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ABSTRACT

Objective: Diverticular disease is a common complex disorder characterized by mucosal 

outpouchings of the colonic wall that manifests through complications such as diverticulitis, 

perforation and bleeding. We report the to date largest genome-wide association study (GWAS) to 

identify genetic risk factors for diverticular disease.

Design: Discovery GWAS analysis was performed on UK Biobank imputed genotypes using 31,964 

cases and 419,135 controls of European descent. Associations were replicated in a European sample of 

3,893 cases and 2,829 diverticula-free controls and evaluated for risk contribution to diverticulitis and 

uncomplicated diverticulosis. Transcripts at top 20 replicating loci were analyzed by real-time qPCR 

in preparations of the mucosal, submucosal and muscular layer of colon. The localization of expressed 

protein at selected loci was investigated by immunohistochemistry.

Results: We discovered 48 risk loci, of which 12 are novel, with genome-wide significance and 

consistent odds ratio in the replication sample. Nominal replication (p<0.05) was observed for 27 loci, 

and additional 8 in meta-analysis with a population-based cohort. The most significant novel risk 

variant rs9960286 is located near CTAGE1 with a p-value of 2.3×10−10 and 0.002 (ORallelic=1.14 [1.05-

1.24]) in the replication analysis. Four loci showed stronger effects for diverticulitis, PHGR1 (OR 

1.32, CI 95% 1.12-1.56), FAM155A-2 (OR 1.21, 95% CI 1.04-1.42), CALCB (OR 1.17, 95% CI 1.03-

1.33) and S100A10 (OR 1.17, 95% CI 1.03-1.33).

Conclusion: In silico analyses point to diverticulosis primarily as a disorder of intestinal 

neuromuscular function and of impaired connective fiber support, while an additional diverticulitis 

risk might be conferred by epithelial dysfunction. 
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SUMMARY BOX

What is already known on this subject?

 Diverticular disease is among the most common diseases of the gastrointestinal tract. 

 Despite its clinical importance and clear indications of familial clustering, only three loci 

(ARHGAP15, FAM155A, COLQ) of genome-wide significance have been reported so far. 

Recently, a replication analysis of a UK biobank GWAS by Maguire et al. identified 37 

additional susceptibility loci with genome-wide significance and a replication of 8 of these 

loci in a Michigan population cohort.

What are the new findings?

 Here, we report the to date largest and most detailed genome-wide association study (GWAS) 

with a sample size of 451,099 individuals to identify genetic risk factors for diverticular 

disease.

 We report 48 loci with genome wide significance, of which 12 are novel. We were able to 

replicate 27 of these loci in specifically recruited replication samples from a gastrointestinal 

specialty service with colonoscopy data available in all controls. In addition, we replicated 

further 8 risk loci in a combined meta-analysis with data from a Michigan population cohort. 

 The current study increases the number of replicated susceptibility loci for diverticular disease 

to 35, of which 25 loci had previously not been replicated.

 Results point to diverticular disease primarily as a disorder of intestinal neuromuscular 

function, impaired mesenteric vascular smooth muscle function and of impaired connective 

fiber support. Whilst diverticulitis risk might be conferred by epithelial dysfunction.

How might it impact on clinical practice in the foreseeable future?

 The results from this GWAS provide deep new insights into the colonic biology and disease 

pathophysiology of diverticular disease.
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Diverticular disease is a common complex disorder characterized by mucosal outpouchings of the 

colonic wall at sites of relative weakness in the muscle layers close to penetrating blood vessels [1,2]. 

The incidence of diverticular disease has increased to 50% for individuals older than 60 years and a 

significant rise of incidence and hospitalization rates has been seen in younger age groups [3]. 

Although the majority of patients harboring diverticula remain asymptomatic throughout life, 10–25 % 

[4–8] experience complications such as acute diverticulitis, abscess, fistula formation, bleeding or 

perforation. These complications cause an annual mortality of ~1 per 100,000 [9] due to the need for 

inpatient treatment and sigmoid resection after repeated episodes of diverticulitis. Owing to its high 

prevalence and associated complications diverticular disease is the 5th most costly gastrointestinal 

disease in Western countries [10]. 

The pathogenesis of diverticular disease is thought to be a multifactorial process that involves lifestyle 

factors (smoking, physical inactivity, high body mass index [BMI]), structural and functional changes 

of the colonic wall, aging and a genetic predisposition [11]. In contrast to its high clinical and 

economic impact, diverticular disease is under-researched in terms of its pathophysiology [1]. 

Epidemiological [12] and twin studies [13] have estimated the heritability of diverticular disease at 40-

53% percent. A previous genome-wide association study (GWAS) from Iceland identified associations 

of variants in ARHGAP15 and COLQ with uncomplicated diverticular disease and variants in 

FAM155A with diverticulitis [14]. Additionally 37 susceptibility loci with genome-wide significance 

were identified in a recent study from Maguire et al. [15], with replication of 8 loci.

We report a total of 48 risk loci with genome-wide significance and consistent odds ratio in a 

replication sample of 3,893 cases and 2,829 diverticula-free controls as verified by colonoscopy. We 

were able to replicate 27 of these loci in specifically recruited replication samples from a 

gastrointestinal specialty service with colonoscopy data available in all controls. The large number of 

loci we identified and our functional follow-up provide novel insight into the pathophysiology of 

diverticular disease as a disorder of intestinal neuromuscular function, vascular smooth muscle 

function and impaired connective fibre support.
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PATIENTS AND METHODS

Study participants

An individual was classified as a diverticular disease case if they matched hospital-bases ICD9 or 

ICD10 coding (562, K57) in the UK Biobank dataset (n = 31,964). Control individuals where 

classified on the basis of absence of a diverticular disease diagnosis (n = 419,135). Depth of ICD 

coding was insufficient to differentiate disease subtype diverticulosis (i.e. diverticular disease without 

inflammation) from diverticulitis in the UK Biobank dataset. Replication samples were obtained from 

Germany, Austria, Lithuania and Sweden from gastrointestinal specialty services. Details of 

recruitment and phenotype ascertainment for diverticulosis and diverticulitis for each cohort are 

described in the Supplementary Materials and Methods section. An overview of the study population 

is provided in Table 1. 
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Table 1: Study populations

Overview of the study populations used in the discovery and replication cohorts. All quantitative measures (age, BMI) are provided as medians and interquartile 

ranges. Patients from the Germany/North cohort were recruited through the popgen biobank as described previously [16].

Discovery European replication cohort n= 6722 (Diverticular disease (DD) 3893, diverticula free controls 2829)

UKBB - 500k

GWAS (n=451,052)

Germany 

(North)

 (n=2842)

Germany

 (West) 

(n=320)

Austria

(Vienna) 

(n=1151)

Austria

(Oberndorf) 

(n=1378)

Lithuania

(n=773)

Sweden

(n=258)Variable

DD / Controls

31,917 / 419,135

DD / Controls

2171/671

DD / Controls

227/93

DD / Controls

578/573

DD / Controls

387/991

DD / Controls

479/295

DD / Controls

51/207

Case 46.5 46.9 54.6 60.4 57.4 43.0 39.2male (%)

Control 45.7 54.7 48.4 58.1 48.5 39.5 37.2

Case 72 (68-76) 68 (59-75) 67 (58-75) 68 (61-74) 65 (57-72) 68 (61-74) 62 (56-67)
Age (years) 

Control 68 (60-73) 62 (57-68) 59 (44-64) 64 (56-72) 59 (53-67) 57 (46-67) 53 (44-61)

Case 27.9 (25-31) 26.9 (24-30) 27.1 (24-30) 28.1 (25-30) 28.0 (23-33) 28.6 (26-32) 24.0 (22-27)
BMI

Control 26.6 (24-29) 25.7 (23-28) 27.0 (24-30) 27.4 (24-30) 27.3 (21-33) 26.6 (23-30) 25.0 (22-28)
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GWAS analysis

Discovery GWAS analysis was performed on UK Biobank on Version 3 imputed genotypes using 

BOLT-LMM v2.34, which applies a linear mixed model to adjust for the effects of population 

structure and individual relatedness [17]. This enabled the inclusion of all related individuals in our 

white European subset allowing a sample size of 451,099 individuals as detailed in Supplementary 

Material and Methods. 

Loci Discovery and Functional Annotation (FUMA)

Genomic risk loci, lead variants and candidate SNPs were derived from FUnctional Mapping and 

Annotation of genetic associations (FUMAv1.3.1) [18] based on GWAS summary statistics. Candidate 

SNP and gene positions are provided in Supplementary Table 1 and 2. Functional consequences were 

assessed using ANNOVAR, a tissue-specific cis-eQTL dataset (GTExV7, https://gtexportal.org) and 

15-core chromatin states (ENCODE, 2012) as detailed in the Supplementary Material and Methods 

section.

Annotation of candidate genes 

In order to identify candidate gene(s) at the respective genomic risk locus we followed i) a manually 

curated selection process based on local LD structure and supporting evidence from regulatory 

elements (eQTL and chromatin interaction), outlined in Supplementary Table 3 and ii) we performed 

hypothesis-free functional and gene annotations based on the genomic positions of risk loci using 

FUMA [18], as the manually curated selection process of candidate genes might not capture the full 

biology of the risk architecture, as detailed in Supplementary Material and Methods.

