The resolution of conflict in families

PT Smiseth¹ & NJ Royle²

 ¹Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, U.K.
 ²Centre for Ecology and Conservation, College of Life and Environmental

Sciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, U. K.

10 Word count: 1,996

Abstract

The emergence of family groups is associated with conflict over the allocation of

- 15 food or other limited resources. Understanding the mechanisms mediating the resolution of such conflict is a major aim in behavioural ecology. Most empirical work on the familial conflict has focused on birds. Here, we highlight how recent work on insects provides new and exciting insights into how such conflict is resolved. This work shows that conflict resolution can be more complex than
- 20 traditionally envisioned, often involving multiple mechanisms. For example, it shows that the resolution of sexual conflict involves a combination of behavioural negotiation, direct assessment of partner's state, and manipulation using anti-aphrodisiacs or prenatal maternal effects. Furthermore, it highlights that there is a shift from the traditional emphasis on conflict (and competition)
- 25 to a greater emphasis on the balance between conflict on the one hand and cooperation on the other.

Highlights

- Evolution of family groups is associated with conflict over limited resources.
- Resolution of sexual conflict involves direct assessment of partner's state.
 - Females control conflict resolution via anti-aphrodisiacs and egg production.
 - Siblings complete, but there can also competition be among other family members.
 - Siblings sometimes cooperate by sharing food.

Introduction

Group living is widespread among insects [1,2]. Familiar examples include the eusocial ants, bees and termites, which spent most or all of their life cycle in complex social groups comprising of reproductive individuals that are helped by

- 40 sterile workers [1]. Less familiar examples include insects where parents remain with their offspring for some time after hatching or birth and enhance their offspring's fitness by provisioning them with resources and/or by protecting them from predators or other environmental hazards [2–4]. Group living is associated with conflict among individuals over access to limited resources, such
- as food, mates and space. Conflict among family members may seem paradoxical given that families usually are composed of close relatives that have overlapping interests with respect to each other's future survival and reproduction.
 Nevertheless, family members have diverging interests over the allocation of parental resources, such as food, due to a combination of asymmetries in
- relatedness between them and a limited supply of resources [5,6].

Families may be comprised of one or both parents caring for one or multiple offspring, giving rise to three social dimensions of conflict depending on the composition of the family [7]. Sexual conflict over much care each parent should provide occurs where both parents care for their joint offspring [8,9],
parent-offspring conflict occurs where parents provision food or other limited resources for their young after hatching [5,10], and sibling conflict occurs where multiple offspring share access to limited resources [6,11]. Most empirical work on family conflict has focused on birds [6,12]. This taxonomic bias largely reflects the widespread prevalence of parental care in birds and the relative ease with

- which it can be observed [3]. Until relatively recently, insects were largely ignored, which is perhaps not surprising given that parental care is relatively rare in insects, where most species are either solitary or eusocial [2, 13–15].
 However, in a small number of insects, including burrower bugs (*Sehirus cinctus*), European earwigs (*Forficula auricularia*) and burying beetles within the genus
- 65 *Nicrophorus*, parents provision food for their offspring after hatching, making these species attractive model systems for the study of family conflict. In this article, we show how recent work on insects provides new and exciting insights into familial conflicts and their resolution.

70 Sexual conflict and state-dependent cooperation

Traditionally, the resolution of sexual conflict has been associated with behavioural response rules, such as negotiation, whereby each parent adjusts its own contribution based on information on its partner's workload [16]. Theoretical model of negotiation predicts that each parent responds to a

- 75 reduction in its partner's workload by increasing its contribution but not such that it fully matches its partner's reduction ('incomplete compensation') [16]. Negotiation is thought to play a key role in the resolution of sexual conflict because it provides each parent with information on its partner's ability to provide care [16]. This idea assumes that a parent cannot directly assess its
- 80 partner's parental ability, but that it does so indirectly by monitoring its workload. However, two recent studies on *N. vespilloides* showed that a focal parent responded directly to two components of its partner's state that appears likely to influence the partner's ability to provide care: its inbreeding status

[17•] and its body size [18•]. Both studies find evidence for negotiation, which

- 85 was detected as negative correlations between the amount of male and female care. However, the studies also that focal parent responded to directly to its partner's state by providing more care when the partner was inbred [17•] and when the partner was larger [18•]. Crucially, there was no evidence that behavioural response rules, such as negotiation, accounted for these responses
- 90 to the partner's state. Thus, these studies suggest that each parent assesses its partner's parental ability independently of monitoring its workload and that the resolution of sexual conflict may involve a combination of negotiation and direct assessment of the partner's state.

