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Abstract

The electroencephalogram (EEG) is a commonly used tool for studying the emer-
gent electrical rhythms of the brain. It has wide utility in psychology, as well as
bringing a useful diagnostic aid for neurological conditions such as epilepsy. It
is of growing importance to better understand the emergence of these electrical
rhythms and, in the case of diagnosis of neurological conditions, to find mechanis-
tic differences between healthy individuals and those with a disease. Mathematical
models are an important tool that offer the potential to reveal these otherwise
hidden mechanisms. In particular Neural Mass Models (NMMs), which describe
the macroscopic activity of large populations of neurons, are increasingly used to
uncover large-scale mechanisms of brain rhythms in both health and disease.

The dynamics of these models is dependent upon the choice of parameters,
and therefore it is crucial to be able to understand how dynamics change when
parameters are varied. Despite they are considered low-dimensional in compar-
ison to micro-scale neural network models, with regards to understanding the
relationship between parameters and dynamics NMMs are still prohibitively high
dimensional for classical approaches such as numerical continuation. We need
alternative methods to characterise the dynamics of NMMs in high dimensional
parameter spaces.

The primary aim of this thesis is to develop a method to explore and analyse
the high dimensional parameter space of these mathematical models. We develop
an approach based on statistics and machine learning methods called decision
tree mapping (DTM). This method is used to analyse the parameter space of
a mathematical model by studying all the parameters simultaneously. With this
approach, the parameter space can efficiently be mapped in high dimension. We
have used measures linked with this method to determine which parameters play
a key role in the output of the model.

This approach recursively splits the parameter space into smaller subspaces
with an increasing homogeneity of dynamics. The concepts of decision tree learn-
ing, random forest, measures of importance, statistical tests and visual tools are
introduced to explore and analyse the parameter space. We introduce formally the



theoretical background and the methods with examples.

The DTM approach is used in three distinct studies to:

+ Identify the role of parameters on the dynamic model. For example, which
parameters have a role in the emergence of seizure dynamics?

» Constrain the parameter space, such that regions of the parameter space
which give implausible dynamic are removed.

» Compare the parameter sets to fit different groups. How does the thalamo-
cortical connectivity of people with and without epilepsy differ?

We demonstrate that classical studies have not taken into account the complexity
of the parameter space. DTM can easily be extended to other fields using mathe-
matical models. We advocate the use of this method in the future to constrain high
dimensional parameter spaces in order to enable more efficient, person-specific
model calibration.
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Preamble

In this thesis, we present new tools to aid mathematical modelling of the brain.
Modelling requires selecting and identifying relevant aspects of a system of interest
and a rigorous evaluation of the model. As pointed out by George Box,“all models
are wrong” and “the practical question is how wrong do they have to be to not be
useful” [36]. In this thesis, we are particularly interested to develop a method to
know how wrong they are and what they can teach us. We particularly focus on bet-
ter understanding epilepsy. Epilepsy is a serious neurological condition affecting
around 50 million people in the world. It is characterised by an increased predispo-
sition to seizures. A seizure is a succession of hypersynchronous discharges of
neuronal activity. Mathematical models are commonly used to simulate and study
brain dynamics. In this thesis, we focus on one of the major class of mathematical
models, the neural mass model (NMM). These complex models are composed of
many components which interact with each other. We present a new approach,
decision tree mapping (DTM), to analyse the parameter space of neural mass mod-
els and identify the role of the values of parameters on the dynamics of the models.

Chapter 1 gives the necessary background to understand our work. Firstly, we
focus on the brain and present an overview of its multi-scale highly complex but
structured organisation. Secondly, we define epilepsy, its consequences, its main
treatments and their limitations. Thirdly, we present an overview of mathematical
and computational approaches that have been used to describe and understand
the mechanisms underlying epilepsy and seizures. We highlight the role of neural
mass modelling as an efficient tool to study epilepsy. We also show that neural
mass models need to be used with caution to avoid unfounded and misleading
interpretations.

In chapter 2, we present our method to explore and analyse the parameter
space of a mathematical model. Firstly, we introduce an overview of the DTM
approach previously presented in [83]. We detail its key aspects; optimal design,
simulations, decision tree learning, random forest and measure importance. Sec-
ondly, to overcome the main limitation of decision tree learning approach, we focus
on the identification of potential interactions between parameters. We present two
approaches which complement each other to understand and cope with non-linear
interactions between parameters. The first one consists of the visualisation of
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interactions between parameters. The second one consists of a statistical test
to detect potential interactions. To demonstrate the interest of our approach, we
introduce examples along this chapter.

In chapter 3, we apply this method to a commonly used NMM in the context
of transitions to seizure dynamics. This chapter is based on the work published
in [83]. We find that the inhibitory sub-system is most crucial for the generation
of seizure dynamics, confirm and expand previous findings regarding the ratio of
excitation and inhibition, and demonstrate that previously overlooked parameters
can have a significant impact on model dynamics.

In chapter 4, we apply the DTM method to clinical data. We define the plau-
sible parameter space of another neural mass model. Previous analyses have
been done on this model but we show that DTM extends these previous results.
We show that the plausible parameter space is much wider than the previous re-
sults and that many combinations of parameter sets can lead to similar simulations.

In chapter 5, we apply the DTM method to clinical data. We compare the plau-
sible parameter space of different groups of people, control, idiopathic generalised
epilepsy (IGE) and their relatives. We demonstrate the controls and relatives share
a similar plausible parameter space. However, patients with IGE have a plausible
parameter space slightly different from the two other groups.

In chapter 6, we summarise and discuss our results and conclude the thesis.



Chapter 1
Introduction

Epilepsy is not just a seizure. It's
the lack of control, the worried
family, forgetting medication, the
crippling anxiety, the depression,
the body jerks, the ache after a
seizure which feels like your bones
are wearing away. It's the 2 AM
phone calls because you forgot to
let them know you'’re ok. It is the
fear you won’t wake up next time,
it's the medication side effects, it's
the isolation, it's waking up in an
ambulance, it’s being grateful for
waking up at all, it’s eating hospital
food time and time again, it's the
scars of wounds and forgotten
memories. Epilepsy is not just a
seizure.

Anonymous

In this chapter, we present the necessary background to understand the impor-
tance of the problem and the significance of the research. Firstly, we give a brief
overview of the brain and the current tools to study it; we introduce some notions
such as neuronal network and Electroencephalography (EEG) and discuss the
spatial and temporal scales of the brain. Secondly, we give a brief overview of
epilepsy from clinical, historical, patient and research perspectives. Finally, we
introduce the notions of mathematical models and dynamical systems, particularly
the neural mass models (NMMs) which have been used to better understand the
brain and epilepsy.
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1.1  The brain, the problem

The difficulties in understanding epilepsy flow from the difficulties in understanding
the brain. In this section, we describe the brain and some approaches used to
understand neural activity.

1.1.1 A complex system

“l am a brain, Watson. The rest of me is a mere appendix” [75]. One can argue that
Sherlock Holmes is a bit presumptuous’ but no one can dispute the central and
pervasive role that the brain plays in our life. The brain is one of the most complex
organs with only slightly fewer than one hundred billion neurons connected by
more than one hundred trillion connections [10]. The relationship between the
activity of neurons and the activity of the whole brain is complex. The brain is
composed of an impenetrable network of neurons 2, which interact both within and
across multiple spatial and temporal scales [202]. According to [24], the brain can
be studied with different scales, spatial, temporal and topological:

1. a network’s spatial scale refers to the granularity at which its nodes and
edges are defined. A node can represent a neuron or a larger part of the
brain;

2. networks can be characterised over temporal scales with precision ranging
from a sub-millisecond to the entire lifespan of the brain; and

3. networks can also be analysed at different topological scales ranging from
individual nodes to the network as a whole.

In terms of spatial scale, as in [245], one can consider that there are three principal
levels of analysis for the brain: micro, meso and macro-scales. In this section,
we present the principal components of the brain at different spatial scales. This
overview gives the necessary knowledge to understand the macro-scale, level of
our study.

1.1.2 Micro scale

This scale is defined at a neuron level. The spatial scale is measured in mi-
crometres. In the following subsection, we briefly describe neurons and their
inter-connections. We only present the most important characteristics of neurons.
There is a wide diversity of neurons and other cells in the brain [7] and it needs to

"Empirical evidence shows that brain activity not only influences but is in turn influenced by,
physical activity taking place in other parts of the organism (such as the endocrine and immune
systems) [60].

2A network is a collection of connected objects and their connections [220] (here, neurons or
groups of neurons).
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Fig. 1.1 Anatomy of a neuron and glia cells.

Modified and reproduced with permission from Bruce Blausunder under CC BY

3.0 licence term.

Source :https://commons.wikimedia.org/wiki/File:Blausen_0672_MultipolarNeuron.png.

be noted there are many exceptions which are not presented here2. One can read
[16] for a more complete overview of the brain at a micro scale.

Neurons

A neuron is an electrically excitable cell that processes and transmits information
through electrical and chemical signals, see Figure 1.1. The cell body of a neuron
is called the soma. The soma contains a nucleus separated from the extra-cellular
fluid by a semi-permeable membrane containing a bi-lipid phosphate layer. The
intra-cellular fluid (cytoplasm) contains the mitochondria which provide the cell
with energy and the chromosomes which contain the subject’s genetic information
as well as various proteins which serve several functions [16]. A typical neuron
consists of a cell body (soma), dendrites, and an axon. A neuron has up to
100,000 dendritic branches attached to its soma [3]. They extend for hundreds of
micrometres and branch multiple times, giving rise to a complex "dendritic tree".
Neurons have a single axon which arises from the soma and travels for a long
distance.

3For example, neurons are surrounded by glia which play important roles in ensuring a healthy
balance in the brain. They have multiple roles; they hold neurons in place, supply nutrients and
oxygen to them, insulate one neuron from another and finally destroy pathogens and remove dead
neurons [143]. A limitation of the models that we use in this thesis is that the roles of glia are not
introduced.


https://creativecommons.org/licenses/by/3.0/legalcode
https://creativecommons.org/licenses/by/3.0/legalcode
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Connectivity between neurons

Electrical signals known as action potentials are issued from a single neuron
(called the presynaptic neuron) and transit by its axon. The axon is not directly
in contact with the dendrites of other neurons (postsynaptic neurons). The small
space in between is either a gap junction or (most of the time) a chemical synapse.
At a chemical synapse, the plasma membrane of the presynaptic neuron comes
into close apposition with the membrane of the target postsynaptic neuron. The
space between the two membranes is called the synaptic cleft and typically varies
from about 20-50 nm [255]. Both the presynaptic and postsynaptic sites contain
extensive arrays of molecular machinery that link the two membranes together and
carry out the signalling process, see Figure 1.2. Electrical activity in the presynaptic
neuron is converted (via the activation of voltage-gated calcium channels) into the
release of a chemical called a neurotransmitter that binds to receptors located
in the plasma membrane of the postsynaptic cell [16]. The neurotransmitter will
cause changes in the membrane potential, called post-synaptic potential (PSP). It
initiates an electrical response or a secondary messenger pathway that may either
excite or inhibit the postsynaptic neuron. Chemical synapses can be classified
according to the neurotransmitter released. There are two main neurotransmitters
which can be found in 90% of neurons, Glutamate and Gamma-Aminobutyric Acid
(GABA). Often glutamate neurotransmitters are excitatory and GABA are inhibitory.
There are however some exceptions [101]. Neurons will often release the same
neurotransmitters at their synapses with few exceptions [240]. Multiple axons from
different pre-synaptic neurons are connected to synapses and many PSPs are
conveyed to the recipient post-synaptic neuron. At the neuron’s soma, all of the
PSPs are integrated and contribute to the net value of the membrane potential
[15]. If their sum is greater than the threshold value of the membrane potential,
the deporalised cell releases an action potential. After firing, the neuron has a
refractory period during which it repolarises and cannot produce another action
potential. The duration of the refractory period is dependent on the type of neuron.

1.1.3 Macro scale

Here, the Macro scale corresponds to a few millimetres to the whole brain. Many
experimental techniques, including EEG (see section 1.1.4), measure the activity
of large populations of neurons across multiple brain regions.

Regions of the brain

For scientists, an advantage of studying the brain at a micro scale is that neurons
are relatively easily demarcated and well defined. In contrast, brain areas and
neuronal populations are more difficult to delineate. No single universally accepted
parcellation scheme currently exists for human brain regions (e.g., areas of the
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Fig. 1.2 Synapse schematic. When an action potential arrives at the end of the
pre-synaptic axon, it causes the release of neurotransmitter molecules that open
ion channels in the post-synaptic neuron. The sum of multiple excitatory potentials
from several synapses may depolarise the membrane enough to provoke a new
action potential.

By Thomas Splettstoesser, reproduced with permission under CC BY-SA 4.0
licence term.
Source:https://commons.wikimedia.org/wiki/File:SynapseSchematic_en.svg.

cerebral cortex), posing a significant obstacle to study the brain at this scale
[245]. Nevertheless, some notions are commonly accepted [15]. The brain can be
partitioned into different regions, some regions play an important role in epilepsy,
such as the cortex. Figure 1.3 shows the main lobes of the cortex. In the cortex,
the temporal lobes are the most common site of localized epileptic seizures [284].
This type of epilepsy is called temporal lobe epilepsy (TLE) and is one of the most
frequent [58]. TLE that arises from the Hippocampus is the most common subtype,
which is typically associated with hippocampal sclerosis 4 [261]. Other lobes may
also play a role in the emergence of seizures such as the occipital lobes [57] or
frontal lobes [19]. Outside the cortex, the thalamus is known to have an important
role in epilepsy [33]. Indeed these different sections of the brain are all connected
and influence each other.

Neurons in the cortex are organised into distinct layers [70]. Each layer contains
particular populations of neurons that input and output to specific areas of the
cortex and subcortical areas. The layers in the cortex are histologically and
functionally defined [73]. Within cortical regions, neurons are aggregated into six
horizontal layers: three supra-granular layers (L1-L3), a granular layer (L4) and two

“Hippocampal sclerosis is a neuropathological condition with severe neuronal cell loss and
gliosis.
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Fig. 1.3 Lateral View of the Brain. An illustration showing the main lobes of the
cortex. From [70], Under CC-BY, version 4.0. terms.
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infra-granular layers (L5/L6). Figure 1.4 presents the principal types of neurons
found in each layer and how they are connected.

1.1.4 Recording the activity of the brain

Knowing the activity of the brain remains a complex task. Many methods do exist
each with their advantages and disadvantages. Important methods are computed
axial tomography (CAT),functional magnetic resonance (fMRI), electroencephalo-
gram (EEG), magnetoencephalogram (MEG), magnetic resonance imaging (MRI),
magnetic resonance spectroscopy (MRS), positron emission tomography (PET)
and single-photon emission computerized tomography (SPECT) (see [235] for an
overview of the methods and references therein). These multiple approaches are
complementary and take into account specific features of the brain. However, in
the scope of this thesis, we will focus mainly on EEG recording as this method is
particularly useful for epilepsy as seen below.

Electroencephalography

The predominant approach to record neuronal activity in epilepsy is the EEG
due to its favourable time resolution, low cost and non-invasiveness [228]. An
EEG is a recording of electrical signals from the brain made by putting in contact
electrodes to the subject’s scalp, see Figure 1.5. The principal generators of EEG
fields measured on the surface of the brain or at the scalp are synaptic potentials;
i.e., Excitatory Post-Synaptic Potentials (EPSPs) and Inhibitory Post-Synaptic
Potentiala (IPSPs) of the pyramidal neurons located in cortical layers lll, V, and
VI [195, 228]. It gives a 2-dimensional activity map of the cerebral cortex. The
spatial resolution is quite low since only superpositions of brain signals originating
from the mass of neurons can be recorded. However, EEG provides a high
temporal resolution and can detect seizures (see section 1.2.4), thus making EEG
an attractive technique for studying epilepsy. Indeed, EEG can detect changes
within a millisecond timeframe, this is excellent, considering an action potential
takes approximately 0.5-130 milliseconds to propagate across a single neuron,
depending on the type of neuron. Other methods of looking at brain activity,
such as PET and fMRI have a time resolution between seconds and minutes.
EEG measures the brain’s electrical activity directly, while other methods record
changes in blood flow (e.g., SPECT, fMRI) or metabolic activity (e.g., PET), which
are indirect markers of brain electrical activity.

The interpretation of EEG data can require a reconstruction of the sources
from the recorded data. This, however, requires a solution of an ‘ill-posed’ inverse
problem, for which infinitely many solutions exist. To select a unique solution,
prior knowledge of the source characteristics is needed. The choice of an inverse
method is a factor that heavily influences the reconstructed brain activity [111, 173].
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Fig. 1.4 Schematic representation of the fibre and neuronal organization of the
cerebral cortex. The projection neurons (pyramidal neurons in layers Il, Ill, V and
VI) are represented in different colours according to their origin and targets. The
two types of interneurons are represented in different colours: (1) the excitatory
interneuron, a spiny stellate cell, is in pink; and (2) the inhibitory interneurons
are in light green. There are four specific examples of inhibitory interneuron: two
dendrite-and tuft-targeting cells [Cajal-Retzius (C-R) and Martinotti (M) neurons],
one dendrite targeting cell [double bouquet (DB) neuron], and one axon targeting
cell [chandelier (C) neuron]. Afferent fibres from cortical and subcortical origins are
represented in different colours and specific distributions. The wide distributions of
dopaminergic (DA), serotonergic (5-HT), noradrenergic (NA), histaminergic (His),
orexinergic (Orx), and GABAergic (GABA) fibers originating in brainstem, dien-
cephalic, and basal prosencephalic structures are represented by their terminals,
as is the topographically organized terminals of the basal forebrain cholinergic
(Ach) fibres. Thalamocortical fibers targeting cortical layers | (M-type) and IV (C-
type) are also shown. | to VI, cortical layers one to six. Open triangles, excitatory
terminals; solid triangles, inhibitory terminals. From [70], under CC-BY, version

4.0. terms.
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Fig. 1.5 EEG brain scan. The recording is obtained by placing electrodes on the
scalp with a conductive gel.

