
For Peer Review

https://mc.manuscriptcentral.com/wie

Wind Engineering



For Peer Review

Multi-objective optimization of the
operation and maintenance assets of an
offshore wind farm using genetic
algorithms

Journal Title
XX(X):1–14
c©The Author(s) 2017

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Giovanni Rinaldi1, Ajit C. Pillai1, Philipp R. Thies1 and Lars Johanning1

Abstract
This paper explores the use of genetic algorithms to optimize the operation and maintenance (O&M) assets of an
offshore wind farm. Three different methods are implemented in order to demonstrate the approach. The optimization
problem simultaneously considers both the reliability characteristics of the offshore wind turbines and the composition
of the maintenance fleet, seeking to identify the optimal configurations for the strategic assets. These are evaluated
in order to minimize the operating costs of the offshore farm while maximizing both its reliability and availability. The
considerations used for the application of genetic algorithms as an effective way to support the assets management
are described, and a case study to show the applicability of the approach is presented. The variation of the economic
performance indicators as a consequence of the optimization procedure are discussed, and the implementation of this
method in a wider computational framework for the O&M assets improvement introduced.
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1 Introduction

As offshore wind continues its path of cost reduction, while
global energy demand and the need for carbon neutral power
plants increase, the installation of further offshore wind
projects (OWPs) is anticipated in the coming years. The
trends clearly indicate that offshore wind farms (OWFs)
occupying a larger area, with wind turbines of higher rated
power, located in deeper waters, and at larger distances
to shore, will be favoured (1). Due to their significant
contribution to the operational expenditures (OpEx) and
to the overall cost of energy, operation and maintenance
(O&M) of the devices will play a pivotal role in determining
the profitability of a project (2). For this reason, flexible
and comprehensive tools are needed to grasp the complex
dynamics of the OWF and provide support in the choice and
dispatch of the O&M assets.

With regard to such choices, several options exist for
wind turbine developers concerned with the design of the
device and its features. These aim towards the maximization
of the reliability, in order to achieve high values of
availability, while keeping the price per turbine low. On a
different note, various alternatives exist for OWF owners
or operators committed to the selection of access and
maintenance systems (e.g. vessels and helicopters) needed
to keep the devices functional and efficient for the desired
lifetime. As a consequence, computer aided models which
aim to characterize these parameters and to support the
decision making process have been of increasing interest
in recent years. Some of these tools are problem-specific
in order to address one of the aspects needed to define
the final O&M strategy, e.g. vessels logistics (3; 4), spare
parts allocation (5) or planned interventions (6; 7). Others

exploit different solution techniques to cover several aspects
of the maintenance and assets management at the same
time (8; 9; 10; 11). Comprehensive reviews and classification
frameworks of these models can be found in Hofman,
2011 (12) and Shafiee and Sørensen, 2017 (13). With the
intention of reducing the uncertainties in existing models
and provide a generalized method applicable to all offshore
renewable energy technologies (wind, wave and tidal energy
devices), the authors proposed a computational model for the
characterization of the O&M assets of an offshore renewable
energy farm, as described in (14; 15) and henceforth
referred to as characterization tool. This tool allows for the
estimation of the key performance indicators (KPIs) of the
farm through implementation of a probabilistic assessment
based on the Monte Carlo technique (16) and taking into
account the reliability data of the devices and the capabilities
of the maintenance assets.

However, even when all the characteristics of an OWF are
depicted and possible areas for improvements identified, the
proposal of alternative solutions to the current maintenance
strategy and assets selection relies on the judgement of
decision-makers. These, according to their expertise and
experience, have to interpret the results obtained with the
characterization tool, propose an alternative choice in the
assets of the farm which should improve the maintainability
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or profitability of the OWP, and test the new configuration
to assess the extent of the potential improvement. Therefore,
in order to automate this process and reduce the possibility
of leaving possible improved solutions unexplored, the
authors propose the use of multi-objective optimization by
means of genetic algorithms (GAs) (17). In fact, to the
best of the authors knowledge, though these techniques
have been applied to a number of offshore renewables
related optimization problems (18; 19; 20; 21), no previous
application for the improvement of the assets management,
aimed at the improvement of the O&M strategies, is
known. Specific objective functions for the evaluation of the
effectiveness of an O&M strategy are therefore implemented.
As the optimal values of the decision variables which
describe the OWF assets is uncertain, the end goal of
this optimization process is to attain the optimal values
of these decision variables. Consequently, the aim of this
paper is twofold. First, to demonstrate the applicability of
GAs as an efficient way to facilitate the selection of OWF
assets by showing the results obtained with a case study.
Secondly, the presented methodology seeks to provide a
viable alternative to the use of computationally expensive
O&M characterization tools through the implementation of
a simpler and faster surrogate model based on evaluation
functions. It must be noticed that the assets management
decision problem, intended as choice of the ideal value for
each of the decision variables, is investigated, as opposed
to the scheduling of the maintenance operations taking into
account corrective, preventive and predictive maintenance.

Section 2 introduces the methodology deployed for this
work, together with the comparison of three GA architectures
and the description of the objective functions implementa-
tion. Subsequently, the results which are obtainable using
this methodology are presented in section 3 through a case
study representing the two phases of an existing and pro-
jected OWF. The results are then discussed and conclusions
on the use of this technique drawn in sections 4 and 5.