Replication genotyping and meta-analysis

Top GWAS associated loci (n = 51; P<5×10−8) were validated in a combined European sample of 

3,893 cases and 2,829 diverticula-free controls based on colonoscopy (Table 1) using the most 

significant discovery variant or appropriate proxies when direct genotyping of a lead variant was not 

technical feasible. Logistic regression analyses were performed with PLINK [19], cohort-specific β 

effect estimates were combined with META [20]. For replication a nominal significance level of 
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P<0.05 and consistency in odds ratio direction between the discovery and replication stage was 

applied. Additional replication was achieved by including replication data presented by Maguire et al. 

[15] (Supplementary Table 4) from European samples (N=29,367) from the Michigan genome 

initiative (MGI) into a combined meta-analysis of all European replication cohorts (N=36,089 

samples). Details on the genotyping, quality control and meta-analysis are provided in the 

Supplementary Materials and Methods section.
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Table 2: GWAS and replication results: newly discovered and novel replicated risk loci

Results of GWAS analysis in diverticular disease. The column “Loci overlap” indicates an overlap of the respective risk loci to a risk locus recently identified in 

a GWAS by Maguire et al. [15]. The corresponding risk locus number is given as (Mag.#1-82), with bold print indicating prior attainment of genome-wide 

significance. Current GWAS risk loci are numbered descending by the P-value in the discovery analysis. Ranked discovery GWAS and replication tables are 

provided as Supplementary Table 5 and 6. Results are structured showing a) newly discovered diverticular disease risk loci with genome-wide significance 

replicated in European samples with diverticula-free controls (Table 1) and b) replicated in a meta-analysis of European samples of the current study and 

Michigan samples with population controls (MGI) and c) newly discovered diverticular disease risk loci currently lacking replication and d,e) showing novel 

replicated, previously discovered (Maguire et al.) diverticular disease risk loci replicated c) in European samples and d) replicated in a meta-analysis of European 

samples of the current study and Michigan samples with population controls (MGI). Bold gene symbols and bold P repl. indicate replication using an FDR of 0.1 

after Benjamin-Hochberg correction. The lead candidate gene annotation corresponds to the curated candidate gene(s), which selection is described in 

Supplementary Material and Methods and in Supplementary Table 3. Candidate genes that harbor variants in LD (r² >0.8) to the respective lead variant at 

genomic risk locus are indicated with “LD”, additional candidate genes with variants with P < 1.0 × 10-5 and r2 > 0.6 to independent significant lead variants are 

marked with an asterix(*). At intergenic annotated risk loci, if the lead variant or proxy variants are not mapping to a specific gene, closest neighboring candidate 

genes (<1 cM distance) are marked with (**). Candidate genes with eQTL variants affecting gene expression in sigmoid colon at FDR<0.05 or at nominal 

p_eQTL <0.051 are shown (data from GTExV7). Additional candidate genes mapped by 3D chromatin interactions are listed in Supplementary Table 2 for each 

risk locus. Rs-IDs of replication SNP which are proxies for the discovery variant are marked with an asterisk (*) and pairwise LD (r2) to the discovery variant is 

provided. SNPs genotyped by TaqMan rather than iPLEX are indicated by a pound (#) sign. Variants at the FAM155A-1 and FAM155A-2 (Table 3) were in low 

LD (r²=0.0043) and thus considered as individual loci. Odds ratios are based on the reference allele (RA). Reference allele frequencies (RAF%) are provide for 

cases/controls in the discovery GWAS. I2 measure of the percentage of between-cohort heterogeneity. The direction of obtained odds ratio (OR dir.) between 

discovery and replication analysis is the consitent for all reported loci. The positions of lead variants where annotated according to Genome Reference 

Consortium Human Build 37 patch release 13. Gene annotation are based on RefSeq curated gene predictions from NCBI; pseudogenes were excluded from 

annotation. 
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Replication 
Discovery GWAS in UK Biobank
diverticular disease (DD) 31917, 
controls (CON) 419135

in European samples 
diverticular disease (DD) 3893,
diverticula free controls (CON) 2829

with MGI
DD:4611
CON:31478

Locus Chr Position Lead variant Lead
variant 
location

Closest
gene

Candidate genes at risk locus:
Lead candidate gene(s) 

Loci
 overlap

P GWAS RA RAF
Ca|Co

rsID RA r2 P repl. OR (CI 95%) OR
dir.

I2 P repl.

a) newly discovered, replicated diverticular disease risk loci

27 15 76826003 rs2056544 intronic SCAPER LD, eQTL: SCAPER, LOC101929439 
(RP11-593F23.1), LD: EFTA, C15orf27, 
ISL2*, RP11-593F23.1*, RCN2*

Mag.#47 9.8 × 10-11 G 41.2|42.3 rs12443137* G 1 0.039 0.93 (0.86-1.00) same 43 0.006

29 18 20028737 rs9960286 intergenic CTAGE1  CTAGE1** Mag.#44 2.3 × 10-10 G 25.4|24.4 rs2009593* G 0.97 0.002 1.14 (1.05-1.24) same 0 0.001

37 22 40695172 rs6001870 intronic TNRC6B LD: TNRC6B Mag.#82 4.3 × 10-9 C 36.1|35.1 rs5995842*# G 0.98 0.025 1.09 (1.01-1.18) same 2 0.039

40 4 15386383 rs4132788 intronic C1QTNF7 LD, eQTL: C1QTNF7 1, LD: RP11-
665G4.1

Mag.#53 1.1 × 10-8 T 27.0|26.0 rs4515160*# G 1 0.019 1.10 (1.02-1.20) same 35 0.046

49 15 68238462 rs387505 intergenic PIAS1 LD, eQTL: PIAS11**, LD: 
AC009292.2**, SKOR1**

Mag.#54 2.9 × 10-8 T 44.9|43.8 rs387505# T 1 0.009 1.10 (1.02-1.18) same 0 0.017

b) newly discovered, replicated diverticular disease risk loci – replicated in a meta-analysis with data from MGI

41 5 122329729rs34126945 intronic SNX24 LD: SNX24, PPIC,  SNX2, AC008669.1* Mag.#41 1.2 × 10-8 G 32.3|33.5 rs34126945 G 1 0.079 0.93 (0.86-1.01) same 47 0.004

c) newly discovered diverticular disease risk loci – currently not replicated

35 17 76856966 rs1973232 intronic TIMP2 LD: TIMP2 Mag.#48 2.9 × 10-9 G 19.3|18.5 rs9909232 A 0.92 0.764 1.01 (0.92-1.11) same 0 0.401

38 20 37493576 rs208814 intronic PPP1R16B LD: PPP1R16B,  eQTL: FAM83D Mag.#75 9.0 × 10-9 A 36.6|35.5 rs208814# A 1 0.637 1.02 (0.94-1.10) same 0 0.461

42 6 32609965 rs7990 exon HLA-DQA1 LD: HLA-DQA1, BTNL2*, HLA-DRB9*, 
BTNL2*
eQTL: HLA-DQA2, HLA-DRB1, HLA-
DOB, BAG6; 

N/A 1.4 × 10-8 A 10.5|9.9 rs2395163*# C 0.25 0.739 1.02 (0.92-1.12) same 59 N/A

43 10 124168942rs139760870intronic PLEKHA1 LD: PLEKHA1, HTRA1*, BTBD16* Mag.#52 1.4 × 10-8 A 5.4|5.9 rs117811194* A 1 0.318 0.91 (0.76-1.09) same 0 0.181

47 2 33361425 rs6714546 intronic LTBP1 LD, eQTL: LTBP11 Mag.#52 2.4 × 10-8 A 30.1|29.1 rs6714546# A 1 0.552 1.03 (0.94-1.11) same 0 N/A

48 13 33727605 rs1473813 intronic STARD13 LD: STARD13 Mag.#64 2.9 × 10-8 A 38.0|39.2 rs1473813# A 1 0.507 0.98 (0.90-1.05) same 34 0.276

d) novel replicated, previously discovered (Maguire et al.) diverticular disease risk loci
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7 19 38738130 rs4802297 intergenic PPP1R14A LD, eQTL: PPP1R14A, C19orf33, LD: 
SPINT2

Mag.#6 2.0 × 10-16 G 49.8|48.2 rs12976534*# G 1 0.029 1.08 (1.01-1.17) same 15 0.004

9 7 102474903rs72221075 intronic FBXL13 LD: FBXL13, FAM185A, LRRC17 Mag.#8 7.7 × 10-15 (-) 35.2|33.6 rs10257317*# C 0.93 3.9 × 10-4 1.14 (1.06-1.23) same 0 9.23 × 10-4

10 13 107897823rs9520339 intronic FAM155A_1 LD: FAM155A Mag.#10 1.1 × 10-14 T 22.7|24.0 rs9520344*# A 1 0.018 0.90 (0.83-0.98) same 0 0.010

14 8 120456193rs60869342 intergenic NOV LD, eQTL: NOV,  LD: ENPP2* Mag.#21 4.4 × 10-13 T 23.0|24.2 rs1381335*# T 0.61 3.0 × 10-4 0.85 (0.78-0.93) same 21 0.001

15 21 47399453 rs111316530intergenic COL6A1 LD: COL6A1, COL6A2*, AL592528.1,  
PCBP3*, AL133493.2*, FTCD*

Mag.#14 4.8 × 10-13 (-) 15.5|14.5 rs7281388* A 0.96 0.009 1.16 (1.04-1.30) same 0 0.031

17 16 86233413 rs2280028 intergenic LINC01082 LD: LINC01082 Mag.#15 4.1 × 10-12 A 13.2|14.2 rs2280028 A 1 0.019 0.88 (0.79-0.98) same 0 0.004

