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Abstract 23 

The effects of toxicant exposure on individuals captured in standard environmental risk assessments 24 

(ERA) do not necessarily translate proportionally into effects at the population-level. Population 25 

models can incorporate population resilience, physiological susceptibility, and likelihood of exposure, 26 

and can therefore be employed to extrapolate from individual- to population-level effects in ERA. 27 

Here, we present the development of an individual-based model (IBM) for the three-spined 28 

stickleback (Gasterosteus aculeatus) and its application in assessing population-level effects of 29 

disrupted male breeding behaviour after exposure to the anti-androgenic pesticide, fenitrothion. The 30 

stickleback is abundant in marine, brackish, and freshwater systems throughout Europe and their 31 

complex breeding strategy makes wild populations potentially vulnerable to the effects of endocrine 32 

disrupting chemicals (EDCs). Modelled population dynamics matched those of a UK field population 33 

and the IBM is therefore considered to be representative of a natural population. Literature derived 34 

dose-response relationships of fenitrothion-induced disruption of male breeding behaviours were 35 

applied in the IBM to assess population-level impacts. The modelled population was exposed to 36 

fenitrothion under both continuous (worst-case) and intermittent (realistic) exposure patterns and 37 

population recovery was assessed. The results suggest that disruption of male breeding behaviours at 38 

the individual-level cause impacts on population abundance under both fenitrothion exposure 39 

regimes; however, density-dependent processes can compensate for some of these effects, 40 

particularly for an intermittent exposure scenario. Our findings further demonstrate the importance 41 

of understanding life-history traits, including reproductive strategies and behaviours, and their 42 

density-dependence, when assessing the potential population-level risks of EDCs.  43 

Keywords: endocrine disrupting chemicals, population resilience, density-dependence, exposure 44 

regime, fenitrothion, reproductive strategies 45 
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1. Introduction 48 

Many of the ecological factors which affect the susceptibility of wildlife populations to chemicals are 49 

considered in current environmental risk assessment (ERA) schemes via the application of arbitrary 50 

(and often conservative) assessment factors. Population resilience, which determines whether effects 51 

on individuals translate into effects on the population, is generally not considered, despite substantial 52 

evidence for density-dependent regulation of population abundance in a range of wildlife species, 53 

including fish (Brook and Bradshaw, 2006; Forbes, 2001; Rose et al., 2001). Population models have 54 

the potential to help bridge the gap between individual-level endpoints, obtained from traditional 55 

regulatory testing, and population effects (Forbes et al., 2009; Hommen et al., 2010; Thorbek et al., 56 

2010) and to support more realistic ERAs. Matrix models are currently the most common method for 57 

analysing the effects of toxicant exposure on fish populations (e.g. Brown et al., 2014; Ibrahim et al., 58 

2014; Miller and Ankley, 2004) due to their minimal data requirements, but they have limited ability 59 

to incorporate complex behaviours and density-dependent regulation (Caswell, 2001). Individual-60 

based models (IBMs), on the other hand, enable key life-history traits, behaviours and inter-individual-61 

environment interactions, including density-dependent processes, to be modelled explicitly (Grimm 62 

and Railsback, 2005).  Understanding the mechanisms of density-dependence allows a more in-depth 63 

exploration of the limits to population resilience. 64 

Endocrine disrupting chemicals (EDCs) pose a particular challenge in ERA because their effects in fish 65 

are often complex and can include subtle behavioural and/or transgenerational effects that have 66 

potential for impacting populations (WHO, 2013). The reproductive effects of EDCs on fish are widely 67 

reported and they include intersex (the co-occurrence of male and female gonads) (Harris et al., 2011; 68 

Jobling et al., 2002; Tetreault et al., 2011) and reduced fecundity (Ankley et al., 2003; Nash et al., 2004; 69 

Paulos et al., 2010) and there is evidence that these effects may disrupt whole populations (Jobling et 70 

al., 2002; Jobling et al., 1998; Kidd et al., 2007; Schwindt and Winkelman, 2016; Schwindt et al., 2014). 71 

More recently, the potential impacts of EDCs on fish behaviours has received increased attention, with 72 



reported effects including significant changes to behaviours such as schooling (Ward et al., 2006; Xia 73 

et al., 2010), impairment of predation and predator avoidance behaviours (Weis et al., 2001), and 74 

alteration of reproductive behaviours (Brian et al., 2006; Dzieweczynski, 2011; Sebire et al., 2008; 75 

Sebire et al., 2011). Although these EDC-induced behavioural impairments are likely to have impacts 76 

at the population-level, behavioural effects are not currently considered specifically within regulatory 77 

standard risk assessment frameworks. Population models provide a tool to potentially capture these 78 

effects (Mintram et al., 2017).  79 

Here, we developed an IBM for the resident freshwater form of the three-spined stickleback 80 

(Gasterosteous aculeatus) and illustrated its application in the assessment of EDC effects on 81 

stickleback populations. The three-spined stickleback was chosen as a model species because of its 82 

widespread abundance in water bodies across semi-natural and modified agricultural landscapes and 83 

it is widely adopted as an experimental model in ecotoxicology and regulation (Katsiadaki et al, 2007). 84 

Sticklebacks have a complex breeding strategy that includes courtship, nest-building behaviours and 85 

parental care that are controlled by sex hormones and are thus potentially vulnerable to disruption 86 

through exposure to EDCs in the natural environment (Sebire et al., 2008; Sebire et al., 2009; Aoki et 87 

al, 2011). The model incorporates density-dependent growth, mortality, reproduction and 88 

reproductive behaviours (territoriality, courtship and nest guarding) and was parameterised using 89 

data available from the literature. As a case study, we simulated the population-level effects of 90 

impaired breeding behaviour resulting from exposure to the organophosphate pesticide, fenitrothion. 91 