EEG recordings are also subject to artefacts, for example, a small movement of
the eyes can drastically change the recording [65]. Intensive research has been
done in this area (see [56, 267] and references therein) but it is still mainly an
unresolved problem. To record a specific region of the brain, it is possible to
practice invasive EEG [231]. Particularly, in the case of Intra-cranial EEG (iEEG)
[155], the electrodes are directly put into the brain. The data produced are
much cleaner and have less of the distortions and attenuations produced by the
inhomogeneous layers of the cerebrospinal fluid, skull and scalp. Nevertheless, the
process of implementation can be followed by complications including intracranial
haemorrhage, superficial infection, elevated intracranial pressure and cerebral
infections [231].

1.2 Epilepsy

1.2.1 Definition

Defining epilepsy is a complex problem in itself. Epilepsy cannot be described as a
single disorder but rather as a collection of conditions manifesting from underlying
brain abnormalities, affecting sensory, motor, and cognitive behaviour. According
to the International League Against Epilepsy and the International Bureau for
Epilepsy, epilepsy is “a disorder of the brain characterized by an enduring predis-
position to generate seizures and by the neurobiological, cognitive, psychological,
and social consequences of this condition. The definition of epilepsy requires the
occurrence of at least one epileptic seizure". Formally, a seizure is defined as “a
transient occurrence of signs and/or symptoms due to abnormal excessive or syn-
chronous neuronal activity in the brain" [85]. A seizure is the clinical manifestation
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of a hyperexcitable neuronal network, in which the electrical balance underlying
normal activity is pathologically altered.

The International League Against Epilepsy commissioned a task force to formu-
late an operational definition of epilepsy for purposes of clinical diagnosis [84].
According to this definition, epilepsy is a disease of the brain defined by any of the
following conditions:

« at least two unprovoked seizures occurring more than 24 hours apart;

» one unprovoked seizure and a probability of further seizures similar to the
general recurrence risk (at least 60%) after two unprovoked seizures, occur-
ring over the next 10 years; and

« diagnosis of an epilepsy syndrome as detailed in [22].

1.2.2 A historical perspective

As describe by Rajendra Kale, “the history of epilepsy can be summarised as 4,000
years of ignorance, superstition and stigma, followed by 100 years of knowledge,
superstition and stigma”, [207]. The history of epilepsy is indeed long and sorrowful.
The disease has been experienced by humanity for at least 3000 years; some
tablets even described precisely some kind of epileptic seizures which are still
being studied [292]. Historically, epileptic seizures were seen as a symptom of
possession by good or bad spirits [207]. It is only 500 hundred years later that
Hippocrates considered that epilepsy may be a brain disorder [207]. Unfortunately,
his point of view was not accepted until centuries after his death. People with
epilepsy have been persecuted, treatments were rudimentary and potentially
deadly, see for example in Figure 1.6 a case of trepanation and cauterisation
[156]. It is only in the last three centuries that opinions have started to change. In
1849, R.B. Tood was the first person to revolutionize the concept of the disease by
advocating the idea that epileptic seizures were the result of electrical discharges
in the brain. In 1857, the potassium bromide, the first effective antiepileptic
agent, was discovered [199]. The discovery of phenobarbital in 1912 marked the
beginning of the modern pharmacotherapy of epilepsy [296]. The apparition of the
first prototype of the EEG for humans in 1929 led to a new area of discovery [23].
It is really only with the destigmatisation of epilepsy and the realisation that it is
neither a mental disorder nor a spiritual possession that the treatment of people
with epilepsy could evolve. However, despite the progress made by scientists to
understand epilepsy, people with epilepsy were still stigmatised. The shift has
been really slow and for the United Kingdom, it was only in 1971 that the Nullity
of Marriage Act removed epilepsy as a reason upon which a marriage could be
voidable [47].
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Fig. 1.6 Epilepticus Sic Curabitur (“the way to cure an epilepticus”). In this picture,
the person with epilepsy is undergoing trepanation and cauterisation at the same
time.

From Sloane manuscript, a collection of medical manuscripts. Miniature painted at
the end of the 12th century. Collection: British Museum, London. Artist: unknown,
source: http://www.epilepsiemuseum.org/english/kunst/sicepilepticus.html.

1.2.3 Burden of epilepsy

There are between 50 to 70 million people currently living with epilepsy [1, 191].
There is an increase in the prevalence among people living in low and middle-
income countries [232]. Approximately 5 - 10% of all people will suffer a single
seizure before the age of 80, with a 40% to 50% probability of experiencing a
second seizure if the first encounter remains untreated [21]. In 40% of cases,
epilepsy can be directly linked to an infection, a trauma, mental iliness or the abuse
of alcohol or drugs. In Europe in 2010, the total cost of epilepsy was estimated
at €13.8 billion per year [196]. The consequences of epilepsy include shortened
lifespan, physical injury, neuropsychological and psychiatric sequels, and social
and financial disadvantage [66, 242]. It is the sheer unpredictability of seizures
that impedes the most on lifestyle and mobility. “When will be the next one?”
is a question which haunts people with epilepsy [13]. Because of this patients
require constant monitoring and care. The stigma linked to this disease is still
a burden for patients and their close relations. Fear, misunderstanding and the
resulting social stigma and discrimination surrounding epilepsy often force people
with this disorder “into the shadows” [13]. The social effects vary from country to
country but in general, living with epilepsy remains a struggle. The stigma can be
really important for example in both China and India, epilepsy is commonly viewed
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as a reason for prohibiting or annulling marriage [1]. An epileptic seizure is still
seen as a demoniac possession in some regions of the world [144, 194], even in
specific cases in the United Kingdom [52]. Furthermore, as noted in [181], some
people still use archaic and potentially dangerous treatments such as trepanation,
a surgical intervention in which a hole is drilled or scraped into the human skull.
It is easy to understand that even in countries where there is no such stigma,
this disorder is responsible for isolation and increases the risk of depression and
suicide, [154]. Overall, however, huge progress has been made to treat or help
people living with epilepsy. 70% of patients with epilepsy can be treated with drugs.
Some treatments can be expensive but there are other effective treatments based
on more affordable generic medicine (around $250 a year). Unfortunately, between
80 and 90% of the people with epilepsy are in developing countries [1, 191] where
they cannot be adequately treated [236].

1.2.4 Signs and symptoms

There is a multitude of different types of epilepsy which are all linked to the fact of
seizure recurrence. The symptoms can be very different from one type of seizure
to another. For some, like the absence seizure [198], the person has a brief loss
and return of consciousness. For others, the symptoms are more dramatic. For
tonic-clonic seizure [198], the skeletal muscles suddenly tense, either causing the
extremities to be pulled towards the body or rigidly pushed away from it, which will
cause the patient to fall. The patient’s muscles start to contract and relax rapidly,
causing convulsions. The eyes can roll back and the tongue can be strongly bitten.
Seizures can lead to death; sudden unexpected death in epilepsy [147] occurs in
about 1 in 1,000 adults and 1 in 4,500 children with epilepsy a year [121].

Different types of seizure may have different causes, outcomes and treatments.
Seizure types are divided into two broad categories: generalised or focal [86].
Generalised seizures distort the electrical activity of the whole brain while focal
seizures impact only a specific part. As specified in section 1.1.4, EEG is frequently
used to diagnose and advance research in epilepsy [150]. A seizure recording
via EEG is presented in Figure 1.7 where the transition to seizure can be directly
observed. EEG rhythms associated with epileptic processes (epileptiform rhythms)
can be revealed, in most cases, by visual inspection. Some of the key temporal
features distinguishing epileptiform rhythms from background EEG are wave form,
frequency and amplitude. The rich diversity in the EEG manifestation of seizures
can be associated with a range of physical symptoms [132]. The most frequent
dynamics are spike and wave discharges (SWD) or polyspikes and wave. The
term “spike-wave" gives an intuitive description of the multi-modal nature of this
rhythm in that there is a fast component (the spike) followed by a slow component
(the wave). Patients with certain epilepsies can also present transient inter-ictal
abnormal activity, such as inter-ictal spikes or slow waves [247]. Understanding
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Fig. 1.7 Epilepsy seizure recorded by EEG of a patient with Left TLE. Adapted
from Marinho Lopes’ research with authorisation.

these dynamics is one of the purposes of mathematical modelling as we will see
in section 1.3.

1.2.5 Treatments

In terms of treatment response, people with epilepsy can be classified into three
groups [293]: those who enter remission spontaneously, those whose seizures
are effectively controlled through the use of anti-epileptic drugs (AEDs), and those
whose seizures cannot be controlled using standard therapeutic interventions. The
recent progress in the treatment of people with epilepsy has been tremendous. Ac-
cording to the respected Global Burden of Disease Study 2015 [277], out of the 30
most important disorders, epilepsy is the disorder where the world amount of years
lived with disability has decreased the most (in percentage). Furthermore, even
if recurrent, the stigmatisation of epilepsy is decreasing. Nevertheless, epilepsy
remains one of the most important neurological disorders and an active commu-
nity of researchers are trying to understand and treat epilepsy. Computational
neuroscientists and clinical epileptologists research together in interdisciplinary
teams to overcome this burden [180].

Drugs

During the past century, many new antiepileptic drugs (AEDs) have been created.
Effective seizure treatment generally augments or decreases the activity of specific
neurons. Their mechanisms of action fall into a number of general categories:
the main groups include sodium channel blockers, calcium current inhibitors, y-
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aminobutyric acid (GABA) enhancers, and glutamate blockers. However, the mode
of action of some AEDs falls outside of these broad categories. Many AEDs also
possess multiple mechanisms of action. However, even with the proliferation of
drugs (more than 10 new drugs in the last 20 year [226]), more than 30% of
people with epilepsy remain unresponsive to existing AEDs [4], these people are
pharmacoresistant: they continue to experience seizures despite treatment with
maximal doses of multiple AEDs with different molecular targets and mechanisms
of actions. Furthermore taking drugs is often followed by side effects [188, 226]
such as cognitive problems, kidney stones, speech problems and weight loss. It is
thus important to develop tools other than AEDs.

Surgery

For pharmacoresistant people, surgical treatment options may be considered [145],
including surgical resection of the epileptogenic zone, i.e. an area of the cortex
that is indispensable for the generation of epileptic seizures [79, 171, 182, 238].
In some cases, the person is seizure-free after an operation but these procedures
are not entirely efficient. For example, complete seizure freedom, twelve months
post-surgery, is only achieved in approximately half of the people and can be as
low as 15% in extra-temporal cases (see [71, 189, 285], and references therein).

Electrical stimulations

Vagal nerve stimulation and brain stimulation are other approaches which can
be considered when the person is pharmacoresistant. Vagal nerve stimulation
is the equivalent of a pacemaker for the brain [131]: intermittent pulses arising
from a generator implanted subcutaneously in the chest travel along a lead to
electrodes wrapped around the vagus nerve in the neck. These signals then travel
in an efferent manner via the vagus nerve to exert widespread brain effects [205].
It appears to be a safe therapy, even among children [115]. There are different
type of simulations including deep brain stimulations [118] (stimulations through
depth electrodes), transcranial direct current stimulations [223] and transcranial
magnetic simulations [218, 279]. Nevertheless, these approaches are still at an
experimental stage and further, larger and well-designed trials on intracranial
electrical stimulation treatments are needed to validate and optimize the efficacy
and safety of the electrical stimulation and to compare this treatment to currently
available treatments [246].

Promising treatments

Evolving technologies coupled with new areas of research are promising. New
types of drugs such as the anti-inflammatory drugs [273] are being explored. Spe-
cific person pharmacogenetic markers could help to target the most efficient drugs
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and minimize the side effect of drugs, an example can be found in [55]; patients
who carried the HLA-B*1502 allele were advised to avoid the carbamazepine as
a drug and a significant decrease of incidence of Stevens-Johnson syndrome
was observed. In term of surgical operation, recent discoveries have also been
made. Firstly some reasons for the failures of certain existing operations have
been identified. For example, primary temporal lobe epileptogenic zone extending
to neighbouring regions were a marker of failed surgery [14]. Secondly, new
approaches are being considered in order to find the optimal zone of brain resec-
tion [106]. Surgery is also improving, with, for example, laser interstitial thermal
therapy [289]. Intracranial neurostimulation has the potential to become a new
method to prevent or interrupt a seizure [262]. This method could be a potential
game-changer for people who do not want or cannot have a resection and are
pharmacoresistant.

1.2.6 Seizure causes

To develop new treatments, it is necessary to improve our understanding of the
brain and epilepsy. The exact nature of the dynamic transitions from a normal
background EEG to seizure type dynamic is unknown at present. Why and how
ictal episodes occur is difficult to comprehend based only on current knowledge of
pathophysiology, due to the complexity of the factors that jointly are responsible
for their occurrence. In order to understand seizures, it is useful to apply concepts
derived from the mathematics of nonlinear complex systems for the analysis of
the workings of neuronal networks [12, 163, 164]. Four main mechanisms could
underly the emergence of seizures [12, 164], see figure 1.8:

1. bifurcation: a biological change of a component in the neuronal system leads
to a seizure.;

2. bistability: an external input (visual for example) which causes a sudden
change in the neuronal system resulting in a seizure. Another external input
will cease the seizure;

3. excitability: an external input (visual for example) which causes a sudden
change in the neuronal system resulting in seizure but the system comes
back to its initial state without any external input; and

4. intermittency: due to the neural network composition, spontaneous transi-
tions lead into and out of the seizure rhythms.

An important aspect of research in epilepsy consists of understanding and predict
these possible mechanisms. Part of the scope of this thesis consists of building
tools to do so robustly.
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Fig. 1.8 lllustration of qualitatively different transitions from background oscillations
to pathological spike-wave and back again in a mathematical framework. In each
subfigure the above oscillating time series reproduce the EEG activity, the below
time series reproduce the value of one biological parameter. (A) Bifurcation: a
parameter is changed such that it crosses a bifurcation point. (B) Bistability: two
pulse perturbation are applied to start and terminate a seizure. (C) Excitability:
a single pulse perturbation is applied to induce a seizure. (D) Intermittency:
parameter setting allows spontaneous transitions into and out of the seizure
rhythms. From [12].



1.3 Mathematical models a1

1.3 Mathematical models

1.3.1 Understanding epilepsy using mathematical models

In the field of epilepsy research, the modelling approach has become an exten-
sively used tool [37, 172, 254, 283, 293]. The development of models representing
the core of human knowledge and the development of mathematics have always
gone hand in hand with each other [177]. Mathematics is a universal language that
allows us to see the hidden structures underneath the incomprehensible seeming
surface of our world. Algorithms and models have always been central in the
development of mathematical sciences but their potential was limited by the lack of
computer power. In the last century, high power computation capacity has changed
the role of mathematical modelling.

A mathematical model is an abstract model that uses mathematical language
to describe the behaviour of a system [20]. A mathematical model is useful to
analyse a system; mathematicians can build a descriptive model of the system as a
hypothesis of how the system could work and try to estimate how an unforeseeable
event could affect the system. They can also explain which part of the system is
responsible for abnormal activity in the system. A mathematical model usually
describes a system by a set of variables and a set of equations that establish
relationships between the variables. Variables may be of many types; real or
integer numbers, boolean values or strings. Models can be used in two main
different ways, forward and inverse [300]:

+ the forward approach projects the final state of a system given its initial
condition; and

* the inverse approach takes a solution and attempt to determine the initial
and boundary conditions that gave rise to it.

Whatever the problem studied and the chosen approach, the same logic stands:
going from a complex biological system which is beyond human understanding
to a complex mathematical system which can be extensively and easily studied
using mathematical tools [237]. Experiments that one can do in a mathematical
model are ideal in comparison to real experiments which are always performed
under non-ideal conditions. Further one can change parameters in mathematical
models easily, something that is difficult or even impossible in real experiments.
A mathematical model needs to be “a representation of the essential aspects
of an existing system (or a system to be constructed) which presents knowledge of
that system in usable form” [80]. The challenge faced by any modelling approach
is to capture the main features of the system under study in a simple but efficient
way. The model has to be able to reproduce similar activity given the same input
as the original system itself. A crucial part of the modelling process is to determine
whether or not a given mathematical model describes a system accurately.
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Mathematical models can take many forms, including dynamical systems [168],
statistical models [31] or game theoretic models [276]. Dynamical systems are
mathematical objects used to model physical phenomena whose state (or instan-
taneous description) changes over time. Mathematical models to study epilepsy
are often dynamical system due to the temporal characteristics of seizures. As
there are different scales on which to study the brain, there are several categories
of models of epilepsy.

Micro scale models

First, there are detailed models of individual neurons. These model are designed
to answer questions related to the dynamical behaviour of individual neurons
including the neural ion channels, neural morphology (dendritic tree, axonal ar-
borisation) and interactions between neurons and their local environment (see
[248] for an overview). The most famous in this category of models was designed
by Hodgkin and Huxley in the early 1950s [127]. Many models inspired by their
approach exist [104, 139] and are still used to simulate and study large networks
of individual neurons.

Macro scale models

Neural mass models (NMMs) describe the interaction of different populations
of neurons at the mesoscopic and macroscopic levels [140, 290]. By coupling
neurons together into larger ensembles or (sub)populations, networks of variable
size are constructed as sets of coupled differential equations. Simulating these
networks then gives the evolution of the state-variables of every population of
neurons and reveals the emerging spatiotemporal patterns at a network level.
NMMs consider the average behaviour of different types of neurons. The key ad-
vantage of NMMs is that some of their variables represent the measured electrical
field potentials and thus the model simulations and data recording can be easily
compared. Another advantage is that due to the relative simplicity of the equations,
it is an efficient class to simulate data and to perform some analyses with a limited
computation power. Furthermore, the dimension of the NMM model is slightly less
important than the other classes of models and facilitate the use of many mathe-
matical tools such as bifurcation analyses. This thesis focuses primarily on NMMs
as these models are useful in understanding the meso scale and can be used at a
macro scale with relatively little computing power. There is a distinction between
networks of NMM and neural field models to model the whole or at least large part
of the brain [37]. A network of NMMs can be viewed as an extension of NMMs,
[64] where different NMMs are connected together. Each NMM represents a part
of the brain. The other approach consists of considering the cortex as a smooth
sheet composed of dense short-range connection [5, 291]. Neural fields models
model the large-scale dynamics of spatially structured biological neural networks.
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They use differential equations whose associated integral kernels represent the
spatial distribution of neuronal synaptic connections [44]. In this thesis, we use
both approaches to study different aspects of epilepsy.