19 6 98364895 rs9482094 intronic LOC101927314 LD: LOC101927314 (RP11-436D23.1) Mag.#19 1.6 × 10-11 A 35.9|37.2 rs4839715*# A 1 0.022 0.91 (0.85-0.99) same 0 0.010

20 3 151074941rs3732760 intronic P2RY12 LD: P2RY12, P2RY14,  MED12L, 
GPR87, P2RY13*

Mag.#16 1.7 × 10-11 C 38.7|37.3 rs3732760 C 1 0.026 1.09 (1.01-1.18) same 0 0.049

22 11 15065235 rs575909118intergenic CALCB LD: CALCB, CALCA Mag.#25 2.8 × 10-11 T 28.6|27.5 rs12293178* A 0.95 0.020 1.10 (1.02-1.19) same 27 0.022

23 1 151970629rs61814883 intergenic S100A10 LD, eQTL: S100A10, THEM4 Mag.#22 3.2 × 10-11 A 28.6|29.9 rs61814883 A 1 0.003 0.89 (0.82-0.96) same 0 0.030

25 15 40649609 rs71472433 intergenic DISP2 LD, eQTL: PHGR11, DISP2 Mag.#17 6.1 × 10-11 C 17.6|16.6 rs71472433 C 1 0.014 1.14 (1.03-1.27) same 0 0.038

31 10 18440444 rs1888693 intronic CACNB2 LD: CACNB2 Mag.#29 2.7 × 10-10 A 33.2|34.3 rs1888693 A 1 0.003 0.89 (0.82-0.96) same 0 0.006

45 1 221066373rs2784255 intergenic HLX LD: HLX, HLX-AS1*, eQTL: 
LINC01352 (RP11-295M18.2)

Mag.#34 2.0 × 10-8 C 47.3|48.5 rs2784255 C 1 0.023 0.92 (0.85-0.99) same 0 0.041

46 3 5843836 rs7624168 intergenic EDEM1 neighboring genes: EDEM1**, GRM7, 
GRM7-AS3

Mag.#39 2.3 × 10-8 A 21.5|22.6 rs4684509* G 1 0.036 0.91 (0.83-0.99) same 8 0.389

e) novel replicated, previously discovered (Maguire et al.) diverticular disease risk loci – replicated in a meta-analysis with data from MGI

5 2 56093204 rs1802575 3´UTR EFEMP1 LD: EFEMP1, eQTL: RPS27A Mag.#5 3.7 × 10-19 C 14.5|13.3 rs1802575 C 1 0.111 1.10 (0.98-1.25) same 47 0.030

12 1 219294570rs61823192 intronic LYPLAL1-AS1 LD: LYPLAL1-AS1 (RP11-135J2.4), 
LYPLAL1

Mag.#9 4.6 × 10-14 T 2.5|3.0 rs61823192# T 1 0.082 0.80 (0.62-1.03) same 63 0.003

13 10 101391169rs7098322 intergenic SLC25A28 LD: SLC25A28, COX15, ENTPD7, 
CUTC

Mag.#11 6.0 × 10-14 C 13.4|12.5 rs7091203* A 1 0.076 1.11 (0.99-1.25) same 33 0.043

21 5 64295363 rs10471645 intronic CWC27 LD: CWC27 Mag.#28 2.1 × 10-11 T 17.5|16.5 rs2968205* A 1 0.579 1.03 (0.93-1.14) same 0 0.046

30 17 42312778 rs8074740 intergenic SLC4A1 LD: UBTF, ASB16, C17orf53, TMUB2, 
ATXN7L3,  SLC4A1, AC003102.1,  
HDAC5; eQTL: ASB16-AS1

Mag.#23 2.4 × 10-10 A 33.4|32.1 rs4793086* C 0.98 0.077 1.07 (0.99-1.16) same 38 0.019
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Table 3: GWAS and replication results: confirmed, previously replicated risk loci and currently not replicated risk loci

Results of GWAS analysis in diverticular disease. Overlap of risk loci to a previous GWAS by Maguire et al. [15] and Sigurdsson et al. [14] with the 

corresponding risk locus is indicated. Current GWAS risk loci are numbered descending by the P-value in the discovery analysis. Results are structured by 

showing a) previously (Maguire et al.; Sigurdsson et al.) replicated diverticular disease risk loci replicated (confirmed) in European samples with diverticula-free 

controls (by colonoscopy, Table 1) of the current study or b) confirmed in a meta-analysis of European samples of the current study and Michigan samples with 

population controls (MGI) and c) previously discovered (Maguire et al.) diverticular disease risk loci lacking replication. The direction of obtained odds ratio (OR 

dir.) between discovery and replication analysis is the same for all loci. Table headings are identical to those in Table 2.

Replication
Discovery GWAS in UK Biobank 
diverticular disease (DD) 31917, 
controls (CON) 419135

in European samples 
diverticular disease (DD) 3893,
diverticula free controls 2829

with MGI
DD:4611
CON:31478

Locus Chr Position Lead variant Lead
variant 
location

Closest
gene

Candidate genes at risk locus:
Lead candidate gene(s)

Loci
 overlap

P GWAS RA RAF
Ca|Co

rsID RA r2 P repl. OR (CI 95%) OR
dir.

I2 P repl.

a) confirmed, previously (Maguire et al.; Sigurdsson et al.) replicated diverticular disease risk loci

1 2 144314247rs6734367 intronic ARHGAP15 LD: ARHGAP15 Mag.#1; 
Sigur.#1

4.4 × 10-55 T 20.1|17.8 rs6734367# T 1 1.5 × 10-7 1.29 (1.17-1.42) same 0 1.11 × 10-7

3 10 25819228 rs7077800 intronic GPR158 LD, eQTL: GPR158 Mag.#4 1.7 × 10-22 T 45.7|47.6 rs7086249* C 1 0.003 0.90 (0.83-0.96) same 0 7.24 × 10-6

4 3 15502681 rs7609897 intronic COLQ LD:  COLQ, METTL6, HACL1, EAF1* Mag.#3; 
Sigur.# 2

5.6 × 10-22 T 19.9|21.4 rs7609897# T 1 0.009 0.89 (0.81-0.97) same 24 2.81 × 10-4

8 9 136149229rs505922 intronic ABO LD, eQTL: ABO Mag.#13 4.5 × 10-15 C 30.2|31.8 rs687621* G 0.96 0.011 0.91 (0.84-0.98) same 0 3.63 × 10-5

11 13 108215404rs9555371 intronic FAM155A_2* LD: FAM155A Mag.#10
Sigur.#3

1.2 × 10-13 G 18.7|19.8 rs9555371# G 1 3.5 × 10-7 0.79 (0.72-0.87) same 55 1.30 × 10-7

16 7 73427600 rs112609918intergenic ELN LD: ELN Mag.#27 2.9 × 10-12 T 5.2|4.6 rs112609918* T 1 0.004 1.39 (1.11-1.74) same 0 0.011
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32 4 95821419 rs3775010 intronic BMPR1B LD: BMPR1B Mag.#32 6.8 × 10-10 C 37.0|35.8 rs972409*# T 1 0.021 1.10 (1.01-1.19) same 0 7.95 × 10-5

36 11 70005374 rs875107 intronic ANO1 LD: ANO1, RP11-805J14.3 Mag.#26 3.7 × 10-9 C 49.6|48.2 rs2276068*# C 1 0.001 1.14 (1.05-1.23) same 0 3.13 × 10-4

b) confirmed, previously replicated (Maguire et al.)  diverticular disease risk loci  – replicated in a meta-analysis with data from MGI

2 1 234352899rs4333882 intronic SLC35F3 LD: SLC35F3 Mag.#2 2.5 × 10-24 G 20.7|19.2 rs4333882 G 1 0.106 1.08 (0.98-1.17) same 28 0.035

28 7 96078564 rs3113037 intergenic SEM1 LD:  SEM1, SHFM1* Mag.#24 1.0 × 10-11 T 24.4|23.2 rs3113037 T 1 0.070 1.08 (0.99-1.18) same 50 0.002

c) previously discovered (Maguire et al.) diverticular disease risk loci with genome-wide significance – currently not replicated

6 11 27748493 rs17309930 intergenic AC103796.1 LD: BDNF, BDNF-AS, LIN7C Mag.#7 6.8 × 10-17 A 19.5|20.8 rs962369*# C 0.50 0.335 0.96 (0.88-1.04) same 0 0.292

18 16 84857378 rs2131755 intronic CRISPLD2 LD: CRISPLD2 Mag.#18 1.5 × 10-11 G 42.1|40.7 rs2131755 G 1 0.095 1.07 (0.99-1.15) same 0 0.085

24 5 37772780 rs10472291 intergenic WDR70 eQTL: GDNF**1; LD: WDR70 Mag.#12 3.8 × 10-11 A 34.6|33.2 rs10472291# A 1 0.143 1.06 (0.98-1.14) same 33 0.263

33 8 122259074rs4871180 intergenic HAS2 neighboring genes: HAS2**, SNTB1** Mag.#30 1.1 × 10-9 T 25.6|24.4 rs4871180 T 1 0.364 1.04 (0.96-1.13) same 4 0.308

34 9 78739440 rs147496465intronic PCSK5 LD: PCSK5 Mag.#35 1.2 × 10-9 (-) 45.6|46.9 rs7035893* C 0.98 0.818 0.99 (0.92-1.07) same 31 0.808

39 2 18937283 rs62125298 intergenic NT5C1B neighboring genes: NT5C1B**, 
RDH14**

Mag.#37 1.0 × 10-8 T 16.1|17.0 rs4832619*# G 1 0.714 0.98 (0.90-1.08) same 15 0.307

51 8 116588546rs2049865 intronic TRPS1 LD: TRPS1 Mag.#31 4.9 × 10-8 C 41.0|42.1 rs6469600*# C 1 0.550 0.98 (0.91-1.05) same 20 0.356
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mRNA expression analysis and immunohistochemistry 

Colonic tissue samples were obtained during surgical resection. Characteristics of patients used for 

RT-PCR are provided in Supplementary Table 7. RT-primer sequences are provided in Supplementary 

Table 8. Layer- and disease specific expression analysis results are shown in Supplementary Table 9 

and 10. Fluorescence immunohistochemistry was performed as previously described [21]. Details on 

sample processing are provided in the Supplementary Materials and Methods section. 