95 Sexual conflict and female control

The traditional focus on behavioural response rules, including negotiation, as the mechanism mediating the resolution of sexual conflict assumes that there is symmetry between males and females with respect to how they influence the resolution of sexual conflict. However, recent studies on *N. vespilloides* suggest

- 100 that females may hold the upper hand by influencing their partner's behaviour through production of anti-aphrodisiacs and control over egg production. Engel et al. [19••] showed that females of the burying beetle *Nicrophorus vespilloides* produce an anti-aphrodisiac pheromone (methyl geranate) that suppresses male sexual activity during the period where offspring require most parental care
- 105 (Figure 1), thereby directing the male's attention away from mating and towards assisting in parental care. In situations where there is a risk of sperm competition, it is beneficial to males to mate at a high frequency [20] because it

protects their paternity [21]. However, a high mating frequency is costly for females [22], which may help explain why females produce the anti-aphrodisiac

- 110 to cool male ardour. Engel et al. [19••] also found that methyl geranate is chemically linked to Juvenile Hormone III, a hormone that temporarily suppresses female fertility while females care for their offspring. Under these circumstances, it may be in the male's best interest to suspend his sexual activity in response to the anti-aphrodisiac while the female is infertile. This in turn, may
- help shift the male's attention from mating to assistance in parental care [23].
 Anti-aphrodisiacs that are physiologically linked to female fertility may play an important role in the resolution of sexual conflict and the co-evolution of male and female care [24], and there is therefore a need for further work to determine whether they play a similar role in other insects, as well as in other taxa, with
 biparental care.

Two recent studies on *N. vespilloides* highlight that female control over
egg production may play an important role in the resolution of sexual conflict
[25•,26••]. Ford and Smiseth [25•] found that females can manipulate male care
by laying the eggs more asynchronously (i.e., over a longer period of time)
because males provided more care for experimental broods that had a greater
degree of asynchronous hatching. However, females paid a prohibitively high
cost from doing so because asynchronous hatching had an adverse effect on
offspring survival. Thus, although females in principle can manipulate male care
through asynchronous laying of eggs, the benefit of doing so are outweighed by a

In a related study, Paquet and Smiseth [26••] examined whether females can manipulate the behaviour of caring males via prenatal maternal effects. In many species, females deposit hormones or other compounds into the eggs that may influence male involvement in care by altering the offspring's behaviour or

- 135 development [27,28]. Paquet and Smiseth [26••] manipulated the presence or absence of the male during egg laying (a key prenatal environmental cue to females as to whether they can expect male assistance in parental care), performed a cross-fostering experiment where all broods (regardless of whether they were laid in presence or absence of a male) were cared for by both parents,
- and monitored the subsequent effects on offspring and parental performance.
 They found that offspring were smaller at hatching when females laid eggs in the presence of a male, suggesting that females invest less in eggs when expecting male assistance. Furthermore, broods laid in the presence of a male gained more weight during parental care. This increase in brood weight was associated with a
- 145 reduction in male weight gain while breeding rather than an increase the male parental effort (Figure 2). Thus, this study showed that females can manipulate the behaviour of caring males through prenatal maternal effects, and that females suppressed the male's food consumption while breeding, thereby leaving more food for the offspring. However, the mechanism by which females
- 150 manipulate male behaviour is still unclear.

Competition among other family members

There is ample evidence for intense competition among siblings for access to parental resources [6,11]. However, recent work on insects suggests there may

- also be competition among other family members. In many insects, offspring
 retain the ability to forage independently of their parents [29,30], which may
 lead to competition between parents and offspring over shared resources [31••].
 A recent study on European earwigs (*Forficula auricularia*) provided evidence
 for resource competition between caring parent and their dependent offspring.
- 160 Kramer et al. [31••] found that females benefit from high weight gain as it allows them to invest more in a subsequent clutch, but that high maternal weight gain is costly to offspring as it reduces their survival prospects. Conversely, offspring have higher survival when they have a higher weight gain. Thus, this study shows that the presence of a caring female triggers parent-offspring competition
- 165 over shared resources. Parent-offspring competition may have important implications for the early evolution of family group living. The reason for this is that costs associated with such competition may counteract the benefits of parental care, thereby impeding the evolution of family life in resource-poor environments [31••].
- 170 In some insects with biparental care, both parents feed from the shared resource used for breeding, leading to competition (or sexual conflict) between the two parents over food. For example, burying beetles within the genus *Nicrophorus* breed on carcasses of small vertebrates, which serve as a source of food for the larvae as well as the two parents [32]. A recent study on *N*.
- 175 vespilloides suggests that the resolution of sexual conflict over food consumption involved a combination of behavioural response rules and direct responses to the partner's state [33•]. This study found that females adjusted their mass change by matching their partner's mass change, gaining more mass when males

gained more mass. In contrast, males responded directly to their partner's state,

- 180 gaining more mass when paired to large females that on average consumed more carrion than small females. This study shows that there is sexual conflict between caring parents over how much care each parent should provide as well as over how much food each parent should consume. There is now a need for studies examining whether these two conflicts are related. For example, if a
- 185 parent is providing a disproportionate amount of care, its partner may be more tolerant of that parent feeding more from the resource [33•].