1.3.2 The development of neural mass models
History of neural mass models

In 1938, the neural mass concept was introduced by Lorente de N6 [167]. But
it was only 20 years later that the notion of NMMs (called mass of cells at the
times) was formally established [25]. This notion was consolidated by the work
of Mountcastle [186] who presented physiological evidence for the existence of
spatially localised neural populations. This notion was further developed on a
theoretical level by Ventriglia [272] and by Wilson and Cowan [290] who studied the
interaction of excitatory and inhibitory cells. From a practical approach, two main
schools appeared: da Silva was interested in the emergence of alpha rhythm in the
brain [165, 166] while Freeman wrote a series of articles focusing on the olfactory
system [88—91]. The models were extended in the following years [92, 271] with
the introduction of networks of NMMs.

In the 1990s, Jansen and Rit explored this approach further and published
a new NMM [140, 141]. This model includes three populations of neurons, the
pyramidal neurons, the inhibitory neurons and the excitatory neurons. Within
this model, excitatory neurons can be regarded as spiny stellate cells found
predominantly in layer IV (see Figure 1.4) and in receipt of forward connections
[179], the inhibitory neurons occupy both supra- and intra-granular layers (layers
I-11l in Figure 1.4). They showed that the model was able to produce a large
variety of EEG-like waveforms and rhythms. The end of the 1990s and the early
2000s saw the creation of many models with specific features of interests and
applications: Wendling et al. [281, 282] added a fourth population to model the
hippocampal activity following the work of Pearce et al. [200]. They distinguished
two classes of inhibitory neurons: slow and fast neurons. They used this model to
explain epileptic brain dynamics. The model of Robinson et al. [214] focused on
the link between the cortex and the thalamus. The model of Liley et al. [160] paid
particular attention to the role of synaptic reversal potential. Other NMMs include
the interaction between the neurons of the thalamus and the cortex [215, 251, 252],
the interaction between the neurons, the glial cells and blood vessels [8]. Some
models try to explain multiple dynamics of interest and contain up to 8 different
populations of neurons [241]. Even if not recent, NMMs are an increasingly active
area of research. As indicated by the Figure 1.9, the number of articles with a title
containing the term “neural mass model(s)” has increased during the last years. In
2017, 24 article titles mention this term. The number of articles mentioning the
term neural mass model(s) in their corpus has also increased. This increasing
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Fig. 1.9 Neural mass model, an active area of research. Representation since
2000 of the articles published containing in their titles or their corpus the term
“neural mass model(s)”. The number of publications has drastically increased in
the past ten years. The data have been extracted from Google Scholar.

popularity shows the necessity to develop tools to study and assess the quality of
NMMs. We only present studied the increase of the presence of NMMs but we
note that the term “lumped model” is also present in the literature to mean NMM.

Component of neural mass models

As described in section 1.1.2, the inputs one neuron receives at the synapses from
other neurons cause transient changes in its resting membrane potential, called
postsynaptic potentials (PSP). When the PSP reaches a certain threshold, the
neuron produces an impulse. It is possible to model this process at a single neuron
level [127] but another approach is possible. In NMMs, similar neurons can be
treated as an averaged bulk entity [88]. Instead of modelling neurons individually,
NMMs treat a population of neurons as an ensemble and describe their behaviour
in terms of distributions. [72, 203] describe thoroughly the link between individual
neurons and the macro scale models. NMMs are based on the assumptions of the
existence of different populations of neurons and that each neuron in a population
can be well represented by the average of its population, the mass. In the simplest
case, there are two populations: excitatory and inhibitory neurons. The activity
of each population is governed by the interactions between them and potential
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extrinsic input from other parts of the brain. Each of the neuron populations is
modelled by two blocks [140]:

1. The first block transforms the average presynaptic pulse density of afferent
action potentials of other populations of neurons (the input) into an average
postsynaptic membrane potential (the output) via a kernel:

k(t) = Ggte 8'1(t > 0). (1.1)

G is the gain in the population of neurons and 1/g is the average dendritic
time constant. Depending of the intrinsical characteristics of the neurons in
the population, this kernel can have different properties. See for example,
Figure 1.10, where two different populations of neurons are presented, exci-
tatory neurons and inhibitory neurons. This block introduces two differential
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Fig. 1.10 Average postsynaptic membrane potentials: excitatory and inhibitory,
obtained from impulse responses given by h,(t) = Aate™*, h;(t) = Bbte "' (see
Table 3.2 for parameter values).

equations of the form:
J(t) = Gex(t) —2gy(t) — g°¥(1), (1.2)
which can be rewritten as:

() = 2(1), (1.3)
2(1) = Ggx(t) — 2az(t) — ay(1), (1.4)

where x(t) is the action potentials of other population of neurons and y(z) is
the average postsynaptic membrane potential.
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2. A second block which transforms the average post synaptic membrane
potential into average pre-synaptic pulse density. This is typically a static
nonlinear function (a nonlinear function is a function in which the change
of the output is not proportional to the change of the input). A common
nonlinear function used is the sigmoidal function:

26()

T 1ty (1.5)

S(v)
It relates the average postsynaptic potential of a given population to an
average pulse density of action potentials outgoing from the population. See
an example Figure 1.11. For further information on its derivation, see the
paper by [91] which was one of the first papers to try and rigorously derive
the sigmoid function from experimental data.

N @ i

Pulse density

—

-10 0 10 20
postsynaptic potential

Fig. 1.11 From postsynaptic potential to average pulse density. The sigmoid
function models the transformation of postsynaptic potential into average pulse
density. The function is nonlinear and is bounded.

1.3.3 Common approaches for studying neural mass models

One of the reasons for the increasing presence of NMMs in academic publications
is their success in improving our understanding of the brain. NMMs have been
proposed to understand the effect of stimulations including from an external input
such as transcranial magnetic simulation [62], auditory simulation [225] and anaes-
thetic drugs [152]. Equally, the power spectrum of the brain in different states
and their transitions can be well-replicated [61, 219, 268, 298]. The applications
of NMMs to epilepsy are particularly prolific. Detailed reviews of the insights
gained by NMM can be found in [37, 67, 248, 283, 293]. To answer questions, two
main approaches have been used: the forward problem and the inverse problem
approaches. The forward problem can be described as the simulation of the model
given a set of input parameters [300]. The inverse problem can be described as
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the identification of the parameters which would have simulated an output similar
to our data [300]. Both approaches are useful and complementary in the context
of studying epilepsy. In this thesis, we focus mainly on the forward approach.

As specified in section 1.2.4 there are four possible mechanisms which can
explain the seizure onset. NMMs give us the possibility of exploring these four
options in a mathematical framework and of comparing the context in which they
could arise. Three main approaches have been used in the past and are described
in detail in the following section:

+ activity map: the model is simulated a large number of time to identify by a
visual approach the relationship between dynamics and parameters;

* sensitivity analysis [204]: Sensitivity analysis tries to determine how the
change of input parameters would affect the change of the output by using a
statistical approach.

» numerical continuation and bifurcation techniques [151]: a bifurcation occurs
when a small change made to the parameter values (the bifurcation parame-
ters) of a system causes a sudden ‘qualitative’ or topological change in its
behaviour [28]; and

Activity map

NMMs can be directly simulated to reproduce the activity of populations of neurons.
The solution of NMMs ODE can generally not be solved analytically so temporal
discretisation methods are used to approximate solutions. Runge—Kutta methods
are often used [46]. This helps to understand how the interactions between
populations of neurons can lead to seizures. Parameters are modified to identify
for which values particular dynamic appears. This approach has been intensively
used to understand the potential of NMMs for simulating specific rhythms of the
brain. Activity maps have given the insight to explain the role of the different
populations of neurons to explain epilepsy [68, 140, 281]. However, due to the
large number of parameters, only a certain number of parameters are studied, the
rest are fixed at predefined values.

Bifurcation analysis

A bifurcation occurs when a small change made to the parameter values (the
bifurcation parameters) of a system causes a sudden ’'qualitative’ or topological
change in its behaviour [151]. Numerical continuation tools exist to track these
bifurcations® and have been intensively used to study seizure onset [29, 38, 107,

Ssuch as AUTO, MATCONT, or DDEBIFTOO.
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124, 135, 183, 244, 253, 265]. These studies typically only examine two parame-
ters simultaneously. Clearly, in high dimensional systems such as NMM, we expect
that changing a third parameter could affect the distribution of dynamics obtained.
NMMs such as the Jansen model [140] have been studied comprehensively by
simultaneously altering 3 parameters [265]. A potential downside to such analyses
is that results can be cumbersome and difficult to summarise, thus moving beyond
3 parameters with these techniques would prohibit a succinct evaluation of the
role of each of parameter. Another approach is to extend multiple bifurcation
analyses in a single parameter across 5 further dimensions, whilst classifying dif-
ferent bifurcations and their prevalences [244]. Although this is a valid approach to
understanding some elements of the complexity over large dimensional parameter
spaces, it does not give a comprehensive overview of the role that each parameter
plays. Even if very enlighting about the role and co-dependence of few parameters
numerical continuation cannot be used to approach simultaneously all parame-
ters. In high dimensions (e.g. > 3) this approach soon becomes computationally
intractable. On the other hand, studying a restricted number of parameters is
unsatisfactory.

Sensitivity analysis

Sensitivity analysis investigates how the variation in the output of a numerical
model can be attributed to variations of its input parameters [34, 204]. If one
is interested in performing the analysis around a point of interest in the model
parameter space, then one is performing a local sensitivity analysis.

The simplest way to interrogate a model is to study the model output when we
vary one model parameter at a time [34]. The procedure is straightforward:

1. moving one parameter value, keeping others at their baseline (nominal)
values; then,

2. returning the parameter to its nominal value and repeating for each of the
parameters in the same way.

This method is used in the NMM field [61, 184, 219, 251, 268]. However, this
approach suffers the same limitation of the two approaches presented above. One
needs to select an initial parameter set to do a local analysis. It is possible to use
more advanced approaches such as global sensitivity analyses (variance-based
methods [128, 222, 239], variogram analysis of response surfaces [210, 211],
screening [50] or generalised models [113]) which have previously been used to
identify the existence of relationships between dynamics and parameters (in fields
other than NMMs). However, these methods would only assess the importance of
one parameter and would not indicate for which values the parameter is important,
or its relationship with other parameters.



1.3 Mathematical models 49

1.3.4 An important limitation of the current approaches: high
dimensionality of the parameter space

One of the inconveniences of NMMs is their relatively large dimensional parameter
space. Thus it is difficult to apprehend the role of each parameter for the dynamics
of the NMMs in more than few dimensions. A classical approach chosen by most
of the studies in this section consists of fixing all parameters but a few and explore
this new sub-parameter space. This leads to a much easier analysis but there is no
guarantee that a fixed parameter could have influenced the role of the parameters
which were not fixed. To show the effect of a third parameter which has been fixed
let us consider by example the model f:

f:R? =R (1.6)
(x,y) =y '

If one would fix y < 0 and analyse the role of x, x would appear to be negatively
correlated to the output. However, if y > 0 the analysis would provide other results;
x would be positively correlated to the output. Thus studying only x with y fixed
can lead to misleading analyses. Fixing default values a priori in order to study the
generation of particular dynamics does not allow to understand the behaviour of
the system at unexplored, potentially plausible parameter values. Thus we cannot
discover whether other regions of parameter space permit the same or different
conclusions. When specifying prior distributions for model inversion, we usually,
therefore, do not know to what extent any resulting inference is dependent upon
the particular choice of priors or whether unexplored regions of parameter space
could also provide reasonable solutions.

If fixed parameter values and a priori distributions reflected our knowledge and
experimental data, this would not be a problem. However experimental data show
that this is not the case. The parameter values extracted from experimental data
are uncertain: a large variability has been shown to exist in parameters measured
directly from neurons and neural masses [88, 266] (see chapter 3 for more details).
Thus chosen prior distributions of fixed parameter values are assumptions which
are likely to be false.

We saw that fixing parameters or working with strong a priori distributions
is not well founded. It is necessary to study the repertoire of NMM dynamics
over all parameters that cannot be sufficiently constrained. It would facilitate a
deeper understanding of complex, high dimensional models. It would also facilitate
choosing appropriate priors and initial parameter settings in model inversion
algorithms (by identifying for example parameters which do not influence the
dynamics and by fixing them). The methods presented above do not allow to
quantify the impact that changes in multiple (e.g. all) parameters have on dynamics
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and to identify specific regions of parameter space in which changes in dynamics
occur.

To overcome current limitations of the use of NMMs and the potential of studies
to mislead (e.g. where only a set of parameters were studied at the same time) a
new approach is needed. The approach needs to be able to explore and analyse
the parameter space of a mathematical model in a relatively short amount of time,
to visualise this high dimensional parameter space by identifying the role of the
parameters in different subspaces of the parameter space. This approach needs
to be able to address multiple questions to lead to a better understanding of the
NMMs:

1. Which parameters influence the dynamics?

» Which parameters globally influence the dynamics, i.e. regardless of
the values of the others parameters, a global parameter would influence
the dynamics when its value changes.

» Which parameters only influence the dynamics locally, and in this case
to which others parameters are they linked?

 Are there some parameters that never influence the dynamics and thus
can be fixed without detriment to the study?

2. Are some parameters interacting together?
3. For which parameter values do dynamical transitions appear?

4. Does the model give meaningful output in the biologically constrained pa-
rameter space?

In this thesis, we propose a new method to analyse the parameter space of a
NMM, the decision tree mapping (DTM) method. DTM consists of mapping the
parameter space of a given NMM over features of interest in an interpretable and
succinct manner. To do so, the NMM is successively simulated a large number
of times with different combinations of parameters and then a machine learning
method called decision tree learning algorithms [43] and random forest [122] are
used to map and analyse the parameter space.

1.4 Conclusion

We have seen in this chapter that epilepsy is a complex disorder with a huge
burden at different levels of society. Due to the complexity of this disorder, un-
til recently treatments could be potentially more dangerous than epilepsy itself.
Recently, progress has been made to treat and reduce the burden of epilepsy.
However, the path to a world without epilepsy is long.
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The causes of epilepsy are difficult to apprehend due to the complexity of the
brain. The brain is a multi-scale system and its dynamics are relatively difficult to
observe. To study the brain, mathematical models have been developed. These
mathematical models have given insights to explain the dynamics observed in
EEG recordings and how neuronal populations interact.

Nevertheless, as explained above, the parameter space of NMMs can be highly
nonlinear and need to be studied in its entirety. The history of epilepsy reminds
us of the danger of “playing” with the brain without a deep understanding of its
mechanisms.

Current methods are useful to explore parameter spaces but do not provide
a rigorous and robust method to analyse the parameter space. It is thus critical
to develop a new approach which gives the possibility to better understand the
models that scientists use on a daily basis.

Therefore, we introduce DTM for the characterisation of NMM dynamics simul-
taneously over all parameters. This approach is useful to identify the parameters
which impact most the dynamics of NMMs and for which values changes are more
likely to occur. In the next chapter we describe DTM and in the following chapters,
we apply DTM to different problems.






Chapter 2

Methodology

The fertile field of discovery lies for
the most part on those borderlands
where one science meets another.

D’Arcy Thompson. The College

This chapter is based on the work published in [83] in collaboration with Dr.
Marc Goodfellow and Prof. John Terry.

In this chapter, we introduce the necessary background to understand the DTM
approach and analyse the parameter space of a NMM. This approach is based
on a new combination and adaptation of different previous methods available in
the literature. We briefly present an overview of DTM in section 2.1.1. Then we
detail its different components, from section 2.1.5 to section 2.1.6. We then focus
on the interaction between parameters which is not directly taken into account
by the DTM approach, see section 2.3, and which are helpful to better analyse a
parameter space, as in chapters 3 and 4. To help the reader to understand the
different concepts and show the efficiency of the approach, diverse examples are
presented in the chapter.

2.1 Tree decision mapping approach

2.1.1 Overwiew of the tree decision mapping approach

In this section, we give a brief descriptive overview of DTM and provide further
mathematical details of each component in subsequent sections, see Figure 2.1
for a general overview.

The first step consists of choosing a NMM, see section 2.1.2. The parameter
space is also defined, i.e. some constraints on the extreme values that each
parameter can take and an approach to classify or order the output.

The second step in the methodology consists of transforming the mathematical
model into a database, see section 2.1.2. To do this the NMM is simulated a
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Fig. 2.1 Schematic of the methodology of decision tree mapping. The dynamic
features of interest are identified and characterised and a model able to reproduce
the dynamic of interest is selected. The NMM is simulated a large number of times
over its parameter space and each simulation is classified. Then the simulations
are partitioned using decision tree learning. Finally the final partitions are used to
characterise the parameter space of the NMM.

large number of times using different parameters, which are chosen using a latin
hypercube design [176]. This is a space filling design which allows to efficiently
explore the whole parameter space given a fixed number of simulations.

The final step is to fit the data with a statistical model, see section 2.1.3. We
use decision tree learning and random forests, see sections 2.1.5 and 2.1.6. These
models cut the parameter space into rectangular regions of different sizes and is
amenable to high dimensional analyses. These regions are created with the aim
that each one contains a high proportion of the presence of a dynamic of interest
or a high proportion without the presence dynamic of interest. Of course, we do not
expect that the parameter space can be completely mapped to a set of rectangular
regions, but it will reveal important trends and for example identify some regions
of parameter space without a dynamic of interest. The statistical model captures
parameter space trends of the mathematical model and summarises them in an
efficient way, therefore facilitating the estimation of the effect of the variations in a
particular parameter. In this way, critical or important parameters for a given output
can be found.

2.1.2 From neural mass model to database

The first step of DTM consists of choosing a NMM, defining its parameter space
and an approach to classify or order the output.