Fenitrothion primarily inhibits acetylcholinesterase and is thus a potent neurotoxin; however also has 92 

anti-androgenic effects (European Commission, 2000), including in sticklebacks (Sebire et al., 2009). 93 

We simulated fenitrothion exposure under both a ‘worst-case’ chronic (continuous) and a more 94 

environmentally relevant pulsed exposure pattern using literature data derived from laboratory tests. 95 

We used the stickleback IBM to determine the extent by which individual-level behavioural effects 96 

translate into effects at the population-level.  97 



2. Methods 98 

2.1. Models species 99 

The three-spined stickleback (Gasterosteus aculeatus) is widespread throughout Europe and other 100 

temperate regions across North America, Canada and Asia (Froese and Pauly, 2016; Ostlund-Nilsson 101 

et al., 2006; Wootton, 1984). It is one of the most well-studied fish species in ecology and evolution, 102 

and is used regularly as a model species in ecotoxicological studies (Katsiadaki et al., 2007). 103 

Sticklebacks are generalist feeders (Sánchez‐Gonzáles et al., 2001) and display a polygamous mating 104 

system, characterised by nest building and guarding by territorial males (Froese and Pauly, 2016; 105 

Wootton, 1984). Their lifespan in the wild is usually one year, with the majority of individuals dying 106 

after completion of their first breeding season (Allen and Wootton, 1982b; Giles, 1987; Wootton et 107 

al., 2005). The wealth of ecological and ecotoxicological data sources describing the detailed natural 108 

life-history of the stickleback and chemical effects, including on breeding behaviour, make it an ideal 109 

species to model for this case study.    110 

2.2. Model description 111 

The model description follows the ODD (Overview, Design Concepts, Details) protocol (Grimm et al., 112 

2006; Grimm et al., 2010).  The model was implemented in Netlogo 6.0.1 (Wilensky, 1999) and is 113 

available in the Supplementary Information (SI) under the General Public Licence vs 2. The main paper 114 

includes the Overview; the Design Concepts and Details sections are presented in the SI.   115 

2.2.1. Purpose 116 

The model was developed to simulate realistic population dynamics of the three-spined stickleback 117 

and to provide assessments on the population-level effects of toxicant exposure. Specifically here, the 118 

model has been used to explore the compensatory role of density dependence in the resilience of 119 

populations under various regimes of exposure to a toxicant that disrupts breeding behaviours via an 120 

anti-androgenic mechanism.  121 



2.2.2. Chosen toxicant  122 

Fenitrothion was chosen as the case study toxicant. It is classed as a ‘red list’ contaminant and 123 

discharges are currently controlled by multiple international directives (Connor et al., 2017). 124 

Fenitrothion is now prohibited in the EU (EC No 1107/2009) and its use is restricted in Canada 125 

(Directorate, 1995); however, it is still used routinely in the USA, Australia and Africa (Paranjape et al., 126 

2014). In this study, fenitrothion was used as the model EDC because it has been shown to disrupt 127 

reproductive behaviours in the stickleback (Sebire et al., 2009).   128 

2.2.3. Entities, state variables and scales 129 

The entities in the model are the spatial units (comprising the landscape) and individual fish. The 130 

overall environment is additionally characterised by the breeding season (May to July; Wootton et al., 131 

1978).  132 

Spatial units are characterised by the state variables habitat type: open water non-breeding ground, 133 

open water breeding ground, vegetated breeding ground; and male ownership: territories (0.063 – 134 

0.54 m2) acquired by males in the breeding season are exclusive to one male and cannot overlap. The 135 

waterbody scales are user-defined, but in the present study the model system represents a pond 136 

measuring 20 m2 (10,000 L) divided into 500 patches, each measuring 20 cm (length) * 20 cm (width) 137 

* 50 cm (height). These patch dimensions are representative of the likely short-term territory sizes for 138 

non-breeding, resident small fish species. The patches have a fixed location with an explicit set of 139 

neighbouring cells. Additional abiotic pond conditions are not modelled explicitly; however, 140 

temperature and food availability are implicitly incorporated via seasonal growth (Table. 1, Eq. 4). 141 

Individual fish have four life stages: eggs, larvae, juveniles and adults. All sticklebacks are characterised 142 

by the state variables age (days post fertilisation (dpf) for eggs and days post hatch (dph) for the 143 

remaining life-stages), body weight (wet weight, g), and position within the pond, and all life-stages 144 

excluding eggs are characterised by length (cm, total length from the snout to the tip of the tail). 145 



Juveniles and adults are further characterised by sex (male or female). Adult males possess the state 146 

variable breeding status: Boolean; if they establish territories they exhibit nesting behaviour. 147 

Additionally, an individual adult male’s territory-size (m2) is determined by total (global) adult male 148 

density and the territory-size an individual male holds determines its courtship success probability. 149 

Adult females have an inter-spawning interval (days between spawnings; 3 – 9 d), and batch size (eggs 150 

per spawning event) which is determined from fish length (cm).  151 

The time step in the model is one day.  152 

2.2.4. Process overview and scheduling 153 

Each of the following processes (in bold) will occur over each time step in sequential order. Eggs 154 

undertake survival and development; larvae undertake survival, development, and growth; juveniles 155 

undertake survival, development, growth, and movement; adult females undertake survival, 156 

development, growth, movement, and reproduction; adult males undertake toxicant-effect, survival, 157 

development, growth, movement, and reproduction (Fig. 1). Entities are processed in a random 158 

sequence and individual fish update their state variables each day. 159 

Update time and landscape: Date, breeding season and habitat patches are updated.  160 