Gene set and pathway analysis

We used two gene set and pathway analysis approaches (MSigDB [22] and VEGAS2pathway [23]) to 

determine if the polygenic signal measured in the diverticular disease associated genes clustered in 

specific biological pathways. Lead candidate genes (Table 2, 3) were tested for overrepresentation 

with gene sets curated in MSigDB6.1. Results are provided in Supplementary Table 11 and 12. 

VEGAS2pathway results are provided in Supplementary Table 13 and 14.

Enrichment analyses in cell lines and primary tissues.

We used GARFIELD to identify significant enrichment patterns in our GWAS findings with 

regulatory or functional annotations in cell lines and primary tissue derived from ENCODE and 

Roadmap epigenomics data (Supplementary Table 15). GWAS SNPs were pruned (LD r2 > 0.1) and 

then annotated based on functional information overlap. Further details are provided in the 

Supplementary Methods section. 
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RESULTS

Genome-wide association study and validation of the loci 

We observed genome-wide significant association (P<5×10−8) with diverticular disease for 2,568 

variants mapping to 51 independent genomic loci (Supplementary Table 1), of which 12 had not been 

previously discovered (Table 2). The resulting Manhattan plot is shown in Figure 1A. The genomic 

inflation factor (λGC) was 1.199 and after LD score regression, the intercept was 1.02 – an acceptable 

level for this size of study (QQ Plot in Supplementary Figure 1) [24]. The 51 loci were validated in a 

combined European sample of 3,893 cases and 2,829 diverticula-free controls based on colonoscopy 

(Table 1). The direction of genotypic effect between discovery and replication samples was consistent 

for 48 out of 51 loci (93.8%; P for binominal test = 1×10−9) (Supplementary Table 5) and odds ratios 

were strongly correlated between both analyses (r = 0.87; P= 1.59 × 10−13, Supplementary Figure 2). 

Nominal replication significance (P<0.05) and a consistent direction of effect between the two cohorts 

were observed for 27 loci within European colonoscopy cohorts (Supplementary Table 6). Additional 

replication was observed for further 8 loci in a combined meta-analysis of European colonoscopy 

cohorts with a European population cohort from Michigan (Table 2, 3). 36 out of 48 identified risk 

loci have been previously reported [15] with genome-wide significant association (Table 2, 3 and 

Supplementary Table 4). All previously replicated risk loci for diverticular disease (ARHGAP15, 

FAM155A, COLQ) and (GPR158, ABO, ANO1/FADD, ELN, BMPR1B, SLC35F3, SEM1/SHFM1) 

were identified both in the current GWAS and replication analyses with similar odds ratios to those 

reported by Sigurdsson et al. [14] and Maguire et al.[15] (Table 3). The most significant novel risk 

variant rs9960286 is located near CTAGE1 (Cutaneous T Cell Lymphoma-Associated Antigen 1) with 

a p-value of 2.3×10−10 and 0.002 (ORallelic=1.14 [1.05-1.24]) in the replication analysis. The most 

significant novel replicated risk variant rs60869342 is located in NOV (Nephroblastoma 

Overexpressed) with a p-value of 4.4×10−13 and 0.0003 (ORallelic=0.85 [0.78-0.93]) in the replication 

analysis. Rs1381335 (r²=0.81 to rs60869342) in NOV was reported previously by Maguire et al. [15] 

as risk locus # 21, however, without formal replication.
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Post hoc analysis of diverticulitis risk

The 27 replicating loci within European colonoscopy cohorts were evaluated for their relative genetic 

impact on diverticulitis (N=1167) and uncomplicated diverticulosis (N=1756) in a subset of the 

replication samples with the respective subphenotype information (Supplementary Table 16). The 

majority of loci showed similar odds ratios for diverticulosis and diverticulitis indicating relevance of 

the underlying variants for both phenotypes (Figure 1B, Supplementary Table 17). Loci that show a 

similar odds ratio in this analysis provide not evidence for a specific diverticulitis risk. Based on a 

95% confidence interval, four loci showed stronger effects for diverticulitis, namely variants at 

PHGR1 (OR 1.32, 95% CI 1.12-1.56), FAM155A-2 (OR 1.21, 95% CI 1.04-1.42), CALCB (OR 1.17, 

95% CI 1.03-1.33) and the S100A10 (OR 1.17, 95% CI 1.03-1.33) locus. 

Real-time PCR and immunohistochemistry analysis of curated candidate genes

We next selected candidate genes for further experimental analysis as detailed for each locus in 

Supplementary Table 3. Except for locus #25 (Supplementary Table 1, (PHGR1 and DISP2), a single 

curated candidate gene “lead candidate gene” was assigned to each locus, based on local LD structure 

and supporting evidence from regulatory elements (eQTL and chromatin interaction). To provide a 

first indication of the relevant microanatomical colonic compartment relevant for disease, transcripts 

encoded at the top 20 replicating loci (Supplementary Table 6) were analyzed by quantitative real-time 

PCR in RNA preparations of the mucosal, submucosal and muscular layer from seven control patients 

(Supplementary Tables 7A, 8). The majority of transcripts (13 out 18 at p<0.05) showed layer-specific 

expression patterns indicating the relevance of this higher histotopographical resolution as compared 

to total colonic expression (Supplementary Table 9, Supplementary Figure 3). A potential disease-

specific regulation of transcripts within each the mucosal, submucosal and muscular layer was 

analyzed in 20 controls, 13 diverticulosis and 21 diverticulitis patients (Supplementary Table 7b). A 

trend for upregulation of S100A10 (nominal p=0.003) in the submucosal layer in diverticulitis patients 

was noted, while overall a primary and strong disease-specific differential expression finding was not 

observed (Supplementary Table 10 and Supplementary Figure 4). To obtain further spatial resolution, 

the localization of expressed protein at selected novel loci with expression in all layers (COL6A1), 
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predominant expression in the mucosa (PHGR1), submucosa (GPR158, EFEMP1) and submucosa and 

muscle layer (ELN, CRISPDL2) was investigated by immunohistochemistry (Figure 2B-E). As 

epitomized for instance for GPR158, which localizes predominantly to enteric ganglia and mucosa or 

elastin (ELN), which localizes to the lamina propria, vessel walls and muscle, significant additional 

information is gained by this higher anatomical resolution.

Overlap with inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and monogenic 

syndromes

There was no overlap of the 2,568 genome-wide significant variants (P<5×10−8) for diverticular 

disease with the 634 reported risk variants (p<9×10−6) according to the GWAS catalogue [25] for 

inflammatory bowel disease (IBD), Crohn´s disease (CD) and ulcerative colitis (UC). Also, there was 

no overlap of the lead candidate genes at the 48 risk loci with in the GWAS catalogue reported risk 

genes for IBD, CD and UC [26], except for HLA-DQA1. However, the IBD lead variant rs6927022 at 

the HLA-DQA1 locus was not in LD to the diverticular disease associated lead SNPs according to 

FUMA, thus pointing to a non-overlapping genetic risk structure. The percentage of individuals 

diagnosed with IBS among GWAS cases was 7.6% as compared to 3.1% among controls not 

diagnosed with diverticular disease. None of the 51 genome-wide significant lead variants for 

diverticular disease was significantly associated with the IBS phenotype in the UK Biobank (15,401 

diagnoses of IBS vs. 406,175 controls without a diagnosis of diverticular disease and without a 

diagnosis of IBS, data not shown). In contrast, mutations in 12 of the lead candidate genes for 

diverticular disease are reported in OMIM [27] as autosomal dominant or recessive causative factors 

for 18 monogenic syndromes (Supplementary Table 18). Many of these genes fall into the broad 

categories of neuromuscular syndromes, connective tissue stability disorders and morphogenesis traits 

and are considered in depth in the Discussion. A hypothesis-free analysis of the overlap of the 

genomic risk locations for diverticular disease within 500 kb distance to the lead variant is provided in 

Supplementary Table 19.
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Functional implications of curated candidate gene signature

Consistent with the overlap with monogenic syndromes, a gene set enrichment analysis (GSEA / 

MSigDB) [22] using the 48 lead candidate genes revealed significant enrichments for neuromuscular 

mechanisms, connective tissue strength and morphogenesis (Supplementary Table 11, Supplementary 

Figure 5) and significant overlap with extracellular matrix-associated proteins of the murine colon 

(Supplementary Table 12).