2 Methodology

Genetic algorithms were initially developed by John Holland
in the early 1970’s (22). These are adaptive search
procedures which mimic biological processes of selection
and evolution to solve both constrained and unconstrained
optimization problems. Based on an analogous operating
principles, the GAs consider a population of solutions which
through a series of steps evolve over time to reach the optimal
solution. In a manner similar to how biological species adapt
to their environment and preserve beneficial traits between
subsequent generations, a GA uses the information of how
solutions perform in order to guide the search through the
search space. Thus, they can be used in complex single-
objective and multi-objective problems in order to generate
solutions that have evolved towards the optimal result (23).
A typical GA works according to the flowchart shown
in Figure 1. Firstly, a population, a group of individuals,
is created at random. In this, each individual represents
a candidate solution to the decision problem and it is
encoded using binary code or other representations (24).
Secondly, each individual is evaluated according to its
suitability with respect to a predefined objective, and a

score (fitness) is assigned to it. Individuals are assigned
a probability of selection based on their fitness scores.
Generally speaking, individuals with higher fitness scores
have higher probabilities of selection, but various selection
principles exist. After selection, pairs of individuals are
recombined through crossover algorithms to generate the
new individuals of the population. In this work, a single point
crossover is used; in this a “crossover point” is randomly
selected, and bits from the beginning of the chromosome
to the crossover point are copied from one parent while the
remaining bits are copied from the second parent. Finally,
the new individuals are randomly mutated to refine local
searches in the investigated domain. Mutation is achieved
through the inversion of a certain number of bits selected at
random, proportional to the mutation rate.

This process is repeated until specified termination
conditions are met or the maximum number of generations
is reached. In this way, over successive generations, the
population evolves towards a set of improved solutions.
Optionally, a restricted number of individuals with the
best fitness values, called elite, can be preserved from one
generation to another without being subjected to the genetic
operators.

Figure 1. Flowchart of a genetic algorithm.

In order to take into account the requirements and
technical implications in selecting the most appropriate
combination of assets for an OWF, multiple criteria must
be considered. In fact, in order to increase the longevity
and profitability of a project, the direct O&M costs
deriving from the choice of the maintenance systems and
possible interventions on the devices have to be kept as
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low as possible, while specific targets of reliability are
met and the availability of the devices is as high as
possible in order to reduce the lost production due to
downtime. As a result, the problem becomes a multi-
objective optimization aimed at minimizing the costs while
maximizing both the reliability and the availability. Several
multi-objective strategies using GAs exist (25), and to
explore their suitability for offshore O&M problems, three
are implemented and compared in this work. These are
here referred to as: 1)Superposition method, 2)Weighted
sum method and 3)VEGA inspired method. The first one,
already introduced in (17), superposes the results obtained
by executing successive single-objective optimizations for
each of the individual objectives considered. In this work,
the individual objectives considered are:

• Minimization of costs;
• Maximization of reliability;
• Maximization of availability;
• Minimization of costs / reliability ratio; and
• Minimization of costs / availability ratio.

When considering the superposition approach, the GA
framework illustrated in Figure 1 is applied separately
for each one of these objectives. Exclusively for the
superposition approach, two of the objectives represent the
ratio between other objective functions. This is done in order
to orientate the search in different areas of the investigated
objective space, as exemplified in Figure 2. The results found
with each single-objective optimization are then combined,
and a set of solutions approximating the Pareto frontier
is selected. In theory, the true Pareto frontier represents
the optimal trade offs between the competing objectives.
It must be noticed that generally, using GAs, it cannot
be guaranteed that the Pareto front found at the end of
the optimization procedure corresponds with the optimal
solutions for the investigated problem, but only that the
set of best solutions are non-dominated (cannot be further
improved with respect to one of the objectives without
worsening at least with respect to another) with respect to all
the solutions identified during the search. For some specific
problems, other techniques, e.g. linear programming, can be
used to find the real Pareto optimal solutions and measure
the distance from the non-dominated solutions found with
the GA. However, for sake of simplicity, in this work the
non-dominated front found with the GA will be referred to
as the Pareto front.

This process is illustrated in the flowchart in Figure 3.
The solutions lying on the Pareto frontier are considered
as optimal in the wider sense that no other solutions in the
search space are superior to them when all objectives are
considered simultaneously (26). In other words, a solution
belongs to the Pareto frontier if there is no way to further
improve one objective without worsening at least one other.

The second approach considered in this work is the
weighted sum method (27). This consists in a linearization
of the problem by assigning a ’weight’ ωi ∈ [0, 1] to each
objective function, such that Σi ωi = 1 and the fitness of
each solution is calculated by summing up the scores with
respect to all the weighted objective values ωi · fi(x). The
principal challenge of using this approach is the selection
of the appropriate weights for each objective function, since
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Figure 2. Example of areas of the objective space where the
search for new solutions focuses depending on the objective
function.

Figure 3. Flowchart of the approach exploiting individual
single-objectives optimizations.
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the value of each weight corresponds to the priority given
to an objective. As a result, similarly to what is shown in
Figure 2, each set of weights will orient the search towards
a different region of the search space. Thus, in order to
overcome this difficulty and to not favour explicitly one of
the above mentioned criteria (cost, reliability, availability)
over the others, an iterative process in which the weights
of the different functions are changed randomly at each
iteration is implemented. All the results obtained at each
iteration are then combined in order to obtain the complete
picture for the explored search space during all the iterations
and the Pareto solutions selected. This process is depicted in
the flowchart in Figure 4. Another drawback of this approach
is that, once the problem is linearized by including all the
objective functions and their weights in a single vector, only
one objective can be considered, i.e. either maximization or
minimization of the resulting vector. Therefore the problem
has to be rewritten in the following way:

Maximize: J(x) = wc · 1
fc(x)

+ wr · fr(x) + wa · fa(x)

Subject to: wc, wr, wa >= 0 ; wc + wr + wa = 1

Where: fc = cost function

fr = reliability function

fa = availability function

Figure 4. Flowchart of the approach exploiting the weighted
sum method.

and the values of the objective functions are normalized
with respect to the maximum value obtainable for each
objective (previously calculated according to the input
parameters) in order to consider them equitably and avoid
potential domination by one another.

