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Infrared (IR) thermography, where temperature measurements

are made with IR cameras, has proven to be a very useful and

widely used tool in biological science. Several thermography

parameters are critical to the proper operation of thermal

cameras and the accuracy of measurements, and these must

usually be provided to the camera. Failure to account for

these parameters may lead to less accurate measurements.

Furthermore, the failure to provide information of parameter

choices in reports may compromise appraisal of accuracy and

replicate studies. In this review, we investigate how well

biologists report thermography parameters. This is done

through a systematic review of biological thermography

literature that included articles published between years 2007

and 2017. We found that in primary biological thermography

papers, which make some kind of quantitative temperature

measurement, 48% fail to report values used for emissivity

(an object’s capacity to emit thermal radiation relative to a

black body radiator), which is the minimum level of

reporting that should take place. This finding highlights the

need for life scientists to take into account and report key

parameter information when carrying out thermography, in

the future.
1. Introduction
Temperature is an important biological variable. It is a key

influence on living organisms [1–8], and temperature can also

be used as an indicator for metabolic activity [7,9–11], disease,

injury and stress [12–16]. Temperature of organisms has been
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measured using thermocouples [17–19] or thermistors [20,21], though use of thermographic cameras has

increased dramatically in recent years with improvement of the technology [14,22]. Thermographic

cameras detect the radiation from all objects hotter the absolute zero, usually in the human invisible

‘thermal infrared band’, wavelength range of 2–14 mm. These radiation measurements, along with

thermography parameters that are input into the camera, can be used to estimate the temperature of

an object. The main thermography parameter is the target object’s emissivity, which is its capacity to

radiate infrared (IR) radiation relative to a black body radiator at the same temperature. Other

parameters used are information about the environment in which measurements are taking place: IR

reflections, distance between camera and target, environmental temperature and environmental

humidity [22–24]. Thermography has a number of benefits when compared with other temperature

measurement methods such as thermocouples [25,26]. Firstly, in contrast to thermocouples and

thermistors with individual contact points, it is easier with thermal cameras to measure the changes

of temperature with high spatial resolution, across a target or simultaneously in several targets

[14,27–29]. Secondly, it responds quickly to changes allowing monitoring of subjects that are moving

or might change temperature quickly [27,30]. Lastly, and possibly most importantly to biologists, it is

non-contact [22,23,25]; this is important because attempting contact measurements with biological

subjects may disturb or damage the subject, or in more delicate applications disrupt temperature

distributions. Using a non-contact technique also means temperature measurements can be made on

more distant targets [31–33].

Infrared thermography is a valuable tool for biologists and has been widely applied for temperature

measurements [14,22,25,26,29,34]. However, doubt has been expressed over how well biologists

understand and use these tools [22]. Understanding of how thermal cameras estimate the temperature

of objects requires an understanding of the thermography parameters that must be entered into the

camera. Here, we will discuss these parameters and assess how they are reported in the biological

literature using a systematic literature review. Correct reporting is important, as it is both vital for

ensuring repeatability of a thermographic study, and allows a reader to evaluate the correctness of a

reported result. By reviewing how often thermographic parameters are reported, we can evaluate how

well life scientists appear to understand thermography. Based on our findings, we will provide advice

for biological thermographers and highlight common mistakes that can be easily avoided in future work.
2. Background information
2.1. Principles of thermography
All objects of a temperature above absolute zero emit electromagnetic radiation. Increased temperature

leads to increased levels of radiation [35,36]. This radiation is usually within the thermal IR band,

which is invisible to humans and has wavelength ranges between 0.8 and 14 mm [22–24]. However,

once heated to a certain point, objects will begin to radiate more in the shorter wavelengths, including

in the light spectrum visible to humans. Thermal cameras are equipped with IR-transmitting optics

and arrays of sensors that are sensitive to portions of the thermal IR band [22–24]. The sensor

readings are converted to radiometric units and colour-coded to generate false colour images that

allow us to visualize thermal IR radiation that cannot be seen by the human eye. Most commercially

available thermal cameras are sensitive to either mid-wave IR (2–5 mm) or long-wave IR (8–14 mm)

[22–24]. These restrictions of wavelengths cameras are sensitive to are of the wavelengths of expected

thermal radiation and those that provide high transmission (see below) through the atmosphere and

camera optics [22–24].

The thermal radiation emitted by an object (Wobj) is dependent on the object’s temperature (Tobj,

measured in K) in accordance with the Stefan–Boltzmann formula [35,36]:

Wobj ¼ 1 � s � T4
obj, ð2:1Þ

where s is the Stefan–Boltzmann constant (ca 5.67 � 1028 W m22 K24) and 1 is the emissivity of the

object. Emissivity is the capacity of an object to emit thermal radiation relative to a black body at the

same temperature. A black body is a theoretical body which is non-transmissive and non-reflective, in

other words completely absorbs any kind of incident electromagnetic radiation. Emissivity is

represented as a fraction between 0 and 1, and black bodies have an 1 of 1.