Toxicant-effect: Applying the anti-androgenic toxicant fenitrothion alters the courtship success 161 

probability of adult males and the probability that they will build a nest. Toxicant exposure (at the 162 

levels simulated here) only affects adult males, due to the specifics of the empirical data used for this 163 

test (Sebire et al., 2009).  The level of effect depends on the concentration of toxicant (concentration 164 

is consistent throughout the pond) and the exposure pattern (see section 2.5).  165 

Survive: An individual’s daily mortality rate is determined by four main factors: developmental 166 

mortality (eggs only), senescence (adults only), density-dependent cannibalism (eggs only), and a 167 

general mortality rate which represents all other sources of mortality (all life-stages excluding eggs) 168 



Age/develop: Fish age and change life stage. Larvae leave the nest when independent feeding begins 169 

at 4 dph and are then classified as juveniles. Juveniles develop into adults at the onset of the following 170 

annual breeding season. 171 

Grow: Individual growth is dependent upon age, season, and the strength of density-dependent 172 

competition from conspecifics. Seasonal growth is an enforced mechanism within the model (Table. 173 

1, Eq. 4) which implicitly incorporates seasonal variations in food and temperature to alter growth 174 

rates throughout the year. Female fecundity is directly proportional to body length (Wootton, 1979). 175 

Body mass determines survival probability for larvae, juveniles, and adults, and the inter-spawning 176 

interval of females. Larger males out-compete smaller males for breeding territories and all males lose 177 

body weight when exhibiting nesting behaviour to account for additional metabolic costs.   178 

Move: Individuals move in search of vegetated habitat patches. At the beginning of the breeding 179 

season, adult males move to acquire nesting sites and establish territories, whilst adult females move 180 

in search of a mate.  181 

Reproduce: Fish reproduce during the breeding season if males establish territories and successfully 182 

attract females. Both male courtship behaviour and territory quality are criteria that females use to 183 

choose where they deposit their eggs.  184 

 185 

 186 



  187 

Fig. 1. Conceptualisation of the key processes (sub-models) undertaken by the stickleback and the 188 

ecological and environmental variables which influence them. Small arrows indicate interactions and 189 

large arrows indicate the order of processes. 190 

Table. 1. Model names, algorithms, parameter values and sources. 191 

Sub-model Equation 
name 

Equation Parameter values  Refs 

Toxicant-effect Eq 1.  
Fenitrothion 
dose-response 

ND = (
1

1+𝑒𝑎+𝐶·𝑏
) 

 
 

ND: Nesting disruption 
probability 
C: concentration (µg l-1) 

Sebire et al. 
(2009) 

Season 

Habitat types 
and availability 

Territory quality 

Seasonal/ 
Environmental 

Factors 

Sub-models 
Stickleback 
Ecological 
Variables 

Survive 

Develop 

Grow 

Move 

Male 
Reproduction 

Life-stage 

Age 

Size 

Density 

Territory 
acquisition 

Inter-spawning 
interval 

Batch size 

Reproductive 
status 

Toxicant effect 
 

Courtship 
success 

Female 
Reproduction 



relationship 
for nest 
building 
disruption.   

a : ND intercept 
b : ND gradient 
 
a = -0.42 
b = 0.40 
 

 Eq 2. 
Fenitrothion 
dose-response 
relationship 
for courtship 
behaviour 
disruption 

CD = (
1

1+𝑒𝑑+𝐶·𝑓
) 

 
 

CD: Courtship disruption 
probability 
d : CD intercept 
f : CD gradient 
 
d =-1.01 
f = 0.36 
 

 

Growth Eq 3. Body 
length – 
biomass 
density 
relationship 

𝐿𝑖𝑛𝑓𝐵
= 𝐿𝑖𝑛𝑓𝐿

− 𝐺𝑟 · 𝐵 Linf_B: Asymptotic length 
at a given population 
biomass density (cm) 
Linf_L: Limiting asymptotic 
length as biomass density 
approaches zero (cm) 
Gr: Strength of density- 
dependence (cm m-2 g-1) 
B: Population biomass 
density (g (wet weight) m-

2) 
 
Linf_L = 5.9 * 
Gr = 0.1 
 

Lorenzen 
and Enberg 
(2002); 
Cefas 
Animal 
Production 
Unit (APU) 
data (2013-
2015) 

Eq 4. seasonal 
von 
Bertallanfy 
growth 
function 

GR=  
 

𝐿𝑖𝑛𝑓

{
 
 

 
 

1

− 𝑒𝑥𝑝

−[
𝐾(𝑡−𝑡𝑜)+(

𝐶·𝐾
2𝜋

)𝑠𝑖𝑛2𝜋(𝑡−𝑡𝑠 )−

(
𝐶·𝐾
2𝜋

)𝑠𝑖𝑛2𝜋(𝑡𝑜−𝑡𝑠)
]

}
 
 

 
 

 

 

GR : Growth rate (cm day-

1) 
Linf: Asymptotic length 
(cm) 
K: Growth constant (cm 
year-1) 
t: Age (years) 
t0: Hypothetical age at 
which length is equal to 
zero (years) 
ts: Start of the convex 
segment of a sinusoid 
oscillation (years) 
C: Relative amplitude of 
the seasonal oscillation. 
 