Functional implications based on in silico analysis of the global diverticulosis risk signature

We performed additional hypothesis-free functional and gene annotations based on the genomic 

positions of risk loci using FUMA [18] as the curated candidate genes might not capture the full 

biology of the risk architecture. Positional gene mapping aligned SNPs to 176 genes, eQTL gene 

mapping matched cis-eQTL SNPs to 269 genes whose expression levels they influence (snp-gene 

pairs with FDR<0.05), with 21 genes specifically affected in sigmoid colon (Supplementary Table 

20). Chromatin interaction mapping annotated SNPs to 977 genes based on 3D DNA–DNA 

interactions. This resulted in 1080 unique mapped genes (Supplementary Table 2 and 

Supplementary Figure 6). The majority of these mapped genes were protein coding genes (61%), 

while 39% were RNA and pseudogenes. A graphical representation of all mapped genes is given as 

circular plots for each chromosome carrying a risk locus in Supplementary Figure 7.

Using a broad definition of candidate variants, namely a p-value cut-off of 1.0×10-5 and r2≥0.6 to 

an independent significant SNP at the diverticular disease risk locus, most variants were located 

either intronic or intergenic (Supplementary Table 1). 18 variants, of which 9 were genome-wide 

significant, constituted exonic nonsynonymous variants (Supplementary Figure 8, Supplementary 

Table 17. Based on the Combined Annotation-Dependent Depletion (CADD) score, the most likely 

variants with functional consequences were rs1042917 (COL6A2) and rs17855988 (ELN) with 

CADD scores of 25.8 and 23.2, respectively (Supplementary Table 21). Detailed fine-mapping plots 

of each risk locus are provided in Supplementary Figure 9 showing local LD structure to the lead 

variant and annotation of variants by potential pathogenic and functional consequence assessed by 
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CADD score and Regulome score and presences of cis-eQTL variants in sigmoid colon tissue. At 

genomic risk locus #15 (in Table 2), our annotated candidate gene was COL6A1 with the lead SNP 

located intronic to the gene, instead of COL6A2 as implicated by the functional effect of the 

candidate SNP rs1042917. The proteins synthesized by both genes are subunits of collagen VI, 

thereby pointing to a consistent functional mechanism. The identification of the mechanistically 

causal variants at each risk locus will, however, require further experimentation in model organisms 

and human tissue.

Interestingly, 94.6% (4738 of 5007 SNPs) of candidate SNPs were located at sites of open 

chromatin (Supplementary Figure 10). Because the majority of lead variants were located in non-

coding regions and thus not directly amendable to functional interpretation, we utilized GARFIELD to 

analyse enrichment statistics for the diverticular disease GWAS risk dataset with cell-specific coding, 

non-coding and functional elements from the GENCODE, ENCODE and Roadmap projects [18]. A 

graphical summary of the enrichment of DNAse I hypersensitive sites is provided in Supplementary 

Figure 11. As reported in detail in Supplementary Table 15, regulatory elements from fibroblasts, fetal 

muscle and brain were particularly enriched in the genetic risk structure of diverticular disease. To 

further mine the genomic locations for functional implications, we performed a VEGAS2Pathway 

analysis [23], which pointed to processes involved in cell and organ differentiation and extracellular 

matrix among the top five identified pathways (Supplementary Table 13, 14). 
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DISCUSSION

In this study we report the largest and most detailed genome-wide analysis to date for diverticular 

disease. We discovered 48 risk loci with genome-wide significance and consistent odds ratio in a 

replication sample. 27 of these loci replicate at a nominal significance level of p<0.05. Among these 

loci, 12 are novel risk loci for diverticular disease and 5 of the novel loci were also replicated in a 

European clinical cohort with detailed phenotyping and colonoscopy data for all controls. The three 

previously known risk loci [14] ARHGAP15, COLQ and FAM155A are among the validated loci and 

support the robustness of the phenotype and analysis on both the previous study and our analysis. A 

recent study by Maguire et al. [15], who analyzed a smaller UK-Biobank data set (n = 409,728 

individuals) compared to the current study (n = 451,099) identified 40 loci with genome-wide 

significance using GWAS results publicly available from the Roslin Gene Atlas. There was an overlap 

for 36 out of 48 identified loci with genome-wide significance between the studies. Maguire et al. 

were able to replicate 8 loci in an independent European population cohort from Michigan. We 

replicated further 8 risk loci in a meta-analysis approach integrating data from this Michigan cohort. 

The current study thus increases the number of replicated susceptibility loci for diverticular disease to 

35, of which 25 loci had previously not been replicated. A limitation of the discovery study is that 

controls were 4 years younger than the cases. The modest lower age of controls increases the chance to 

include yet undiagnosed cases in the control sample thereby potentially reducing the statistical power 

of the GWAS analysis. We based the functional interpretation of the GWAS results both on curated 

candidate genes and on more inclusive automated analysis tools such as GARFIELD, VEGAS2 and 

FUMA. Both analysis strategies point to diverticular disease as foremost a disorder of intestinal 

neuromuscular function and impaired connective fiber support. Many of the risk genes implicated in 

polygenic diverticular disease also have been implicated in monogenic neuromuscular and connective 

tissue disorders, as will be detailed below, which was consistent with the pathway analyses. These 

findings provide a specific molecular basis for the previously suggested mechanisms of structural 

weakness of the intestinal wall and dysregulated intestinal motility. Additional risk loci point towards 

a relevance of intestinal epithelial and vascular function, while a prominent immune signature was not 

apparent in the data. 
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Neuromuscular mechanisms

A number of candidate genes point towards a dysfunction of the enteric nervous system and the 

neuromuscular junction in the large bowel. Mutations in COLQ cause myasthenic congenital 

syndrome and the gene product anchors asymmetric acetylcholine (ACh) esterase in the basal lamina 

of the motoric endplate [28]. COL6A1 encodes the alpha 1 subunit of collagen VI (ColVI) [29]. ColVI 

is required for the structural and functional integrity of the neuromuscular junction [30]. Mutations in 

glial cell line-derived neurotrophic factor (GDNF) have been suggested to act in concert with RET 

mutations to produce aganglionic megacolon (Hirschsprung´s disease), which is characterized by 

congenital absence of intrinsic ganglion cells in the myenteric and submucosal plexuses of the 

gastrointestinal tract [31]. Impaired GDNF function has been shown at gene and protein level not only 

to occur in diverticular disease but also during early stages of diverticula formation [32]. Plausible 

links to neuronal physiology are also evident for GPR158, a G-protein coupled orphan receptor [33] 

and brain derived neurotropic factor (BDNF).

Three identified genes point to calcium sensitization and calcium-dependent signaling in 

gastrointestinal smooth muscle [34]: Inhibiting myosin light chain phosphatase activity with protein 

kinase C-potentiated phosphatase inhibitor protein-17 kDa (CPI-17, PPP1R14A) is considered one of 

the primary mechanisms underlying myofilament Ca2+ sensitization [35]. Further, for ANO1 

(Anoctamin 1), a Calcium activated chloride channel, a role of in mediating cholinergic 

neurotransmission in the murine gastric fundus has been shown [36]. CACNB2 (Cav1.2) encodes for 

the beta-2 subunit of a calcium-dependent calcium channel. The expression of Cav1.2 channels in 

colonic smooth muscle cells is key to colonic motility, decreased in colonic inflammation and a 

potential treatment target for motility disorders [37]. Taken together these data give further evidence 

for disturbed enteric neuromuscular functions as a relevant mechanism of diverticular disease [2,38].
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Neuromuscular development

HLX is a homeobox transcription factor gene conserved across species [27]. Mutations in HLX have 

been observed in two fetuses with congenital diaphragmatic hernia and HLX homozygous null mice 

have a short bowel and reduced muscle cells in the diaphragm [39,40]. HLX homozygous null animals 

exhibiting abnormal developmental of the enteric nervous system [39]. 

Connective tissue function and morphogenesis

A second common functional theme of the identified risk loci is connective fiber function based in 

pathway, molecular function and syndrome associations. For instance, elastin (ELN) encodes a protein 

that is one of the two components of elastic fibers which confer elasticity to organs and tissues. 

Mutations in ELN cause autosomal dominant cutis laxa [41]. Mutations in bone morphogenetic protein 

receptor type 1B (BMPR1B) underlie autosomal recessive Hunter-Thompson [42] type of 

acromesomelic dysplasia. EGF Containing Fibulin Extracellular Matrix Protein 1 (EFEMP1) has been 

associated with polygenic susceptibility to inguinal hernia [43] and varicose veins [44]. EFEMP1 

encodes fibulin-3, an extracellular matrix protein. Efemp1(-/-) mice developed multiple large hernias 

including inguinal hernias. Histological analysis of Efemp1(-/-) mice revealed a marked reduction of 

elastic fibers in fascia [45]. The fibulin family of protein has been associated with further connective 

tissue disorders. Mutations in fibulin-5 have been identified in patients with cutis laxa and mutations 

in fibrillin 1 cause Marfan syndrome. Interestingly, the N-terminal region of fibrillin-1 mediates a 

bipartite interaction with LTBP1 [46]. Variants in Cysteine Rich Secretory Protein LCCL Domain 

Containing 2 (CRISPLD2) have been associated with non-syndromic orofacial cleft [47,48]. A further 

example without association to genetic syndromes includes tissue inhibitor of metalloproteinases 2 

(TIMP2), a peptidase involved in degradation of the extracellular matrix. The S100A10 protein 

regulates the remodelling of the extracellular matrix through plasmin-dependent activation of MMP-9 

and plasminogen-dependent macrophage tissue invasion [49,50].
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Mesenteric vascular function

Diverticula occur predominantly at sites of preformed weakness in the intestinal wall, namely at sites 

of vascular entry through the muscle layer. In the interaction between muscular layer and the vessel, 

vascular biology and contractility may play an additional role. Calcitonin related polypeptide beta 

(CALCB), which plays a role in mesenteric vascular smooth muscle function [51] and protein 

phosphatase 1 regulatory subunit 16B (PPP1R16B), which regulates endothelial cell function [52] 

may provide a potential mechanistic basis for altered vascular biology at these entry points. 