Sibling cooperation

Traditionally, there has been an emphasis on competitive interactions among

- siblings [6,11]. However, a recent study on European earwigs provides evidence that siblings may cooperate [34••]. In this study, individual nymphs were fed dyed food. The study found that dyed food eaten by a focal nymph was often transferred to its siblings via active release of frass that was subsequently eaten by other nymphs and via mouth-to-mouth contact and mouth-to-anus contact
 between nymphs. The study also found that food sharing was more common when nymphs had no contact with their mother, and that recipient nymphs benefitted from food transfer by gaining more weight. Donor nymphs released more frass when interacting with related nymphs, but recipients spent more time at mouth-to anus contact when interacting with unrelated nymphs. The
- 200 study suggests that sibling cooperation may be an ancestral trait in species with facultative parental care, and that it therefore may have played a key role in the

early evolution of post-hatching parental care by promoting females to stay with their nymphs after hatching [34••,35].

205 Emerging perspective on family conflict

Here, we have highlighted how recent work on insects provides new and exciting insights into the resolution of conflict within family groups. This work highlights that conflict resolution might be more complex than traditionally envisioned, often involving multiple mechanisms. For example, the resolution of sexual

- 210 conflict may involve behavioural negotiation, direct assessment of partner's state, and manipulation using anti-aphrodisiacs or prenatal maternal effects. Furthermore, it highlights that there is a shift from the traditional emphasis on conflict (and competition) to a greater emphasis on the balance between conflict (and competition) on the one hand and cooperation on the other. A potentially
- 215 fruitful direction for future research would be to explore how environmental conditions, such as availability of resources, shifts the balance from conflict to cooperation.

Conflicts of interest

220 None

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
 - •• of outstanding interest
 - 1. Wilson EO: *The Insect Societies*. Belknap Press; 1972.
 - 2. Costa JT: *The Other Insect Societies.* Harvard University Press; 2006.
 - 3. Clutton-Brock TH: *The Evolution of Parental Care*. Princeton University

230 Press; 1991.

235

- 4. Royle NJ, Smiseth PT, Kölliker M (Eds): *The Evolution of Parental Care.*Oxford University Press; 2012.
- 5. Trivers RL: **Parent-offspring conflict.** *Amer Zool* 1974, **14**:249–264.
- Mock DW, Parker GA: *The Evolution of Sibling Rivalry*. Oxford University Press; 1997.
- Parker GA, Royle NJ, Hartley IR. Intrafamilial conflict and parental investment: a synthesis. *Phil Trans R. Soc Lond B* 2002 357:295–307.
- Houston AL, Davies NB: The evolution of cooperation and life-history in the dunnock. In *Behavioural Ecology*. Edited by Sibly RM, Smith RH. Blackwell; 1985:471–487.
 - 9. Lessells CM: **Sexual conflict.** In *The Evolution of Parental Care.* Edited by Royle NJ, Smiseth PT, Kölliker M. Oxford University Press; 2012:150–170.

 Kilner RM, Hinde CA: Parent-offspring conflict. In *The Evolution of Parental Care.* Edited by Royle NJ, Smiseth PT, Kölliker M. Oxford University Press; 2012:119–132.

245

260

241.

- Roulin A, Dreiss AN: Sibling competition and cooperation over parental care. In *The Evolution of Parental Care*. Edited by Royle NJ, Smiseth PT, Kölliker M. Oxford University Press; 2012:133–149.
- 12. Harrison F, Barta Z, Cuthill IC, Székely T: How is sexual conflict over
- 250 parental care resolved? A meta-analysis. J Evol Biol 2009 22:1800–
 1812.
 - Trumbo ST: 2012. Patterns of parental care in invertebrates. In *The Evolution of Parental Care.* Edited by Royle NJ, Smiseth PT, Kölliker M.
 Oxford University Press; 2012:81–100.
- 255 14. Wong JWY, Meunier J, Kölliker M: The evolution of parental care in insects: the roles of ecology, life history and the social environment. *Ecol Entomol* 2013, 38:123–137.
 - 15. Smiseth PT: Parental care. In *The Evolution of Insect Mating Systems*.
 Edited by Shuker DM, Simmons LW. Oxford University Press; 2014:221–
 - McNamara JM, Gasson CE, Houston AI: Incorporating rules for responding into evolutionary games. *Nature* 1999 401:368–371.
 - 17. Mattey SN, Smiseth PT: Complex effects of inbreeding on biparental
 - **cooperation.** *Am Nat* 2015, **185**:1–12.