K = 1.96 
Linf = 6.33 
t0 = -0.02 
ts = -0.042 
C =1.30 

Somers, 
(1988); 
Hoenig and 
Choudary-
Hanumara, 
(1982); 
Snyder 
(1991); 
Allen and 
Wootton 
(1982b);Cef
as APU data 
(2013-
2015) 

Eq 5. 
Length:Weight 
relationship 

𝑊 = 𝑎𝐿𝑏  W: Weight (g) 
a : Weight constant 
n: Weight exponent 
 
a = 0.0068 
b = 3.28 

 
Froese and 
Pauly  
(2016) 



Reproduction Eq 6. Territory 
size (m2) 

If D > 20  fish m-2 

TS = 0.063 
If D < 1.3  fish m-2 

TS  = 0.54  
 
If 20 > adult male density > 
1.3  fish m-2 

 

               𝑇𝑆 = 𝑎𝐷𝑏 

TS : Territory-size  (m2) 
 a : TS  constant 
D: Male density (fish  m-2) 
b : TS  exponent  
 
a = 0.65 
b = -0.80 

Van den 
Assam 
(1967) 

Eq 7. 
Courtship 
success 
(probability of 
successfully 
courting an 
individual 
female) 

𝐶𝑆 = 𝑎𝐿𝑛(𝑇𝑆) + 𝑏 CS : Courtship success 
probability  
a : CS constant 
TS : Territory size (m2)  
b : CS intercept 
 
a = 0.058 
b = 0.90  

Van den 
Assam 
(1967) 

Eq 8.  
Reproduction 
rate (viable 
eggs female−1 
day−1)  

𝐹 = 𝑎𝐿𝑏𝑓 F : Fecundity (eggs per 
spawning event) 
a : Fecundity constant 
b: Fecundity exponent 
L : Fish length (cm) 
f: Fertilisation rate 
 
a = 0.82 
b = 3.18 
f = 0.94 

Hagen 
(1967); 
Barber and 
Arnott 
(2000); 
Frommen 
et al. (2008) 

Eq 9. 
Interspawning 
interval  

If weight >=0.94 
ISI = 3 
If weight <= 0.49 
ISI = 9 
 
if 0.94>weight >0.49  
            

             𝐼𝑆𝐼 = 𝑎𝑊 + 𝑏 
    

ISI : Inter-spawn interval 
(days) 
a : ISI constant 
W : weight (g) 
b : ISI intercept 
 
a = -13.22 
b= 15.44 

Wootton 
(1974); 
Brown-
Peterson 
and Heins, 
(2009); 
Wootton et 
al. (1995) 

Survival Eq 10. Natural 
mortality  

𝑀𝑤 = 𝑀𝑢𝑊
𝑏  Mw: Daily natural mortality 

probability at weight W 
Mu: Natural mortality 
probability at unit weight 
(1 g) 
W: Weight (g) 
b: Allometric scaling factor 
 
Mu = 0.00781 

b = -0.43 
 

Lorenzen 
(1996) 
Wu 
parameter 
changed 
from 
annual, as 
reported, 
to daily. 

Eq 11. Egg 
cannibalism 

𝐸𝐶 = 𝑎𝐷 + 𝑏 EC: Daily egg cannibalism 
probability 
a :  EC constant 
D : Global adult and 
juvenile (fish length >= 1.5 
cm) density (fish m-2) 
b :  EC  intercept 
 
a = 0.0037 

Whoriskey 
and 
FitzGerald 
(1985) 



* Adapted to allow for a larger maximum length for German validation data (see section 2.3). 192 

2.3. Model calibration and validation 193 

The model was calibrated using the growth sub-model. The density-dependent growth algorithm used 194 

in the model was taken from Lorenzen and Enberg (2002), and is based on the assumption that as fish 195 

density (measured as biomass, g (wet weight) m-2) increases (i.e. approaching carrying capacity), 196 

growth rates of juveniles and adults decrease as a result of exploitative competition. There is no wild 197 

stickleback population data quantifying density-dependent growth in the wild, therefore the  Gr 198 

parameter (strength of density-dependence, Table. 1, Eq. 3) was calibrated to provide model outputs 199 

of stickleback abundances known to occur in the wild outside of the breeding season (2 – 27 fish m-2,  200 

(Krokhin, 1970; Reimchen, 1990; Reimchen, 1994; Wootton and Smith, 2000)) and to produce an adult 201 

length of 4.5 cm at the start of the breeding season (Froese and Pauly, 2016, Add-My-Pet, 2014). 202 

Calibration was achieved iteratively by visually assessing patterns of population abundances and body 203 

lengths. 204 

Model validation was undertaken using stickleback population abundance data from the UK 205 

(Wootton, 2007; Wootton et al., 2005) and size distribution data from both the UK (Wootton, 2007) 206 

and Germany (Whirzinger et al., 2007). The UK data were derived from wild populations of the 207 

resident freshwater form sampled in spring (Feb/March) and autumn (October) from a 200 m2 river 208 

inlet of the River Rheidol (Aberystwyth, UK) between the years of 1972 and 1998. The data from 209 

Wirzinger et al. (2007) were size structure data from a stickleback population (unspecified form) in 210 

Germany sampled in April and August (2002). Since the field data collected in Germany displayed 211 

much larger individuals than the field data collected by Wootton et al. (2007) in the UK, the model 212 

could not match the mean fish size for both sets of data. For example, in Germany, the modal fish 213 

length was reported to be 4 cm by August compared to the UK population which did not reach 4cm 214 

until March. Therefore, for validation against the data collected from Germany, the parameter which 215 

determines the absolute maximum length an individual can reach (Linf_L, Table. 1. Eq. 3) was increased 216 

b = -0.0036 



in the model to allow fish to grow to a longer length. Validation of the model outputs under default 217 

growth settings against the German field data can be found in SI (Fig. A10). The model was allowed to 218 

stabilise for 10 years (spin-up) and then data from the subsequent years was used for comparison with 219 

the field data. Preliminary analysis had shown that 15 replicate model runs were necessary to get 220 

robust means and standard deviation. Replicate number was considered to be robust once the 221 

difference in the average and the standard deviation of the population abundance became 222 

independent of replicate number (± 5%).  223 

To compare modelled annual population abundances to field data from Wootton et al. (2005) and 224 

Wootton (2007) we calculated the total population abundance each year on the 15th of October and 225 