A thermal camera detects electromagnetic waves in the thermal IR band, and just like a regular

human-visible light camera does not distinguish between emitted and reflected radiation. Like

http://rsos.royalsocietypublishing.org/
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human-visible light, thermal radiation has to be transmitted through the atmosphere. Furthermore, the

atmosphere itself emits thermal IR radiation [22–24]. Thus, when imaging a non-transmissive object

through the air, the total radiation Wtot entering a thermal camera will be the sum of the emitted

radiation of the object (Wobj), the amount of radiation reflected off the object (Wref ) and the amount of

radiation emitted by the atmosphere (Watm):

Wtot ¼Wobj þWref þWatm: ð2:2Þ

This means that the radiation-based image viewed through the camera does not necessarily indicate the

focal object’s temperature, and that some level of calibration of the raw radiation image is needed to

account for these additional sources of radiation [24]. This uncalibrated thermal image is known as

‘apparent temperature’. Wobj, Wref and Watm are each influenced by the transmissivity of the

atmosphere between the object and camera, tatm, and can be calculated by:

Wobj ¼ 1 � s � tatm � (Tobj)
4, ð2:3Þ

Wref ¼ (1� 1) � s � tatm � (Tref)
4 ð2:4Þ

and Watm ¼ s � (1� tatm) � (Tenv)4, ð2:5Þ

where Tx refers to the temperature of x (x being the object, the environment or reflections). Note that the

emissivity of the atmosphere equals (1 2 tatm), as objects can either emit, transmit or reflect radiation [23]

and the atmosphere is non-reflective within the thermal IR band. Equations (2.3)–(2.5) can be substituted

into equation (2.2) to give,

Wtot ¼ 1 � s � tatm � (Tobj)
4 þ (1� 1) � s � tatm � (Tref)

4 þ s � (1� tatm) � (Tenv)4, ð2:6Þ

which can be reorganized

Tobj ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wtot � (1� 1) � tatm � s � (Tref)

4 � (1� tatm) � s � (Tenv)4

1 � tatm � s

s
, ð2:7Þ

to give temperature estimates of the object of interest.

The calculation in equation (2.7) is normally carried out by the camera itself, or related software (e.g.

FLIR tools [37]) after the image has been captured [24]. Equation (2.7) identifies several parameter inputs

required by the camera, or software, to accurately measure the temperature of the object. These must be

applied to images before measurements of temperature are taken from them, using the camera or related

software. However, several of these parameter inputs are dependent on the time of image capture. Thus,

although they can be applied to images afterwards, they must be measured at the time of thermograph

capture. A checklist summary of the requirements for obtaining the most accurate thermographic

temperature measurements and how the required timings influence protocol, is provided in table 1.

The best quality thermographic measurements require accurate estimates of these parameter inputs in

addition to correct use of camera optics in terms of image focus [23,24].
2.2. Emissivity
Object emissivity, 1, alternatively called ‘emittance’, ‘emission’ or ‘emission coefficient’, is a proportion

(bound between 0 and 1) that represents the capacity of an object to radiate thermal IR radiation

relative to a black body at the same temperature [22–24]. An emissivity of 1 treats the target object as

a black body. Objects with high emissivity have temperatures that align closely with apparent

temperature, while the total radiation entering a thermal camera (Wtot) when observing a low

emissivity object will be influenced more strongly by reflected IR radiation (equation (2.6)).

Emissivity can be measured using several methods, usually involving comparing the radiation from

the object with that of a known emissivity of the same temperature [24]. This can be achieved by coating

part of the object in something of known emissivity and heating the object evenly. Here, a true

measurement of the object temperature can be made with the thermal camera, and the emissivity

parameter can then be adjusted until matching estimates of temperature are achieved on the uncoated

parts of the object [10,38,39]. Often such coating is difficult on biological subjects, and heating live

subjects evenly can be difficult and unethical. Although estimates could be carried out using dead

subjects, where suitable and ethically obtainable [22,40]. Alternatively, if the objects’ temperature is

known through another temperature measurement method, emissivity can be calculated by

rearranging equation (2.7) [38,41–43].

http://rsos.royalsocietypublishing.org/


Table 1. A checklist for accurate thermographic temperature measurements. The six aspects needed for accurate thermographic
temperature measurements are listed, as well as where the timing of such aspects should be considered in experimental
protocols. Note that the requirements, although all contributing to maximizing accuracy, do not influence accuracy equally. This
checklist assumes thermography is not being carried out through a thermal IR transmissive window. It is very unlikely that
researchers conducting biological thermography would need to use a transmissive window, but if this is the case further
considerations must be made (see [24]).

aspect ideal requirements timing considerations

quality thermographic

image capture

a well-focused, unobscured image of

target organism or tissues

Thermograph image focus and content cannot

be altered after capture. Image contrast

and appearance in terms of temperature

scales can be altered and are not

important for temperate measurements,

although they can aid with obtaining good

image focus.

emissivity (1) estimate a measurement of emissivity from

the same object being

thermographed

Emissivity can normally be applied to images

after capture. It does not necessarily need

to be known at the time of image capture

but needs to be obtained and applied to

an image before measurements are taken

from images.

reflected temperature

(Tref ) measurement

a measurement of reflected

temperature off the

thermography target

Measurement of reflected temperature should

be made simultaneously with each

thermographic image capture. More

practically, mirrors require Tref

measurements to be made immediately

after image capture. Reflected temperature

can then normally be applied to the

relevant thermograph images after capture.

environmental

temperature (Tenv)

measurements

a measurement of the temperature

of the environment where the

thermal image was captured

Should be made simultaneously with image

capture. Environmental temperature can

then normally be applied to the relevant

thermograph images after capture.

environmental relative

humidity (rh)

measurements

a measurement of the relative

humidity of the environment

where the thermal image was

captured

Measurements should be made

simultaneously with image capture.

