also been applied in the second case study. In 

Figure 11, results of the nonlinear MPC using 8 actuators to destabilize the tubular 

reactor system are shown. Figure 11a shows the control law for the 1st and 8th 

actuators, respectively. The control output and the reference profile are shown in 

Figure 11b. As it can be seen the closed-loop dynamics follow the reference trajectory 

successfully. This illustrates that our nonlinear MPC control based on POD-ANN can 

be used to track any kind of (arbitrary) reference profile. 

An implementation of the sequential quadratic programming (SQP) method included 

in the NAG Toolbox for MATLAB has been applied in the third case study. This 

optimizer has been favored over the quasi-Newton Algorithm used for case studies 1 

and 2 due to the existence of inequality constraints. This method allows constraints 

including simple bounds on the variables, linear constraints, and smooth nonlinear 

constraints. The inequality constraints, Var CA( ) 0.1  and Var TA( ) 0.1 , have been used 

in the third case study. In Figure 12, results of the nonlinear MPC using 8 actuators to 
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destabilize the tubular reactor system are shown. Figure 12a shows the control law for 

the 1st and 8th actuators. The control output and the reference profile are shown in 

Figure 12b, again demonstrating that the controlled system can successfully follow 

reference trajectory. It can also be seen from figure 13 that only the first 5 time units 

are affected by inequality constraints posed here.   

 

4. Conclusions 

A data-driven, model reduction-based, artificial neural network (ANN) approach has 

been developed for nonlinear MPC applications to highly nonlinear, distributed 

parameter systems of high dimensionality. This efficient model reduction-based 

technique combines the proper orthogonal decomposition (POD) with ANNs. The 

POD-ANN methodology enables the use of nonlinear MPC for large scale non-linear 

“black-box” systems. The key features of the proposed work are the reduction of 

dimensionality using POD, the suitability for handling black-box systems exploiting 

the data-driven nature of ANNs and the use of a sequence of low-order nonlinear 

models within the NMPC framework. The existence of a sequence of ANN-based 

models rather than a single one is a novelty of the work described here and enables 

tackling systems of high nonlinearity, where training a single ANN would give an 

insufficiently good approximation of the original system. This method can effectively 

facilitate the use of nonlinear MPC for large scale distributed systems, as it was 

demonstrated in three case studies, where stabilization of a tubular reactor undergoing 

sustained oscillations was performed, destabilization of a tubular reactor, and 

destabilization of a tubular reactor with inequality constraints. In a subsequent 

publication, we plan to implement a piecewise linear MPC associated with POD-ANN 
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for control of large-scale non-linear “black-box” systems, by which even higher 

computational efficiency can be achieved. 
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Table 1. L12 (211) Orthogonal array from Taguchi’s orthogonal experimental design 

(Tsai, 1995), with symbol 1 being replaced by 0 and -1 being replaced by 1. 

Run A B C D E F G H I J K 

1 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 1 1 1 1 1 1 

3 0 0 1 1 1 0 0 0 1 1 1 

4 0 1 0 1 1 0 1 1 0 0 1 

5 0 1 1 0 1 1 0 1 0 1 0 

6 0 1 1 1 0 1 1 0 1 0 0 

7 1 0 1 1 0 0 1 1 0 1 0 

8 1 0 1 0 1 1 1 0 0 0 1 

9 1 0 0 1 1 1 0 1 1 0 0 

10 1 1 1 0 0 0 0 1 1 0 1 

11 1 1 0 1 0 1 0 0 0 1 1 

12 1 1 0 0 1 0 1 0 1 1 0 

 

  



26 

 

List of Figures 

1. Schematic diagram for POD (with solid arrow) and POD-ANN (with dash arrow) 

model reduction. 

2. Neural network topology of a standard feed-forward neural network with no 

recursive connections. 

3. Elman neural network (adapted from Neural Network Toolbox, MATLAB User’s 

Guide). 

4. Tubular reactor with recycle. 

5. Temperature profiles of tubular reactor (a) 0r     (b)   0.5r . 

6. Global basis functions for (a) concentration (b) temperature from the sampling data 

of tubular reactor with 0.5r . 

7. Comparison between (a) concentration (b) temperature predictions of full model 

and POD-ANN reduced model at the middle and output points for tubular reactor with 

0.5r . 

8. Global basis functions for (a) concentration (b) temperature from the sampling data 

of tubular reactor with 0r . 

9. Comparison between (a) concentration (b) temperature predictions of full model 

and POD-ANN reduced model at the middle and output points for tubular reactor with 

0r . 

10. Nonlinear MPC results for the first case study (a) control law for 1st and 8th 

actuators (b) control and reference profile. 



27 

 

11. Nonlinear MPC results for the second case study (a) control law for 1st and 8th 

actuators (b) control and reference profile. 

12. Nonlinear MPC results for the third case study (a) control law for 1st and 8th 

actuators (b) control and reference profile. 

13. Results after implementing inequality constraint ( ) 0.1Var CA  and ( ) 0.1Var TA  

for the third case study. 

 

 

  



28 

 

 

Figure 1. Schematic diagram for POD (with solid arrow) and POD-ANN (with dash 

arrow) model reduction 

  

 

 

 

( )x f x

Two-point correlation matrix 

Singular Value Decomposition 

 
Small number, m of empirical global basis 

functions, Φi 

 





m

j

jj zxztatzx
1

)()()(),(   

Off-line data collection 

Detailed dynamic model 

(N equations) 

    
 

    

Training 
Neural 

Network 

Low-order model 

Experimental Data 

 

 

 

Can be a black box 

Galerkin  
Projection 



29 

 

 

Figure 2. Neural network topology of a standard feed-forward neural network with no 

recursive connections. 
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Figure 3. Elman neural network (adapted from Neural Network Toolbox, MATLAB 

User’s Guide). 
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Figure 4. Tubular reactor with recycle. 
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(a) 

(b) 

Figure 5. Temperature profiles of tubular reactor (a) 0r     (b)   0.5r . 
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(a) 

(b) 

Figure 6. Global basis functions for (a) concentration (b) temperature from the 

sampling data of tubular reactor with 0.5r . 
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(a) 

(b) 

Figure 7. Comparison between (a) concentration (b) temperature predictions of full 

model and POD-ANN reduced model at the middle and output points for tubular 

reactor with 0.5r . 
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(a) 

(b) 

Figure 8. Global basis functions for (a) concentration (b) temperature from the 

sampling data of tubular reactor with 0r . 
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(a) 

(b) 

Figure 9. Comparison between (a) concentration (b) temperature predictions of full 

model and POD-ANN reduced model at the middle and output points for tubular 

reactor with 0r . 
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(a) 

(b) 

Figure 10. Nonlinear MPC results for first case study (a) control law for 1st and 8th 

actuators (b) control and reference profile. 
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(a) 

(b) 

Figure 11. Nonlinear MPC results for second case study (a) control law for 1st and 8th 

actuators (b) control and reference profile. 
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(a) 

(b) 

Figure 12. Nonlinear MPC results for third case study (a) control law for 1st and 8th 

actuators (b) control and reference profile. 
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Figure 13. Results after implementing inequality constraint ( ) 0.1Var CA   and 

( ) 0.1Var TA  for third case study. 

 