1st March for 21 and 11 years, respectively, to represent the mid values of the field data collection 226 

periods. To compare the size distributions, we calculated the proportion of individuals within each size 227 

class between 1.8 and 5.8 cm in October and February/March as displayed by (Wootton, 2007), and 228 

between 2.5 and 7 cm in April and August as displayed by (Wirzinger et al., 2007) for five years. 229 

Modelled size distributions represent the mean frequency of individuals across the whole of each 230 

sample period.  231 

2.4. Model sensitivity analysis 232 

A local sensitivity analysis was performed, where parameters from each sub-model formulation were 233 

altered by ± 10 %, with the exception of egg and larval development time which was altered by ±1 234 

day. Additionally, the duration of the breeding season in the field is heavily influenced by fluctuations 235 

in abiotic conditions (e.g. temperature (Baggerman, 1958; Wootton et al., 1978; Wootton, 1984)) and 236 

therefore the sensitivity of the model to breeding season duration was also assessed. A sub-set of 237 

parameters (strength of density dependent growth (Gr); percentage of vegetated patches at 238 

initialisation; length (cm) of juveniles capable of egg cannibalism), were additionally altered by 25%. 239 

The effects of the changed parameters were assessed by comparing the mean population abundance 240 

at a single time point over 10 years following a 10 year spin up period.  241 



2.5. Model application: Effects of fenitrothion on stickleback populations 242 

The potential population-level impacts of disrupted male breeding behaviours following exposure to 243 

the anti-androgenic pesticide fenitrothion were explored under two exposure scenarios; chronic 244 

(continuous exposure for 10 years) and intermittent (a 10 day exposure pulse during the breeding 245 

season (10th – 20th June) once a year for 10 years) and included a 10 year recovery period post-246 

exposure. The intermittent exposure scenario is designed to represent a more realistic exposure from 247 

agricultural use of fenitrothion (NUFARM, 2013) but is not based on actual empirical or modelled 248 

environmental fate data, whilst chronic exposure represents an extreme ‘worst-case’ scenario. A 249 

scenario series with the concentrations used in the empirical laboratory study (0, 1, 50 and 200 µg L-250 

1) (Sebire et al., 2009) was run for both continuous and intermittent exposure to assess the population 251 

relevance of the observed individual-level effects.  252 

 253 

Effects on individuals were predicted from a concentration-response relationship (Table 1. Eq. 1; Eq. 254 

2) parameterised from published data quantifying disruption to male breeding behaviour (courtship 255 

and nest building) after exposure to fenitrothion (Sebire et al., 2009). In the study, the average 256 

percentage reduction in nests built by exposed males compared to control males was 25%, 65%, and 257 

85% after exposure to concentrations of 1, 50, and 200 µg L-1 fenitrothion, respectively. The average 258 

percentage of exposed males which failed to display courtship behaviour compared to control males 259 

(specifically leading behaviour; the final stage of the courtship display) after exposure to increasing 260 

fenitrothion concentrations (1, 50, and 200 µg L-1) were 60%, 90% and 90%, respectively. In the model, 261 

we subtract the level of effect calculated from the concentration-response relationship from the 262 

default courtship success probability/nesting probability of each individual male. We assume that if a 263 

male does not build a nest or court a female, he will not acquire any eggs. 264 

 265 

Population-level effects of fenitrothion were investigated by comparing the mean population 266 

abundance of control and exposed populations on January 1st each year, as well as cumulative 267 



recruitment to each life stage each year. First, the model was allowed to stabilise for 10 years (spin-268 

up period) followed by an exposure period of 10 years, which again was followed by a recovery period 269 

of 10 years, when all input parameters in the model were maintained at their default values. The 270 

maximum deviation from the mean control population abundance on January 1st over 200 years 271 

following a 10 year spin up period was 15%; thus population level effects were considered relevant if 272 

population abundances deviated by > 15% of the mean control value on January 1st. Population 273 

abundance was recorded in January because this was the time point where the population was most 274 

stable and displayed the least annual variability. The population was considered to have recovered 275 

once abundances returned within 15 % of the mean control value. We assumed toxicant effects 276 

occurred only during exposure, i.e. once exposure was removed there was immediate organism 277 

recovery and no delayed effects. For fenitrothion this is not an entirely unreasonable assumption due 278 

to the very low accumulation potential and measured clearance time in fish tissues (Fish bio 279 

concentration factor (BCF) = 29 L kg-1 ; clearance time (CT50) = 0.19 days) (PPDB 2017).  280 

3. Results 281 

3.1. Validation 282 

3.1.1. Population abundance 283 

The population abundances predicted by the model had a good match to those recorded in the field 284 

in both spring and autumn (Fig. 2); thus the average abundances were similar (modelled: 4.0 and 17.2; 285 

observed: 4.7 and 13.3 fish m-2
 in Feb/March and October, respectively).  However, the between year 286 

variability in the field data was higher than in the model outputs. The mechanism behind this 287 

discrepancy was likely due, in part, to the fact that in the field environmental conditions, such as 288 

temperature and food availability, varied between years, whereas the model was run with same 289 

conditions each year.  290 

 291 

 292 

 293 
a. b. 

b. a. 