Environmental relative humidity can then

normally be applied to the relevant

thermograph images after capture. This is

used by the camera or software to

calculate tatm.

distance between the

camera and

thermography

target (d )

a measure of distance between the

camera and thermography target

This should be either controlled, and therefore

known, or measured after image capture.

As long as positions are noted, this

measurement does not need to occur right

away. This is used by the camera or

software to calculate tatm.
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Inaccurate estimates of emissivity have the largest influence on the accuracy of temperature

measurements [22,23]. As seen in equation (2.7), changing emissivity changes the portion of Wtot

taken to be from the object itself as opposed to from other sources and can lead to misjudgements in

the contribution of reflections to Wtot relative to the object radiation. Emissivity has a direct effect on

the temperature the object is estimated to have when emitting a given amount of radiation. Therefore,

information on emissivity of the object is key for thermographic measurements.

Emissivity is normally high in biological tissues, approximately 0.9 or higher (e.g. [22,25]). This has

the benefit that the impacts on inaccurate emissivity measurements are reduced when compared to low

emissivity objects (see equation (2.7)). An inaccurate but still high emissivity value, assuming the target’s

true emissivity is, in fact, high, will cause smaller levels of inaccuracy then similar inaccuracy in low

emissivity targets [22,23]. However, such impacts are not removed entirely. Emissivity is primarily

influenced by the object’s composition, and this can vary across different biological tissues. Emissivity

can also be influenced by object properties such as geometry and surface structure [24]. As these can

differ across and between different types of biological subjects [44,45], it is advised that when

appropriate sources for emissivity values are not available, emissivity is measured on the tissues to be

thermographed or estimated based on sources on a similar tissue.

2.3. Reflected temperature
Reflected temperature (Tref ) is an estimate of the level of background radiation reflected off the

thermography target object [22–24], and is frequently expressed as a temperature value. Reflected

temperature can also be referred to as ‘reflected apparent temperature’, ‘background radiation’, ‘reflected

radiation from ambient sources’. Also, confusingly, simply ‘ambient’ or ‘background temperature’ can

be used to describe reflected temperature [46–49]. Such terms for reflected temperature can be easily

confused with environmental temperature (Tenv), and should be discouraged. It should be clearly stated

what information is used to estimate reflected and environmental temperature in calculations. This is

especially true as environmental temperature can be used as a reasonable estimate of reflected

temperature [23].

There are several ways this value can be estimated alongside thermographic measurements. A mirrored

surface [23,46], preferably a multidirectional mirror [38,43], placed on a plane with the thermography target

can be used to measure Tref. Here Tref is taken as the average apparent temperature of the mirror (achieved

by setting the camera’s emissivity to 1 and distance to 0). Practically speaking this normally involves taking

a second thermograph of the target with the mirror placed in frame alongside it in the same plane

immediately after measurements are taken. Tref can then be calculated and applied to the initial image

[38,46]. Alternatively, the environmental temperature is often a reasonable estimate of reflected

temperature [23], as long as no sources of a large amount of light or heat are near the object. Such

sources of heat and light may lead to reflected temperature differing from environmental temperature.

Efforts can be taken to minimize sources of reflected temperature, such as shielding and repositioning

the camera; however, an accurate measure of reflected temperature value still has to be entered into the

camera, and how reflected temperature was estimated should still be reported. Reflected temperature

should be measured simultaneously or immediately following thermographic measurements, as

changes in conditions or positioning of objects can alter reflected temperature, as noted in table 1.

Inaccurate estimates of reflected temperature can lead to misjudgement of the amount of radiation

coming from the target object and other sources. However, biological tissues have a high emissivity,

so the contribution of reflected temperature to Wtot is usually small [22] within biological applications

(see equation (2.7)). Usually, the best estimate of Tref is achieved by measuring it along with each

thermograph using a multidirectional mirror. This can be easier with stationary targets unlikely to

move, such as plants. Similarly, in laboratory conditions multidirectional mirrors can be installed in

such a way that Tref measurements are taken simultaneously with target measurements (as in [43]).

The use of mirrors and constant measurement of reflected temperature can be impractical in some

experiments. Biological targets, particularly wild animals can be disturbed by the addition of mirrors

or may be too distant or be too fast moving. In such instances, the environmental temperature should

be used as an estimate for reflected temperature [22].

2.4. Other environmental parameters
Besides reflected temperature, environmental temperature, Tenv, and the transmissivity of the

atmosphere, tatm, are also specified in equation (2.7), and require entry into the thermographic

http://rsos.royalsocietypublishing.org/
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camera. Environmental temperature allows the camera to account for the radiation emitted by the air

between the camera and the target. Transmissivity of the atmosphere, tatm, accounts for how well that

radiation travels through the air between the camera and target. Transmissivity of the atmosphere is

normally estimated by the camera using the distance of the target from the camera, d, and the

percentage relative humidity of the environment, rh. Usually, both values are entered into the camera

which then computes tatm. Environmental temperature, environmental humidity and camera distance

are easily estimated using standard measurement tools. To maximize accuracy these should also be

measured simultaneously with thermography measurements, as noted in table 1. However, tatm is

typically very close to 1 [23,24]. Consequently, the effects of changes in these parameters are normally

very small. In most instances, the accuracy in these measurements has little effect on thermography

data. Therefore, these parameters are often not measured alongside each thermograph, and an

appropriate value is chosen for calculations [23]. Such practices have the advantage of saving time

with minimal effects on accuracy. The potential exceptions to this are in extreme scenarios such as

very hot or humid environments, or where measurements are being taken over a long distance. In

such cases, these inputs should be measured.
sci.5:181281
3. Impacts of parameter omission
Above, we have discussed the thermographic parameters needed to accurately estimate temperature

using thermal cameras, and the relative importance of the values chosen for these parameters.