This study shows that the resolution of sexual conflict over parental care involves a combination of negotiation and direct responses to the partner's state. The authors showed that, in the burying beetle *Nicrophorus vespilloides*, males and females provided almost twice as care when paired with an inbred partner than when paired with an outbred, even though the inbred partner provided as
much care an outbred one.

18. Pilakouta N, Richardson J, Smiseth PT: State-dependent cooperation in

- burying beetles: parents adjust their contribution towards care
 based on both their own and their partner's size. J Evol Biol 2015,
 28:1965–1974.
- 275 This study provides experimental evidence for state-dependent cooperation in an insect: the burying beetle *Nicrophorus vespilloides*. The authors found that the resolution of sexual conflict over parental care in a burying beetle involved a combination of behavioural response rules (i.e., responses to the partner's behaviour) and direct responses to the partner's state (i.e., direct responses the partner's body size).

19. Engel KC, Stökl J, Schweizer R, Vogel H, Ayasse, M, Ruther J, Steiger S: A

- hormone-related female anti-aphrodisiac signals temporary infertility and causes sexual abstinence to synchronize parental care. *Nat Comm* 2016, 7:11035.
- This study provides evidence that females produce anti-aphrodisiacs that play an important role in the resolution of sexual conflict over parental care in insects.
 The authors show that, in burying beetle *Nicrophorus vespilloides*, breeding females produce an anti-aphrodisiac (methyl geranate) that is chemically linked

to a hormone (Juvenile Hormone III), which temporarily suppresses male sexual

- 290 activity during the period when offspring are most in need of parental care. The anti-aphrodisiac shifts the male's attention from mating towards parental care.
 - 20. Hopwood PE, Moore AJ, Tregenza T, Royle NJ: Male burying beetles extend, not reduce, parental care duration when reproductive competition is high. J Evol Biol 2015, 28:1394-1402.
- 295 21. House CM, Evans GMV, Smiseth PT, Stamper CE, Walling CA, Moore AJ: The evolution of repeated mating in the burying beetle *Nicrophorus vespilloides*. *Evolution* 2008, 62:2004-2014.
- 22. Head ML, Hinde CA, Moore AJ, Royle NJ: Correlated evolution in parental care in females but not males in response to selection on paternity
 assurance behaviour. *Ecol Letters* 2014, **17**:803-810.
 - 23. Royle NJ: **Parental care: when the sex has to stop.** *Curr Biol* 2016, **25:**R478–R480.
 - 24. Royle, NJ, Alonzo SH, Moore AJ: **Co-evolution, conflict and complexity:** what have we learned about the evolution of parental care behaviours? *Curr Opinion Behav Sci* 2016, **12:**30–36.

25. Ford LE, Smiseth PT: Asynchronous hatching provides females with a

 means for increasing male care but incurs a cost by reducing offspring fitness. J Evol Biol 2016, 29:428–437.

This study shows that, in the burying beetle Nicrophorus vespilloides, females can

310 increase male contribution towards parental care by laying eggs more

asynchronously, but that this comes at very high cost in terms of increased offspring mortality.

26. Paquet M, Smiseth PT: Females manipulate behavior of caring males via

- prenatal maternal effects. *Proc Natl Acad Sci USA* 2017, 114:6800–6805.
 This is the first study to demonstrate that females can manipulate the behaviour of caring males by altering offspring phenotypes via the eggs. The study shows that females invest less in eggs when males were present during egg laying, and that broods laid in the presence of a male gained more weight during parental care, and they did so at the expense of male weight gain.
- 320 27. Moreno-Rueda G: Yolk androgen deposition as a female tactic to manipulate paternal contribution. *Behav Ecol* 18:496–498.
 - 28. Paquet M, Smiseth PT: Maternal effects as a mechanism for manipulating male care and resolving sexual conflict over parental care. *Behav Ecol* 27:685–694.
- 325 29. Smiseth PT, Darwell CT, Moore AJ: Partial begging: an empirical model for the early evolution of offspring signalling. *Proc R Soc Lond B* 2003, 270:1773–1777.
 - 30. Kölliker M: **Benefits and costs of earwig (Forficula auricularia) family life**. Behav Ecol Sociobiol 2007, **61:**1489–1497.
- 330 31. Kramer J, Körner M, Diehl JMC, Scheiner C, Yüksel-Dadak A, Christl T,
 - •• Kohlmeier P, Meunier J: **When earwig mothers do not care to share:** parent-offspring competition and the evolution of family life. *Funct Ecol* 2017, **31:**2098–21-7.

