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Introduction  
This document contains the list of CMIP5 models and ensemble members analyzed in 

this study (Table S1). Additional details regarding the forced response removal method (Text S1), 
constructing running trend time-series (Text S2), and computing the statistical significance of 
correlations are also provided. Supporting figures follow the text. 
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Model Ensemble Members Institution 
ACCESS1-0 r1i1p1 Commonwealth Scientific and Industrial 

Research Organisation, and Bureau of 
Meteorology, Australia 

ACCESS1-3 r1i1p1 

bcc-csm1-1 r1i1p1 Beijing Climate Center, China Meteorological 
Administration bcc-csm1-1-m r1i1p1 

CanESM2 r1i1p1, r2i1p1, r3i1p1, r4i1p1, 
r5i1p1 

Canadian Centre for Climate Modelling and 
Analysis 

CCSM4 r1i1p1, r2i1p1, r3i1p1, r4i1p1, 
r5i1p1, r6i1p1 

National Center for Atmospheric Research 

CESM1-BGC r1i1p1 National Science Foundation, Department of 
Energy, and National Center for Atmospheric 
Research 

CESM1-CAM5 r1i1p1, r2i1p1, r3i1p1 

CMCC-CESM r1i1p1 Centro Euro-Mediterraneo per I Cambiamenti 
Climatici CMCC-CM r1i1p1 

CMCC-CMS r1i1p1 
CNRM-CM5 r1i1p1, r2i1p1, r4i1p1, r6i1p1, 

r10i1p1 
Centre National de Recherches 
Meteorologiques 

CSIRO-Mk3-6-0 r1i1p1, r2i1p1, r3i1p1, r4i1p1, 
r5i1p1, r6i1p1, r7i1p1, r8i1p1, 
r9i1p1, r10i1p1 

Commonwealth Scientific and Industrial 
Research Organisation 

EC-EARTH r1i1p1, r2i1p1, r6i1p1, r8i1p1, 
r9i1p1, r10i1p1 

EC-EARTH consortium 

FIO-ESM r1i1p1, r2i1p1, r3i1p1 The First Institute of Oceanography, SOA, China 
GFDL-CM3 r1i1p1 Geophysical Fluid Dynamics Laboratory 
GFDL-ESM2G r1i1p1 
GFDL-ESM2M r1i1p1 
GISS-E2-H r1i1p1, r1i1p2, r1i1p3, r2i1p3 NASA Goddard Institute for Space Studies 
GISS-E2-H-CC r1i1p1 
GISS-E2-R r1i1p1, r1i1p2, r2i1p1, r2i1p3 
GISS-E2-R-CC r1i1p1 
HadGEM2-AO r1i1p1 NIMR / Korea Meteorological Administration 
HadGEM2-CC r1i1p1 Met Office Hadley Centre 
HadGEM2-ES r1i1p1, r2i1p1, r3i1p1, r4i1p1 
inmcm4 r1i1p1 Institute for Numerical Mathematics 
IPSL-CM5A-LR r1i1p1, r2i1p1, r3i1p1, r4i1p1 Institut Pierre-Simon Laplace 
IPSL-CM5A-MR r1i1p1 
IPSL-CM5B-LR r1i1p1 
MIROC-ESM r1i1p1 Japan Agency for Marine-Earth Science and 

Technology, and Atmosphere and Ocean 
Research Institute (U. Tokyo), and National 
Institute for Environmental Studies 

MIROC-ESM-CHEM r1i1p1 
MIROC5 r1i1p1, r2i1p1, r3i1p1, r4i1p1, 

r5i1p1 
MPI-ESM-LR r1i1p1, r2i1p1, r3i1p1 Max Planck Institute for Meteorology (MPI-M) 
MPI-ESM-MR r1i1p1 
MRI-CGCM3 r1i1p1 Meteorological Research Institute 
MRI-ESM1 r1i1p1 
NorESM1-M r1i1p1 Norwegian Climate Centre 
NorESM1-ME r1i1p1 

Table S1. The 38 climate models, and 87 ensemble members, analyzed in this study. Ensemble 
members were only retained if the historical experiment, and matching RCP8.5 extension, 
covered the entire analysis period of 1880 to 2017. The 38 ensemble members in bold denote 
those that had corresponding piControl experiments. 
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Text S1. Forced Response Removal 

For an individual model realization (or observational dataset) 𝑖, the time-series of a 
quantity 𝑦 = 𝑦(𝑡) can be decomposed into a forced response component, 𝜙, and an unforced 
(or internal variability) component, 𝜐, such that 
                                                                  	𝑦*(𝑡) = 𝜙*(𝑡) + 𝜐*(𝑡).     (1) 