Emissivity estimated from the same kinds of tissue can vary [44,50], which means that the chosen

emissivity value will have a drastic impact on the accuracy of thermographic measurements. Accuracy

of measurement is also affected by the extent to which reflected temperature and other environmental

parameters are accounted for [24]: whether they are measured; if so how they are measured; and, if

not, what value was assumed for calculations. For this reason, when thermographic temperature

measurements are made, the values used for emissivity should be included in reports as a minimum

standard for accurate reporting, preferably alongside the method by which reflected temperature was

accounted for. Assuming that thermography has been carried out correctly, the failure to provide this

parameter information represents an incomplete methodology, and potentially misrepresents the

accuracy of the thermographic measurements made. This limits the reader’s ability to evaluate the

choice of parameters, and compromises comparable replicate studies, as experimenters repeating a

methodology will need to make an increasing number of assumptions about the methodologies of

previous studies. Such assumptions may include: the value of emissivity used in estimates and if

or how environmental parameters were monitored and adjusted for. If environmental parameters like

Tref, Tenv, rh and d were not adjusted during the experiment, repeat experimenters will also have to

assume the values used for calculations if they are not provided. This need to assume parameter

choices will impact on the usefulness of studies where the replication of the described methods is

expected. These include standardized monitoring studies such as those screening injury [14], disease

[51–53] or stress [12,13,32,54–57].

We assessed the frequency in which key thermography parameters are reported in the recent primary

biological literature, through a systematic literature review, aiming to evaluate how well thermography is

understood and reported by biologists. A lack of inclusion of thermography parameters could be the

result of two different scenarios. Firstly, the thermographic camera was used correctly, with

parameters adjusted appropriately, but the detail of their adjustment was not provided in the

published methodology. Alternatively, the thermographic camera could have been used incorrectly,

and consequently, parameters are not adjusted or reported. Thus, a lack of information on the

thermography parameters, especially emissivity, could indicate that thermography is not well

understood by experimenters at some level.
4. Methods
4.1. Search criteria
Our literature search was carried out using the Web of Science core collection (Clarivate Analytics), limited

to papers published between 2007 and 2017, with the final search taking place on 17th December 2017.

This comparably recent search was chosen to allow us to focus our assessments of how biologists are

using thermography currently, and to minimize the effects changes in the technology might have on

http://rsos.royalsocietypublishing.org/
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the reporting of methods and applications. The following search terms were used: ‘[infrared OR infra-red

OR infra red] AND [thermograph* OR thermal imag* OR camera]’ (‘*’ denoting derivations of the word,

so ‘thermal imag*’ includes derivations such as ‘thermal image’ and ‘thermal imaging’).

The search was then refined further to include only publications in at least one of the following

23 Web of Science Categories: agriculture dairy animal science, agriculture multidisciplinary, agronomy,

behavioural sciences, biology, biophysics, ecology, entomology, evolutionary biology, fisheries, forestry,

horticulture, marine-freshwater biology, ornithology, physiology, plant sciences, psychology, psychology applied,

psychology biological, psychology experimental, psychology multidisciplinary, veterinary sciences and zoology.

Full texts of all search results were searched for using University of Bristol library subscriptions and

through Google Scholar. If publications could still not be found, and the paper could not be excluded

based on the information in the abstract provided by Web of Science or linked sites alone (see exclusion

criteria), the corresponding authors (where contact details provided) were contacted for copies of

publications. Any publication that was not obtained through these methods was excluded. A

summary of the Web of Science search history used in our literature search can be found in electronic

supplementary material, S1.

4.2. Review process
Search results were examined in a chronological order by a biological scientist and qualified

thermographer (M.J.M.H, Level 1 thermographer, IR training centre, awarded June 2015). Publications

were checked for any criteria for exclusion (criteria detailed below), a process which left only primary

biological science research papers that reported work using IR thermography in some way. These

papers’ methodology, how thermographic tools were employed, and the inclusion of thermographic

parameters were assessed. Non-English language journals were assessed with aid of a native speaking

translator if the journal could not be excluded based on the abstract alone (12 papers in total,

translators are listed in acknowledgements). After completion of the full review process, all search

results were worked through and assessed a second time to ensure confidence and consistency in our

assessment.

4.3. Exclusion criteria
The search criteria used in this systematic review was deliberately broad to allow for the many ways

thermal cameras might be described in publications, such as ‘thermal camera’ and ‘infrared camera’.

This was done to minimize the chance of accidently excluding papers that genuinely use IR

thermography. This accidental exclusion of relevant papers has been identified as a major issue in

systematic reviews [58]. This has the consequence that many publications included in the Web of
Science search results, were not primary biological science papers that used thermal imaging. The

exclusion criteria applied to our search results are summarized in table 2.