 294 

 295 

 296 

 297 

Fig. 2.  Modelled and observed population abundance in Feb/March (a) and October (b) for 11 and 21 298 

years, respectively. Modelled outputs were recorded on 1st March and 15th October and are displayed 299 

as the mean abundance of 15 simulations. Dashed lines represent min and max values. Field data 300 

was obtained from a demographic study of a UK stickleback population after Wootton et al. (2005) 301 

and Wootton (2007). Differences in the number of years sampled between seasons  reflect the 302 

available data.  303 

3.1.2. Population size distribution  304 

The size distributions of the modelled simulations generally matched the UK (Wootton, 2007) and the 305 

German (Wirzinger et al., 2007) population data well for both seasons, where the parameter which 306 

determines maximum length (Linf_L) was increased for the latter (see section 2.3). The model captured 307 

the average body lengths along with some of the variation seen in the field populations (Fig. 3). 308 

Following the same trends as the field data, modelled growth accelerated in the summer and almost 309 

ceased in the autumn and winter as a result of the enforced seasonal growth equation (Table. 1, Eq. 310 

4). Juveniles had their most rapid period of growth in their first 3 – 5 months of life between the 311 

breeding season and autumn. In the UK population, individuals grew in body length from 0.45 cm 312 

(length at hatch) to 3.6 cm, and grew only an average of 0.4 cm between October and March and this 313 

is reflected in the model (Fig 3a, b). In October, the modelled size distribution is more skewed towards 314 

smaller individuals, with the modal fish body length representing fish spawned in May (Fig 3b). Further 315 

model analysis revealed that this was a result of lower rates of egg cannibalism at the beginning of the 316 

breeding season and longer periods of higher growth rates throughout the summer. This size skew 317 

was probably more evident in the model outputs than in the field data because annual changes in 318 

environmental conditions (e.g. temperature, food availability), which increase variability were not 319 



included in the model scenarios. Additionally, the modelled size distribution in April (Fig. 3c) displayed 320 

the least variation of all modelled size distributions because individuals were approaching their 321 

maximum body length, so the range of body lengths was narrowed at this time point.  322 

Fig.3. Modelled and observed size distribution data for stickleback in the UK in March (a) and 323 

October (b), and in Germany, with an increased maximum length,  in April (c) and August (d). 324 

Modelled data represents the mean value of 15 simulations (± s.d). 325 

3.2. Sensitivity analysis 326 

The model was generally robust to changes (± 10 %) in the majority of input parameter values, and no 327 

parameter alterations resulted in a change in the population abundance of more than 10% from 328 

control simulations based on default parameter values (Fig. 4). 329 

c. d. 

a. b. 



 330 

The model was most sensitive to changes in the duration of the reproductive season and changes to 331 

sex ratio. Sticklebacks have a relatively low fecundity and are limited to a three month breeding season 332 

in the model; consequently the population has a low buffering capacity to changes in key reproductive 333 

parameters, particularly those which directly affect the total number of eggs spawned. Therefore, 334 

despite the reduced levels of density dependent competition following lower annual egg recruitment, 335 

the breeding strategy of the stickleback did not allow the population to recover fully from a reduction 336 

in the duration of the breeding season or a skewed sex ratio. The model was less sensitive to changes 337 

in life-stage development time, growth, or other reproduction parameters indicating effective 338 

regulation of population numbers via density-dependent growth, competition for mates and nest 339 

sites, and survival. 340 



Results of the full local sensitivity analysis can be found in SI (Table A3).  341 

Fig 4. Local sensitivity analysis of key parameters within the model displayed as the ratio of the 342 

percentage change in population abundance and the percentage by which the parameter was 343 

increased/decreased (mean value of 15 simulations). 344 

 345 

3.3. Population-level effects of fenitrothion-induced disruption of breeding behaviour 346 

In the model, continuous exposure to fenitrothion affected population abundance at all the simulated 347 

concentrations spanning 1 to 200 µg L-1. A concentration of 1 µg L-1 fenitrothion caused a maximum 348 

reduction from the mean control population abundance of 43% during the 10 year exposure period. 349 

However, the population made a full recovery 4 years after exposure ceased. Exposure to 50 µg L-1 350 

and 200 µg L-1 fenitrothion caused population extinction after 8 and 3 years, respectively (Fig. 5a).  351 



 352 

As expected, the effects of intermittent exposure to fenitrothion were much less detrimental to 353 

population abundance than the continuous exposure. Thus, populations subject to intermittent 354 

exposure showed a maximum reduction from the mean control population abundance of 9%, 16%, 355 

and 41% after exposure to concentrations of 1, 50, and 200 µg L-1, respectively. The reduction in 356 

population abundance displayed at 1 µg L-1 fenitrothion was not considered significant as a reduction 357 

of 9% falls within the range of population fluctuations displayed under default settings (±15%). 358 

Relevant reductions in population abundance after exposure to 50 µg L-1 fenitrothion were transient 359 

occurring at years 8 (exposure period) and 11 (recovery period), but population deviations were only 360 

1% outside of the range of control fluctuations. Although the reduction in population abundance 361 

occurred during the recovery period; the number of juveniles present in January will still be a reflection 362 

of the reduced recruitment caused by fenitrothion exposure in the previous breeding season. After 363 

exposure to 200 µg L-1 fenitrothion, the populations recovered in the 4th year of the recovery phase 364 

(Fig. 5b).  365 

 366 

 367 

Fig.5. Mean modelled annual total population abundance (mean value of 15 simulations) on the 1st 368 

January each year for (a) continuous and (b) intermittent exposures to fenitrothion. Legend refers to 369 

a. b. 



fenitrothion concentration (µg L-1). Red and white sections divide exposure and recovery time period: 370 

10 year exposure; 10 year recovery. 371 

The results of the analysis on recruitment to different life stages (data not shown) showed that 372 

fenitrothion exposure impacted most on egg numbers and least on adult numbers; for example, 373 

intermittent exposure to 1, 50, and 200 µg L-1, respectively caused a maximum annual reduction in 374 

total egg abundance of 17, 27, and 69% compared to adults, for which the maximum reduction was 375 

12, 16, and 36%, relative to control abundances. Further analysis of the model revealed that this 376 

pattern emerged as a result of density-dependent compensation when population abundances are 377 

low, thus, lower densities of larvae resulted in reduced competition for food, faster juvenile growth 378 

rates and a consequent reduction in size-dependent mortality, as well as reduced competition for 379 

good quality (sheltered) habitat patches where mortality rates were lower and conditions more 380 

optimal for nesting males in the breeding season.  381 

 382 

In order to assess the role of density-dependent processes at each life stage in the model in more 383 

detail, we assessed how the asymptotic length parameter, which determines maximum body length, 384 

oscillated with annual changes in population abundances. Asymptotic length is a good measure of the 385 

strength of density-dependence because in the model, growth is affected by competition and this is 386 

implemented by increasing the asymptotic length as the population biomass of fish decreases (see SI, 387 