Choice of model

To recall Eykhoff’s words a mathematical model needs to be “a representation of
the essential aspects of an existing system (or a system to be constructed) which
presents knowledge of that system in usable form” [80]. The choice of the neural
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mass model is study-dependent. We define in the scope of this thesis “simulation
as the approximations of the NMM by computational approaches. As we have
seen in the introduction (section 1.3), specific NMMs have been made to take
into account specific knowledge of the brain. For example, one would not use
a NMM modelling the full brain with a large number of parameters to study only
the olfactory system. Here, a NMM is defined by its function F which maps the
parameter space X of p dimensions to the output space Y. The parameter space
X can be defined upon experimental knowledge. We remarked in some cases (see
chapter 3) that the parameter space was defined by mathematical studies and
not on experimental data’. We derive F by first simulating the model using ODE
solvers such as Runge—Kutta methods [46] and by mapping the output onto some
feature of interest (for example the presence of oscillations). Let x = (x1,x2,...,x,)
be a parameter vector belonging to the parameter space X. Theny =F(x) € Y is
the image of x. the choice of F needs to be relevant to the purpose of the study.
If the purpose was to study seizure dynamics, as in chapter 3, one could focus
on the classification of the dynamics as being seizure-like or not. In this case, the
output would be binary and we would have F defined as:

0, seizure dynamics;
1, non seizure dynamics.

In the context of fitting a NMMs to some data, z,.,, the output could be expressed
as the values of some specific loss function L(z;.,,S(x)) where S(x) could be a
time series simulated using the model. In this case, the output would be a positive
number. F would be defined as

F(X) = L(Zdath(X))'

Space filling design to simulate the neural mass models

To simulate the model over the whole parameter space we use a space-filling
design. A space filling design allows to efficiently explore the whole parameter
space given a fixed number of simulations [274, 275, 297]. A Latin hypercube
design is constructed in such a way that each of the dimensions is divided into
equal levels (sometimes called bins) and that there is only one point (or sample)
at each level. As originally proposed [176], a random procedure is used to
determine the points’ locations. Figure 2.2 shows three examples of designs
with 2 dimensions and 20 points. The extreme case illustrated in Figure 2.2 (a) is
a design with very poor space filling qualities. Randomisation alone could improve
the experimental design to the point exemplified by Figure 2.2 (b). On the other
hand, optimisation of point placement would lead to the better choice shown in

By doing so, one risks to oversimplify an analyse and miss important results (see chapter 3
and 4).
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{a) Design with very poor space
filling properiics,

{b) Randomized design.

Figure 2.2 (c), where points are more uniformly distributed over the domain with
respect to Euclidian distance. There exist many latin hypercube algorithms, for

(¢} Design with good space filling
properiics,

Fig. 2.2 Examples of Latin hypercube designs with 2 dimensions and 20 points.
Reproduced with authorisation from [275] under licence 4358761312382.

a review see [275]. For the rest of this thesis, let us consider the set of all the N
parameter vectors, y = (Xie[lzN]), which have been selected in the latin hypercube
design and its image (y; = F(x;), i € [1: N]).

2.1.3 Quantifying dynamic transitions in high dimensions

We are interested in understanding the relationship between the variable X and
its image Y. The function F is complex and it is difficult to apprehend which
parameters play an important role and for which values of parameters certain
output of interest can be simulated. As an example let us consider the case where
the codomain is binary Y = {0, 1}. We denote P(Y = 1|X € R) as the probability of
the event Y =1 (for example, the dynamic observed has seizure characteristics)
given that the parameter vector X belongs to region R, which is a hypercube subset
of the full parameter space. We have for example:

0, no event;
Y =
1 event.

and a region defined, for example, by

{XGR}:{X|(X1<U1)ﬂ(L1<X3<U2)}. (2.2)

In this case P(Y = 1|X € R) represents the likelihood of event when the parameter
X, is inferior to U;, X3 is between L; and U, and the other parameters are not
constrained. The value of P(Y = 1|X € R) is given by
P(Y = 1|X €R)) = / P(Y = 1|x) dx. (2.3)
XER
Since the function mapping X onto Y is unknown, we take a sampling approach and

use the database created by simulations. Assuming that x is sampled independent
and identically distributed from X. We can therefore estimate the term P(Y = 1|X €
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R) for the given region R by computing

P(Y =1|X €R))

Yy, (2.4)

eR|xeR

where |A| denotes the cardinality of the set A. The quantity P(Y = 1|X € R) can
be further used to determine which parameters are important to find regions of
interest.

Confidence in the likelihood estimated in a subregion

To analyse the parameter space it is necessarily to know the confidence that
we can give in the likelihood estimated in each region. Given our sampling it is
possible to estimate a confidence interval for each feature in each region. All these
estimations are based on the central limit theorem:

Lindeberg-Lévy central limit theorem [27]. Suppose (Y},Y»,...) is a sequence
of independent and identically distributed random variables with E[Y;] = u and
Var[Y;] = 62 < o. Then

1 1 d 2
-y Y |- N (0 : 2.5
ﬁ((;@%) u>—> (0,0%) (2.5)
If the number of simulations in the regions is too small, the estimation of P(Y|X; €
my,)) could be biased. In certain contexts, it is possible to find an upper bound
on the variance o2. Suppose a distribution has minimum m, maximum M, and
expected value u. The Bhatia—Davis inequality says:

0> < (M—p)(u—m). (2.6)

Equality holds precisely if all the probability is concentrated at the endpoints m and
M.Form=0and M = 1:
o’ <1/4, (2.7)

and so the confidence of interval of a feature can be bounded by the maximum
bound of its variance (1/4):

- 1.96 _ 196
PriY——=<u<¥V+-—"2)>0.095. 2.
r< 4\/,2—”— +4\/ﬁ) 0.95 (2.8)
For n > 400 the confidence interval of u will be inferior to 0.05. This means that
as long as the size of a region is larger than 400, they should be meaningful and
indicate with a good accuracy the proportion of the event.
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2.1.4 Partition of the parameter space

An obvious question that arises is how to choose a partition of the parameter
space such that each region is meaningful. A first approach consists of fixing the
regions Ric.,) such that each region is the same size, i.e. the parameter space
is cut into pre-defined disjoint regions and that the union of the regions is equal
to X. This approach can be a useful tool to display the parameter space by the
projection of the parameter space to two parameters at the time as we will see
later (see section 2.3).

Another approach consists of partitioning the parameter space by selecting M
“optimal” regions, Ry, ..., Ry. By optimal, we mean the number of regions M is as
small as possible such that in each region the discrepancy of the event Y is low.
By discrepancy we mean the output in a region is similar (same class when the
output is categorical or close to the mean of the region for continuous output). In
principle, this results in a more efficient mapping of the dynamics of the model
onto its parameter space. The boundaries between regions are useful, as they
indicate which parameters have an important role in a rapid change of output like
the emergence of dynamics of interest. Effectively they describe the transitions
as parameters are varied between different dynamic types that can correspond to
bifurcations or other types of phase transition in the underlying dynamic model.

To define optimal regions, we use an approach called decision tree learning
algorithms [43]. Here, the parameter space is partitioned recursively into rectangu-
lar disjoint subspaces by axis parallel splits. The size of each region is determined
by ensuring that it consists, insofar as possible, of only a single type of dynamics.
An example of a parameter space containing 3 classes and a tree splitting the
parameter space is given in Figure 2.3.

Tree-based methods are a conceptually simple, yet very powerful tool to study
highly nonlinear functions for the purpose of regression or classification. These
methods are inherently non-parametric; no assumptions are made regarding the
underlying distribution of parameter values. They can be trained quickly, provide a
vehicle to efficiently predict the output of new simulations and scale well to large
datasets. Introduced by [43], we focus on classification and regression tree (CART)
algorithms. These produce binary splits recursively from the root (the complete
parameter space) to its leaves (the regions corresponding to dynamics of a single
type or as close as possible). CART models are easy to interpret as they offer a
visual representation of the parameter space [208].

We have tested other statistical methods to partition the parameter space.
Particularly we focused on the use of Gaussian processes (GPs) [78, 287]. This
method has been applied with success in the past to explore parameter space
of complex mathematical models which are slow to run [48, 264]. However, in
our studies, if good results were achieved for a parameter space with a small
number of dimensions (<4), poor results were achieved with more parameters. By
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Fig. 2.3 The parameter space consists of two parameters X and Y ranging from 0
to 1. There are 3 classes of dynamics. The full parameter space is represented in
the tree by its root. In this region, all classes are represented. In the intermediate
layer, two subregions are identified, one containing the classes red and blue and
the other containing the classes blue and green. Finally, in the leaf of the tree,
there is now only one class per region.

increasing the number of simulation we were able to achieve better results (up to
5 dimensions), however as Gaussian process necessitates to inverse a matrix of
the size of the sample of the dataset, this approach could not be scaled. We tried
more advanced machine learning tools such as Bayesian Treed Gaussian Process
[18, 109, 110] and developed an algorithm using local GPs in different regions of
space without success.

Other approaches could be used for modelling the relationships in a design
space using machine learning techniques. For example, the field of Estimation
of distribution Algorithm (EDA) [6] build explicit probabilistic models to identify
the regions of parameter space where a dynamic of interest is the most likely to
be found. Two examples of algorithms are the Bayesian optimization algorithm
(BOA) [201] and Linkage-tree Genetic Algorithm (LTGA) [260]. These algorithms
are initially stochastic optimization methods. Their purpose is to build explicit
probabilistic models of the optimal solution. The algorithms consists of a series of
incremental updates of a probabilistic model, starting with the model encoding the
uniform distribution over admissible solutions and ending with a set of parameters
which generates only the global optima [120]. By slightly changing the algorithms
it should be possible to generate all the parameter vectors which can simulate
the dynamics of interest. It would require some transformations of the current
algorithms but it is a promising approach. One of the key advantage of the EDA
approach would be to sample in the regions of space of interest and thus avoid
to sample in the regions of space where it is unlikely to simulate the dynamic of
interest, furthermore they could be used to fit specific data while the DTM is limited
to the exploration of parameter space. However one of the key constraints of the
EDA approach is to interpret and visualise the complex probabilistic models.
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At the opposite, trees and their extensions, the random forests, are directly
able to explore and analyse the parameter space in an efficient way. Trees have
several advantages:

+ they perform well with large datasets. Due to the relative simplicity of the algo-
rithm (describe below) large amounts of data ( ¢'( 1,000,000 observations))
can be analysed using standard computing resources. This is particularly
useful for models with complex parameter space where a large number of
simulations is needed to explore well the parameter space;

« they do not necessitate normalisation of the variables and can handle quali-
tative and quantitative parameters and output simultaneously; and

« they are easy to understand and to be visualised. This is particularly impor-
tant to understand and visualise the parameter space.

However as there is no free lunch?, tree approaches have constraints:

* tree approaches are based on a axis parallel separability approach and thus
has a decrease in performance when this assumption is not respected.

 the non respect of this assumption increases the number of regions and
increases the difficulty to visualise the parameter space.

2.1.5 Building a tree

In general, finding the optimal partitioning of parameter space is a NP-complete
problem [136]. Therefore, decision tree learning algorithms are based on heuristics
whereby locally optimal decisions are made within each region of the tree. Whilst
such an approach is not guaranteed to give the globally-optimal decision tree,
CART methods have been shown to give good results in practice [43]. Here, we
summarise the approach, which is described in detail in [123]. We also provided
an example in Figure 2.4 which describes how the tree presented in Figure 2.3 is
achieved.

2If an algorithm performs well on a certain class of problems then it necessarily pays for that
with degraded performance on the set of other problems [294].
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Fig. 2.4 The different steps to construct a tree. In this example, the parameter
space consists of two parameters X and Y ranging from 0 to 1. There are 3 classes
of dynamics indicated by green, blue and red which are assumed to be the results
of the simulations. A) This full parameter space is represented in the tree by
its root. In this region, all classes are represented. The impurity (see equation
2.9) in this region is equal to 0.48. B) The split (see equation 2.11) at Y = 0.4
drastically decreases the impurity in its two subregions which are now 0.13 and
0.14. Nevertheless, the regions themselves are not pure. C) The region with the
larger impurity is then targeted by the CART algorithm. The split at X = 0.1 totally
removes the impurity in its two sub-regions which are now equal to 0. There is
only one type of observation per region in this parameter subspace. D) The last
region with some impurity is again targeted by the CART algorithm. The split at
X = 0.7 totally removes the impurity in its two sub-regions. There is now only one
type of dynamic feature within each region of the tree defined by a leaf.
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The algorithm can be summarised as such
Pseudocode for tree construction by exhaustive search

1. Start at the root node. Initialise the temporary tree T;).

2. For each parameter in each region, find the split that minimises the sum of
the node impurities in the two child nodes and choose the split that gives the
minimum overall. Update T;.,.

3. If a stopping criterion is reached, exit. Otherwise, apply step 2 to each child
node in turn.

Formally we have a data set consisting of n points in R?. The set of outputs
consists of the class of observed dynamics y; for each simulation. Suppose that
we have a partition into M regions, Ry, ..., Ry. For a given region R, the splitting
stage is chosen by finding an optimal split point in terms of the impurity criterion
described equation 2.9.

The measure Ig, of region impurity represents the quality of classification in a
region. By this, we mean how well a region of parameter space maps onto model
dynamics of a single type. When the output is categorical, it is defined by the Gini
index:

1 K
Rn = N_ Z k(1= Pmk), (2.9)

where p, is the estimation of P(y € k|x € R,,), the probability of the event k in the
region R,,.

Pk = Z I(F (2.10)
Nin XER,

is the proportion of class k observations in a given region R,,. When Iz =0, the
region is pure and it contains only a single class of dynamics. By contrast, a large
Gini index indicates a region with large impurity, and thus contains parameters
that map onto different types of dynamics in the model. For the temporary tree
Tiemp, We seek the i split parameter and split point, s, and the region R such that
the gain function G(R,s,?):

G(R,j,S) =Ir— (IRL(m,j,s) +IRR(m,j,s))7 (2.11)

is maximised. Here Ry (m, j,s) = {x|x € Ry,xj < s} and

Rg(m,j,s) = {x|x € Ry,x j > s} are respectively the potential left and right split of
the region of interest. For each region, the determination of the split points can be
done very quickly (& (p x n) operations) and hence by scanning through all of the
inputs, determination of the best pair (J, s) is feasible in finite time. An example of
a tree and its construction can be found in Figure 2.4. To estimate a new set of
parameters x, the class with the largest frequency k(m) = argmax p,, is attributed

k

to x. Figure 2.4 presents an example of construction of a tree.



2.1 Tree decision mapping approach 63

Loss function

As we will see in example f; (see equation 2.20) and chapter 5, sometimes one
particular class is of interest. It is possible to focus specifically on a certain class by
adding a weighted loss function, L [43]. The value of the loss function is interpreted
as the cost incurred by predicting y when the true output is y. It is based on the
idea of regret, i.e., the loss associated with a bad decision to predict a class.
For example, one can consider that correctly finding all seizure dynamics (see
equation 2.1) is more important than wrongly identifying non seizure dynamics as
seizure dynamics. In the classical framework, the loss weight is equal for each
class:

0O 1 1
1 0 1 ...
L=|. - (2.12)
.. 0
1 1 0
The impurity index I(R) of the region R has its maximum at p; = p, = ... = px =1 /K.

However, if a problem had a misclassification loss for class 1 which was twice the
loss for a class 2 or 3 observation, ie, we would have

011
L=1]2 0 1 (2.13)
210

One would wish to have its maximum at p; = 1/5, p» = p3 = 2/5, since this is the
worst possible set of proportions on which to decide a node’s class. To account for
the loss, we present the method of “altered priors” [43] implemented in R via the
package rpart [259]. The NeW p,.x corrected IS €Stimated via

. mL; 1

Pmk corrected = Zj 7 Lj N Xig,eml(yz =k), (2.14)
where =; is the prior probability for group i and L; = ¥ ; Ly When altered priors are
used, they only affect the choice of split. The ordinary losses (i.e same weight
for any error) and priors are used to compute the prediction. The altered priors
simply help the impurity rule choose splits that are likely to be “good" given the
loss function.

Regression tree analysis

When the predicted outcome is continuous we use regression tree analysis. The
Gini Index is replaced by the variance reduction function,

IRm :NL Z Z %(yi—yj)z. (215)

mieR,, jERy
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This is equivalent to choosing the split to maximize the between-groups sum-of-
squares in a simple analysis of variance.

2.1.6 Random forests

Problems faced when focussing on a single tree, as in the previous section, include
overfitting and the inability of the heuristic to find the optimal partition. To overcome
these problems, the aggregation of a large number of trees is often used and
provides much greater insight. In a series of papers and technical reports, [40—-42]
demonstrated that substantial gains in classification and regression accuracy can
be achieved by using ensembles of B trees, where each tree in the ensembile is
grown in accordance with a random set of rules. This method is called random
decision forests. This method remains one of the most accurate machine learning
algorithms [51, 82] and its consistency have been demonstrated [230].

In this study, the use of multiple trees is equivalent to mapping the parameter
space using different rules of segmentation. If a segmentation appears consistently,
this implies it is important. The training algorithm for random forests applies the
general technique of bootstrap aggregating [39], i.e. for each tree, a random
sample with replacement of the simulations set is selected. This random sample is
called the in-of-bag data. The set of simulations not selected is called out-of-bag
data. Furthermore, for each region, a random subset of parameters is selected,
and the split is optimised on the basis of the chosen parameters. For each
bootstrap sample Z,, {b=1, 2,..., B}, we fit a tree according to a succession of
random rules (for each split select ,/p parameters to find the optimal split), giving
the tree #,. Then the random forest f is given by:

1 B
==Y (2.16)
b=1

The estimation of the probability for a parameter set x to belong to class k is given
by:

Pyek) = By(y € k). (2.17)

HMDa

In the case of an imbalanced dataset, i.e. the classes are not represented by
the same ratio in the dataset. In the case of an imbalanced dataset, it is advised
to use under-sampling to correct imbalanced classes and misclassification costs
[35, 53].