Epithelial function and risk of diverticulitis

Interestingly, only one of the identified candidate genes – namely PHGR1 – has a clear and exclusive 

link to epithelial function. Proline-, histidine-, and glycine-rich protein 1 mRNA and protein are found 

to be expressed specifically in epithelial cells of intestinal mucosa as shown previously [53] and in our 

immunohistochemistry analyses in Figure 2 with the highest expression in the most mature and 

differentiated cells. PHGR1 showed the strongest effect size (odds ratio 1.3 in comparison to 

uncomplicated diverticulosis) among the few loci associated with a higher risk of diverticulitis 

suggesting that for this complication of diverticular disease, indeed epithelial cell function may play a 

key role. 

In summary, the novel genetic risk signature indicates that diverticular disease is a disorder of 

impaired intestinal neuromuscular function, impaired mesenteric vascular smooth muscle function and 

of impaired connective fiber support. We observe an intriguing convergence of previous monogenic 

findings with the polygenic risk signature of diverticular disease through the overlap with syndromic 

neuromuscular, connective tissue and morphogenesis disorders. Through the phenotype and the 

established cell biology of the Mendelian syndromes, inference of the functional implication of the 

novel risk loci for instance at the motoric end plate is possible. The manifestation of the inflammatory 

complication – diverticulitis – in turn may be triggered by epithelial dysfunction in the context of 

altered colon anatomy. These findings provide a deeper understanding of colonic biology and disease 
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pathophysiology and open a new path for a functional dissection and therapeutic tackling of this 

common disease. 
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FIGURES

Figure 1: GWAS results

Principal findings of genetic analyses: Panel A: Manhattan plot of genome-wide association results 

for diverticular disease. P values (-log10) are shown for SNPs that passed quality control. The genome-

wide significance threshold (5×10−8) is shown as a black line. Gene names for loci with consistent 

effect and a known gene annotation are included in the panel. Gene names for newly discovered loci 

(as detailed in Table 2) are printed in bold.  Panel B: Forrest plot with 95% confidence intervals of the 

relative impact of the 27 replicating variants on diverticulitis versus diverticulosis risk. ORs greater 

than one indicate a higher impact on diverticulitis risk. The respective reference allele is provided in 

Supplementary Table 17. Panel C: Locus plot for diverticular disease risk locus GPR158. The −log10 

(P values, mixed model association test) are plotted against SNP genomic position based on NCBI 

Build 37, with the names and location of nearest genes shown at the bottom. The variant with the 

lowest P value (lead variant) in the discovery analysis in the region is marked by a purple diamond. 

SNPs are coloured to reflect correlation with the most significant SNP, with red denoting the highest 

LD (r2 >0.8) with the lead SNP. The association signal is confined to a single association peak located 

intronic in GPR158. Estimated recombination rates from the 1000 Genomes Project (hg19/genomes 

March 2012 release, EUR population) are plotted in blue to reflect the local LD structure. Gene 

annotations were obtained from the UCSC Genome Browser. The plot was generated using 

LocusZoom. Panel D: Locus plot for diverticular disease risk locus FAM155A: The variant with the 

lowest P value in the FAM155A-1 region is marked by a purple diamond. For the FAM155A gene, two 

independent association signals (termed  FAM155A-1 and FAM155A-2) with low pairwise LD 

(r2=0.0043) were considered as individual loci. SNPs are coloured to reflect correlation with the most 

significant SNP at FAM155A-1, with red denoting the highest LD (r2 >0.8) and dark blue the lowest 

LD (r2 < 0.2) with the lead SNP. 

Figure 2: Expression of risk genes

Layer-specific expression pattern of novel risk genes for diverticular disease. Panel A: Normalized 

mRNA expression in the mucosal (left, green), submucosal (middle, red) and muscular (blue, right) 
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35

layers in control colon (n=7). Panels B-E: Fluorescence immunohistochemical analysis of expression 

in control colon in the mucosa (B), submucosal (C), muscular layer (D) and in myenteric ganglia (E). 

The respective target gene antibody is labelled in red, with DAPI (blue) for nuclear staining and alpha 

smooth muscle actin (smooth muscle marker, C, D) and Protein Gene Product 9.5 (neuronal marker, 

E) in green. It is evident, that risk genes show different expression patterns within the colonic wall and 

are localized to specific structures such as blood vessels, lamina propria, epithelium, smooth muscle or 

nerve cells. Scale bars are added in white (50 µm).
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Figure 2: Expression of risk genes 
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SUPPLEMENTARY MATERIALS AND METHODS 

Phenotype definition in the UK Biobank 

An individual was classified as a diverticular disease case if they matched hospital-bases ICD9 or 

ICD10 coding (562 and K57 respectively) for primary (n = 16,560), secondary (n = 13,375) and self-

reported diverticular disease diagnosis (n = 1,982; information collected and placed within the coding 

tree during the verbal interview at the assessment clinic by a trained nurse) in the UK Biobank dataset. 

Control individuals where classified on the basis of absence of a diverticular disease diagnosis (n = 

419,135). We did not have complete information on the proportion of diverticulitis patients in the UK 

Biobank as depth of ICD coding was insufficient to differentiate disease subtype diverticulosis (i.e. 

diverticular disease without inflammation) from diverticulitis. The majority of cases had diagnosis 

K57.3 coding for both disease subtypes diverticulosis without perforation or abscess (K57.30, K57.31) 

and diverticulitis without perforation or abscess (K57.32, K57.33) not allowing this differentiation at 

available coding depth K57.3. 

 

Recruitment and phenotyping of the German replication samples 

The Northern and Western German samples were phenotyped as follows: Controls and cases with 

uncomplicated diverticulosis were defined by manual review of colonoscopy (complete colonoscopy 

required) and patient records at participating hospitals and gastroenterology outpatient services. In 

addition, the patient questionnaire was reviewed for absence of diverticulitis (including a hospital or 

outpatient diagnosis of diverticulitis or episodes of lower left quadrant paint and fever in diverticulosis 

patients). Cases with diverticulitis were defined either as patients with colonoscopy proven 

diverticular disease, that required antibiotics due to diverticulitis or as patients diagnosed by 

abdominal ultrasound or CT scan. To obtain patient information on additional cases with diverticulitis, 

hospital or medical office information systems were screened for ICD- Code K57.x and OPS Code 5-

455.7 for resection of the sigma and patient records where then further reviewed as described above. 

All patients were of self-reported Caucasian ancestry. Patients with carcinoma or inflammatory bowel 
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disease (IBD) were excluded from all groups. Patients from the Germany / North cohort were recruited 

through the popgen biobank as described previously [1,2]. Patients from the Germany / West cohort 

were recruited at the Department of Medicine II, Saarland University Medical Center, Homburg 

between 2012 and 2017. All German participants provided written informed consent. The study 

protocol was approved by the Research Ethics Committees of the Saarland University (approval 

63/11), the Medical faculty of Christian-Albrechts-University Kiel, Germany (A 156/03) and the 

Medical Faculty of the Technische Universität Dresden (EK470122013). 

 

Austrian replication samples 

For the Austria / Vienna cohort, the ongoing molecular epidemiology colorectal cancer study of 

Austria (CORSA) was used. More than 16,000 Caucasian participants were recruited since May 2003 

through the province-wide screening program “Burgenland Prevention Trial of Colorectal Disease 

with Immunological Testing” (B-PREDICT). All habitants of Burgenland aged between 40 and 80 

years are invited to take part in the screening program. Participants with a positive faecal occult blood 

test receive further diagnostic workup including colonoscopy. Results of colonoscopies are collected 

in a central database and standardized documentation guidelines are followed. Demographic and 

anthropometric factors, dietary and smoking habits are assessed by questionnaire. All subjects gave 

written informed consent and the study was approved by the institutional review board 

“Ethikkommission Burgenland (EK33/2010)”. Ascertainment of the diverticulosis / diverticulitis 

phenotype in the CORSA study population was based on database review of colonoscopy and clinical 

data for the years 2003 to 2009. Individuals with colon cancer or IBD were excluded. Genotypes for 

replication analysis were extracted from available QC’ed Axiom Genome-Wide CEU1 array 

(Affymetrix, Santa Clara, CA) data which was imputed to 1000 Genomes Project Phase 3 reference 

(using IMPUTE2). For the Austria / Oberndorf samples, a systematic, prospective recruitment of all 

patients undergoing screening colonoscopy at the Krankenhaus Oberndorf is being performed since 

2007. Patients were recruited on site according to the same phenotypic criteria as for the German 
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cohorts. The study was approved by the local ethics committee (Ethikkommission des Landes 

Salzburg, approval no. 415-E/ 1262/2-2010) and informed consent was obtained from all participants. 