This study provides the first evidence for resource competition between caring

- 335 parents and their dependent offspring. The study showed that, in the European earwig, high maternal weight gain was beneficial to females as it allowed them to invest more in a subsequent clutch, whilst it was detrimental to offspring as it reduced their survival prospects. Conversely, high offspring weight gain had had a positive impact on offspring survival.
- 340 32. Boncoraglio G, Kilner RM: Female burying beetles benefit from male desertion: sexual conflict and counter-adaptation over parental investment. *PLoS ONE* 2012, 7:e31713.

33. Pilakouta N, Richardson J, Smiseth PT: If you eat, I eat: resolution of sexual

 conflict over consumption from a shared resource. *Anim Behav* 2016, 111:175–180.

This study provides the first evidence for sexual conflict over food consumption between caring parents. The authors found that, in the burying beetle *Nicrophorus vespilloides*, females adjusted their mass change by matching their partner's mass change, gaining more mass when males gain more mass. In

350 contrast, males responded directly to their partner's state, gaining more mass when paired to large females that on average consume more carrion than small females.

34. Falk J, Wong JWY, Kölliker M, Meunier J: Sibling cooperation in earwig

- •• families provides insights in the early evolution of social life. Am Nat
- 355

345

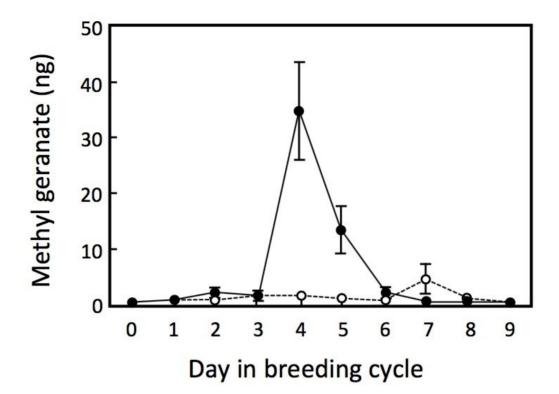
```
2014, 183:547–557.
```

This study provides the first evidence for sibling cooperation in an insect, the European earwig, using an experimental design where individual nymphs were fed dyed food. The authors found that dyed food was often transferred by individual nymphs to their siblings via active release of frass (which was

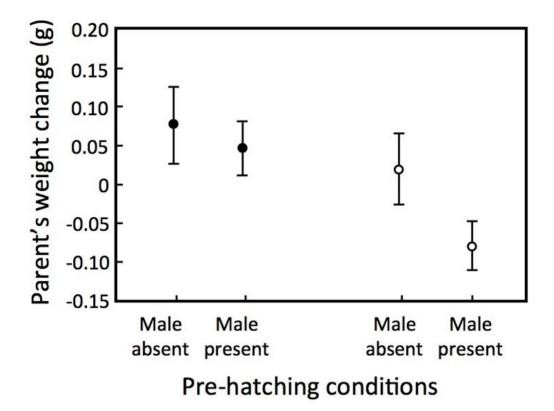
- 360 subsequently eaten by other nymphs) and via mouth-to-mouth contact and mouth-to-anus contact between nymphs.
 - 35. Kramer J, Theising J, Meunier J: **Negative associate between parental care and sibling cooperation in earwigs: a new perspective on the early evolution of family life?** J Evol Biol 2015, **28:**1299–1308.

Figure legends

Figure 1


Methyl geranate emission by female *Nicrophorus vespilloides* in ng per individual
over 20 min (mean ± SE). Females were either allowed to care for their larvae
(filled circles and solid lines; N = 170) or prevented from caring for their larvae
(open circles and dotted lines; N = 169). Redrawn from Engel et al. [19••]. This is
an open access article distributed under the terms of the Creative Commons CC
BY license.

375


Figure 2

Weight change by breeding female (filled circles) and male (open circles) *Nicrophorus vespilloides* parents in g (predicted mean ± SE from final models).
Parents were caring for foster broods that hatched from eggs produced under
two different pre-hatching conditions: the absence or presence of a male.
Redrawn from Paquet and Smiseth [26••]. Used with permission from
Proceedings of the National Academy of the Sciences of the United States of
America.

Figure 1