Details section). Thus, the less biomass in the system, the larger the individuals can grow. Larger 388 

individuals are less susceptible to size-dependent mortality (Lorenzen, 1996) and larger females 389 

produce more eggs; this mechanism can, to some degree, therefore compensate for low population 390 

abundance. Monitoring this parameter also gives an indication of the effects of population abundance 391 

on density-dependent life history processes, including growth, mortality (egg cannibalism) and 392 

reproduction (competition for territories).  393 

 394 



Throughout the exposures, the asymptotic length of the control population remained stable (5.55 – 395 

5.59 cm) but increased with increasing concentration of fenitrothion (Fig. 6). Intermittent exposure to 396 

1, 50 and 200 µg L-1 resulted in a maximum mean asymptotic length of 5.59, 5.62, and 5.78 cm, 397 

respectively, during the 10 year exposure period. This density-dependent compensation allowed for 398 

some population recovery in between annual exposures and resulted in relatively stable populations 399 

throughout the exposure period, following an initial decline in abundance, as observed in the case of 400 

the two highest exposure concentrations. Comparatively, chronic exposure to 1, 50 and 200 µg L-1 401 

caused a maximum asymptotic length of 5.74, 5.89 and 5.89 cm but the extent of the density-402 

dependent compensation in growth was insufficient to prevent populations going extinct. 403 

 404 

Fig. 6. Annual fluctuations in asymptotic length (cm) after exposure to 1, 50, and 200 µg L-1 405 

fenitrothion under an intermittent (a) and a chronic (b) exposure regime (10 year exposure; 10 year 406 

recovery). Light grey represents high asymptotic length, dark grey low asymptotic length and white 407 

a b 



space marks population extinction. The colour scale is adapted for each graph and is expressed in the 408 

colour keys. 409 

4. Discussion 410 

We developed a stickleback IBM and applied it to a case study to assess the relevance of individual-411 

level chemical endocrine disruption effects on populations. Specifically, we looked at the potential 412 

population effects of disrupted breeding behaviour (male nest building and courtship) for intermittent 413 

and constant continuous exposures to the anti-androgenic pesticide fenitrothion.   414 

 415 

Overall, the stickleback IBM provided a good fit to the available UK stickleback population data, 416 

indicating that the model provides a good representation of an extensively monitored natural system. 417 

However, the body size discrepancies between wild sticklebacks in the UK and in Germany meant that 418 

the model, with current parameterisation, cannot simultaneously provide a good fit for both 419 

populations. We chose to use the UK population data as the main body of validation as the data is 420 

more extensive than the data generated from the study sites in Germany. The UK data represents up 421 

to 21 years of sampling and records both population abundance and size class distributions for 422 

resident freshwater stickleback. In contrast, the data from Germany only recorded size class data in a 423 

single year and the fish were not accurately aged, meaning that the size distributions could represent 424 

a mixture of 0+ and older cohorts. Additionally, the model is representative of the low-plated resident 425 

freshwater form of stickleback and it is possible that the data from the German sites, located close to 426 

the sea, includes the genetically different anadromous sticklebacks which grow faster and to a larger 427 

maximum size (Wootton, 1984; Schluter, 1995).The larger body lengths displayed in the German 428 

population may also be a result of an earlier breeding season and/or differences in abiotic parameters 429 

such as temperature (Allen and Wootton 1982b), photoperiod (Guderley et al., 2001), or food 430 

availability (Allen and Wootton 1982b). Importantly, however, the model does reflect seasonal 431 

differences in growth observed from both sets of population data. The stickleback is a temperate fish 432 

species and seasonal fluctuations in temperature and food availability affect growth rates in the wild, 433 



resulting in high growth rates in the summer and low growth in the winter (Allen and Wootton 1982a, 434 

Allen and Wootton 1982b). In the model, seasonal growth is one of the key mechanisms driving 435 

population dynamics (SI Ap. 12 for more details). We incorporated seasonal growth using an adapted 436 

version of the von Bertalanffy equation (where parameters ts and c enforce seasonal oscillations 437 

(Table. 1, Eq. 4)) which predicts temperature-dependent growth accurately according to the UK 438 

validation results. A more mechanistic approach to incorporating seasonal growth, such as adding an 439 

energy-based element (Martin et al., 2012, Sibly et al., 2013), could better extend the model’s 440 

application to different latitudes and regions. 441 

The sensitivity analysis revealed that the model was most sensitive to alterations in the duration of 442 

the breeding season and the operational sex ratio.  Stickleback invest a high proportion of energy into 443 

nest guarding and egg brooding by males, and females display relatively low fecundity compared to 444 

other fish species whose reproduction requires less investment post spawning (Bone and Moore, 445 

2008). The model’s sensitivity to parameters which directly affect egg recruitment is therefore an 446 

emergent property of the stickleback’s life history strategy.  As a comparison, the zebrafish has a high 447 

fecundity and in most latitudes may be able to spawn all year round (Spence et al., 2007). A sensitivity 448 

analysis of a zebrafish IBM (Hazlerigg et al., 2014) demonstrated that this model species was more 449 

resilient to changes in reproductive parameters, such as a reduction in the duration of the breeding 450 

season, than the stickleback IBM. . The comparison between these models demonstrates how life 451 

history strategy can pre-determine the capacity for population resilience and therefore the choice of 452 

focal species for risk assessment needs to be carefully considered, if these factors are to be taken into 453 

account.    454 

It is well documented that different EDCs can induce different types of physiological effects on 455 

individual fish (e.g. masculinisation and reduced fecundity from androgens (Morthorst et al., 2010); 456 

feminisation and reduced fecundity from anti-androgens (Jensen et al., 2004) and oestrogens (Nash 457 

et al., 2004); impaired growth rates from thyroid disruptors (Liu et al., 2008)) and behavioural effects 458 



have also been widely reported (Dzieweczynski, 2011; Dzieweczynski et al., 2014; Ward et al., 2006; 459 