Finally, the third approach considered is inspired to
the Vector Evaluated Genetic Algorithm (VEGA) (28), and
its process is illustrated in the flowcharts in Figures 5
and 6. In this approach, a different score is assigned for
each one of the objective functions considered to each
individual of the population. The initial population is then
split into k sub-populations (where k is the number of
objectives) by picking the first n/k individuals (where n is
the size of the population) sorted according to the results
of each evaluation. A new population is then obtained by
recombining these sub-populations and the GA can continue
as usual, with crossover and mutation of selected individuals.
Similar to the previous approaches, the objective functions
considered in this work are the minimization of the cost,
the maximization of the reliability and the maximization of
the availability. The selection of the individuals for mating
(crossover) is carried out through two options. In the first
variant, the two individuals ("parents") are randomly selected
by picking one each from two of the three sub-populations
obtained before these are shuffled together, whereas in the
second variation a selection process based on the roulette
wheel method (29) is used after the three sub-populations are
shuffled together. Analogously to the previous approaches,
the results of both variations are combined together to take
advantage of the different areas of the search space explored.
In this way, the extents of the search space are investigated,
a quality desirable at the beginning of the search procedure
before the search converges towards improved solutions, and
the exclusive selection of individuals that excel in only one
of the three objectives is avoided. As a consequence, also
the selection of individuals which are moderately good with
respect to all the objective functions, and thus may be useful
to find compromise solutions, is ensured.

For all the three approaches, the parameters to control
the execution of the GA are assigned according to guidance
given in the literature (30) and then further tuned in order
to achieve a good balance between extensiveness of the
search and computational time for this specific problem
implementation. A series of preliminary tests based on a
sensitivity analysis of the best and average fitness values has
been used for this purpose, taking into account their absolute
value and, since the two values should ideally converge, the
relative difference between them. These control parameters
are given in Table 1.

Table 1. GA control parameters.

Parameter Value

Generations 30
Population size 50
Elite individuals 5
Crossover rate 0.84
Mutation rate 0.01

Encoding Binary

Objective functions
Three objective functions are considered in this work in
order to adequately represent the problem of improving the
assets selection and logistics management of an OWF. To
evaluate the fitness of each individual (i.e. potential solution),
an accurate implementation of the functions relating the
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Figure 5. Flowchart of the approach inspired to the VEGA
method, variant 1.

Figure 6. Flowchart of the approach inspired to the VEGA
method, variant 2.

decision variables to the objectives is required. These
should accurately characterize the links between the input
parameters and the decision variables of the problem. The
overall aim is to obtain the optimal value for each of
the decision variables according to the preference of the
decision-maker. The use of a characterization tool would

be ideal to ensure that the evaluation of all the KPIs of
the OWF is as accurate as possible, within the limits of
the characterization model itself. However, this coupling is
not a straightforward task, especially if the characterization
tool is computationally expensive. As a consequence,
the implementation of substitutive objective functions (a
surrogate model) is required to evaluate each individual with
respect to each objective. Hence, based on observations with
the previously implemented characterization tool, specific
objective functions are built. Furthermore, these objective
functions are calibrated and benchmarked in order to ensure
predictions are as close as possible to those that would
be obtained with the characterization tool itself, previously
validated independently and for which there is confidence in
the model outputs (31).

When optimizing the O&M assets of an offshore wind
farm, a series of both strategic (long-term) and operational
(on a daily basis) decision problems need to be addressed.
In this work, only the strategic decisions, in terms of
two main aspects, are considered: 1) the properties of the
maintenance access systems and 2) the turbines components
and their installed elements. Accordingly, the chromosome
representing each individual in the GA includes decision
variables for:

• the number of units for each access system potentially
included in the maintenance fleet;

• whether each access system can perform maintenance
interventions only during the day or also overnight;

• whether each kind of access system has been
purchased or has to be chartered when it is required
for maintenance;

• whether the availability of each kind of access system
is limited to specific periods of the year (e.g. summer
months) or not;

• whether for each component of the devices redundant
elements should be installed (compatibly to technical
constraints) or not;

• whether for each component of the turbines, a more
reliable alternative should be installed (i.e. with a
reduced failure rate) or not;

• whether for each component of the devices a repair
or replacement intervention should be performable
also overnight, in contrast to those components
whose maintenance should be limited to periods with
daylight; and

• whether for each component of the device there should
always be an immediate availability of spare parts or
not.

Under these circumstances, and based on the previous
experiences with the O&M characterization model, specific
relationships are built in order to determine the fitness of
each individual with respect to each of the three objective
functions. These relationships constitute the surrogate model
introduced earlier in the paper.

First, the contributions of the different parts of the
chromosome to the cost objective function are determined
by taking into accounts the following considerations:

• Number of units per access system: the more units
available, the lower the risk of introducing delays in
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the maintenance of the farm, thus indirect reduction in
cost due to reduced production losses. On the other
hand, the expenses to hire or purchase an increased
number of units will be higher. Therefore a balance
is required in the ratio between the number of units
and the number of maintenance interventions (both
planned and unplanned). Besides, solutions in which
two or more access systems are considered in a
mixed maintenance fleet are favoured because the
complementarity in their capabilities will be used to
decrease lost production and repair costs (e.g. by using
quicker and cheaper workboats for minor interventions
and bigger vessels exclusively for medium or major
interventions).
• Overnight operability of the access systems: if a

vessel is able to perform maintenance interventions
overnight there will be a reduction of the lost
production as a consequence of a higher capacity of
restoring the functionality of the device in case of
failures. At the same time, an increase in direct O&M
cost has to be expected due to higher wages for the
maintenance staff and other expenses (e.g. port fees)
for the night shifts.
• Ownership of the access systems: if a set of vessels

