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Abstract: 38 

The growth rate of atmospheric CO2 concentrations since industrialization is 39 

characterized by large interannual variability, mostly resulting from variability in the 40 

CO2 uptake by terrestrial ecosystems. However, the contributions of regional ecosystems 41 

to that variability are not well known. Using an ensemble of ecosystem and land-surface 42 

models and an empirical observation-based product of the global gross primary 43 

production, we show that the mean sink, trend, and interannual variability in CO2 44 

uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. 45 

Whereas the sink strength is dominated by highly productive lands, mainly tropical 46 

forests, the trend and interannual variability of the sink are dominated by semi-arid 47 

ecosystems whose carbon balance is strongly associated with circulation-driven 48 

variations in both precipitation and temperature.  49 

 

One Sentence Summary:  50 

Semi-arid savannas and shrub lands dominate the trend and interannual variability of 51 

the global land CO2 sink.   52 

 

Main Text:  53 

Since the 1960s, terrestrial ecosystems have acted as a substantial sink for atmospheric CO2, 54 

sequestering about one quarter of anthropogenic emissions in an average year (1). This 55 

ecosystem service, which helps mitigate climate change by reducing the rate of increase of 56 

atmospheric greenhouse gases, is due to an imbalance between the uptake of CO2 through 57 

gross primary production (GPP, the aggregate photosynthesis of plants) and the release of 58 

carbon to the atmosphere by ecosystem respiration (Reco) and other losses, including wildfires 59 

(Cfire). The net carbon flux (net biome production, NBP = GPP - Reco - Cfire) results from the 60 

small imbalance between the much larger uptake and release fluxes. Consequently, small 61 

fractional variations in either of these fluxes can cause substantial absolute variations in net 62 

carbon exchange with the atmosphere. These variations account almost entirely for year-to-63 

year variations around the overall trend in atmospheric concentrations of CO2 (2, 3). 64 

Modelling studies suggest a large uncertainty of the future magnitude and sign of the carbon 65 

sink provided by terrestrial ecosystems (4-8). Robust projections are crucial to assess future 66 

atmospheric CO2 burdens and associated climate change, and also for developing effective 67 

mitigation policies. Reducing uncertainty requires better knowledge of the regions and 68 

processes governing the present sink and its variations. Inventories suggest that the majority 69 

of carbon sequestered by the terrestrial biosphere since industrialization has accumulated in 70 

forest ecosystems of the tropics and temperate zones (9). However, the relative contributions 71 

of ecosystems of different, climatically-distinct, regions to variations in the land sink on 72 

interannual to multi-decadal time scales are not well characterized. Here we investigate 73 

relative regional contributions to, respectively, the mean sink, its trend over recent decades 74 

and the interannual variability (IAV) around the trend. 75 



We simulate the geographic pattern and time course of NBP using LPJ-GUESS (10-12), a 76 

biogeochemical dynamic global vegetation model (DGVM) that explicitly accounts for the 77 

dependency of plant production and downstream ecosystem processes on the demography 78 

(size structure) and composition of simulated vegetation. We force the model with historical 79 

climate (13) and CO2 concentrations, accounting for emissions from land use change and 80 

carbon uptake due to regrowth following agricultural abandonment (14). We compare the 81 

results to an ensemble of nine ecosystem and land surface model simulations from the 82 

TRENDY model intercomparison project (12, 15) (hereinafter TRENDY models, Table S1). 83 

The TRENDY ensemble is similarly based on historical climate and CO2, but employs a static 84 

1860 land use mask. 85 

Global NBP as simulated by LPJ-GUESS shows strong agreement (r
2
=0.62) with the Global 86 

Carbon Project (GCP) estimate of the net land CO2 flux; an independent, bookkeeping-based 87 

estimate derived as the residual of emissions, atmospheric growth and ocean uptake of CO2  88 

(1) (Fig 1A). TRENDY models do not account for land use change. In comparison to the GCP 89 

land flux estimate they consequently predict a higher average NBP but similar interannual 90 

variation. Moreover, the offset between the TRENDY ensemble mean and the GCP land flux 91 

estimate is comparable to the GCP estimate of mean land use change emissions for the period 92 

1982-2011 (fLUC). 93 

We divide the global land area into six land cover classes following the MODIS MCD12C1 94 

land cover classification (12, 16): tropical forests (Fig 1B), extra-tropical forest, grasslands 95 

and croplands (here combined), semi-arid ecosystems (Fig 1C), tundra and arctic shrub lands, 96 

and sparsely vegetated lands (areas classified as barren) (Fig S1 and S2).   97 

When the global terrestrial CO2 sink (average NBP) and its trend (1982-2011) are partitioned 98 

among land cover classes, we find that tropical forests account for the largest fraction (26%, 99 