Only publications which carried out thermography and reported data or images collected by IR

thermography were included in our review, everything else was excluded as ‘not thermography’.

These excluded works included those using non-thermal IR technologies, such as triggers and sensors

[59–63], IR reflectance cameras [64–66], hyperspectral cameras [67] and the use of non-thermal IR

devices for night vision [68–71]. Additionally, publications using ‘infrared thermometry’ [72–74] as

opposed to thermography were excluded (although IR thermometry tools do use the same principles

for point measurements). Theoretical studies investigating applications of IR thermography [75–78], if

such studies did not report any thermal imaging measurements, were also excluded.

This review aims to assess the use of IR cameras in the life sciences area. Thus, if the application of IR

thermography did not appear to be biological, publications were also excluded as ‘not biological’. Such

application treated as non-biological included the industrial preparation of baked goods [79], materials

science [80–82], biomechanical surgery tool maintenance [83], assessment of building materials in

agricultural management [84] and canal upkeep [85]. Biomechanical studies where temperatures of

artificial replacements were only monitored outside the body, for example, in mechanical stress

assessment [86], and studies where biological tissue mimics were employed instead of real biological

targets [87,88] were likewise excluded as ‘not biological’.

Any isolated abstracts from conferences were excluded, as such summary articles typically do not

normally provide detailed information on their methodology. Published conference reports were not

excluded if they featured a methods section. Any retracted articles, at time of the search, were also

excluded.

http://rsos.royalsocietypublishing.org/


Table 2. A summary of the exclusion criteria applied to the results of our Web of Science search results. Each criterion for
exclusion is given in the order they are applied. For each criterion, the publications that are still included, and those that are
excluded, when the criteria are applied, are summarized. Also summarized here are the papers excluded from our analysis of
emissivity reporting after the thermography methods assessment.

order exclusion criterion included in assessment excluded on this criterion

excluded from thermography methods assessment

1 not thermography Publications that carry out

thermography or images collected

by infrared thermography.

Publications that do not use thermography

in any way also excluded are

theoretical studies on applications of

thermography if studies do not make

thermal imaging measurements.

2 not biological Thermography is applied to a

biological research application.

Thermography is applied to a non-

biological application.

3 isolated abstract Publications that are not isolated

abstracts from conferences.

Conference reports are retained if

they have a methods section.

Isolated abstracts from conferences which

have no featured section for reporting

methods.

4 retracted article Publications that have not been

retracted by the publishing body

at time of last search.

Articles that had been retracted by the

publishing body for any reason at time

of last search.

5 review Article is a primary research paper. Publication is a secondary research paper

reporting or providing commentary on

the findings of previous work (these

publications are filed separately in

electronic supplementary material,

S2 for ease of reference).

excluded from statistical analysis after thermography assessment completed

6 quantitative –

qualitative

Paper presents temperature

measurements dependent on

thermography or data that

required thermographic

temperature measurements for its

calculation. Thus, should report

thermography parameter

information.

Paper uses thermal imaging in an

application that does not involve

measuring temperature and is

dependent wholly on apparent

temperature. Thus, reporting of

thermography parameter information is

not required to assess accuracy or

repeat methods.
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Lastly, review articles that either discussed IR thermography or thermography-dependent results

were excluded, albeit for reference review articles were filed separately from other exclusions (see

electronic supplementary material, S2).

4.4. Thermography methods assessment
Included publications were assessed to obtain data on how IR thermography was used and has been

reported. The information extracted from each publication can be found in table 3. It was beyond the

scope of this review to evaluate in each case how appropriate the parameters used were and how this

influenced the value of the thermographic measurements taken within the study. This review process

consequently focused on whether primary research papers provided the information needed to make

such evaluations of parameter choice or repeat the study without having to assume parameter choice.

http://rsos.royalsocietypublishing.org/


Table 3. The information extracted from each publication during the thermography methods assessment. Each datapoint, the
format of this datapoint and a description of this datapoint are given.

datapoint format description

thermography target category The subject for the research involving thermography.

quantitative temperature

values

Boolean

y/n

Whether the paper used thermal imaging for a qualitative or quantitative

study. ‘y’ if quantitative, ‘n’ if qualitative.

emissivity, 1, value

given

Boolean

y/n

An indicator of whether the 1 value(s) used are given in the publication.

1 value(s) value The 1 value(s) used in the study. n/a if the 1 value(s) are not given.

1 value(s) measured or

referenced

category An indicator of the source for the 1 value(s) used. If emissivity was

measured by the researchers this is indicated here. If emissivity was

taken from an existing source that source is indicated. n if 1 value(s)

are given but no indication of measurement or source is given, n/a if

the 1 value(s) are not given.

Tref considered Boolean

y/n

An indicator that the publication accounts for reflected temperature (Tref ) in

temperature measurements in any way. n if this information is not given

or if the study merely attempted to minimize reflection.

Tref method category How reflected temperature (Tref ) was accounted for. If the reflected

temperature value is assumed to be ambient this method is listed as

‘assumed to be ambient’. n if publication gives a value for reflected

temperature but gives no detail. n/a if reflected temperature is not

accounted for.