belongs to the farm the expenses due to mobilisations
will be lower, the vessels will be more easily available
for interventions (which reduces lost production) and
and there will be no charter costs. On the other hand,
the initial cost of purchase and the expenses related to
port and maintenance fees of the vessels must be taken
into account.
• Limited availability of the access systems: similarly

to the previous points, a limited availability of the
vessels, for instance during the summer months or
when the vessels are chartered elsewhere, will increase
the costs due to production losses; on the other hand,
the port and maintenance fees, as well as staff costs
and eventual hire expenses, will decrease.
• Redundancy of the components: the introduction of

redundant elements in the components of the device
will have a direct increase in cost due to the price of
the redundant elements and their installation; on the
other hand there will be an increase in the reliability
of the device that, indirectly, will reduce the cost of
interventions due to maintenance.
• Failure rate reduction of the components: analo-

gously, better or more reliable components will be
more expensive to purchase and replace in case of
failure, but their replacement will be less frequent.
• Overnight operability of the components: likewise

the overnight capability of the access systems,
having components that can be maintained overnight
reduces downtimes and production losses (indirect
cost decrease). At the same time, additional expenses,
then increase in costs, may be required to acquire
components that can be repaired or replaced at any
time.
• Immediate spare parts availability of the com-

ponents: having spare parts for certain components
always available means that eventual procurement
times are null, reducing repair times and production

losses. This comes at a cost, for instance due to
higher investments in the spares and the need of bigger
warehouse / engineering team to store / manage them.

Switching to the reliability objective function, this is
dependent only on the taxonomy of the device and the
configuration of its sub-assemblies. As such, the reliability
of the devices is computed starting from the values of the
components’ failure rates, taking into account the placement
of the components in series or in parallel systems, as well
as eventual redundant items and the minimum number of
these which are needed for the device to remain operational.
Specific equations for such calculations can be found
in (32). Furthermore, eventual overnight operability on the
components indirectly increases their reliability through an
increase in their repairability.

The third and last objective function is the availability.
As this is usually measured as a percentage, where 0%
corresponds to no energy production due to continuous
downtime and 100% to the ideal production in the scenario
of null downtime, the contributions to the objective function
Ai are calculated in such a way that in an ideal situation all
the contributions would sum up to 100, i.e. Σi Ai <= 100.
The values for each decision variable (or set of these) are
then assigned proportionally to the relative importance of the
contributions, whose ranges have been previously calibrated
through comparison with the characterization tool (31).
Hence, the same consideration made for the calculation of
the cost objective functions on both the maintenance access
systems and device components, can be used to calculate
the scores in the availability objective function. The only
difference is that in this case, i.e. for what concerns the
availability only, there are no drawbacks (e.g. additional
costs due to capital expenditures), so for example the higher
the number of access systems the better, the more reliability
related improvements the better, etc.

A qualitative summary of the impact of each decision
variable on the three objective functions is provided in
Table 2.

Table 2. Effect of each decision variables on the objective
functions.

Decision variable Cost Reliability Availability

Number of access system units ⇑ , ↓ - ↑
Overnight operability of the access systems ⇑ , ↓ - ↑

Ownership of the access systems ⇑ , ↓ - ↑
Seasonality restrictions of the access systems ↑ , ⇓ - ↓
Redundancy measures on device components ⇑ , ↓ ⇑ ⇑

Failure rate reduction of device components ⇑ , ↓ ⇑ ⇑
Overnight repairability of device components ⇑ , ↓ ⇑ ⇑

Immediate spares availability of device components ⇑ , ↓ ⇑ ↑

Legend: ⇑ = Direct increase, ⇓ = Direct decrease, ↑ = Indirect increase, ↓ =
Indirect decrease, - = No variation

Besides these considerations and correspondent contribu-
tions on the calculation of the respective objective functions,
eventual penalties are used. Such penalties are introduced in
order to consider some of the joint impacts of the decision
variables that are not accurately captured by the implemented
functions alone. It should be noted that though penalties
are commonly used to handle constraints in an optimization
problem, in this work these are used to ensure that the impact
of interactions between decision variables are accurately cap-
tured in the objective functions. Consequently, a penalty in
the calculation of the cost function is eventually introduced
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after considering the correlation between components main-
tenance categories and access systems maintenance cate-
gories (maintenance categories are used to classify the extent
of an intervention, e.g. minor repair, major replacement,
etc.). This reduces the probability of favouring possibly
undesired solutions (e.g. with numerous units of expensive
access systems that can be used only for a limited number
of major repairs). Similarly, a further penalty in the cost
function is possibly introduced to account for the indirect
variations in cost due to variations in reliability. In other
words, since a more reliable device requires less maintenance
interventions and decreases the direct O&M costs, solutions
with a value of reliability far from the ideal situation with all
the possible reliability related improvements in place (e.g.
failure rate reductions and redundancy of the components)
will be penalized.

Furthermore, constraints are applied at each step of the GA
(any time that individuals are generated, crossed over and
mutated) for the purpose of maintaining feasible solutions
that either provide realistic solutions and satisfy the technical
implications of the OWF management. These are:

• considering at least one unit of at least one access
system in the maintenance fleet;
• not considering the properties of a vessel in the final

solution if the vessel is not included in the fleet; and
• not assuming redundancy improvements if the pre-

established possible number of redundant elements
for a certain component is set to 0 due to technical
requirements.

Finally, unlike in characterization models, the scores
provided in the present optimization model are relative
measures, to be treated as a unitless comparison metric
to evaluate the relative quality of solutions rather than to
interpret them as an absolute estimate of the performance
indicator for that parameter. In fact, as the optimization
procedure only compares solutions to one another, the true
values with regards to the KPIs are not sought.