0.33 PgC year
-1

) of the average sink over this period (1.23 PgC year
-1

) (Fig. 1D). In contrast, 100 

we find that semi-arid ecosystems dominate the positive global CO2 sink trend (57%, 0.04 101 

PgC year
-2

, global: 0.07 PgC year
-2

) (Fig. 1E). The TRENDY ensemble shows a consistent 102 

pattern, with tropical forests dominating the mean sink (median: 24%) and semi-arid 103 

ecosystems dominating the trend (median: 51%). The predominance of semi-arid ecosystems 104 

in explaining the global land sink trend is consistent with widespread observations of woody 105 

encroachment over semi-arid areas (17) and increased vegetation greenness inferred from 106 

satellite remote sensing over recent decades (17-19). Likewise, a recent study attributes the 107 

majority of the record land sink anomaly of 2011 to the response of semi-arid ecosystems in 108 

the Southern Hemisphere, particularly Australia, to an anomalous wet period; the study 109 

further postulates a recent increase in the sensitivity of carbon uptake to precipitation for this 110 

region due to vegetation expansion (20). 111 

We further partition interannual variability in global NBP among land cover classes based on 112 

the contribution of individual grid cells to global NBP IAV (12). To this end, we adopted an 113 

index (Eq. S1, Fig S3) that scores individual geographic locations according to the 114 

consistency over time (years) with which the local NBP flux resembles the sign and 115 

magnitude of global NBP (Fig S4). Regions receiving higher and positive average scores are 116 

inferred to have a larger contribution in governing global NBP IAV, as opposed to regions 117 

characterized by smaller or negative (counteracting) scores (Fig S3). The index we adopt does 118 

not characterize the variability of ecosystems of different land cover classes as, for example 119 



the standard deviation would do (Fig S5) but rather enables a comparison of their relative 120 

importance (contribution) in governing global IAV. 121 

Semi-arid ecosystems were found to account for the largest fraction, 39%, of global NBP 122 

IAV, exceeding tropical forest (19%), extra-tropical forest (11%; all forest: 30%) and 123 

grasslands and croplands (27%) (Fig 1F). The TRENDY ensemble shows a similar 124 

partitioning, with semi-arid ecosystems accounting for 47% (median; tropical forests: 28%, 125 

extra-tropical forest: 6%, all forest: 35%). The overall contributions per land cover class are 126 

the sum of both positive and negative contributions that result from differences in phase 127 

between IAV of individual grid cells compared with global IAV (Fig S4). The extent to which 128 

negative contributions reduce the overall land cover class contributions is minor for all 129 

regions except grasslands and crops (Fig S6) (LPJ-GUESS: -13%, TRENDY median: -13%) 130 

the latter being distributed widely across climate zones, both climate variations and the 131 

sensitivity of NBP to climate variations differing among regions. 132 

To partition the global NBP IAV among component fluxes (GPP, Reco, Cfire) and among land 133 

cover classes, we applied Eq. S1. We found that global NBP IAV is most strongly associated 134 

with variation in GPP; interannual GPP anomalies contribute 56% of the global NBP IAV in 135 

LPJ-GUESS, and a median of 90% in the TRENDY model ensemble. Comparing different 136 

land cover classes, the GPP anomalies of semi-arid ecosystems alone contribute 39% in LPJ-137 

GUESS and a median of 65% in the TRENDY model ensemble to global NBP IAV (Fig. S7). 138 

Semi-arid vegetation productivity thus emerges clearly as the single most important factor 139 

governing global NBP IAV.  140 

We employed two complementary methods to attribute the variability in GPP—as the inferred 141 

primary driver of global NBP IAV—to its environmental drivers. Firstly, we analyzed 142 

simulation results from LPJ-GUESS, linking output GPP anomalies to variability in the 143 

climatic input data. Secondly we use a time-resolved gridded global GPP product derived 144 

from upscaled flux tower measurements (12, 21) (hereinafter empirical GPP product). This 145 

product uses an empirical upscaling of flux measurements and is thus entirely independent of 146 

the modelled GPP in our study.  147 

The three main climatic drivers temperature (T), precipitation (P) and shortwave radiation (S) 148 

are interdependent and correlated. To account for combined effects of these drivers we adopt 149 

an analysis of GPP variations from an “impact perspective” (22-24): we first identify GPP 150 

anomalies and then extract their climatic covariates. The primary challenge of such analysis 151 

on annual scale is to target climate indices that adequately characterize the “period of climatic 152 