2.1.7 Determining the importance of parameters

Knowing which parameters have a high impact on the probability of an event is
crucial to improve our understanding of the system so that we may focus on these
parameters. There are many ways to compute the importance of a parameter in
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a tree. In the following part, some of the most classic measures are presented.
These measures are complementary and capture different aspects of the influence
of parameters for the probability of an event.

The Gini importance GI;, j € [1: p] [103] is defined as the sum of all decreases
in impurity in the tree due to the given parameter divided by the number of splits,
N;, i.e.

1
Gli=— Y It —Ir,(m) — IRa(m)- (2.18)
NS Ry, €T

A parameter with a large GI indicates that a change in the values of the parameter
is more likely to influence the dynamics than a parameter with small GI.

Note: for an easy interpretation, the variable importance GI; of the parameter i
is expressed in terms of a normalised quantity relative to the variable having the
largest measure of importance:

GI;
Gl; =

~ (G (2.19)

A parameter, therefore, has an important influence on the dynamics of interest
in the model if its GI is close to 1 and a small importance if it close to 0. These
values are only indicative and small differences in GI between two parameters
would not necessarily indicate that a parameter is more important than another.
Furthermore, it quantifies global parameter importance; it is possible that in some
parts of the parameter space a parameter described as important does not affect
dynamics.

The variable importance by permutation PI; is calculated by noising up a
parameter by randomly changing its values [138, 170]. They estimate the mean
decrease or increase of prediction accuracy after X; is permuted. A given x;
is randomly permuted in the out-of-bag data and permuted out-of-bag data is
dropped down the tree grown from the in-bag data. This is done for each tree
in the forest and an out-of-bag estimate of the prediction error is computed from
the resulting parameter. The difference between this value and the out-of-bag
error without random permutation is the PI;. Large positive values indicate j is
predictive, whereas zero or negative importance values identify parameters not
predictive.

The presence of a parameter in a split at an early stage of a tree shows that this
parameter is often preferable to cut the parameter space and so it is an important
parameter at a global level. We denote by R; total number of trees in which X; is
used for splitting the root node (i.e., the whole set of simulations is divided into two
based on the value of X;).

We implemented random forests using R [209] with the packages RandomFor-
est [257]. The figures were built with some adaption of the package rpart [258]
and rpart.plot [178].
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2.2 Examples

In this section, we present different examples. The purpose is to show the advan-
tages and the limitations of the tree mapping approach.

2.2.1 Nominal examples

Nominal variables have two or more categories, but which do not have an intrinsic
order. The examples present different manifolds which could be potentially found
in mathematical models. For each example, artificial parameters are added to
the model. These parameters do not influence the output of the functions. To
encompass for the relatively simple function created, the parameter space is only
simulated a thousand times while in a real study the model is simulated in the order
of million to be certain that the parameter space has been efficiently explored and
that its complexity can be well represented. The first example f; is extracted from
the R package mlbench [159]. The function is defined as:

if 12 2 4.

S1(x,--,x30) { (2.20)

1, otherwise.

The parameter space X is defined as [0, 1]*°. A projection of the first four param-
eters of a set of 1000 simulations can be found in Figure 2.5. This function as
a binary output. The first class is in a 2-dimensional ball in the middle of the
hypercube, the remainder forms the second class. The size of the ball is chosen
such that both classes have an equal prior probability (0.5). We added 28 false
parameters which do not influence the classes. In this example, the manifold of
interest is non-rectangular and a priori non-suitable for a method like DTM. There
are different approaches to capture the manifold of interest, one can be interested
to find specifically all the regions where a specific event happens. It is possible
to increase or decrease the weight of the loss for a specific event, see equation
2.14. Tree mapping with different losses are shown in Figures 2.6 and 2.7. One
can see that the ball is approximated with more or less accuracy. In Figure 2.6,
the loss is chosen such that the loss for class 0 is larger than the loss for class 1.
The tree presents regions such that there are regions of pure class 0 and a large
region with the presence of class 1 and 0 but where class 0 is prevalent. Figure
2.7 shows a tree where the weights of the loss are equal. In each region there is a
class in majority, however, there is a small probability to simulate the other class.

x1 and x; are the only parameters which are used to partition the parameter
space in the Figures 2.6 and 2.7. Given these trees, it appears that only these
two parameters have an impact on the simulations. Figure 2.8 confirms the
importance of these two parameters and the non-effect of the others by averaging
the importance measures over 500 trees.
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Fig. 2.5 Pairwise plot between the first parameters of the function f;. The axis are
indicated by the banners on the top and on the right. The 2-dimensional disc in
the middle cube can be visualised in the first-row, first column. At the opposite,
the parameters X3 and X, do not affect the output.
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Percentage of the total volume
Percentage of the total volume of event 100 %
, 100 %
Likelihood of event H ‘ —ves| X2<0.77 |no——
in the region |

0 01 02 03 04 05 06 07 08 09 1

87 %
75 %

yes| X1 >==0.78 |no

77 %
56 %

yes X2 >= -=0.79 nol
Fig. 2.6 Tree mapping of the function f; with a strong preference for the event 1.

The loss of a badly predicted event 1 has been increased. As a result, the tree
splits the parameter space with the aim to identify the regions without the event 0.
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Percentage of the total volume
Percentage of the total volume of event 100 %
100 %

!_ikelihooq of event “ l yes| X2 <0.77 [no———
in the region

0 01 02 03 04 05 06 07 08 09 1

87 %
75 %

yes| X1 >=-0.68 no

72 %
48 %

10 %
18 %

Fig. 2.7 Tree mapping of the function f; with an equal preference for the events 0
and 1. The loss of a badly predicted event 0 and 1 are equal. As a result the tree
splits the parameter space with the aim to identify the regions by giving a same
weigh for false estimations.

Multi-way importance plot
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Gini importance

Fig. 2.8 Multi-way parameter importance for the function f;. The importance of
parameters as determined by variable importance measures (see section 2.1.7)
averaged over a random forest of 500 trees. The parameters X; and X, are
correctly identified as the only parameters which influence the output.
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Fig. 2.9 Pairwise plot between the first parameters of the function f,. The axis
are indicated by the banners on the top and on the right. The parameter space is
more complex to visualise than the example of function f;. The parameters x;, x;
and x3 influence the output of the function f5.

The second function f; is a function with non-linear complex manifolds.

0, if (e <1.65& x;>0.5)0rx3<0.3;
f2(X1,...,X30) == . ) (221)
1 otherwise.

The parameter space X is defined as [0, 1]*°. The tree mapping is efficient and
presents a map corresponding exactly to the function, see Figure 2.10. The
importance of the parameters is well estimated, see Figure 2.11. Indeed, the
values of x3 directly influence the output while a combination of x; and x; is
necessary. The measures of importance of x3 are the highest followed by the x;
and x, measures of importance while for the other parameters, the importance
measures are close to 0, see Figure 2.11.
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yes| X2>=0.5

3
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Multi-way importance plot
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Fig. 2.10 Tree mapping of the function f,. The algorithm identifies correctly the
parameters of interest and the parameter space is efficiently mapped.
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Fig. 2.11 Multi-way parameter importance for the function f,. The importance of
parameters as determined by variable importance measures (see section 2.1.7)
averaged over a random forest of 500 trees. The parameters x; and x, are correctly
identified as having the same influence on the output while x; has the highest

importance measure.
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The third example f; is another function with a non-linear complex manifold.

0, if sin(3mx;xp) <0o0rx3z <0.4;
At xa0) = w132) (2.22)
1 otherwise.

The parameter space X is defined as [0,1]*°. In this example there is linear
interaction between x; and x, coupled to a sinusoidal function. A projection of the
first four parameters of a set of 1000 simulations can be found in Figure 2.12. As
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Fig. 2.12 Pairwise plot between the first parameters of the function f3. The axis
are indicated by the banners on the top and on the right. There is a nonlinear
interaction between the parameters x; and x,.

opposed to the previous example, the tree mapping is not optimal and does not
capture all aspects of the different manifolds. The reason is that we try to split
a parameter space in rectangular areas whereas there is a complex relationship
between two parameters and the input. We will discuss later, see section 2.3 how
the parameter interactions can be found and used to map the parameter space
more efficiently. Once again, the measures of importance are able to identify
correctly the parameters which influence the most the outputs, see Figure 2.14.



2.2 Examples

73

Percentage of the total volume
Percentage of the total volume of event

Likelihood of event 100 %
in the region 100 %

0 01 02 03 04 05 06 07 08 09 1
ves| X3 >= 0.4 Jno

36 %
25 %

Fig. 2.13 Tree mapping of the function f;. The algorithms identify correctly the
parameters of interest but the parameter space is not perfectly mapped.
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Fig. 2.14 Multi-way parameter importance for the function f;. The importance of
parameters as determined by variable importance measures (see section 2.1.7)
averaged over a random forest of 500 trees. The parameters x; and x, are correctly
identified as having the same influence on the output while x; has the highest

importance measure.
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2.2.2 Continuous examples

We use two further examples, f4 and f5 to show how DTM can be applied to model
with a continuous output. The function £, is the Matyas function 3:

fa(xr, .., x30) = 0.26 % (x3 +x3) — 0.48xx. (2.23)

The parameter space X is defined as [0, 1]*°. The function f; takes is extremum
values when

* x; value is large and x; value is small; and
* x; value is small and x; value is large.
The tree in Figure 2.15 correctly identifies the regions with the maximum values.

The multi-way importance analyses in Figure 2.16 correctly indicates that x; and
x, are the only important parameters.

0.053
100%

X1<0.81
0.045 0.089
81% 19%
X2<0.76 X2 >=0.27-
0.03 0.092 0.053
62% 19% 13%
X1<0.66 X1>=0.27- X2 >=0.52
0.025 0.056 0.057
51% 11% 12%

X2 <0.65 X2 >=0.27 X1>=0.49

0.021
44%
X1 <0.51
0.017 0.031
33% 11%

X2 <0.47 X2 >=0.27

0.011) (0.033) (0.019) (0.057) (0.051) (0.034) (0.093) (0.038) (0.082) (0.16) (0.038) (0.085) (0.16
23% 10% 8% 4% 7% 7% 4% 7% 5% 7% 9% 4% 6%

Fig. 2.15 Tree mapping of the function f;. Small values are displayed in clear
grey while large fitted values are display in a darker grey. The algorithm correctly
identifies the parameters of interest by only using them to partition the parameter
space and the parameter space is efficiently mapped.

Shttp://www.sfu.ca/ ssurjano/
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Fig. 2.16 Multi-way parameter importance for the function f,The parameters X,
and X, are correctly identified as having the same influence on the output. The
other parameters have a measure of importance close to 0.

Finally, we consider fs, the sum of f4 and some nonlinear terms (including a
nonlinear interaction between three parameters):

2, 2 (—x3) (—3)

f5 (xl, . ,X30) =0.26 % (xl —|—X2) — 0.48)61X2 +0.5¢\"3/ +0.5¢" 5

*1

(3exg)
+0.5¢17¢ ), (2.24)

This function is complex and it is difficult to apprehend which parameters have a
key role on its output. DTM efficiently summarises the key aspect of this function.

The tree in Figure 2.17 indicates for which combinations of values of parameters
the output is large and small while the multi-way parameter importance in Figure
2.18 indicates the order of importance of the parameters. Different combinations
of parameters can increase the output. Large values of x5 and xs always increase
the output. For the parameters x3, x4 and x;, their values need to be close to 0 to
increase the output. This is coherent with the function fs. The importance measure
indicates which parameters influence the most the variability of the output, see
Figure 2.)(18. The parameter x5 appears in two exponential terms (O.Se(_%) and
O.Se(‘—e(ﬁh) in the function f5 and is identify as the most important parameter.
The parameter x; and x4 appears to be similarly important. The high values for
importance measures of x; are not surprising as this parameter is present in many
terms of f5. x4 is important even if it is presents in only one term of the function fs
with the term O.Se(_%) because this term as a large amplitude compared to the
other terms of the function f5. The importance of x4 is maybe a bit over estimated
due to its interaction term with fs. However, the parameter x3 which appears in
a similar term 0.5¢(=*3) has close estimation of importance measure. We remark
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that the parameter x, does not appear in this small tree, however, importance
measures identify correctly that this parameter influences the output. The fake
parameters are correctly identified as being unimportant for the output values.

0.48
43%

yes |-)(5 < 0.54qno

0.52
50%

X4 >=0.

X3 >=0.54
0.39 0.56
19% 23%

X5<0.26

X1>=0.15

15

0.64
100%

X4>=0.37
0.63 0.83
26% 15%

X3 >=0.38—
0.57
17%

X1>=0.35

0.7
41%

0.32 0.46 0.52 0.74 0.73 0.54 0.69 0.72 0.76 0.95 1
10% 10% 20% 3% 8% 13% 4% 10% 10% 5% 9%

0.76
50%

X1>=0.17

X3>=0.3

Fig. 2.17 Tree mapping of the function fs. Small values are displayed in clear
grey while large fitted values are display in a darker grey. The algorithm identifies
correctly the parameters of interest and the parameter space is efficiently mapped.

Multi-way importance plot

1.00
o "
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0.00 0.25 0.50 0.75 1.00

MSE increase

Fig. 2.18 Multi-way parameter importance for the function fs. The parameters
influencing the outputs are correctly identified. The parameters x5 appears as
having a large influence on the output. The other parameters have a measure of
importance close to 0 while the parameter x¢ influence marginally the output.
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2.2.3 Summary of the examples

We used different examples to emphasise the different scenarios which can be
met in mathematical models. Overall, mapping of the different parameter spaces
and their related functions gave good results. Non-rectangular manifolds (f;) or
multiple manifolds (f,) were well approximated. Even complex manifolds as in
function f; were relatively well mapped. The continuous examples, f; and fs, were
well mapped and indicated for which combination of values of parameters low or
high outputs could be found.

Crucially the importance can still be correctly determined and indicates which
parameters are mainly influencing the output of the functions. As one can observe
the results of multi-way importance are robust and show efficiently which param-
eters influence the most the output. However, it is important to remark that rank
order by the measure “times at first root” can give inconsistent results.
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2.3 Interactions

“Interaction between parameters” describes a situation in which the simultaneous
influence of two or more parameters on the output is not additive. Interactions
between parameters can play a potentially crucial role in the dynamics of a mathe-
matical model, see chapter 3 and 5, thus it is necessary to develop tools to identify
and understand these interactions occurring in mathematical models. The study
of a mathematical model often starts with previous knowledge of the model, see
chapter 3 for an application. Knowledge can be extracted from biological experi-
ments or previous studies of the model and an artificial parameter representing the
interaction can be added to split the parameter space. For example, in the case of
the parameter space of f; (see equation 2.22) by adding an artificial parameter
Py, x,, the product of the parameter x; and x, it is possible to perfectly map the pa-
rameter space, see Figure 2.19. A brute force approach, inspired by [97], consists

Percentage of the total volume
Percentage of the total volume of event
5 {
100 % Likelihood of event “
100 %) in the region \

0 01 02 03 04 05 06 07 08 09 1
yes| X3 < 0.3 [no

70 %
100 %
——yes| X1 <0.5 [no
35 %
33 %

Fig. 2.19 Tree mapping of the function f4 with artificial interaction parameters. The
algorithms correctly identify the parameters of interest and the parameter space is
efficiently mapped.

of testing all possible interaction effects and focussing on the parameters with a
possible interaction. This approach, however, is cumbersome and slow when there
is a large number of parameters. Indeed the number of combinations of artificial
parameters is proportional to p(p — 1) and the computation time when building
trees is proportional to the number of parameters. A priori knowledge can help to
take into account known interactions. When a relationship between two param-
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eters is supposed, an artificial parameter is created to represent the supposed
relationship between the two (or more) parameters. When the knowledge of the
model is limited we propose two complementary methods:

» Visualisation. With this approach, artificial parameters are created after
a visual inspection of the relationship between parameters, using some
appropriate visualisation.

» Statistical test. With this approach, a systematic test of plausible interactions
is performed to automatically detect potential interactions. All possible com-
binations of interactions are tested and the ones with the higher measures of
importance are investigated.

In the next sections, we describe the two approaches.

2.3.1 Visual inspection to identify interaction between param-
eters

Visualisation is one of the most powerful interpretation tools and can give strong
insight into the interaction between parameters. To address the issues of interac-
tion, an efficient approach can consist of projecting the parameters space over a
selection of parameters. If a particular shape appears, interactions between these
two parameters should be investigated. This visualisation tool is limited to pairs of
parameters.

Partial dependence plots

To estimate the effect of a parameter, Friedman introduced the concept of partial
dependence plots [96]. In the case of a single covariate x;, the idea is that
the partial dependence function ¢;(x;) tells us how the value of the variable x;
influences the model predictions after we have “averaged out” the influence of all
other variables. Friedman’s partial dependence plots are obtained by computing
the following average and plotting it over a useful range of x; values:

9;(xj) =E; (F(X|X; =x)))

(2.25)

= /XF(Xl,--- 7Xj71’xj7Xj+17"'Xn) dX17...7de717de+l,...an.
E; (F(X|X; = x;)) is the conditional expectation of F, knowing the value of the ;"
parameter. For example, for linear models, the resulting plots are simply straight
lines whose slopes are equal to the model parameters. Indeed, let us define a
linear model:
[-1 1]'0 =R,

. (2.26)
X > ) g QicXks
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then we have:

(2.27)

This definition can be extended for any number of parameters, particularly, we
have for two parameters i and ;:

0ij(xi,x)) = B ) (F(X|X; = x,X; = x;)) . (2.28)

Let us recall that the vector x = (x1,x2,...,x,) € X represents the parameters in a
model whose model function is F(x). If we partition the index of the vector x into two
vectors of index z € [1,2,...,p— 1, p] and its compliment, z¢ = [1,2,...,p— 1, p]\z.
Let say p = 5, an example of decomposition could be z = [1,3] and z° = [2,4,5] .
Another indexing could be z = [2,3] and z¢ = [1,4,5]. We can define then define x,
has a subset of the vector x where only the element with an index in z are kept.
For example with z = [1,3] and z¢ = [2,4,5] we would have x, = (x,x3).