Approach selection
Given the formulation of the chromosome, its relationship to
the O&M strategy input parameters, and the objective func-
tions, the three multi-objective GA approaches described
are compared for a simplified case in order to provide
an example of approach selection. Despite these are not
generic rules, for the comparison in this specific problem the
generated Pareto fronts are evaluated against these criteria:
the more solutions in the area of the desired trade-offs (e.g.
minimum cost / maximum reliability or maximum availabil-
ity / maximum reliability) the better. This concept can be
better visualized in Figure 7. In this figure, the Pareto fronts
obtained for the three approaches are plotted considering
only two objectives at a time in order to aid in clarity as
exploring the Pareto surface in 3 dimensions is challenging
as far more non-dominated solutions are needed to smoothly
define the surface. The knee of the Pareto curves have been
enlarged as this is often a key area of interest for a decision-
maker. This area includes those solutions that provide the
most even trade-offs between the two objectives considered
in each chart (e.g. maximum reliability at the minimum cost).
It has to be remembered that though the presented plots

look at projections onto two dimensions, all the solutions
are considering all three objectives. Nonetheless, if for any
reason one of the objectives is less relevant to the decision-
maker, the choice can be moved towards the other values
on the Pareto (e.g. minimum cost regardless of reliability
or availability values). It is important to note that though
realistically a decision maker might generally be concerned
with the knee, this is not always the case and in various
situations the extents of the Pareto front also aid in the
decision making process.

From the enlargements in these figures, the most effective
approach in the search of the best trade-off solutions in this
example is the one exploiting the weighted sum method.
Despite very similar computational times, the solutions
found with this method provide lower extremes in the
cost/reliability and cost/availability Pareto fronts, as well
as higher extremes in the availability/reliability Pareto
front. Thus, although other approaches may provide more
solutions on the Pareto front, preference is given to this
method due to the presence of solutions lower in cost
in the selected reliability and availability ranges. These
quantitative decision criteria are illustrated in Table 3, where
the minimum cost is in the selected reliability range, the
minimum cost in the selected availability range, and the
maximum availability in the selected reliability range are
reported for figures 7a, 7b and 7c respectively.

These are generic guidelines provided to explain how
one might interpret and compare the results of different
optimization approaches. Nonetheless, selection criteria will
vary depending on the specific case analyzed and the
preferences of the decision-maker.

Table 3. Values of solutions in the ranges selected according to
the preferences of the authors for example in Figure 7.

Approach S W V

Minimum cost in reliability range 0.843 - 0.844 (Fig.7a) 35546 14157 126096
Minimum cost in availability range 64 - 68 (Fig.7b) 40417 22209 71869
Maximum availability in reliability range 0.835 - 0.845 (Fig.7c) 69.06 69.81 58.45

Legend: S = Superposition, W = Weighted Sum, V = VEGA inspired.

3 Case study
Based on the selection criteria above and the values in
Table 4, the following section examines an example OWP
optimized using the weighted sum approach. In fact, even
though the superposition method may be used, because the
economic metric for the selected reliability range is lower
than in the weighted sum approach (first line of Table 4)
and at least comparable within the selected availability range
(second line of Table 4), due to the significantly higher
availability metric in the selected reliability range (third
line of Table 4) the weighted sum approach is preferred.
In any case, despite only one approach is selected in order
to simplify the application of the proposed methodology,
nothing prevents the use of all three presented methods for
a more effective comparison.

The case study considers Westermost Rough Wind
Farm (33), a wind farm off the east coast of the United
Kingdom which began operation in 2015. This wind farm
consists of 35 Siemens SWT-6.0-154 turbines each rated
at 6.0 MW. The O&M port associated to this OWP is the
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Figure 7. Comparison of the Pareto frontiers obtained using
the three approaches.

Royal Dock Grimsby port (34), located approximately 40
km from the OWF, as shown in Figure 8. The MetOcean
data needed for the calculation regarding energy produced
and accessibility of the farm (wave height, wave period and
wind speed) are retrieved using the numerical simulation
model WAVEWATCH III (35) for the 10 year period from
1990 to 1999 with a timestep of 3 hours. The accessibility
information, including weather windows and vessels transit
times, are calculated for each day of the simulated lifetime
using the offshore projects planning software Mermaid
(Marine Economic Risk Management Aid) (36). A port-
based O&M strategy is assumed, in which the OWF
can be maintained by means of three types of generic

vessels capable of minor, medium and major maintenance
interventions respectively. These are indicated in this work
as crew transfer vessel (CTV), field support vessel (FSV)
and heavy-lift vessel (HLV). The wave limits for the repair
actions of these vessels, as well as the majority of the
cost data, have been extracted from the literature (37; 38;
39). Where necessary, unknown economic values have been
estimated based on industry experience and consistency with
other economic values. Metocean limits and economic values
associated to the access systems and used for this study are
specified in Table 5. Even though only wave limits have been
considered for the accessibility characterizations, wind and
water current limits can be included if needed.

Table 4. Values of solutions in the ranges selected according to
the preferences of the authors for the case study.

Approach S W V

Minimum cost in reliability range 0.0009815 - 0.0009816 1.41E6 4.30E6 3.80E6
Minimum cost in availability range 82.50 - 82.55 4.33E9 4.3E9 N/A*
Maximum availability in reliability range 0.00096 - 0.00098 69.70 82.42 67.10

Legend: S = Superposition, W = Weighted Sum, V = VEGA inspired. Note: * = Not
present in selected range

Figure 8. Map of Westermost Rough Wind Farm (33).

Table 5. Vessel cost parameters (37; 38; 39).