 

Lithuanian replication cohort 

Patients were recruited at the Department of Gastroenterology at the Lithuanian University of Health 

Sciences, Kaunas in Lithuania between 2012 and 2017 from patients referred for colonoscopy 

according to the same criteria as the Germany / West samples as described previously [3]. All patients 

have signed an informed consent form to participate in the study. The study protocol was approved by 

the Regional Kaunas Ethics Committee (BE-10-2). The study was performed according to the 

Declaration of Helsinki. 

 

Swedish replication samples 

The population-based colonoscopy study (PopCol) was performed at Ersta hospital in Stockholm, 

Sweden from 2002 to 2006, where 3356 randomly selected adults from the general population were 

sent an Abdominal Symptom Questionnaire and 2293 responders were contacted for further 

investigations. Of the 745 individuals (426 women and 319 men) who underwent an ileo-colonoscopy 

as part of the study, 130 individuals (17.4 %) had diverticulosis. No individual presented with 

diverticulitis. Illumina OmniExpressExome-8 v1 genotypes were extracted from available QC’ed and 

imputed data, which have already been used and described in previous publications [4,5]. Study 

approval was obtained from the local Ethics committee (No 394/01, Karolinska Institutet Huddinge 

Regional Ethics Board, Sweden) and written informed consent was obtained from all participants. The 

PopCol study is described in detail in Kjellström et al. Eur J Gastroenterol Hepatol. 2014 Mar; 

26(3):268-75. 
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GWAS analysis 

Discovery GWAS analysis was performed on UK Biobank on Version 3 imputed genotypes. Genome-

wide association tests were performed using BOLT-LMM v2.34, which applies a linear mixed model 

to adjust for the effects of population structure and individual relatedness[6]. This enabled the 

inclusion of all related individuals in our white European subset allowing a sample size of up 451,099 

individuals, as opposed to a maximal set of 379,767 unrelated individuals. We limited our analysis to 

11,977,111 genetic variants centrally imputed using both the Haplotype Reference Consortium 

imputation reference panel and a combined UK10K and 1000 Genomes reference panel with a 

minimum minor allele frequency (MAF) >0.1% and imputation quality score (INFO) >0.4. 

Data availability 

The GWAS summary statistics is publicly available on our group website 

http://www.t2diabetesgenes.org/data/.  

The data from UK Biobank reported in this paper are available via application directly to the UK 

Biobank (http://www.ukbiobank.ac.uk/).  

Validation genotyping  

The 51 loci were validated in a combined European sample of 3,893 cases and 2,829 diverticula-free 

controls based on colonoscopy (Table 1) using the most significant discovery variant. When direct 

genotyping of a lead variant was not technical feasible, appropriate proxies were selected instead, 

defined as the variant with the next-lowest P-value within 250 kb of the index SNP (Table 2,3 

Supplementary Table 5 ). Genotyping of SNPs was performed using the Agena® iPLEX Gold 

chemistry MassARRAY platform and TaqMan® technology from Life Technologies on an automated 

platform as described previously [2]. The choice of genotyping technology per variant was based on 

technical considerations of assay design feasibility and is indicated in Table 2 and 3. Genomic DNA 

was amplified with the GenomiPhi (Amersham) whole-genome amplification kit and fragmented at 

99 °C for 3 min. All data were logged and managed with a database-driven laboratory information 

management system (LIMS) [7]. Individual samples with >5% missing data were excluded from 
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further analyses. SNPs that had >5% missing data or deviated from Hardy-Weinberg equilibrium 

(exact P < 10
−6

 in controls) were excluded and replaced. Logistic regression analyses under additive 

model of inheritance were performed with PLINK [8] adjusting for gender and age for Taqman and 

Plex genotyped cohorts (i.e. German data sets (Germany North and West), the Austrian data set 

(Austria Oberndorf) and the Lithuanian data set). For cohorts Austria (Vienna) and Sweden, 1000 

genomes imputed GWAS data was available, here association tests were performed using SNPTEST 

(v2.5) [9] adjusting for gender and age. Study-specific β effect estimates from all European 

replication/differentiation cohorts were then combined by fixed-effect meta-analysis using an inverse 

variance–weighted method implemented in META (1.6.0) [10]. For replication a nominal significance 

level of P<0.05 and consistency in odds ratio direction between the discovery and replication stage 

was applied. 

To increase statistical power to replicate risk loci with lower observed odds ratios the sample size of 

the replication cohort was increased by including replication data for diverticulitis presented by 

Maguire et al. from European samples (N=29,367) from the Michigan genome initiative (MGI) into a 

meta-analysis of all European replication cohorts (N=36,089 samples). Study-specific z-scores for 

each allele were combined across samples in a weighted sum, with weights proportional to the square-

root of the sample size for each study implemented in METAL 

(http://csg.sph.umich.edu/abecasis/Metal/).  

Sudy-specific effective sample sizes were calculated as  4 / (1/[# of cases] + 1/[# of controls]). 

 

mRNA expression analysis 

Colonic tissue samples were obtained during surgical resection for the controls and non-inflamed 

diverticulosis during partial colectomy for nonobstructive colorectal carcinoma with tissue obtained 

distal from the tumor at a distance >5cm from any additional pathology or the tumour. Anorectal 

evacuation and colonic motility disorders were excluded. Diverticulitis samples were obtained from 

patients operated after two or more attacks of diverticulitis during elective surgery. Full-thickness 

specimens were harvested from sites adjacent to colonic diverticula. All specimens were immediately 
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transferred from the operating room to the laboratory for tissue processing in PBS (phosphate-buffered 

saline, pH 7.2). The study of human tissue received approval from the Local Ethics Committee of the 

Faculty of Medicine, Kiel University, Germany (B299/07). Patient characteristics are provided in 

Supplementary Table 7.  

 

For dissection of colonic layers, full-thickness rectangular tissue blocks (30 mm x 10 mm) were 

pinned out flat on a cork plate by fine needles  as described previously [11]. Mucosa, submucosa, and 

muscularis propria were separated using microsurgical scissors and immediately frozen in isopentane 

after resection and stored at −70°C until further processing. RNA was extracted using the 

NucleoSpin® RNA Kit (Macherey-Nagel, Düren, Germany). Reverse transcription was carried out 

using the M-MLV Reverse Transcriptase RNase (H-) (Promega, Mannheim, Germany) according to 

the manufacturer’s protocol. Duplicate real-time quantitative PCR reactions were performed with 

qPCR Master Mix Plus (Eurogentec, Seraing, Belgium) using an ABI Prism 7500 fast Real-Time PCR 

cycler (Life Technologies). The housekeeping gene HPRT was used for normalization. The 

primer/probe sets (Eurogentec) or TaqMan assays (Thermo Fisher Scientific, Waltham, MA, USA) 

used are listed in Supplementary Table 8. Quality filtering: samples showing deviations at duplicate Ct 

values of >1.5 units were excluded from analysis. Potential outliers were not excluded from non-

parametric group comparison analysis. 

Statistical analysis of mRNA expression data and creation of box plots with jittered points were 

performed using ggpubr: ‘ggplot2’ package in r (http://www.sthda.com/english/rpkgs/ggpubr/).  For 

the comparison of two groups a non-parametric Mann-Whitney U test (i.e. unpaired two-samples 

Wilcoxon test) was used. For the comparison of three groups a non-parametric Kruskal-Wallis test 

was used. Differences were considered significant after correction for multiple testing at P<0.0025 

(0.05/20 tests). All results are expressed as medians with interquartile ranges. 
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Immunohistochemistry 

Fluorescence immunohistochemistry was performed as previously described [12]. Briefly, colonic 

specimens were fixed in 4% paraformaldehyde for 24 h. Paraffin-embedded tissue sections were pre-

treated with citrate buffer and incubated overnight with following primary antibodies: mouse anti-

Col6a1 (B-4, Santa Cruz Biotechnology, Santa Cruz, USA), rabbit anti-PHGR1 (gift of Oddmund 

Nordgård, Stavanger University Hospital, Norway), rabbit anti-GPR158 (ABIN 2890856, Antibodies-

online.com, Aachen, Germany), mouse anti-EFEMP1 (mAB3-5, Santa Cruz Biotechnology), rabbit 

anti-CRISPLD2 (NBP1-85143, Novusbio, Littleton, USA), rabbit anti-Elastin (Ab21610, Abcam, 

Cambridge, U.K.), rabbit anti-a-SMA (Ab5694, Abcam), mouse anti-a-SMA (M0851, 

Dakocytomation, Glostrup, Denmark), rabbit anti-PGP9.5 (RA95101, UltraClone, Isle of Wight, U.K.) 

and mouse anti-PGP9.5 (BM699, Acris, Herford, Germany). Anti-rabbit AlexaFluor488, anti-rabbit 

Alexafluor555, anti-mouse AlexaFluor488 and anti-mouse Alexafluor555 (Life Technologies, 

Karlsruhe, Germany) were used as secondary antibodies. All antibodies were diluted in antibody 

diluent (Life Technologies). Nuclei were counterstained with DAPI (Roche, Mannheim, Germany). 

Image acquisition was performed on a fluorescence inverted microscope (Axiovert 200 M, Zeiss, 

Gottingen, Germany) coupled to an AxioCam MR3 camera (Zeiss) using Axiovision software (version 

4.7, Zeiss). 