Tenv considered Boolean

y/n

An indicator of whether the environmental temperature was measured or

estimated alongside thermal imaging.

rh considered Boolean

y/n

An indicator of whether environmental relative humidity was measured or

estimated alongside thermal imaging.

d considered Boolean

y/n

An indicator of whether camera distance was measured or estimated

alongside thermal imaging

camera manufacturer

model

category The manufacturer and model of the thermal camera(s) used in the

publication. n if this information is not given.
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For emissivity, a specific value used in measurements was required. Simply an acknowledgement that

emissivity was input was deemed as insufficient as the actual value is needed for appraisal of papers.

For environmental thermography parameters (Tref, Tenv, rh and d ), indication that these were used in

calculations was required. The method of Tref measurement was also monitored, and could either be a

single quoted value used for the parameter at measurements or a continuous measurement alongside

the thermography measurements, as both are acceptable [23]. The information listed in table 3 could

be provided at any point in the paper main text, including within thermograph figures when

information was not given in the text. The article main text was the focus of the publication search,

and ‘supplementary’ or ‘supplemental’ text was only consulted for this information if the publication

explicitly directed us to do so.

Throughout the review, we aimed to give authors the benefit of the doubt where possible. If a study

indicated at any point in the paper that the environmental factors (Tenv, rh and d ) in the sampling area

were known, it was assumed they were input into the camera. This could be simply mentioning that

these parameters were measured in the thermography sampling area. If the camera was mounted in a

fixed position relative to the target it was assumed that distance had been measured and input. As

several thermography parameters can be referred to by various names (listed previously), any of these

were acceptable. As reflected temperature, Tref, is sometimes referred to as ‘ambient temperature’

[46–49], if a study referred to environmental temperature as ‘ambient temperature’ it was assumed

http://rsos.royalsocietypublishing.org/


Table 4. The biological fields assigned to papers based on the subject of the thermography research. A description of the
research subjects of papers in each field is also provided.

biological field thermography research subjects

agricultural animals animals used in agricultural practice, such as cows, goats, sheep and pigs

birds and poultry birds and poultry, includes chickens, turkeys and their eggs

earth and soil ground, rock or soil when measured within biological studies

humans/medical humans, including sports science, medical and psychological studies

insects any insects

mammals mammals, excluding humans and agricultural animals

plants any plants, including crop science

reptiles and amphibians any reptiles and amphibians

other any subject not covered in the above biological fields
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that this value was also used for reflected temperature unless stated otherwise. However, a note was

made of instances where this assumption was made (table 3). For each piece of information noted in

table 3, page locations within the relevant publication were noted in each publication (using the page

numbers on the version accessed).

Not all applications of thermal cameras involve measurements of temperature, for example, thermal

cameras can be used to spot animals at long distances or in the dark [33,89–91]. In such non-quantitative

or ‘qualitative’ applications, data are dependent only on apparent temperature [24]. Consequently,

thermography parameter information is not required to assess accuracy or repeat methods of

qualitative studies. It is thus important in our assessment of biological thermography publications to

evaluate whether thermal imaging was used in a quantitative manner or not (table 3), as this will

determine whether failing to report parameters affects study accuracy or repeatability. A publication

was determined to be a quantitative study if it presented temperature data dependent on thermal

imaging. This thermography-dependent temperature data could be presented graphically, or as

quoted temperature values, or as a thermograph with temperature scales. If the paper presented data

that required temperature measurements for its calculation, such as plant water stress index [32,54,56],

such papers were viewed as quantitative. Studies deemed qualitative use IR thermal imaging but do

not measure temperature values.

Each paper was assigned a biological field based on the subject of research in each study. These

biological fields are listed in table 4. This also allowed assessment of whether certain biological

research disciplines are more likely to fail to report IR thermography parameters when they are

required (in quantitative studies). The number of quantitative studies that failed and succeeded in

reporting emissivity, the minimum level of parameter reporting for thermographic temperature

measurements (see above), was calculated for each biological field. The association between emissivity

reporting and biological field was assessed using a x2 test using R v. 3.4.1 [92]. It was deemed

acceptable for wholly qualitative studies to not include parameter information [24]; thus, any

qualitative publications were not included in this analysis (as described in table 2).
5. Results
The search yielded a total of 1219 search results. Exclusions accounted for most of this number. 575

publications were excluded in total: 466 ‘not thermography’; 35 ‘not biological’; 36 isolated abstracts;

1 retracted; and 37 that were not obtained by the authors and could not be otherwise excluded. This

left 562 primary biological publications which employed IR thermography and a further 82 reviews

featuring IR thermography. Of these 562 primary publications, 531 (94.48%) were deemed to use

quantitative temperature measurements in some way, leaving 31 (5.52%) wholly qualitative studies.

The frequency of quantitative and qualitative papers in each biological field is presented in figure 1.

Of the 531 quantitative papers, where camera parameter inputs are necessary for accurate temperature

measurements, 52.0% of all quantitative studies provided emissivity values (276 publications) and 48.0% of

all quantitative studies failed to provide emissivity values (255 publications). Figure 2 shows the percentage

http://rsos.royalsocietypublishing.org/
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Figure 1. The frequency of thermography papers within each biological field, as categorized in table 4. Quantitative and qualitative
papers are indicated by shading: quantitative papers, darker grey shading; qualitative papers, clear white.
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of quantitative papers in each biological field that report emissivity compared to all quantitative papers. x2

analysis revealed a significant association between the biological field and reporting of emissivity

(X2
8 ¼ 20:235, p ¼ 0.01). This association is largely due to papers in the ‘birds and poultry’, ‘insects’ and

‘earth and soil’ biological fields reporting emissivity more frequently than expected and the ‘plants’ and

‘humans/medical’ biological fields reporting emissivity less frequently than expected. Table 5 gives the

frequencies of emissivity reporting across research fields alongside expected frequencies and Pearson

residual used in our x2 analysis. Of the 276 papers that provided emissivity values, 45.2% (126

publications) provided a source for that value choice and a further 5.4% (15 publications) measured the

value within the study. A summary of emissivity values used in studies measuring similar targets,

targets of the same research field, is given in table 6.