Access system CTV FSV HLV

Wave limit (HS, m) 1.5 1.5 2
Transit speed (knots) 20 12 11

Day rate (£) 1750 9500 150000
Standby day rate (£) 616 1232 2465
Mobilization cost (£) 0 0 27000
Transit fuel cost (£) 138 883 2187

Average daily crew member cost (£) 220 220 220

The components data for the devices, including failure
rates and replacement costs, have been extracted from (40)
by averaging over the values for the maintenance categories
considered in the reference. Information on possible
redundancies and other reliability related improvements have
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been assumed according to values reported in Table 6. An
eventual failure rate reduction is assumed to halve the value
of the original failure rate.

Table 6. Components parameters (40).

# Component Failure rate (f/yr) Repair time (hr) Repair cost (£)

1 Pitch system 1.076 89.0 65910
2 Generator 0.999 67.0 25973
3 Blades 0.520 31.2 18037
4 Lub system 0.471 22.0 5253
5 Electrical comp. 0.435 20.7 4550
6 Contactor 0.430 17.5 4564
7 Controls 0.428 17.5 4431
8 Safety 0.392 13.2 4306
9 Sensors 0.346 12.7 3995
10 Pumps, motors 0.346 11.0 3544
11 Hub 0.235 8.3 1126
12 Heaters/Coolers 0.213 8.0 1075
13 Yaw system 0.189 7.3 990
14 Tower/foundation 0.185 7.0 918
15 Converter 0.180 8.0 750
16 Transformer 0.065 3.6 527

Exploiting the values provided by the manufacturer
for cut-in, cut-out and rated speed (41), the remaining
intermediate values to acquire the complete power curve of
the OWT are obtained by using the least square method.
Despite the use of 6.0 MW wind turbines in the real
project, in this case study the authors opted for the updated
version of the turbine which is now rated at 8.0 MW, more
representative of future OWPs. In fact, since two phases
that include the current configuration with 35 OWTs and an
extension of this with an additional 45 OWTs (for a total of
80 OWTs and 640 MW) are considered, the updated version
of the OWT allows for a reduced number of devices to
achieve the same total installed capacity. Finally, the strike
price for the electricity generated by the OWF is assumed to
be £155/MWh, the maximum possible for projects coming
on line in 2015/2016 (42).

Once this set of input data is gathered, a first simulation
is run with the characterization model in order to obtain a
reference case, in which 3 CTVs, 1 FSV and 1 HLV (37) are
assumed in the fleet, for each one of the two phases of the
OWF. Consequently, a new simulation with the input data
provided by the execution of the GA is repeated. In this way,
the values on the KPIs of the OWF can be compared before
and after the optimization and the differences quantified.

Phase 1 - 35 OWTs

By running the GA using the weighted sum approach and
the inputs described in the previous section, the Pareto
frontiers illustrated in Figure 9 are obtained. From these,
one solution (indicated by the data cursor) is selected among
those obtained in the cost / availability chart, and decoded in
terms of the corresponding O&M strategy shown in Table 7.
The O&M strategy indicated by the optimization algorithm
in Table 7 is then re-evaluated using the characterization
tool, yielding the values presented in Table 8. As shown
in Table 8, the selection of the optimized maintenance
strategy allows for significant reductions of lost production
by 74% and O&M costs by 33%. This, in turn, generates an
increase in energy production and availability by 3%, with
this last passing from 95.64% to 98.88%, and an increase

of the generated income by almost 5%, which translates in
additional m£75 over the 10 years of the considered lifetime.

Table 7. Input variables according to decoded solution for
phase 1.

Objective functions values

Cost function 10.23 x 106

Reliability function 9.81 x 10-4

Availability function 67.33

Access systems decision variables

Use combinations of access systems: Yes
Number of units available: 4 (CTV), 7 (FSV), 5 (HLV)
Vessel(s) purchase: No
Overnight operability: Yes (HLV)
Seasonality restrictions: No (All vessels)

Device related decision variables

Redundancy measures on components: 4,5,6,9,12,13
Failure rate reduction on components: 1,2,4,5,6,7,9,10,11,12,13,14
Overnight operability on components: 1,2,5,8,10,12,13,16
Spares immediate availability for components: 3,4,6,7,10,11,15

The O&M strategy indicated by the optimization
algorithm in Table 7 is then re-evaluated using the
characterization tool, yielding the values presented in
Table 8.

Table 8. Comparison of the results obtained for phase 1 before
and after the optimization indicated by the GA.

Quantity Value 1* Value 2** Variation (%)

Average annual energy (GWh) 1057.38 1093.68 3.38
Average annual loss (GWh) 48.21 12.43 -74.22
Capacity factor (%) 43.09 44.54 3.37
Equivalent hours 3776.39 3904.17 3.38
Availability (%) 95.64 98.88 3.39
Total gross production over 10 years (m£) 1638.95 1694.41 3.38
Total lost production over 10 years (m£) 74.72 19.26 -74.22
Total O&M costs - Repairs, vessels and crew (m£) 58.49 38.93 -33.44
Total generated income over 10 years (m£) 1580.45 1655.49 4.75

Note: * = Before optimization, ** = After optimization

Phase 2 - 80 OWTs
The evaluation of the KPIs and the optimization using
GAs are repeated for the second phase of the case study.
The Pareto frontiers obtained for this phase are shown in
Figure 10, with the solution of interest highlighted in the
same figure, corresponding O&M strategy parameters shown
in Table 9, and the comparison of the KPIs shown in
Table 10.

Table 9. Input variables according to decoded solution for
phase 2.