9:(xz) = Ez [F(X) Xz = X (2.29)

In some cases ¢;(x;) can be directly calculated (such as a linear function), however,
for complex models such as NMMs, this is not the case; ¢;(x;) needs to be
estimated. In the next section, two approaches are considerated to estimate:
E, [F<X>|Xz = Xz]-

Estimation of marginal expectation by binning

If the number of simulations is large, the preferable approach is to bin the jt"
parameter into different smaller intervals. Then based on the assumption that

E; (F(X|xj) =E; (F(X|x; € my)), (2.30)

i.e. at a bin level a change of value of the parameter i!" can be represented by
the expectation in the binnage. The bins need to be small enough to capture
and represent changes of output due to the i" parameter. The original simulated
parameter spaces which fall in a given small interval, a bin, can be replaced by a
value representative of that interval, the likelihood of the event 1 in the bin. For
a partition x into an interest set z and its compliment, z¢ = [1,2,...,p— 1, p]\z we
wish to determine the average values of the function F given X, € R. Then we
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have
E, [F(X)[X, € R] = /X F(X[X, € R)dx, (2.31)

Equation 2.31 can be estimated from a set of training data by:

Y F(x (2.32)

|(X X; ER (szeR)

This approach is relatively fast but needs large data set training as seen in section
2.1.3.

Estimation of marginal expectation by using the random forest

If there are not enough simulations to estimate the values of F with accuracy in
some regions of interest because the computation of the function F becomes too
expensive, it is possible to use the approximation by the random forest, F.

E,[F(X)|[Xz =% = ZF X|x;), (2.33)
for the case in one dimension, we have:
¢;(x;) =E; (F(X|X; =x;)) ZF Xlyeo s Xjm 15X X1y 5 Xp). (2.34)

The advantage is that an accurate estimation of ¢;(x;) can be estimated, the
inconvenience being that if the random forest does not fit F properly some errors
will appear.

An example using the function f3 is given in Figure 2.20. The approximately lin-
ear interaction between x; and x, appears clearly. In contrast, the visual approach
shows that the parameters x4 and x5 have small impact on the outputs.

However, for more complex models, the effect of interaction between parame-
ters can be hidden because of other terms in the function. This is the case for the
function fs5, see Figure 2.21. Due to the large number of parameters interacting
and having a strong effect on the output it is difficult to determine which parameters
interact with other parameters.
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Limitation of partial dependence plots

Nevertheless, these multivariate partial dependence plots have been criticized
as being inadequate in the face of specific examples. An example was given by
Goldstein et al [102] who introduced the function f:

{[1 1> =R
S (2.35)

X — —5x1 + 10x1 1,0

where 1 is the Heaviside step function. Goldstein et al showed with simulation that
1 is nearly constant*, while it is obvious that X; influences the output. We identify
in which context this can arise and provide a solution. Let’s decompose F°:

F(x) = Fi(x)) + Fa(xj) + F3(x), (2.36)

where Fi(x;) represents the terms in F' depending on x;, 2(x{) express the term

in F independent of x; and F3(x) = (F(x) — Fi(x)) —Fz(xj?)) express the part of F
where there is interaction between x; and j. So we have

¢;(xj) =E; (F(X|X; =x))) = Fi(x;) +C+E; (F(x)), (2.37)
as E; ( i(x{) ) = C is constant by definition. Then if
J j

AF(x)  AE;(B(x)

ij' ij' ’

(2.38)

one cannot see the influence of x; on the output. One can check that the example
given in equation 2.35 verifies this condition. To overcome this limitation it is
possible to plot ¢;;(x;,x;), see Figure 2.20.

2.3.2 Partial interaction plots

To disregard the effect of a single parameter and focus only on interactions we
introduce and define the partial interaction plots as:

Vij(xi, x;) =04 (xi,x;) — 0i(xi) — 9;(x;)
:E(i7j) (F(X|Xl' :xi,Xj ZXj)) (239)
—E: (F(X[X; = x))) —E; (F(X|X; = x;)) -

Y91 = —5x1 +10x1 [y ) f(x1,X2) dXp = —5x1 +10x; 5 = 0.
5This decomposition is not always possible. Indeed, in many cases, the term in x; cannot be
split from the others, in these cases F; =F, F; =0 and F, = 0.
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By decomposing F® as
F(x) = Fuj(x) + Fi1j(x), (2.40)
where Fy,; denotes the term in F where the parameters i and j interact and F; ;

where they do not.

Theorem

Wi (xi,x;) =B j) (Fu(XIX; = xi,X; = x))) — Ei (Fu; (X[X; = xi)) —

(2.41)
E; (Fiu;(XIX; =x;)) +Cij,

where C;; is a constant. By computing y;;(x;,x;) the terms of F where i and j do
not interact are removed.
Proof. By definition of y;; and linearity of the expected value operator:

Wi (xi, x;) =K j) (Fuj(XIX = xi,X; = x;)) — i (Fiu; (X[X; = x;))

(2.42)
where
L(Xiyxj> :E(i,j) (Elj(X|Xi =x;,Xj = xj)) (2.43)
—E; (F1 (XX = xi)) —E; (F(XIX; = x;)) -
Let's decompose F; :
VX, Fi1j(x) = F_j(x) + F_i(x), (2.44)

with F_;(x) denotes a decomposition of F; ; such that F_;(x) does not have term
in x; and F_;(x) does not have term in x;’. Then we have by the linearity of the
expected value operator:

L(x,-,xj) = E(i»j) (F_,'(X> |X,' = xi,Xj = xj)) — Ei (F_i(X)|Xi = x,'))
—E; (FLi(X|X; = x))) +E j) (F-;(X|Xi = x:,X; = x;)) (2.45)
—]E,' (F_j<X|Xi :x,')) —Ej (F_j<X|Xj = )Cj)) .

By definition of F_; and F_; we have

Eq ) (F-i(X)|Xi = x;,X; = x))) =E; (F-i(X|X; = x;)),
E(Lj) (F_j(X‘X,’ = xi7XJ~ :xj)) = Ei (F_j(X’Xi = xi)) y
E; (F-i(X)[Xi = xi)) = Ci,

Ej (F_j(X)|Xj :.Xj)) :Cj.

(2.46)

60nce again, decomposition is not always possible, in this case F = F;,; and the theorem holds.
"This decomposition is not unique in general.
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So by insertion of the equality of equation 2.46 in equation 2.45 we have:

L(xi,xj) = B (F-i(X[X; = x;)) — Ci —E; (F-i(X|X; = x;))
+E; (F_;(X)[X; =x,)) —C; —E; (F-;(X)|Xi = x;))

(2.47)
It has been proven that:
Wi (i) =B j) (Fioj(XIXe = 3, X = xj)) = Ei (Fiu(X|X; = x1)) = (2.48)

E; (Fiuj(x|X; = x;)) +Cij.

This theorem is useful to observe the effects of the interaction of the parameters
x; and x;. As L(x;,x;) = 0 for any pairs (x;,x;), ¥i;j(xi,x;) do not account for the
effect of the terms in F which depend only of the parameters x; and x;. The case
v;j(xi,xj) = Cjj, for any x; and x;, can be explained by:

* x; and x; do not interact. Thus, we have F; ;(x;,x;) = C;; for any pair x;,x; and
S0 ;;(x;,x;) = 0 for any pair x;,x;. Thus, the partial interaction plot of two
non-interacting parameters has a gradient equal to 0.

* By (Foj(XIXi = x0, X = xj)) = Bi (Fuuj(X|Xi = xi)) + B (Fiu;(x[X; = x))).
This equality requires very specific functions for a given a specific parameter
space.

It is possible to estimate ;;(x;,x; € R) by using a similar estimation method as it is
done in section 2.3.1 and to plot it to visualise the effect of the interactions. In the
next section we give two examples.

2.3.3 Examples of partial interaction plots

In Figure 2.22, we computed the partial plot interaction for the function f:

0, if (sin(3mx1xy) <0 orx3 < 0.4;
£t ) { int (2.49)

1 otherwise.

The interaction term between x; and x, was not perfectly captured by the tree ap-
proaches, see Figure 2.14. However, using partial dependant plot, the interaction
between the parameters x; and x; is directly observable. There is an interaction
which is highlighted between the parameters x; and x, with the parameter x3. This
is due to the fact that f3 can be rewritten as

f3=1+1(sin(37x1x3) <0)1(x3 <0.4)— 1(x3 <0.4)—1(sin(37x1x2) < 0), (2.50)
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showing that the parameters are interacting over the output. For the other 27
parameters (only the first 10 parameters are posted) the value of y;; is nearly
constant hinting there is no interaction. For the particularly complex function fs:

f5(x) =0.26 % (x7 +x3) — 0.48x1x5 +0.5¢~ %)
) e (2.51)
+0.5¢" 5 +0.5¢07¢ ),

In addition to nonlinear terms, there are multiple linear and nonlinear interac-
tions. These interactions are:

* X1 and X2,
* x4 and xs; and
* X1, X5 and X6

In the initial projection, Figure 2.21, it is difficult to identify which parameters
interact. However, all the interactions can be directly visualised and not a single
false interaction is detected, see Figure 2.23. Furthermore vy is useful to indicate
how the parameters interact. It can be visualised in the subfigure in the first row
and second column that the interaction between x; and x, is minimised when x; is
large and x, small (and reciprocally). It is possible to identify (in the fifth column)
that small values of x5 increase the negative interaction with the parameter x;
and x4. This example shows that the partial interaction plot are able to identify
interaction for a complex model.



Methodology

-0

&
-

=

X2

>
w

i

x
4

=
)]

b
]

>
(oY)

=
©

(=]
-
o
-
o
-
o
-
(=]
-
o
-
o
-
o
-
o
-

0.36

<

-0.16

-0.23

%
=

88

Fig. 2.22 Partial interaction plots of the parameter space of the function f3, see equation 2.50.The axis labels are indicated by the diagonal.
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2.3.4 Test for interactions

In this section, we describe an approach which will automatically determine the
potential interactions between parameters and create artificial parameters only for
those potential parameters with interactions. We recall that the statistical methods
used rest on assumptions which are not always valid and thus some interactions
could have a high p-values and be not detected by an automatic detection of
interactions [119].

We wish to know which combinations of parameter interaction need to be ex-
plored. We use a statistical test for interaction. The null hypothesis, Hy, states that
the two parameters do not interact in the population. The alternative hypothesis,
H,, states that there is an interaction effect.

Hy, E;j (FX|X;=x,X; =x;)) =E; (F(X|X; = x)) + E; (F(X|X; = x;)) ;
H] E(i,j) (F(X‘Xi = x,-,Xj :xj)) 75 Ei (F(X|Xl' :Xi)> —|—E]’ (F(X|Xj :x]')) .
(2.52)

Two-way ANOVA

The two-way Analysis of variance (ANOVA) models all these variables as varying
independently and normally around a mean, py; with a constant variance, o such
that for the st simulation Yy, = p + g With &gy =& A (0,02). The assumption of

this statistical test are:

* the errors are independent;
» the errors have the same variance; and

* the errors are normally distributed.

Let consider the case where we study the interaction between two parameters i
and j. To detect an interaction between two parameters over a continuous output
we compare an additive model:

it = 1+ Ry + Sy, (2.53)
to a model with linear interaction:
Mg = 1+ R+ S;+ OR;S;, (2.54)

where Ly, is the empirical (mean) value of a quantitative output corresponding to
the values of the parameter i in its k" region and the parameter j in its /™" region.
u is the mean over the whole parameter space, R is the additive effect of the i
parameter for values belonging to region k£ and C; is the additive effect of j for
values belonging to region [. By testing the null hypothesis that 6 = 0, we are able
to detect some departures from additivity based only on the single parameter 6.
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Scheirer—Ray—Hare test

The Scheirer—-Ray—Hare test is a non-parametric test [224] which is the extension
of the Kruskal-Wallis test and is the non-parametric equivalent of two-way ANOVA
with replication. It consists of running a two-way ANOVA on the ranks of the
simulations. It is a controversial test [77]. Indeed interactions rely on additivity
of effects and interaction terms on the original scale; rank transformations are
nonlinear and as a result the rank transformation could completely remove an
interaction in the original variables. Thus the power of the test is lower than the
regular two-way ANOVA with replication and the latter should be chosen when the
assumption of the regular two-way ANOVA test are valid.

Validity of assumptions

The validity of statistical tests relies on assumptions which are often not respected.
This can lead to false positive and false negative [112]. A large p-value only
suggests that the data are not unusual if all the assumptions used to compute
the p-value (including the test hypothesis) were correct. In the meantime, a small
p-value can indicate that one of the necessary assumption of the validity of the test
is not respected [112]. It is possible to check the validity of these assumptions with
further tests such as the Levene’s test for homogeneity of variances or the Shapiro-
Wilk test for the goodness-of-fit of the simulations set to the normal distribution.
Therefore the proposed test is only a test to detect potential interactions and
cannot be use to prove the existence of an interaction. However, it can help to
further focus on a restricted number of parameters.

Automatic detection of interactions

To experiment the validity of a statistical approach we perform statistical test on
the function f;3 and f5. To recall:

f3=1+1(sin(3mx1x3) <0)1(x3 <0.4) — 1(x3 < 0.4) — 1(sin(37x1x2) < 0), (2.55)

and

f5(x) =0.26 (x2 +x3) —0.48 x1x, +0.5 ¢~ 3
(2.56)

*1

_ X4 (5%7)
410575 0.5 1€ ),

The Levene’s test rejected the homogeneity of variance assumption and thus we
disregard the classical two-way ANOVA test and used the Scheirer—Ray—Hare
test. Figure 2.24 demonstrates the efficiency of statistical test to detect interaction
for the function f3. In Figure 2.24 the interactions between x;, x, and x3 are well
identified. We remark that few false interactions are identified with a p-value
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inferior to 0.1. This is expected as 45 combinations of parameters have been
computed. Figure 2.25 shows that the statistical tests identify correctly three linear

Xz Xy Xy g Xg Xz Xg Xg X4g — 1
X1 0 0 0.4 0.49
Xz 0 0.28 0.27 0.46 - 0.83
X3

067

Xy 0.06 0.02 0.35
X5 0.14 0.42 0.5

Xg 0.19

0.33

X7 047 012
Xg | 0.37 0.14 017

Xg

Fig. 2.24 Scheirer—Ray—Hare test to identify parameters with interactions for the
function f3. At a 0.05 threshold the interactions between x;, x, and x3 are well
identified but a false positive is detected between the parameters x4, and xs.

and nonlinear interactions of the function f5. The interactions detected are the
linear interaction between x; and x;, the nonlinear interaction between x; and x¢
and the nonlinear interaction between x4 and x5. However the interactions between
the terms x; and x5 and x5 and x¢ are not detected. These results highlight the
limitation of statistical test to detect interactions. In the examples most of the
interactions have been found but some have been wrongly rejected and they have
been some false positive.
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X3 X3 Xs Xg Xg X7 Xg Xg X1 4
Xq 0 0.35 0
e 0.38 0.49 - 0.83
X3
0.67
s 0.05
X 0.5

X5 0.08 0.23 047 0.15

0.33

X7 013
¥z | 045 017

X3 | 0.38

Fig. 2.25 Scheirer—Ray—Hare test to identify parameters with interactions for the
function f5. At a 0.05 threshold the identified interactions are the linear interaction
between x; and x,, the nonlinear interaction between x; and xq and the nonlinear
interaction between x4 and xs. However the interactions between the terms x; and
x5 and x5 and xq are not detected.

2.4 Conclusion

Visual and automatic tests of interactions are complementary. They both offer
advantage and inconvenient. A visual approach is more able to detect interactions
but depend on human judgement and can be time consuming when there is a
high number of parameters. At the opposite statistical tests are fast and provide a
p-value which is easy to analyse. However, the validity of statistical tests relies on
assumptions which are often not respected and thus can increase the number of
false discovery or fail to reject the null hypothesis by lack of power.






Chapter 3

Analyses of the Wendling model

Mathematics is much more than a
language for dealing with the
physical world. It is a source of
models and abstractions which will
enable us to obtain amazing new
insights into the way in which
nature operates.

Melvin Schwartz, Principles of
Electrodynamics [229]

This chapter is based on the work published in [83] in collaboration with Dr.
Marc Goodfellow and Prof. John Terry.

3.1 Introduction

Neural mass models (NMM) approximate the average behaviour of large pop-
ulations of neurons and therefore provide an efficient way to simulate electro-
graphic data in order to understand the mechanisms of brain (dys-) function.
They have been used to understand a wide variety of physiological and patho-
physiological activities of the brain, including the alpha rhythm [17, 165], sleep
rhythms [61, 225, 280], brain resonance [243] or dynamics resulting from condi-
tions such as epilepsy [106—108, 281, 283], schizophrenia [87] and dementia [26].
In particular, mechanisms underlying these conditions can be uncovered by in-
verting NMMs given dynamic data and studying the meaning of model param-
eters [81, 94, 161, 185]. However, maintaining a sense of biological realism in
NMMs results in a high dimensional parameter space. The presence of many
parameters renders the estimation of parameters from data, or model inversion, a
challenging task because it is difficult to systematically and exhaustively explore
large hypervolumes in order to identify subvolumes that are plausible. In order
to reduce dimensionality, subsets of parameters can be fixed based on a priori
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assumptions. Both the choice of initial values for parameters and the boundaries
of the parameter space that are searched are often constrained [99]. Unfortunately,
these constraints are often based on previously used values that have sometimes
arisen arbitrarily in the literature. For example, the majority of parameters used in
the study of [281] are taken directly from a previous study [140]. This study used
itself previous parameters values [92, 271]. Ultimately these values were derived
from studies made in the 70s [88-91, 165, 166, 290, 299] (see Figure 3.1 for a
summarised history of typically cited parameter values for the NMM). In these
early derivations of NMMs, parameters that could be experimentally determined
were estimated but their uncertainties were not always measured [165].

Lopes da Silva et al. Van Rotterdam and
19741976 da Silva 1982

Jansen and Rit Wendling et al.