influence”, e.g. growing season average, annual averages, minima or maxima of a given 153 

climatic forcing. To overcome this challenge we use semi-annual time series of climate 154 

drivers constructed using an optimization procedure that weights monthly anomalies of a 155 

given climate variable (T, P or S), accounting for time lags of up to 24 months while making 156 

no additional prior assumptions as to the period of influence (12). For each GPP event we 157 

extract climatic covariates as z-scores of the semi-annual climatic drivers. 158 

We evaluate the climatic covariates of GPP anomalies for semi-arid ecosystems from the 159 

empirical GPP product and modelled by LPJ-GUESS, focusing on T and P, and find similar 160 

responses of GPP to climate with both approaches across all latitude bands (Fig 2 A,B). 161 

Negative GPP anomalies in semi-arid ecosystems are mainly driven by warm and dry (low 162 

rainfall) climatic events in most latitudes, suggestive of drought. By contrast, positive GPP 163 



anomalies are dominated by cool and wet conditions.  Averaging the distributions over 164 

latitudes (Fig 2 A,B) and extracting the climatic covariates per percentile of the GPP 165 

distributions shows that GPP varies with climatic conditions on a straight line in T-P space 166 

(Fig S8), with a stronger covariation with P than T. This implies that the full GPP 167 

distributions are driven by similar climatic patterns, i.e. anomalies that differ in size and sign 168 

covary with corresponding differences in size and sign in the drivers. GPP extremes (the tails 169 

of the distribution of GPP among years) covary with ENSO across all latitudes (Fig 2 C,D). 170 

Both in the model and the empirical GPP product, GPP anomalies are more strongly 171 

associated with the positive phase of ENSO (El Niño) than the negative phase (La Niña), 172 

while the sign of the relationship varies with latitude. Positive ENSO tends to coincide with 173 

negative GPP anomalies in the tropics (30°S - 20°N), and with positive GPP anomalies north 174 

of 20°N.  175 

The agreement between climatic covariates of the data-based empirical GPP product and 176 

modelled GPP alongside the comparatively robust pattern of the covariation with climate 177 

suggests that GPP IAV for semi-arid ecosystems is mediated by climate. Since ENSO 178 

covaries with a considerable portion of the GPP distribution, we infer that ENSO is the 179 

dominating mode of global circulation variations driving GPP IAV over semi-arid 180 

ecosystems. Recent modelling studies have found that extreme El Niño events could become 181 

more common under climate change (25), which together with an increased atmospheric 182 

demand for water associated with global warming might exacerbate the impact of El Niño 183 

events over semi-arid ecosystems and further increase the role of semi-arid regions in driving 184 

global NBP IAV (26-28).    185 

We repeat the calculation of climatic covariates to simulated NBP for LPJ-GUESS and each 186 

of the TRENDY models. The resulting maps of covariates in T-P space are shown as average 187 

covariates of negative (low CO2 uptake or CO2 release) extremes (Fig 3 A,B) and positive 188 

(high CO2 uptake or low CO2 release) extremes (Fig 3 C,D). In general, semi-arid ecosystems 189 

stand out as regions in which strong CO2 uptake events are consistently associated with cool 190 

and moist conditions, and strong CO2 release events with warm and dry conditions. In tropical 191 

forests NBP covaries with both T and P as in semi-arid regions, but also with T alone. In high 192 

latitudes wet or warm and wet conditions lead to negative NBP extremes whereas warm and 193 

dry or dry conditions tend to lead to positive extremes, although the spatial heterogeneity of 194 

the covariates is large in this region (Fig 3).  195 

Our approach offers detailed spatial and temporal disaggregation of drivers and responses 196 

which is important when analyzing drivers or covariates of global NBP IAV because of the 197 

high temporal and spatial variability in P (Fig S9-11).  Using four upscaling levels with 198 

increasing spatial and temporal disaggregation (ranging from land surface mean P and T to 199 

using semi-annual P and T, averaged based on the spatial origin of each year’s global NBP 200 

anomaly (Eq S5 and S6)) we show that P and NBP IAV become more correlated at higher 201 

levels of disaggregation. At the highest disaggregation level, P is almost as strongly correlated 202 

with NBP IAV as T, suggesting a strong influence of soil moisture variations on global NBP 203 

IAV (28). This strong increase in P correlations with disaggregation resolves an apparent 204 

conflict between the findings of the present study, and those of studies using regionally 205 

averaged drivers which emphasize the role of T in governing IAV in atmospheric CO2 (28-206 

30). For semi-arid ecosystems T correlations are slightly stronger than P correlations with 207 