Objective functions values

Cost function 12.84 x 106

Reliability function 9.81 x 10-4

Availability function 69.48

Access systems decision variables

Use combinations of access systems: Yes
Number of units available: 6 (CTV), 7 (FSV), 4 (HLV)
Vessel(s) purchase: No
Overnight operability: Yes (FSV)
Seasonality restrictions: No (All vessels)

Device related decision variables

Redundancy measures on components: 4,5,6,9,12,13
Failure rate reduction on components: 1,4,5,6,9,12,13,16
Overnight operability on components: 2,3,8,10,11,12,13,16
Spares immediate availability for components: 2,3,4,5,6,7,8,9,10,12,16
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Figure 9. Pareto frontiers obtained for phase 1 using the
weighted sum approach. Solutions plotted in terms of their cost
and reliability values in Figure 9a, cost and availability values in
Figure 9b and availability and reliability values in Figure 9c

.

Table 10. Comparison of the results obtained for phase 2
before and after the optimization indicated by the GA.

Quantity Value 1* Value 2** Variation (%)

Average annual energy (GWh) 1757.11 2497.04 42.11
Average annual loss (GWh) 769.97 30.03 -96.10
Capacity factor (%) 31.32 44.51 42.11
Equivalent hours 2745.48 3901.63 42.11
Availability (%) 69.53 98.81 42.11
Total gross production over 10 years (m£) 2723.52 3870.42 42.11
Total lost production over 10 years (m£) 1193.45 46.558 -96.10
Total O&M costs - Repairs, vessels and crew (m£) 102.21 103.99 1.74
Total generated income over 10 years (m£) 2621.30 3766.43 43.69

Note: * = Before optimization, ** = After optimization

Similar to the previous situation, also for the second
simulated phase the optimized O&M strategy allows for the
achievement of reduced losses and increased production, as
shown in Table 10. In this case, the relative variations are
more significant than in the first phase, with the availability
increasing from around 70% to more than 98% and the
capacity factor rising from 31% to 44%. As a consequence,
the total lost production lowers to m£46 over the 10 years
lifetime, and the generated income increases by almost 44%,
meaning an average additional gain of m£114 per year.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Reliability function

0

2

4

6

8

Co
st
 fu

nc
tio

n

1e9
Other solutions
Pareto solutions

45 50 55 60 65 70 75
Availability function

0

1

2

3

4

5

Co
st
 fu

nc
tio

n

1e9

x: 69.485769
y: 12840989.761380

Other solutions
Pareto solutions

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Reliability function

30

40

50

60

70

80

Av
ai
la
bi
lit
y 
fu
nc

tio
n

Other solutions
Pareto solutions

Figure 10. Pareto frontiers obtained for Phase 2 using the
weighted sum approach. Solutions plotted in terms of their cost
and reliability values in Figure 10a, cost and availability values
in Figure 10b and availability and reliability values in Figure 10c.

However, the O&M cost slightly increase (by less than 2%)
compared to the base case scenario.

4 Discussion
The weighted sum method is used to illustrate the results
obtainable with the proposed methodology. However, the
selection of the most appropriate approach is generally case-
specific, and in some cases even a combination of them might
be beneficial in order to obtain better solutions according
to the priorities of the decision-maker. Furthermore, a more
thorough comparison of the methodologies should compare
their computational complexity as each of the methods does
not intrinsically require the same number of evaluations.
Although the parameters of the GA (number of generations,
number of individuals, etc.) do not vary, the final solutions
are obtained by letting random individuals evolve according
to different evolutionary paths in each approach and then
analyzing the aggregated results. If necessary, crossover and
mutation rates can be left as variable and able to self-adapt
depending on pre-established rules and feedback from each
optimisation cycle. Similarly, the number of generations can
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be left as a function of the relative improvement between two
consecutive Pareto fronts, and a maximum computational
time or number of generations used as stopping criterion.

In this work, the conditions for each path are dictated by
the objective functions in the first approach proposed, the
values of the weights at each iteration in the second and
the selection criteria in the third. As a result, the number of
proposed individuals, and therefore the number of evaluation
calls required for each of the three approaches may be
unequal if the parameters are not properly tuned. The three
approaches may therefore, be unfairly compared.

From the execution of the GAs, a series of candidate
solutions, representing a set of input data for the
characterization tool, are obtained. Due to the difficulty in
interpreting the results and choosing useful candidates when
these solutions are plotted in terms of the three objective
functions considered (cost, reliability and availability)
simultaneously (e.g. in a 3D scatter diagram), the charts
providing a visual representation of the solutions (and
associated Pareto fronts) in terms of two objective functions
at a time are preferred. In the present work, the authors opted
to prioritize the profitability of the project. As a consequence,
decisions are principally based on the cost / availability
chart because these two criteria are more relevant from a
profitability perspective. This is a preference of the authors
in order to illustrate the case study, but a decision-maker
could use other criteria according to his/her priorities.
Nevertheless, the associated value for the third objective
function, the reliability, can be used in order to refine the
choice between two or more neighbour solutions in the
Pareto frontiers.

In the charts where the reliability is considered, a
discretization of the solutions can be observed due to
the constraints which allow only certain combinations of
redundancy and failure rate reductions for the components
of the device. The cost / availability charts, however, appear
continuous in the objective space resulting in a more well
defined Pareto front. As the two phases considered in this
case study differ only in the number of turbines, with all other
parameters held constant, a similar distribution of solutions
can be observed in the presented Pareto fronts. The criteria
used for the selection of the optimized solution in both
charts looked at obtaining an as high as possible value of
availability while keeping the value of the cost function as
low as possible. Therefore the solutions are selected from
the lower right portion of the charts, prior to the cost function
rising steeply. This prioritizes the cost variation eliminating
excessively high cost solutions (especially after taking into
account the large variations of the cost function on the y-
axis).