1993-1995 2000-2002
Freeman

1975-1979 (a, b, c)

Freeman 1987

Fig. 3.1 Historical development of the Wendling model. The history of neural
mass models typically begins with the work of Lopes da Silva and Freeman in
the 1970s, although strictly speaking it can be traced back to Beurle [25]. These
classical works from 1970s were extended by van Rotterdam and Freeman during
the 1980s, before the classical Jansen and Rit model of 1995. Wendling further
extended this model in work at the turn of the millennia extending the number of
interneuron populations in the model. Interestingly, many of the parameter choices
for the Wendling model in current use can be traced back to these early historic
works.

Such parameters at the macroscopic level of a NMM are often presumed to
relate directly to properties of individual neurons but aggregated, for example, to
mean values [72]. However, large variability has been shown to exist in parameters
measured directly from neurons and even parameters that are considered to be
quasi-certain in the modelling community, such as synaptic time constants, have
been shown to vary significantly in experiments [266]. Furthermore it remains
unclear exactly how parameters of NMMs relate to microscopic properties of
nervous tissue. Under standard values of NMM parameters, important insight has
been gained regarding the generation of spontaneous or evoked electrographic
recordings. For example, epileptiform rhythms have been shown to be induced
by alterations to the excitatory/inhibitory balance in models [265]. However, fixing
default values a prioriin order to study the generation of particular dynamics does
not allow to understand the behaviour of the system at unexplored, potentially
plausible parameter values. Thus we cannot discover whether other regions of
parameter space permit the same or different conclusions. When specifying prior
distributions for model inversion (for example using the Kalman filter or Dynamic
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Causal Modelling frameworks [93, 99]) we usually, therefore, do not know to what
extent any resulting inference is dependent upon the particular choice of priors or
whether unexplored regions of parameter space could also provide reasonable
solutions. High dimensionality of parameter space is a particular problem in such
settings since inversion algorithms become computationally demanding. It is
therefore often prohibitive to explore a large parameter space or conduct inference
under alternative choices of priors. The same can also be said for the use of global
non-deterministic searches, for example based on evolutionary algorithms [190].

3.2 Methods

3.2.1 Overview

In this section, we remind the reader of the method introduced in chapter 2 and
apply it to the Wendling model. The first step consists of choosing a NMM and
defining a plausible parameter space, i.e. some constraints on the extreme values
that each parameter can take. In this study, we use a variation of the Jansen and
Rit model introduced in the context of epilepsy [281], this model, called Wendling
model, has 11 parameters. The second step in the methodology consists of
transforming the mathematical model into a database. To do this the NMM is
simulated a 1,000,000 times using different parameters, which are chosen using
a latin hypercube design. This is a space filling design which allows to efficiently
explore the whole parameter space given a fixed number of simulations [176].
Each simulation is then classified in terms of some chosen characteristics. Here,
we choose to focus on characteristics that are often used to define healthy and
epileptiform rhythms, i.e. amplitude, frequency and number of peaks per period.
The amplitude was defined as the maximum minus the minimum of the simulation.
In cases for which the amplitude was greater than zero, i.e. the simulation was
not constant, the frequency of the cycle and the number of peaks per period
were calculated. The number of peaks can be used, for example, to characterise
pathological dynamics. One of our aims is to characterise qualitative changes in
model dynamics over the features above, since such an approach would enable us
to find boundaries in parameter space over which dynamics change. Therefore, we
seek to “classify” dynamics, rather than, for example, estimate quantitative features.
Studying the database with classical statistics such as the joint distribution of the
likelihood of seizure dynamics gives new insights into the model, but does not yield
a comprehensive analysis.

The final step is to fit the data with a statistical model. Here, we choose to
use a tree approach, which cuts the parameter space into rectangular regions
of different sizes and is amenable to high dimensional analyses. These regions
are created with the aim that each one contains similar dynamics and so trees
approximate the parameter space in a simple and interpretable way. Of course,
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Fig. 3.2 Schematic of the methodology applied to the Wendling model. From top
to bottom: The EEG dynamic features of interest are identified and characterised,
the Wendling model is chosen as a model able to reproduce these dynamic. The
Wendling model is simulated a 1,000,000 times over its parameter space and each
simulation is given a classification according to its dynamic features. The param-
eter space is partitioned using decision tree learning. The partitions are used to

characterise the parameter space of the NMM.

we do not expect that the parameter space can be completely mapped to a set
of rectangular regions, each containing homogeneous dynamical features. Some
regions therefore contain dynamics with different features and the proportion of
space in the region filled by particular dynamics is useful information. For example,
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one can ask whether certain regions contain a high density of seizure dynamics or
exclude regions with certain features from further analyses. The statistical model
captures defined characteristics of the mathematical model and summarises them
in an efficient way, therefore facilitating the estimation of sensitivity of the dynamics
to variations in a particular parameter. Thus critical, or important parameters for a
given dynamics can be found.

3.2.2 Wendling model

The extension of the Jansen-Rit model [140] introduced by Wendling et al. [282]
considered in this paper has classically been used to study transitions to seizure
dynamics. It is a neurophysiological model, i.e. one that has been built to under-
stand interactions in nervous tissue at the macro- or meso-scopic level. It has
previously been shown to display a repertoire of important dynamics which occur
at ictal and inter ictal states, for example in temporal lobe epilepsy [281, 282]. The
model is based on the assumption of the existence of four populations of neurons:
pyramidal cells; excitatory interneurons; slow and fast inhibitory interneurons. The
activity of each population is governed by the interactions between them, see
Figure 3.3.

Each population is characterized by:

1. Its second order linear transfer function. This function transforms the average
presynaptic pulse density of afferent action potentials of other populations of
neurons (the input) into an average postsynaptic membrane potential (the
output). This can be either excitatory, slow inhibitory or fast inhibitory with
respective impulse response h,(t), hi(t) or hy(t).

2. A sigmoid function S(v) = W that relates the average postsynap-

tic potential v of a given population to an average pulse density of action
potentials outgoing from the population.
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Fig. 3.3 Schematic of the Wendling model. Structurally, the neuronal population is
considered to be composed of four neuronal subsets: pyramidal cells, excitatory
interneurons, dendritic-projecting interneurons with slow synaptic kinetics (GABAA,
slow) and somatic-projecting interneurons (grey rectangle) with faster synaptic
kinetics (GABAA, fast). Subset of pyramidal cells project to and receive feedback
from subsets of interneurons. (b) The model accounts for the neuronal population
organization. In each subset, the average pulse density of afferent action poten-
tials is changed into an average inhibitory or excitatory postsynaptic membrane
potential using a linear dynamic transfer function of impulse response h,.(t), hi(t),
or he(t), while this potential is converted into an average pulse density of potentials
fired by the neurons using a static nonlinear function [asymmetric sigmoid curve,
S(v)]. The subset of somatic-projecting interneurons (grey rectangle) receive input
from both subsets of pyramidal and dendritic interneurons. (c) the model output
represents the summated average postsynaptic potentials on pyramidal cells. It
reflects an EEG signal. From [281] with authorisation.

The total potential of the pyramidal cell population is given by the aggregated
contributions of the three feedback loops of inter-neurons connected to it. This
is the output of the model, in analogy with recordings of electroencephalography
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(EEG) [187]. These interactions can be summarise in the following set of ordinary
differential equations:

21(r) = z6(1)
26(t) = AaS{za(t) —z3(t) — z4(t) } —2aze(t) —a“zi (1)
22l :Z7(t)

74t =Z9(l‘)
2o(t) = GgC7S{Csz1 (1) —z5(t)} — 2829(t) — 8724 (1)
z5(t) = z10(¢)

210(t) = BbCeS {C3z1 (1)} — 2bz10(t) — b?z5(t)

The biological meaning of the NMM parameters is given in Table 3.1. The linear
products of the variables zy,...,z5 represent the average postsynaptic potential of
the different populations.

Parameter Interpretation

A Average excitatory synaptic gain

B Average slow inhibitory synaptic gain
G Average fast inhibitory synaptic gain
a
b
8
P

Inverse mean time in the excitatory loop
Inverse mean time in the slow inhibitory loop
Inverse mean time in the fast inhibitory loop
Input to the system from the area of the cortex

C Connectivity pyramidal to excitatory
G Connectivity excitatory to pyramidal
Cs Connectivity pyramidal to slow inhibitory
Cy Connectivity slow inhibitory to pyramidal
Cs Connectivity pyramidal to fast inhibitory
Ce Connectivity slow inhibitory to fast inhibitory
Gy Connectivity fast inhibitory to pyramidal
Vo the postsynaptic potential for
which a 50% firing rate is achieved
eo 1/2 maximum firing rate of the neural population
r Steepness of the sigmoidal transformation

Table 3.1 Description of parameters in the Wendling model as introduced in [282].
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3.2.3 Neural mass model parameters

As highlighted in the introduction the values of these parameters or their possible
ranges are often based on previously used values that have sometimes arisen
arbitrarily in the literature. As further experiments are conducted over time, it
is possible to gain an improved insight into the range that NMM parameters
could take. Examination of the experimental literature reveals that neuronal
level mechanisms, which are often assumed to map to NMM parameters, can
vary significantly from one species to another, as well as within species [266]
(neuroelectro.org). Therefore the plausible range of NMM parameters can be large.
The parameters A, B, G, C and P have traditionally been considered to be highly
uncertain and dynamics have therefore been studied over substantial ranges of
these parameters [100, 140, 281]. In contrast, the synaptic time constants «,
b and g have often been considered as relatively certain [140, 281]. However,
experimental studies point towards the contrary. For example, there is a large
uncertainty of dendritic time constants of the somatic response due to synaptic
input for single neurons [2, 114]. Ranges for these values have been shown to
be large, from 25 s~! [74] to 140 s~! [146] for pyramidal neurons. Similarly, the
synaptic time constant of inhibitory neurons (related to ») could also be considered
uncertain, with values ranging from 6.5 s~! to 110 s~! [286]. We use these
experimentally determined ranges for values of a and b in our study (see Table 3.2).
It is more difficult to find a plausible range for g; values used can be traced back
to 1993 [200], in which the authors indicated a large uncertainty. Therefore, we
implement a large range for this parameter (350 to 650~!). C was fixed at 135
[140] based on interesting dynamics occurring near this value. Here, we chose
to use the initial range of uncertainty in [140] from 0 to 1350. v, was considered
uncertain in previous studies and has also therefore been examined across a
range of values, for example, 2 to 6 mV [140]. Here, we extend the study from 2 to
10. ey is often fixed at 2.5 s~! but a range from 0.5 to 7.5 s~! has been recorded
[89], and therefore we use this range. Finally, there is very little information about r,
the value was found experimentally, but without information regarding uncertainty
[88]. We, therefore, studied the range of this parameter from 0.3 to 0.8 mV~—.
A summary of ranges of parameter values implemented in our study is given in
Table 3.2.

3.2.4 Model simulations

The NMM was simulated 2,000,000 times varying 11 parameters A, B, G, P, a, b,
g, C, Vo, €9 and r using a latin hypercube design to explore the parameter space.
The simulations were computed using ODE45 in MATLAB (Runge—Kutta method).

Each time, 20 seconds of EEG activity were simulated, the first 10 seconds
were removed to eliminate transients. Simulations were performed in parallel over
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4 CPUs each running at 3.5 GHz. It took approximately 4 days to simulate the
whole database (i.e. 2,000,000 simulations).

parameter nominal value min max Reference

A 5mV 0 10 [29, 140]
B 22 mV 0 50 [29,140]
G 20 mV 0 50 [29, 140]
P 90 spikes.s™! 0 2000 [100]

a 100 s~! 25 140 [74, 146]
b 50 s~! 6.5 110 [263, 286]
g 500s~! 350 650 [281]

C 135 0 1350 [107, 140]
Vo 6 mV 2 9 [140]

e 255! 05 75 [89]

r 056mv' 03 08 [88]

Table 3.2 The range of considered parameter space of the Wendling model.
Details of the reference used to define the minimum and maximum value of each
parameter is included. Chosen ranges were constrained either by experiments
(e.g. a and b) or the widest range described in theoretical studies (e.g. P and C).

3.2.5 Quantifying dynamic transitions in high dimensions

We are interested in understanding the relationship between parameters of the
NMM and its dynamics. This understanding can be achieved through an explicit
mapping between regions of parameter space and qualitatively different dynamics
(e.g. steady states and oscillations). Previous studies have analysed the dynamics
of NMMs by characterising features of simulations. Different properties of dynamics
have been used for characterisation, such as the power spectrum [281], amplitude
or variance [142, 251] and more nuanced features such as the number of spikes
within a period of a specific rhythm [29, 190]. These studies have demonstrated
that NMMs can recreate key types of epileptiform dynamics such as slow spike-
wave rhythms and theta spikes, which are important rhythms for generalised and
focal epilepsies, respectively. Based on these previous studies, we consider
three key features of simulations that are relevant for delineating different types of
dynamics within the NMM: amplitude, frequency and number of peaks per cycle.
We use these features to classify regions of parameter space according to the
nature of the emergent dynamics. For example, alpha activity corresponds to
low-amplitude oscillations with a frequency of around 10Hz. Alternatively, seizure
dynamics in this model correspond to low-frequency oscillations (2-8Hz to take
into account focal and generalized seizure activity) with additional peaks that
correspond to “spikes” or “poly-spikes” in EEG (c.f. Figure 3.4). The simulated
times series were classified by firstly removing the first 10 seconds of the time
series to remove the effect from initial conditions. If the amplitude of the remaining
time series where inferior to a threshold of 1078, the time series was classified
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Steady state, 62.33 % of the parameter space

w Delta waves, 4.36 % of the parameter space
\/\/\/\/\/ Theta waves, 9.18% of the parameter space

/\/\/\/\/\/\/\/\/\/\/ Alpha waves, 12.86% of the parameter space

\/\,\/\,\/\W Spikes and waves, 3.04 % of the parameter space
N/\«/W\/\I Poly-spikes and waves, 2.76% of the parameter space

Fig. 3.4 Common dynamic patterns observed in the Wendling model. Non-steady-
state solutions are split into two categories: oscillations and poly-spike-wave
dynamics. Oscillations are cycles with one peak per period delineated by frequency
into the five classical clinical bands: gamma (30-60Hz); beta (13-30Hz); alpha
(8-12Hz); theta (4-8Hz); and delta (0-4Hz). Poly-spike-wave dynamics are cycles
with one or more spikes per period, riding on an oscillation of between 2 and 8 Hz
with a mean of 4 Hz. For the sake of clarity amplitudes don’t have uniform y-axis
scale.

as steady state. For non steady state simulation, the power spectrum of the
time series was computed and the peak of power spectrum which represent the
frequency of the system was computed. We would then classify all the time series
with 2 peaks per period as spike and wave dynamic, if there were more peaks, the
time series is classified as poly-spikes and wave dynamic. In the case of having
only one peak per period, the time series is classified as gamma for a frequency
from 30 to 60Hz, beta for a frequency from 13 to 30Hz, alpha from 8 to 12Hz, theta
from 4 to 8Hz and delta from 0 to 4Hz. Algorithm 1 outlines the process:
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Input: A simulated time serie of 20 seconds

Output: classification of the time series

initialisation ;

remove the first 10 seconds of the time series;

if amplitude inferior to threshold then

class = Steady state;

else

Compute power spectrum;

define frequency of period as the related frequency of the maximum of
the power spectrum ;

if More than one peak of amplitude per period and frequency between
2to8hz;

then
class = Poly-spike-wave dynamics depending of number of peak per

period;
else
\ class = attribute class according its frequency;
end
end

Algorithm 1: Classification of simulations

3.3 Resulis

3.3.1 The critical role of parameter, an example with the Wendling
model

To demonstrate the importance of the role of usually fixed parameters we computed
a series of simulations by fixing all parameters but four; A, B, a and b. The
parameters were varied in their biologicaly ranges (specified in table 3.2). A and
B are parameters which have been focused on in multiple studies but this is not
the case for @ and b. Figure 3.5 shows how much the roles of the parameters A
and B are dependant of the values of the parameter @ and b. in each subfigure
the parameters a and b are fixed while A and B change from 0 to 10 and 0O to
50 respectively. For different values of a and b, different transitions occur when
changing the values of A and B. For example spike and wave or poly-spikes and
wave dynamics (marker of seizure dynamics) occur only for specific values of a
and b. Worst the dynamic is influence by A and B in a different ways depending
of the values of a and b. For example, when « is high (=140) and b is low (=10)
as in the subfigure in the bottom-left corner of Figure 3.5, seizure dynamics only
occur for low values of B. On the contrary when b increase (see for exemple the
subfigure in the bottom-right corner), seizure dynamics only occur for large values
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of B. This results is a warning about studying the parameter space with only two
parameters simultaneously.

3.3.2 Analyses of the data set

2,000,000 simulations were computed on the whole parameter space as described
in section 3.2.2, using the ranges in Table 3.2. Analysing these simulations, we
found that the dynamics of the Wendling model can predominantly be categorised
as steady state (62.3% of parameter space). The remaining simulations were
classified by frequency and number of peaks (see Figure 3.4 for a description of
dynamics). The dynamics ‘spike and wave’ or ‘poly-spike and wave’, which are
characteristic of seizure dynamics, represent 5.8% of the parameter space. This
number can be considered as the likelihood to find seizure dynamics when random
parameters are used.