NBP IAV (Fig 4B), partly due to an asymmetric distribution of P and/or an asymmetric 208 

response of NBP to P IAV (Fig S12). The correlation of tropical forest P with NBP IAV 209 



increases when we use the semi-annual drivers, suggesting large importance of accounting for 210 

time lags and “period of climatic influence” of P variations (12), but P-NBP IAV correlations 211 

are still weaker than T-NBP IAV correlations (Fig 4C).   212 

Our analysis provides evidence that semi-arid ecosystems, largely occupying low latitudes, 213 

have dominated the IAV and trend of the global land C sink over recent decades. Semi-arid 214 

regions have been the subject of relatively few targeted studies that place their importance in a 215 

global context. Our findings indicate that semi-arid regions and their ecosystems merit 216 

increased attention as a key to understanding and predicting inter-annual to decadal-scale 217 

variations in the global carbon cycle. 218 
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Figure captions:  319 

Figure 1. Global and regional NBP mean, trend and variations. (A) Global NBP and GCP 320 

land flux time series (1982 – 2011). TRENDY models are plotted on a separate vertical axis 321 

with a time-invariant offset corresponding to the time period average GCP fLUC estimate (1.2 322 

Pg C). (B) Tropical forest NBP. LPJ-GUESS (red line) includes emissions from land use 323 

change. TRENDY models average (blue line) and 1st and 3rd quartiles of the ensemble 324 

(shaded blue area) do not include emissions from land use change. (C) NBP of semi-arid 325 

ecosystems from LPJ-GUESS (including land use change emissions) and TRENDY models 326 

(excluding land use change emissions). (D) Contribution of land cover classes to global mean 327 

NBP (1982-2011) (mean NBP of land cover class / mean global NBP). Horizontal lines in 328 

boxplots show from top, 95th, 75th, 50th, 25th, and 5th percentiles. (E) Contribution of land 329 

cover classes to global NBP trend (land cover class NBP trend / global NBP trend). (F) 330 

Contribution of land cover classes to global NBP interannual variations (Eq S1).  331 

Figure 2. Climatic-covariates of semi-arid ecosystem GPP variations. (A) Distribution by 332 

latitude of the empirical GPP product anomalies normalized by average standard deviation of 333 

GPP in semi-arid lands. The distribution is colored according to the legend based on average 334 

local climatic covariates per latitude zone and distribution bin. (B) LPJ-GUESS GPP 335 

distribution calculated and colored as in (A). (C) Covariation of the multivariate ENSO index 336 

anomalies (MEI (31, 32)) with the empirical GPP product. (D) Covariation of MEI and 337 

modelled GPP anomalies per latitudinal zone. NB: the figure shows the covariates of 338 

latitudinal average local GPP anomalies and not the average covariates based on GPP IAV 339 

contribution to NBP IAV. 340 

 

Figure 3. Climatic covariates of NBP extremes. (A) Climatic covariates of LPJ-GUESS 341 

negative NBP extremes (1-10
th

 percentiles). (B) Mean climatic covariates of TRENDY-342 

models negative NBP extremes (1-10
th

 percentiles). (C) covariates of LPJ-GUESS positive 343 



NBP extremes (90-99
th

 percentiles). (D) Mean climatic covariates of TRENDY-models 344 

positive NBP extremes (90-99
th

 percentiles).  345 

 

Figure 4. Correlations between annual climatic drivers IAV (P and T) and global NBP IAV 346 

(mean of all 10 models). (A) Global P and T correlations to global NBP IAV. From black to 347 

white and left to right, bars represent annual P and T IAV correlations to global NBP IAV 348 

with increasing spatial and temporal disaggregation of P and T while averaging to global time 349 

series: (I) Black bars represent averaged global land surface P and T weighted by grid cell 350 

area. (II) Dark grey bars represent P and T weighted by 30-year average contribution to global 351 

NBP IAV (Eq S1, Fig S4). (III) Light grey bars represent averaged P and T weighted by each 352 

years contributions, thus accounting for the difference in the spatial distribution of 353 

contributions between years (Eq S5 and S6). (IV) White bars represent semi-annual climate 354 

drivers averaged to global time series using the annual spatial contributions as in (III) thereby 355 

accounting for the “period of climatic influence” and time lags of up to 24 months. (B) 356 

Correlations between P and T IAV and NBP IAV for semi-arid ecosystems. Weights, where 357 

applicable, are based on contributions to global NBP IAV as in (A) but with P and T averaged 358 

over semi-arid ecosystems only. (C) Correlations between P and T IAV and global NBP IAV 359 

for tropical forest. Weights, where applicable, are based on contributions to global NBP IAV 360 

as in (A) but with  P and T averaged over tropical forest only. 361 