Even though the resulting distribution of candidate
solutions (and as a consequence the choice of the optimized
solution) is similar for both the phases of the OWF, the
selected optimal O&M strategies to be tested with the
characterization tool differ due to the increased number of
turbines in Phase 2. As a result of the increase in the turbines
of the OWF, the number of maintenance interventions
increases and the costs dynamic changes. As a consequence,
a larger fleet is required and it is necessary to select a
number of access systems more appropriate for the number
of repairable components which can be repaired by that

type of vessel. Similarly, while the full availability without
seasonal restrictions is required in both cases, the overnight
operability is necessary only for major interventions with the
HLV in the first phase, whereas for the second phase it is
needed also for minor operations with the CTVs.

Turning to the component specific decision variables,
thanks to the higher number of vessels available less
components with lower failure rate and repairable or
replaceable overnight are required to achieve the desired
values in the second case. On the other hand, due to
the increased number of devices, a greater number of
components require the immediate availability of spare
parts when compared to phase 1. In addition, in order to
cope with the higher number of repairs, more maintenance
interventions are needed. This increases the direct O&M
costs, causing also a raise in the optimized strategy with
respect to the base case scenario due to the higher number
of vessels required, but which is still highly compensated by
the reduced downtime production.

Of course, these choices and improvements on the devices
have a cost due to the installation of more expensive
components, redundant elements and spare parts, but also
to higher vessel charters, crew compensations and port
expenses. These additional expenses are calculated using
the same formulation of the optimization framework, and
their value estimated around the 13% and 8% of the final
O&M costs respectively for the 2 simulated phases. Even
if these values are rough approximations, the additional
expenses are highly compensated by the significant increases
in energy production and final generated income, as shown
in Tables 8 and 10. The introduced improvements result in a
significant reduction of the energy losses due to downtime
and of the O&M costs due to repairs and replacements
and use of vessel. This, in turn, increases the availability
and profitability of the OWP for both the simulated phases,
reaching considerably high value for typical OWFs. Firstly,
these variation depend on the reference case, based on the
literature, selected for this work, and could vary accordingly
if other options are considered. Secondly, this gain is also
due to the relatively high Contract for Difference (CfD)
assumed for this project. Lower CfDs would result in less
effective improvements, as well as potentially generate very
different strategies during the search for optimized solutions
and orientate the selection according to different criteria
(e.g. lower costs rather than higher availability). However,
reasonable improvements can be expected also with lower
CfDs or other compensation schemes. For instance, with a
CfD price of £57.50/MWh according to the last CfD auction
for OWPs scheduled for commissioning in 2022/23 (43), the
generated income over the 10 years of simulated lifetime
would lower to m£589 and m£1331 for the first and second
phase respectively, leaving a reasonable margin of profit even
after deducting the additional expenses due to improvements.

This effect is more observable for the second phase of the
wind farm where, although the optimization process results
in a marginal availability increase, the impact on production
and revenue is significant. In the first phase of the wind farm,
however, a more significant impact on the availability as a
result of the optimization process is observed. This is in part
due to the modest results obtained before the optimization,
when the base input set is less suitable because of the high
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number of wind turbines. This reflects the major difficulty
in managing the maintenance assets when the number of
devices to operate and maintain increases, but also shows the
increased importance of using optimization models for larger
OWFs.

Finally, considering the maintenance assets optimization
within a mainly corrective framework, with a restricted
perspective on the scheduled and predictive maintenance,
limits the use of the surrogate model as a complete alternative
to O&M characterization tools.

5 Conclusions
In this paper, a novel approach utilizing genetic algorithms
is used for the optimization of the maintenance assets of
an offshore wind farm. In this approach, specific simplified
relationships are built and implemented in order to evaluate
the quality of each generated solution based on previous
experiences with a computational tool for the accurate
estimation of the key performance indicators of an offshore
renewable project. Three methods are proposed for the
automated evolution of the candidate solutions towards the
most desirable combinations of decision variables according
to multiple objectives. One of these, the weighted sum
approach, is selected and a case study deploying it is
presented together with the benefits of using such method.

Though the methodology aims to automate part of the
decision making process, the final decisions from the Pareto
front still require the interpretation of the optimization results
and some engineering judgment. This is especially true when
discerning between similar solutions. The main challenge
in the present methodology is adequately establishing
the simplified mathematical relationships that link the
parameters of the project to the decision variables on which
there is uncertainty. Nevertheless, similar to the development
of other models, confidence on the evaluation functions is
acquired and, eventually, the relationships refined by testing
the model for a series of different cases and comparing
the outputs with expectations or results provided by other
methods in an iterative refinement process. Comparisons
and feedback on the optimization framework allow for the
reinforcement or confutation of the foundations used to
build it (e.g. a previously implemented characterization tool).
For instance, following the optimization procedure, all the
improvements have to be compared against the direct costs of
their implementation in order to also consider the drawbacks
of a solution. As a consequence, if a separate characterization
model is used to verify the effectiveness of the modifications
(like in the case of this research) this will have to be modified
in such a way to be capable to measure those additional
capital or development expenses.

Under these circumstances, this work constitutes one of
the two parts of a future wider computational framework
that includes characterization and optimization of the O&M
assets of an offshore renewable project within the same
tool, seeking the automated optimization of the O&M assets
according to an accurate estimations of the project’s KPIs.

Further work shall extend the validity of the demonstrated
approach by using more complete and accurate data. A
reliable optimization requires in fact an extensive knowledge
of all the economic and technical characteristics of the

offshore project. Similarly, other approaches based on both
nature-inspired and not optimization methods can be tested
for more cases in order to assess the best methodology for
each case or type of problem. This, in turn could be further
extended by finding the rules or indications to systematically
tune the parameters that regulate the algorithm.
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