 

Loci Discovery and Functional Annotation (FUMA) 

Genomic risk loci and lead variants were derived from FUnctional Mapping and Annotation of genetic 

associations (FUMAv1.3.1, http://fuma.ctglab.nl) [13] based on GWAS summary statistics obtained 

from BOLT-LMM. Independent significant SNPs were identified using the SNP2GENE function and 

were defined as SNPs with a P-value of <5×10
−8

 and independence to other genome wide significant 

SNPs at r
2
 < 0.6 based on reference panel 1000 Genomes phase 3. Unique genomic risk loci were 

identified as LD blocks of independent significant SNPs that are >250kb apart, closer blocks were 

merged into a single locus. For each genomic risk locus one or more lead SNPs were identified among 

the independent significant SNPs and were defined as those that were independent from each other at 
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r

2
<0.1. The independent significant variant with the lowest p-value at each risk locus was classified as 

the top lead variant for that respective locus and was followed up in replication genotyping (N=51 top 

lead variants) (Supplementary Table 5). Based on these independent significant SNPs, candidate SNPs 

used in subsequent functional annotations were identified as all SNPs that had a P-value of <1×10
−5

, 

MAF > 0.01 and were in LD of r
2
≥0.6 with at least one of the independent significant SNPs 

(Supplementary Table 1).  

In order to identify candidate gene(s) at the respective genomic risk locus we followed i) a manually 

curated selection process based on local LD structure and supporting evidence from regulatory 

elements (eQTL and chromatin interaction) as detailed below and in Supplementary Table 3 and ii) we 

performed hypothesis-free functional and gene annotations based on the genomic positions of risk loci 

using FUMA [21] as manually curated selection process of candidate genes might not capture the full 

biology of the risk architecture. In the manually curated selection process, except for locus #25 

(PHGR1 and DISP2), a single curated candidate gene was assigned to each locus. The FUMA based 

approach resulted in 1080 unique mapped candidate genes (Supplementary Figure 6 & 7 and 

Supplementary Table 2). 

Manually curated selection process (Supplementary Table 3): For lead variants located intronic, 

exonic, in the 3´or 5´UTR to a single annotated gene, the respective gene was identified as the 

candidate gene (30 out of 51 loci). For lead variants located upstream or downstream to a single 

annotated gene, this gene was assigned as the candidate gene, if the respective gene contains a variant 

with at least an r
2
>0.5 to the lead variant at the locus (12 out of 51 loci). For loci, where variants in 

more than one neighbouring or overlapping transcript showed significant LD (r
2
>0.5) to the lead 

variant, the transcript with higher expression in the tissue of interest was selected (3 out of 51 loci). 

For loci, where variants in more than one neighbouring or overlapping transcript showed significant 

LD (r
2
>0.5) to the lead variant and no clear differences in expression were evident, the curated 

candidate gene was selected if additional regulatory evidence was present, i.e. an eQTL in a tissue of 

interest according to GTEx_v7 or a chromatin interaction pointed to a particular gene (1 out of 51 

loci). If the lead variant was not located in a gene region and did not show significant LD to a variant 

in a neighbouring transcript, the impact of the lead variant and the variants in LD to the lead variant on 
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regulatory elements (eQTLs or chromatin interaction) was evaluated. If such elements were identified, 

the closest respective gene was annotated as the curated candidate gene (Criterion 5: 4 out of 51 loci). 

For the remaining loci, the closest transcript to the lead variant was annotated as the curated candidate 

gene if the distance to the variant was less than 1MB (Criterion 6: 1 out of 51 loci). 

Using FUMA, all candidate SNPs were by default mapped to Ensembl genes (build 85) using 

ANNOVAR. The maximum physical distance to map SNPs to genes was 10kb. Intergenic SNPs were 

mapped to the two closest up and down stream genes thus with possible assignment to multiple genes. 

Candidate SNP and gene positions are referring to the human reference assembly (GRCh37/hg19) and 

are provided in Supplementary Table 1. Functional consequences of candidate SNPs were assessed 

using ANNOVAR, a tissue-specific cis-eQTL dataset (GTExV7, https://gtexportal.org) and 15-core 

chromatin states (ENCODE Project Consortium, 2012) [16]. Candidate genes with eQTL variants 

affecting gene expression in sigmoid colon at FDR<0.05 or at nominal p_eQTL <0.05 are shown in 

Table 2 and Table 3 and Supplementary Table 16. Enhancer and promoter regions were obtained from 

Roadmap Epigenomics Projects for 111 epigenomes [16]. Those regions were predicted using DNase 

peaks and core 15-state chromatin state model. 

 

Gene set and pathway analysis 

We used two gene set and pathway analysis approaches (MSigDB [14] and VEGAS2pathway [15]) to 

determine if the polygenic signal measured in the diverticular disease associated genes clustered in 

specific biological pathways. First, positional candidate genes from genomic risk loci showing 

consistency in effect direction between both discovery and replication stage, as outlined in 

Supplementary Table 5, were tested for overrepresentation with gene sets from the C5 collection: GO 

Biological Processes and gene sets from C2 sub-collection CP: Canonical pathways, curated in the 

Molecular Signatures Database (MSigDB 6.1; http://software.broadinstitute.org/gsea/msigdb/). A 

hypergeometric over-representation p-value: (k, K, n, N) was calculated for each gene set from K (the 

number of genes in the set), k (the number of genes in the intersection of the query set), n (the number 

of genes in comparison) and N (the number of all known human gene symbols). To control the false 
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positive error rates a FDR (p < 0.05) threshold was applied for significance. Results are provided in 

Supplementary Table 9 and 11. Secondly, we used VEGAS2pathway 

(https://vegas2.qimrberghofer.edu.au/) an extension of the VEGAS2 approach (VErsatile Gene-based 

Association Study, VEGAS2v02) to test hypothesis-free for pathway and gene set enrichment using 

the GWAS summary statistics obtained from BOLT-LMM v2.34. VEGAS2Pathway is a two-step 

pathway analysis strategy. Firstly, we calculated the gene-based test statistics for all genes using 

VEGAS2, which accounts for the LD between the SNPs within a gene through simulation. Variants 

lying within 50 kb on either side of a gene's transcription site (hg19 annotated RefSeq genes from 

UCSC table browser) were assigned to the respective gene to compute its association p value. This 

selection criterion was used to balance between inclusions of possible cis-regulatory variants and 

maintaining specificity of a gene. Secondly, for each of a set of pre-specified gene-sets, the relevant 

gene-based results were carried forward to compute a pathway-based test for gene-sets from the Gene 

Ontology, curated gene-sets from MSigDB; containing canonical pathways and gene-sets from 

BIOCARTA, REACTOME, KEGG databases, PANTHER, and pathway commons databases. Gene-

sets were filtered to include only those with size between 10 and 1,000 genes. Overall, there were 

6,212 gene-sets, including 18,399 genes with 511,336 annotations. Results are provided in 

Supplementary Table 11 and 12. 

 

Enrichment analyses in cell lines and primary tissues. 

GARFIELD (GWAS Analysis of Regulatory or Functional Information Enrichment with LD 

correction). The GARFIELD (http://europepmc.org/preprints/ppr7035) approach is independent from 

FUMA annotated genes and VEGAS2pathway results. GARFIELD used the whole number of GWAS 

SNPs as input then performs greedy pruning of GWAS SNPs (LD r2 > 0.1) and then annotates them 

based on functional information overlap. Functional enrichment analysis of diverticular disease 

variants in DNaseI Hypersensitive sites from ENCODE and Roadmap Epigenomics data are provided 

in Supplementary Table 13. GARFIELD allows for parallel enrichment analyses at multiple p-value 

sub‐thresholds, which improves power to define statistically significant enrichment patterns by 
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increasing the number of variants tested. GARFIELD uses a nonparametric approach to weight GWAS 

findings with regulatory or functional annotations to find features relevant to a phenotype of interest. 

GARFIELD accounts for LD, minor allele frequency, matched genotyping variants and local gene 

density with the application of permutations to derive statistical significance.  GARFIELD quantifies 

enrichment using odds ratios (OR) at various GWAS p-value cutoffs and assesses their significance by 

employing generalized linear model testing, while accounting for minor allele frequency, distance to 

nearest transcription start site and number of LD proxies (r2 > 0.8). The fold enrichment at various 

GWAS p-value cutoffs is indicated by color coding as described in the figure legend of Supplementary 

Figure 11. Fold enrichment values are shown in black and blue, for the GWAS P-value thresholds 

<1×10-8 and <1×10-5, respectively. The innermost and outermost dots along the inside edge denote 

significant enrichment for the cell type at <1×10-5 and < 1×10-8, respectively.  

URLs: 

ANNOVAR: http://annovar.openbioinformatics.org/en/latest/ 

BOLT-LMM: https://data.broadinstitute.org/alkesgroup/BOLT-LMM/ 

FUMA: http://fuma.ctglab.nl/ 

GARFIELD: http://europepmc.org/preprints/ppr7035 

GSEA/MSigDB 6.1: http://software.broadinstitute.org/gsea/msigdb/ 

GWAS Catalog: https://www.ebi.ac.uk/gwas/ 

LOCUSZOOM: http://locuszoom.org/ 

META: https://mathgen.stats.ox.ac.uk/genetics_software/meta/meta.html 

METAL: https://genome.sph.umich.edu/wiki/METAL 

OMIM: https://omim.org/ 

PLINK: http://zzz.bwh.harvard.edu/plink/ 

R, ‘ggplot2’ package: http://www.sthda.com/english/rpkgs/ggpubr/ 

SNPTEST: https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html 

UCSC: https://genome.ucsc.edu/ 

VEGAS2: https://vegas2.qimrberghofer.edu.au/ 
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