Reflected temperature was only reported in 26.7% (142 publications) of all quantitative papers. Within

papers that gave emissivity values, reflected temperature was reported in 41.7% (115 publications) of

papers. However, in 52.2% (60 publications) of these papers reflected temperature information was

not explicitly given but ‘assumed to be ambient’. In papers that failed to give emissivity, reflected

temperature was reported in only 10.6% of papers (27 publications).

Environmental parameters associated less directly with IR thermography tended to be reported more

frequently than emissivity and reflected temperature. With environmental temperature, environmental

humidity and camera distance being reported in 81.2%, 51.6% and 66.7% of all quantitative papers

respectively. Environmental temperature, environmental humidity and camera distance were reported

more frequently in papers that gave emissivity values (89.9%, 60.9% and 80.1%, respectively) than

those that did not (71.8%, 41.6% and 52.2%, respectively), but this difference between papers that

report emissivity and those that did not was less stark than that seen in reflected temperature.

A list of the 1219 papers found in our search categorized into primary papers, reviews and exclusions

as well as the data extracted from each paper can be found in electronic supplementary material, S2. A

summary of the frequency of parameter reporting, broken down further by biological field, can be found

in table 7.
6. Discussion
Infrared thermography parameters are an important part of making accurate thermography

measurements [22–25]. Failure to include this information represents incomplete reporting on

methodologies and can compromise the value and utility of studies that depend on thermography.

Furthermore, it can indicate some misunderstanding of parameter importance and the thermal

imaging methods used. The systematic review of biological primary research papers presented above

http://rsos.royalsocietypublishing.org/
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Table 5. The realized, expected and Pearson residual values of emissivity reporting used in x2 analysis of emissivity reporting
within each biological field (biological field described in table 4). Realized frequency represents the actual observed values of
emissivity reporting. Expected frequency represents the frequency of reporting expected if no effect of research field was present,
given the size of the groups. Pearson residual values indicate the relative influence of the research field on a x2 analysis result.

realized frequency expected frequency Pearson residuals

emissivity
value not
given

emissivity
value
given

emissivity
value not
given

emissivity
value
given

emissivity
value not
given

emissivity
value
given

agricultural

animals

69 82 73 78 20.413 0.397

birds and

poultry

5 18 11 12 21.819 1.748

earth and soil 1 6 3 4 21.288 1.238

humans/

medical

51 36 42 45 1.426 21.371

insects 6 14 10 10 21.163 1.118

mammals 30 40 34 36 20.624 0.599

plants 83 69 73 79 1.171 21.126

reptiles and

amphibians

4 6 5 5 20.366 0.352

other 6 5 5 6 0.312 20.300
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reveals that, of those which carried out some kind of quantitative thermographic measurements, 48%

failed to give the emissivity values used. Although this significantly varied between different

biological research fields, we note that a large portion of all fields failed to give any indication of

emissivity. Reporting emissivity represents the minimum parameter information that quantitative
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papers ought to include. Reflected temperature, the other large contributor to accuracy of biological

thermographic measurements, was reported less frequently than emissivity, in 26% of all quantitative

papers. This value includes those where reporting was unclear but the descriptions suggest that

ambient temperature was entered as reflected temperature in calculations. It appears that the

true frequency of reflected temperature reporting is likely to be lower. These findings reveal biological

literature to be quite poor at reporting basic thermography parameter information used in

studies, and suggests that greater effort is needed on the part of authors to report key thermography

parameters.

Environmental temperature (Tenv), relative humidity (rh) and camera distance (d ) have little influence

on the accuracy of temperature measurements [22,23]. Nevertheless, reporting of these environmental

parameters is found more frequently than explicit statements of values for emissivity and reflected

temperature. This tendency for papers to report these less critical parameters seems to be the result of

two factors. Firstly, we assumed in our analysis that if these parameters were known they were

entered into the camera. Secondly, there is often a biological reason to include monitoring of these

environmental factors independent of their influence on thermography. This is especially true of

environmental temperature, a key biological variable [1–8]. This means even without any knowledge

of what parameters needed to be entered into the camera, and included in the report, it is likely

authors would have monitored and reported these environmental parameters. This explains why

many papers that failed to give emissivity and reflected temperature still gave environmental

temperature and humidity (table 7). This, unfortunately, suggests the high inclusion frequency of

these parameters is not indicative of understanding of thermography.