The term 𝑦(𝑡) can be taken to represent any time-varying quantity (for example, global mean 
surface temperature, the AMV index, or SST at an individual grid-point). The forced response 
component, 𝜙*, depends upon both the forcing and the feedbacks in that model. Here the 
forced response is estimated from an ensemble of model experiments following the single-
factor scaling method of Frankcombe et al. (2015). The premise of using a multi-model mean is 
that, given different initializations, internal variability will not be synchronized across several 
simulations. If it is assumed that the multi-ensemble and multi-model mean, 𝑀, provides a 
reasonable approximation to the true forced response, then: 
                                                                  𝜙*(𝑡) ≅ 𝑀(𝑡)𝛽* + 𝑐*    (2) 

where 𝛽*  is a scaling factor such that 𝑀(𝑡) is scaled to give a best fit to quantity 𝑦(𝑡) of 
realization 𝑖. In some sense, 𝛽*  represents a measure of that model realization’s sensitivity to 
forcing. The ci is a constant, which is zero where the mean of 𝑀 and 𝑦* have been subtracted. 
The scaling factor 𝛽*  can then be estimated by regressing 𝑀(𝑡) against 𝑦*(𝑡), arriving at an 
expression for the internal variability: 
                                                                  𝜐*(𝑡) ≅ 𝑦*(𝑡) − 𝑀(𝑡)𝛽*.   (3) 
 

The approach here only differs from Frankcombe et al. (2015) in that the forced signal 
𝑀 is always taken to be the multi-model mean of the CMIP5 historical global mean surface 
temperature. The term 𝑦* can represent any quantity, be it an SST index, grid-point SST data, or 
global mean surface temperature, and a corresponding	𝛽*  is computed. Although the rate of 
global warming might vary substantially in different regions across the globe, and across models, 
the multi-model mean signature of forcing is scaled in all instances before subtraction in each 
model realization. Therefore, in regions where the long-term warming is weak, or furthermore, 
where there is weak correlation with the multi-model mean, then the scaling factor will likewise 
be small. 

 
To compute the scaling factor 𝛽*, an ordinary least-squares regression is computed 

between 𝑀 and 𝑦*. Allen & Stott (2003) compare ordinary and total least-squares regressions 
for computing the scaling factor (see their Figure 2). They show that total least-squares 
regression should be employed where the sample size of simulated members is small, since 
there will be residual internal variability (i.e. “expected noise variance”) in the ensemble mean. 
Their algorithm includes a step of “scaling up” 𝑀 so that the noise variance matches that in 𝑦*. 
In the present study, the ensemble mean is computed from a large number of model 
realisations and the residual variability is very low. It is unclear how the noise component should 
be scaled up, and therefore ordinary rather than total least-squares regression is used. 

 
The single-factor approach, rather than multi-factor (Frankcombe et al. 2015), has been 

adopted here since not all experiments (e.g. ‘historicalNat’ or ‘historicalGHG’) are available for 
every model in the CMIP5 archive. Other approaches may have been to compute an ensemble 
mean for models with multiple realizations (following the "single model ensemble mean" 
method of Frankcombe et al. 2018), or to retain the multi-model mean, but compute single 
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model-mean scaling factors. The seemingly simplest approach in this regard has been adopted 
here, which is to treat each realization independently. A comparison of a range of forced 
response removal processes is presented by Frankcombe et al. (2015, 2018). 
 

In the case of the piControl simulations, where forcings are constant, a simple linear 
detrending is applied. Some of the models suffer from small residual “drift” (Sen Gupta et al. 
2013), and thus here a linear detrending is sufficient. 
 
Text S2. Running trend time-series 

To construct an N-year running-trend time-series, the linear trend is computed over the 
first N-year window of an annual time-series. The window is then shifted by one year, the linear 
trend is again computed. This process is repeated to the end of the annual time-series. Linear 
trends in each window are computed using an ordinary least-squares fit. 
 
Text S3. Statistical significance of correlations 

The statistical significance of correlations between running-trend time-series were 
tested based on a one-tailed Student’s t-distribution with adjusted degrees of freedom. One-
tailed tests were chosen in these cases because models and observations are largely in 
agreement on the sign of the correlation coefficients (positive), over most time-scales. The 
degrees of freedom in the statistical tests were adjusted to account for non-independence of 
overlapping periods. The effective degrees of freedom were specified by the number of data-
points in the running trend time-series divided by N/2. This choice is analogous to that of Wang 
et al. (2017), who scale the degrees of freedom by half the filter frequency used in the 
smoothing of their AMV time-series. The significance test for the model data correlation 
incorporates the number of available model realizations in the adjusted degrees of freedom. 
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Figure S1. Annual time-series of global mean surface temperature (GMST), the Interdecadal 
Pacific Oscillation (IPO), and the Atlantic Multidecadal Variability (AMV) indices, in observations 
and CMIP5 historical simulations. (a-c) Raw annual data, and (d-f) with the forcing response 
removed. In each case, anomalies with respect to the 1880-1930 baseline period are shown. The 
shaded blue regions denote the central 68%, 95%, and 100% of the CMIP5 realization ensemble. 
 