Weis et al., 2001; Xia et al., 2010).  There are, however, very few examples of studies on population 460 

level-effects of EDCs in fish. A notable example is in the work by Kidd et al. (2007), where a whole 461 

Canadian lake (Lake 260) was treated with ethinylestradiol (EE2) at concentrations  between  462 

5-6 ng L-1 for a period of 3 years which resulted in the feminization of male fathead minnows and the 463 

collapse of the fathead minnow population (Kidd et al., 2007). Breeding behaviours in the fathead 464 

minnow have been shown to be disrupted after laboratory exposures to the same concentrations 465 

(Majewski et al., 2002), and this may have contributed to the subsequent population crash. The 466 

breeding strategy of the fathead minnow is similar to that of the stickleback (e.g. nest guarding by 467 

males), and the population-level impacts of disruption to the same behaviours would therefore be 468 

expected to be similar for both species. In addition to the physiological and behavioural effects of 469 

EDCs, indirect effects may occur via the disruption of food web interactions. These interactions are 470 

particularly relevant for pesticide risk assessment since these chemicals target invertebrates and are 471 

therefore likely to have adverse effects on the prey of fish species. Specifically, fenitrothion is highly 472 

toxic to aquatic invertebrates (PPDB, 2017) and effects have been reported on species which 473 

contribute to the diet of the stickleback (Fairchild and Eidt, 1993; Choi et al., 2002). Since the current 474 

study aims to predict the effects of a single behavioural endpoint on population abundance, food-web 475 

interactions are not considered here. However, disruption of invertebrate communities would likely 476 

compromise some of the density dependent compensation observed in the model following 477 

fenitrothion exposure.   478 

Using the stickleback IBM, we showed that exposure duration, as well as exposure concentration, 479 

affected population responses and effect levels were markedly greater in populations subjected to a 480 

continuous chronic exposure regime compared to a more realistic intermittent regime. For example, 481 

concentrations that only caused negligible effects under pulsed exposure scenarios caused marked 482 

decreases or even extinction in continuous exposure scenarios. This is consistent with an empirical 483 

study, whereby compensatory responses allowed a fathead minnow population to recover following 484 



pulsed exposure to toxicants (Ali et al., 2017). Further analysis of the model (e.g. tracking changes to 485 

density dependent parameters) revealed that the compensatory capacity for the investigated effects 486 

was driven by density-dependent competition for resources leading to increased growth and survival 487 

in early life stages and increased availability of spawning territories for adults.  In particular we 488 

assessed the extent to which growth (asymptotic length - Linf) was affected by density. In the 489 

continuous exposure scenario, the capacity for Linf to increase and compensate population biomass 490 

was exhausted at 50 L-1 fenitrothion, whereas for the pulsed exposure that did not occur even at a 491 

fenitrothion concentration of 200g L-1. The compensatory effects of density-dependence also vary 492 

between different life-stages. For example, effects were consistently greater for eggs and larvae than 493 

for juveniles and adults, and this was particularly evident at the highest exposure concentration. 494 

Studies on invertebrates have demonstrated that exposing resource limited populations to toxicants 495 

can reduce intra-specific competition and therefore lessen the negative effects of the toxicant (Liess, 496 

2002; Moe et al., 2002). However, empirical studies which validate the interaction between resource 497 

competition and chemical effects in fish are limited and it is therefore, as yet, difficult to confirm the 498 

realism of these modelled results. In addition, since the current model assumes constant 499 

environmental conditions (e.g. food availability and temperature), the exposure scenarios simulated 500 

here do not consider potential interactive effects that may be associated with extremes in 501 

environmental conditions and this should be taken into consideration when interpreting these results.  502 

The capacity for compensation in natural systems generally is greatest when a population is close to 503 

carrying capacity and populations can recover faster in systems with rich resources (Beverton and 504 

Holt, 1957). As a consequence the effect of chemical exposure should be seen in the context of 505 

resource availability and considered together with other stressors. Moreover, both stressors and 506 

resources fluctuate seasonally, so it is important to understand the environmental context and life 507 

history strategies of focal species when extrapolating in risk assessment. With the current level of 508 

detail, the stickleback IBM has proved to be useful in risk assessments for assessing the population-509 



level consequences of individual-level endpoints relating to behaviour, growth, survival, and 510 

reproduction.   511 

Conclusions 512 

Ultimately, for EDC induced behavioural effects to have a population level impact, they will need to 513 

impair growth, reproduction, dispersal and/or survival. The extent to which such effects translate into 514 

population level effects depends on exposure concentration, duration and timing of the toxic effects 515 

as well as on life-history strategies contributing to the resilience of the population.  516 

 517 

Using the stickleback IBM, we showed that under a semi-realistic exposure regime (pulsed exposure) 518 

the individual-level behavioural effects of fenitrothion exposure are greater than effects on whole 519 

populations, because of the buffering capacity of ecological processes, such as density dependence. 520 

Mechanistic effect models, like the IBM used here, can incorporate more relevant endpoints based on 521 

the life-history strategy of the species, population-level interactions, and the likely exposure regime 522 

of the chemical. Therefore such models can be applied to help inform our understanding of what level 523 

of EDC or other chemical effects on individuals are likely to be ecologically relevant at the population 524 

level.  525 
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