Without parameter information it is difficult to assess the accuracy of thermographic measurements

within papers, or to tell if thermography was carried out correctly or not. A number of studies (10.6%)

appear to give information on reflected temperature when emissivity information is not given [93–95], or

mention that emissivity was input into the camera [53,93,96,97] or even measured [98] but provide no

information on the value used. These suggest an understanding of thermography and the parameters

involved, most probably indicating correct operation of thermal cameras but with incomplete

reporting. However, many quantitative studies make use of thermal cameras but make no mention

of emissivity or reflected temperature at all [55,57,99–101]. Camera models and sensitivities and

the temperature ranges displayed in images are given but not thermography parameters. Camera

specifications are useful for assessment of measurement accuracy, and at least the model of camera used

should be reported. However, quoted accuracies of the camera only apply when the camera inputs are

correct. Likewise, the temperature range applied to the image, while influencing the image seen by

operators and in reports, does not influence the temperature measurements given [24]. Taken as a

whole, the frequent failure to report thermographic parameter information is likely to be the result of a

combination of both scenarios. In both cases, our ability to actually appraise the accuracy and

repeatability of these studies is compromised. More worryingly, if no accounting for thermography

parameters has been conducted, there is a strong possibility that these papers suffer from a larger level

of inaccuracy in their measurements. As these two quite different causes of parameter omission cannot

be easily distinguished and have quite different effects on the paper’s validity and usefulness, it is

critical that researchers report parameter information. At the very least, this will then confirm that these

settings were taken into account when carrying out thermographic measurements.

We found a significant association between research field and emissivity reporting, although the level

of reporting was not high in most research fields (figure 2). Research fields with a very large amount of

quantitative thermography publications ‘plants’ and ‘humans/medical’ tended to report emissivity

slightly less often than other fields, while smaller groups like ‘birds and poultry’, ‘earth and soil’ and

‘insects’ reported emissivity more often. That said, the largest research field from our review,

‘agricultural animals’, reported emissivity at about the average frequency. It is likely that existing

publications, especially those in the same research field, set a precedent for authors and reviewers,

that thermography parameter information does not need to be included in new publications. This

may explain the lower frequency of parameter reporting in certain research fields. Such an explanation

could be applied more generally to explain the low frequency of parameter reporting throughout

biology. It is important that journals ask for this parameter information, at least emissivity, to be

included in the future to prevent such a precedent continuing. As the research fields applied to this

review are deliberately quite broad, further breakdowns of the research fields would perhaps reveal

specific subdivisions more prone to parameter omission than others. However, no field reported

emissivity with great frequency, with failure ranging from 20% to 60% of cases across fields. So,

tendency to not include parameter information is likely to continue into subdivided fields to some extent.
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While our systematic review suggests that an issue exists with thermography parameter reporting in

biology, it does not necessarily give a full representation of how well biologists carry out thermography.

Successfully reporting parameters such as emissivity does not guarantee thermography was carried out

correctly. Other operation issues can still occur when parameter settings are input correctly. Furthermore,

it was beyond the scope of our review to evaluate in each instance how applicable the values used for

emissivity actually were, and instead our focus was upon whether such appraisals can be done based

on the information reported. Consequently, it is possible that the values chosen were still

inappropriate and result in inaccurate temperature measurements. However, most often biological

tissues have an emissivity of approximately 0.9 [22,25], and this is supported by the values found in

the review which range from 0.8 to 1. Although, our review confirms that estimates can vary even

within similar applications (table 6). In papers where emissivity values are supported by

measurements or a source which measures emissivity of the tissues thermographed, we can be more

confident in the emissivity values chosen. For this reason, we strongly encourage authors to provide

sources for emissivity values chosen. As certain biological targets can be hard to measure emissivity

from, particularly when delicate or hard to access, papers providing information on biological tissue

emissivity [38,41–44,102] should be encouraged as they will help biological thermographers make

more informed parameter choices and be more precise in their measurements.

Our review treats all quantitative thermography as equally important to studies; we made no

evaluation of how critical the temperature measurements were to the paper’s findings (outside of

assessing if the paper was qualitative and quantitative). It is possible that some papers may use

thermography in such a minor way that authors felt parameter detail unnecessary. However,

reporting parameter information represents a small addition to the methods. Furthermore, in such

instances where the accuracy of measurements is less important, papers should still give the

information on parameters, but perhaps need not worry for a precise estimate of emissivity or

monitor environmental parameters with every measurement. Our review process did not penalize

papers for applying these less accurate approaches if they reported the necessary information,

consequently a less precise approach for less critical measurements was acceptable within our review.

Frequently, emissivity and other parameter values were provided within a thermograph figure with

no mention of it in the main text [103–105]. Our review process counted this as reporting, as the

information was indicative that parameters were adjusted, or at least are known. However, in such

instances the value could easily be overlooked if the reader were not experienced with thermography.

This is particularly likely when the thermography format is unusual, perhaps due to a less common

camera manufacturer. Inclusion of parameters within the article text should be encouraged over

inclusion within thermographs.

7. Conclusion
This study has highlighted a common tendency for biologists to omit information on critical

thermographic parameters such as emissivity and reflected temperature in published primary

literature. This omission suggests a lack of understanding of thermographical methods. More care

should be taken to include parameter information in publications. This will improve clarity and

confidence in measurements but also allow the assessment of the limitations of thermography in

different types of biological studies. Fortunately, the addition of parameter information represents a

small effort which can significantly improve the evaluation of reported research and awareness of

the correct use of thermal cameras in biological studies. It is recommended as a minimum that the

emissivity values should be given, preferably with sources or measurements supporting the

parameter choice. Additionally, the method of assessing reflected temperature should be included

as well.
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35. Stefan J. 1879 Über die Beziehung zwischen der
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