(a) GMST, raw annual data

1880 1900 1920 1940 1960 1980 2000
-1

0

1

2

G
M

ST
 in

de
x 

(o C)
Observed
CMIP5 mean
CMIP5 68%, 95%, 100%

(d) GMST, forced response removed

1880 1900 1920 1940 1960 1980 2000
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(b) IPO, raw annual data

1880 1900 1920 1940 1960 1980 2000
-3

-2

-1

0

1

2

3

IP
O

 in
de

x 
(o C)

(e) IPO, forced response removed

1880 1900 1920 1940 1960 1980 2000
-3

-2

-1

0

1

2

3

(c) AMV, raw annual data

1880 1900 1920 1940 1960 1980 2000
year

-1

0

1

2

AM
V 

in
de

x 
(o C)

(f) AMV, forced response removed

1880 1900 1920 1940 1960 1980 2000
year

-1

-0.5

0

0.5

1



 
 

6 
 

 
Figure S2. (a,b) Variances of (a) 10-year running trends of the Interdecadal Pacific Oscillation 
(IPO) index, and (b) 35-year running trends of the Atlantic Multidecadal Variability (AMV) index. 
The variance in piControl is plotted against the variance in historical (with forcing response 
removed) for each available ensemble member (Table S1). The one-to-one line is plotted in 
black, and blue line denotes the inter-model least-squares fit regressed through the origin. 
Whiskers denote the 99% confidence interval of the computed variance using a chi-squared 
distribution, with degrees of freedom based on the number of data-points in the running-trend 
time-series. The red dashed lines denoted the 99% confidence interval for the observed data. 
(c,d) Correlations of global mean surface temperature with (c) IPO index, and (d) the AMV index, 
in observations and CMIP5 historical models. The correlations are computed from annual data in 
31-year sliding windows, where year on the x-axes denotes the central year of the 31-year 
window. The shaded blue regions denote the central 68%, 95%, and 100% of the CMIP5 model 
ensemble. Dashed lines denote the 99% levels for statistically significant correlations based on a 
two-tailed Student’s t-distribution with 30 degrees of freedom. 
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Figure S3. Correlations between running trends of global mean surface temperature (GMST) and 
grid-point sea surface temperature (SST). As in Figure 3, but only for the multi-model means of 
the CMIP5 (a,c) historical (same panels as Figure 3b,f) and (b,d) piControl simulations. 
 
 
 

 
Figure S4. Standard deviation and correlations in the running trends of global mean surface 
temperature (GMST), the Interdecadal Pacific Oscillation (IPO), and the Atlantic Multidecadal 
Variability (AMV) indices, over a range of time-scales. As in Figure 1, but comparing different 
observational data-sets, including GISTEMP (Hansen et al. 2010; GISTEMP Team 2018) and 
ERSST (Huang et al. 2017). The thicker red curves for HadCRUT and HadISST are the same as 

(a) historical, 10-year trends

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
correlation coefficient

(b) piControl, 10-year trends

(c) historical, 35-year trends

(d) piControl, 35-year trends

(a) GMST trend variability

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

no
rm

al
iz

ed
 s

ta
nd

ar
d

de
vi

at
io

n 
(o C

) HadCRUT (1880-2017)
GISTEMP (1880-2017)
HadCRUT (1950-2017)
GISTEMP (1950-2017)

(b) IPO trend variability

5 10 15 20 25 30 35 40
running trend window length (years)

0

0.5

1

1.5

no
rm

al
iz

ed
 s

ta
nd

ar
d

de
vi

at
io

n 
(o C

) HadISST (1880-2017)
ERSST (1880-2017)
HadISST (1950-2017)
ERSST (1950-2017)

(c) AMV trend variability

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

no
rm

al
iz

ed
 s

ta
nd

ar
d

de
vi

at
io

n 
(o C

)

HadISST (1880-2017)
ERSST (1880-2017)
HadISST (1950-2017)
ERSST (1950-2017)

(d) GMST and IPO trend correlations

5 10 15 20 25 30 35 40
running trend window length (years)

-1

-0.5

0

0.5

1

co
rre

la
tio

n 
co

ef
fic

ie
nt

HadCRUT&HadISST (1880-2017)
GISTEMP&ERSST (1880-2017)
HadCRUT&HadISST (1950-2017)
GISTEMP&ERSST (1950-2017)

(e) GMST and AMV trend correlations

5 10 15 20 25 30 35 40
running trend window length (years)

-1

-0.5

0

0.5

1

co
rre

la
tio

n 
co

ef
fic

ie
nt

HadCRUT&HadISST (1880-2017)
GISTEMP&ERSST (1880-2017)
HadCRUT&HadISST (1950-2017)
GISTEMP&ERSST (1950-2017)



 
 

8 
 

those shown in Figure 1. For the thinner curves in each panel, the data was first trimmed to the 
period 1950 to 2017 before computing the standard deviations and correlations. 
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