Figure 3.6 provides a 2 dimensional representation of the distribution of steady
state and seizure dynamics throughout the whole parameter space. It can be
seen that the parameter subspace in which seizure dynamics can be found is
large and is not concentrated in small sub-regions. The top right of Figure 3.6
demonstrates that seizure dynamics can be observed across most parameter
values; there are few combinations of two parameters for which, regardless of
other parameter values, seizure dynamics cannot exist. Examples are the inverse
mean time in the excitatory and slow inhibitory loop (¢ and b), which give rise
to dark blue regions in Figure 3.6 (low likelihood of seizure dynamics). Specific
combinations of parameters A, B, C, ¢y or r can also preclude seizure dynamics.
In contrast, the subfigures for parameters of the fast inhibitory loop (G and g)
appear quite homogeneous and therefore do not change the likelihood of seizure
dynamics.
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Fig. 3.6 Bivariate joint distribution of the likelihood of steady state (lower triangle) or
seizure dynamics (upper triangle). Each subfigure is a projection of the parameter
space over two parameters and the colour indicates the likelihood of finding a
particular type of dynamics (seizure or steady state) as per the colour bar. The
axis labels are indicated by the diagonal. For example, the subfigure in the
second column on the first row (encircled and labeled (i)) maps the likelihood of
finding seizure dynamics over different values of B (x-axis) and A (y-axis), given
variations in all other parameters. In the upper triangle, yellow indicates a high
likelihood of observing seizure dynamics, whereas blue indicates a low likelihood
of observing seizure dynamics. In the lower triangle, red indicates a high likelihood
of observing steady state dynamics, whereas blue indicates a low likelihood of
observing steady state dynamics. Each subfigure was computed using equation
2.4 with 20 x 20 bins over the parameter ranges provided in Table 2. Upper triangle:
Specific combinations of parameters can lead to manifolds with a high likelihood of
seizure dynamics (see for example the linear relationships between A and B in the
encircled subfigure (i) and a and b in the encircled subfigure (ii)). Lower triangle:
one can observe that small values of the parameters A or C guarantee a steady
state (see for example the encircled subfigures (iii) and (iv)).
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However, varying the value of some parameters does reduce the likelihood
of observing seizure dynamics: reducing parameters of the excitatory loop (A
and a); the connectivity coefficient (C); the maximum firing (eg); and the inflexion
point (vg) and the slope (r) of the sigmoidal nonlinearity. On the other hand,
increasing the inverse mean time in the slow inhibitory loop (») also reduces the
probability of observing seizure dynamics. Intermediate values of the input (P)
and the average slow inhibitory gain (B) increase the chance of observing seizure
dynamics. Particular combinations of pairs of parameters such as the average
synaptic gains (A and B) or the inverse time scales (a and b) can significantly
alter the chance of observing seizure dynamics. For example, there is a linear
combination of a and b for which the proportion of dynamics in the seizure class
is greater than 30%. The lower triangle of Figure 3.6 indicates that steady state
dynamics can be observed in a very large proportion of the parameter space. It
can be seen that small values of A or C force the system to be at steady state.

Explorations such as undertaken in Figure 3.6 are informative and give a
good preliminary indication of the role that each parameter plays in constraining
the model dynamics. Nevertheless, in more than two dimensions, visualisation
becomes difficult. For example, extending Figure 3.6 to 3 dimensions would require
1,000 2D plots. Therefore, we used tree statistics (see section 2.1.5) to efficiently
summarise how a change in a parameter can impact the dynamics of the model.
Figure 3.7 presents one such tree that describes the segmentation of parameter
space according to the density of seizure dynamics. Recall, that for each branch
the tree algorithm scans through the sub-parameter space to identify the optimal
separation between the maximum and minimum likelihood of observing the feature
of interest (seizure dynamics in this case).

Figure 3.7 is a relatively small tree used to illustrate the method. At the root of
this tree, the first parameter used to partition parameter space is the inverse time
scale of the slow inhibitory loop, . b > 60 reduces the probability of observing
seizure dynamics and produces a region that represents 49 % of the parameter
space. This region, which represents nearly half of the parameter space, contains
only 10% of all parameter combinations that lead to seizure dynamics. Taking
b < 60 again yields approximately half of the total parameter space (51%), but this
region contains 90% of all parameter combinations that lead to seizure dynamics.
Since this region is large, and the probability of observing seizures in the whole
space is low (5.8%), the density of seizures in this region is low at 10%. The
next branch cuts through the average slow inhibitory gain at B = 32. Above this
value, 19% of the parameter space remains and this contains 12% of all parameter
combinations that yield seizure dynamics. The remaining 32% of parameter space
accounts for 78% of seizure dynamics. Choosing A > 2.1 further increases the
density of seizure dynamics to 17%, incorporating 73% of all parameter sets that
lead to seizure dynamics. Further adding the criterion that vy > 4.8 leads to a
region with highest density of seizure dynamics (bottom right region in Figure 3.7).
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This region represents 15% of the total parameter space and the proportion of
seizure dynamics in this region is 22%:; thus it accounts for 57% of all parameter
combinations that result in seizure dynamics.

100 % E Percentage of the total volume ]
100 % Percentage of the total volume of seizure
————  yes | b>=60|no Proportion of
Y seizure dynamics

in the region o] 0.1 0.2 0.3 0.4 0.5
90 %

19 % 32 %
12 % 78 %

9 % 26 %
1% 73 %
10 %
16 %
49 % 10 % 5% 4% 7% 3% 8 % 15 %
10 % 1% 1% 10 %, 5% 2% 14 % 57 %

Fig. 3.7 A tree representing how parameter space is split dependent on the
presence or absence of seizure dynamics The root region is at the top of the figure
and represent 100% of the parameter while the leafs are at the bottom. The upper
label of each region indicates the size of the parameter space represented in this
region. The lower label indicates the percentage of all parameter combinations that
result in seizure dynamics. The colour indicates the density of seizure dynamics in
the given region. The parameters A, B, a and b are the most important parameters
because they split efficiently the parameter space into subspaces with high or
low likelihood of seizure dynamics. Some parameters such as P and C do not
appear in this small tree, however, they can appear in a more complex tree (see
supplementary material). Values are given to two digits precision.

However, it is possible to create larger trees with more regions giving a finer
resolution. There is, of course, a trade-off as larger trees segment the parameter
space into more (smaller) hypercubes, making them more cumbersome to analyse
(see supplementary materials for more examples). The main conclusion to be
drawn from the large tree presented in the supplementary material is that the
dependency of dynamics on parameter space is complex: transitions between
dynamics can vary between regions. For example, an increase of B or P can
either increase or decrease the likelihood of seizure dynamics. However, other
parameters exhibit robust transitions; a split at » around 0.52 appears consistently,
and ¢p and vy tend to slightly increase the seizure likelihood when their values
increase. Figure 3.6 seems to show different results from [281]. To recall; in this
article, the presence of seizure dynamic would appear only for B superior to 20mV
and A superior to 5 (other parameters at standard value as in Table 3.2). At the
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opposite in Figure 3.6, the likelihood of seizure when B is superior to 20 is low
and higher for small values of B. These show that if a projection of the parameter
space in 2 dimensions is helpful to have a quick understanding of the parameter
space it does not capture all of its aspects. At contrary in Figure 3.7 with the help
of the tree algorithm this manifold is well approximated. Indeed one can see that
even for large B (>32) seizure dynamic can appear with the standard values of
parameters [281] (fourth leaf from the left). Furthermore, the tree shows that this
change appears around A = 5.4mV. There are other bigger manifolds in Figure 3.7
for small values of B. These manifold are the one which influence the most the
Figure 3.6 and ‘hide’ results found in [281].

3.3.3 Determining the relative importance of parameters for
observing features of interest

To generalise the example of Figure 3.7, we computed the variable importance
of model parameters over a random forest of 100 trees. Clearly, the importance
of a parameter depends on the characteristics we are interested in. Results
regarding the presence of steady states, oscillations with different amplitudes and
frequencies, as well as seizure dynamics are provided in Table 3.3. We find that the
values of A, B, C and vy are important parameters for transitioning between steady
state dynamics and the different types of oscillations. Interestingly, the amplitude
of oscillations was less dependent on A and instead strongly dependent on C and
eo. This might seem surprising given the importance of A in observing oscillations
in the first place. This contrast demonstrates how the relative importance of a
parameter is strongly dependent on the observed feature of interest (e.g. frequency
vs the amplitude). The input from other regions of the cortex (P) can affect the
emergence of oscillations but has a marginal role in tuning the amplitude and
the frequency of these oscillations. The connectivity constant (C) is important
for governing the amplitude but not the frequency of an oscillation. In fact, few
parameters (A, B, a, b and G) are important for determining the frequency of
oscillations.

All parameters except g were found to play a role in the generation of transitions
between dynamics, but with varying importance. The frequency of an oscillation
was found to be predominantly dependant on the inhibitory slow loop parameters
(B and b). These parameters were also found to be crucial for producing seizure
dynamics. This observation confirms the finding in Fig 3.7 that when these param-
eters split the space they reduce impurity. Overall the excitatory pair of pyramidal
and excitatory interneurons and the slow inhibitory loop are important to create
oscillations in the Wendling model. The output of the Wendling model is sensitive
to a change of any of these parameters as indicated by the GI measurements
(Table 3.3).
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A B G P a b g C Vo eo r
steady-state to cycle 1 040 0.11 0.15 027 032 0 059 048 0.16 0.26
amplitude of oscillation 0.13 046 0 0.02 0.13 1 0 09 0.11 0.83 0.04
frequency of oscillation 0.14 1 0.09 0.01 0.11 0.86 0.01 0.01 0.01 0.01 0
transition to seizure dynamics 0.25 0.59 0.03 0.09 0.30 1 0 022 028 0.07 0.15

Table 3.3 The importance of parameters as determined by Gini importance (see 2.1.7) over a random forest of 100 trees. Four characteristics
of interest are considered: the switch between steady state and non-steady state, the amplitude of cycles, the frequency of cycles and the
switch between any activity (mainly steady state) and seizure dynamics. A value of 1 signifies the parameter with greatest importance for
observing the feature of interest (e.g. A is most important for observing transitions from steady-state). A value of 0 implies a parameter has

no control over observing a feature of interest.
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3.3.4 Extension to parameter ratios

Fig 3.6 demonstrated a potentially important relationship between the parameters
A and B and the parameters a and b. We further investigated this by incorporating
two artificial parameters r4 5 and r,, which are respectively the ratio of A over
B and the ratio a over b. Fig 3.8 shows that smaller values of r,/, lead to a
lower likelihood of observing seizure dynamics. A ratio less than 1.6 gives a
likelihood of observing seizure dynamics of 0.56% in a very large sub-region that
contains 57% of the parameter space. At the opposite extreme, the region on the
right of the figure contains 40% of all seizure dynamics in only 5% of the whole
parameter space. In this region the proportion of seizures is nearly 50%. It is
interesting to note that low values of r, , reduce the likelihood of seizure dynamics,
whereas for r4 /5, small values (<0.19) or large values (>1.5) reduce the likelihood
of seizure dynamics. A more highly resolved version of this tree can be found in
supplementary materials. We recomputed the GI, incorporating these two new
parameters over a random forest of 100 trees. The results are in Table 3.4. It
is clear that for steady state transitions or frequency of oscillations r,p is the
most important, whereas r, , is most important for transitions to seizure dynamics.
Aside from the amplitude of oscillations, the normalised variable importance of the
ratios r4p and r,, are larger than for the parameters taken individually.

3.4 Discussion

In this chapter, we introduced a new approach to explore the parameter space of
high dimensional NMMs. In contrast to classical studies that considered parame-
ters individually, or in pairs, we used a random forest approach in order to study
the entire parameter space simultaneously.

Our approach relies on the creation of a database of dynamic features derived
from forward simulations. Other statistical approaches could be used to study the
database, but they all suffer from particular deficiencies. For example, artificial
neural network models have a vast number of hyperparameters that cannot be
interpreted [105]. Support vector machines [63] result in boundaries between
regions of parameter space that are not split according to single parameters, and
therefore one has to integrate over all parameters to understand the importance
of each. We have tested the efficiency of kernel methods such as Gaussian
processes [193]. The results have been poor as the efficiency of these methods
rest upon the assumption of “smoothness” of data, i.e., proximal parameter sets
are assumed to yield similar simulations, which is clearly not the case close to
bifurcations. We have attempted to use more complex approaches, combining
trees and Gaussian process [18, 109], but simulations have shown that the tree
approach was better at taking into account large number of simulation and thus
were better to handle complex parameter space as it is the case for the Wendling
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A B G P a b g C Vo €o r rA/B  Yalb
steady-state to cycle dynamics 0.65 0.24 0.13 0.17 0.16 019 0 062 049 0.17 025 1 0.57
amplitude of oscillation 0.10 0.59 0.01 0 01 089 O 1 0.07 0.89 0.02 0.14 0.15
frequency of oscillation 0.04 051 004 O 0.11 0.71 0.01 o0.01 0 0 0 1 0.41
transition to seizure dynamics 0.11 0.33 0.04 0.12 0.06 0.3 0 0.14 0.31 0.08 0.17 0.8 1

Table 3.4 Importance of parameters as determined by Gini importance (GI, see section 2.1.7) averaged over a random forest of 100 trees.
The ratios 4/ and r,/, have been added as additional parameters. Four characteristics of interest are considered: the switch between
steady state and non-steady state, the amplitude of cycles, the frequency of cycles and the switch between any activity (mainly steady state)
and seizure dynamics. A value of 1 signifies the parameter with greatest importance for observing the feature of interest. A value of 0 implies
a parameter has no control over observing a feature of interest.
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0,
100 % Percentage of the total volume
100 % Percentage of the total volume of seizure
yes| alb <1.6 [no 5 Proportion of
43 % seizure dynamics
94 0/0 in the region o 0.1 0.2 0.3 0.4 0.
yes| AIB <0.19 |no

83 %

yes{ A/IB>=1.5 |no 19 %
82 %

ves[ v0 <54 Jro '

yes| alb<2.3 nO.
yes| C <425 [no
57 % 21 % 3% 9% 4% 2%
6 % 11 % 2% 20 % 12 % 9 %

Fig. 3.8 A tree representing how the extended parameter space (incorporating
two additional 'ratio parameters’ r,,, and r4 ) is split dependent on the presence
or absence of seizure dynamics. The root region is at the top of the figure and
represents the total parameter space, while the leafs are at the bottom. The upper
label of each regions indicates the size of the parameter space represented in this
region. The lower label indicates the percentage of all parameter combinations
that result in seizure dynamics. One can see that the ratios have an important role
to split the parameter space. Values are given to two digits precision.

model. In contrast, the approach we employed provides an efficient way to study
the influence of model parameters on their dynamics: trees are computationally
fast, make no a priori assumptions on either the type of model or parameter values
and can handle data that are represented on different measurement scales [197].
We thereby demonstrated that random forests are a useful tool to study the
dynamics of NMMs.

The implementation of the random forest approach [41] overcomes the issue
that each implementation of CART produces a single tree that is locally optimal.
A drawback is that the random forest approach introduces some loss of inter-
pretability, but the final solution is more representative of the global optimum.
This is particularly important for the GI which measures the relative contribution
of parameters to an observed dynamic feature of interest of the model (e.g. a
steady-state, oscillation or spike-wave). By this, we mean that effectively, the GI
indicates which parameters are critical for segmenting the total parameter space
into regions in which a feature of interest is more or less likely to be observed.
Further, the GI provides a principled approach for determining whether or not pa-
rameters can be fixed, hence reducing the number of parameters to be calibrated
from observable data. A consistently low GI across all features of interest means



116 Analyses of the Wendling model

that the considered parameter plays little role in any dynamic change and can,
therefore, be fixed to an arbitrary value within a given physiological range.

For example, in our study of the Wendling model, g has little effect on determin-
ing transitions from steady-state to oscillations, or in determining the amplitude
and frequency of those oscillations. It can, therefore, be fixed, meaning that the
parameter space explored in subsequent calibration is smaller. On the other hand,
some parameters have a high GI for specific features of interest and are therefore
important for observing that specific feature without playing an important role in
altering other aspects of the dynamics. For example, ¢y is critical in determin-
ing the amplitude of oscillations but plays a marginal role in the appearance of
other features. Therefore if the amplitude is not a particular feature of interest,
eo could be fixed. When considering networks of dynamical systems, the num-
ber of parameters can rapidly become very large, so GI is an important tool for
managing this increase in complexity. For example, one could use the framework
presented herein to examine whether there are certain network structures in which
certain edges can be given fixed weights, thereby reducing the dimension of an
optimisation or calibration problem.

The notion of importance is defined using GI due to its robustness and ability
to measure the influence of parameters on dynamics [295]. However, the notion
behind importance is somewhat nebulous, and it is difficult to directly attribute
a small difference in GI to the relative importance of a specific parameter. The
pragmatic approach we have adopted is to consider parameters with values
of GI > 0.1 as playing a role in governing the feature of interest. In contrast,
parameters with a GI close to 0 can be disregarded. In the present study, we
defined importance specifically in the context of changes in parameters causing
changes in asymptotic dynamics. This is relevant to the case in which bifurcations
give rise to epileptiform activity. However, there are other possible model scenarios
in which changes in dynamics could occur, such as for example, intermittency,
bistability and excitability [12]. In these cases, we would seek to characterise
importance with respect to changes in unstable invariant sets of the system, for
example, boundaries of basins of attraction. Furthermore, importance, as we
have defined it in the context of the NMM, does not imply that a parameter is
crucial for changes in dynamics at the individual level. For example, it might
be necessary to model some seizures using transitions between dynamics that
occur only in small regions of parameter space. It is important to highlight that
in the random forest approach, other definitions of importance exist, such as the
permutation importance or the conditional permutation importance [103]. However,
these approaches suffer from lack of robustness [49], hence our focus on GI.

Our analyses of the full parameter space of the Wendling model show that
parameters of the slow inhibitory loop (b and B) play the most important role (in
term of GI) in the emergence of seizures. The time scale of the slow inhibitory
loop (b) is the most important parameter; a small change in its value can transform
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steady state dynamics into seizure dynamics robustly, i.e. for the majority of
combinations of other parameters in the model. We found the excitatory loop,
governed by a and A, together with the offset of the sigmoid function (vy) to be the
second most important components of the system for the emergence of seizure
dynamics. These are followed by the other parameters of the sigmoid function (v
and r) and the parameter that scales connectivity between the different populations
of neurons (C). Interestingly, changes in the fast inhibitory loop (parameters g and
G) do not play an important role in the generation of seizure dynamics. We note
that a low value of GI in the context of our study does not mean that a parameter
is irrelevant to the emergence of other brain dynamics not captured by the choice
of features. Furthermore, parameters with low GI may play a role in determining
transitions between dynamics in specific subsets of parameter space; GI is purely
a global measure. The parameters governing the magnitude of input from other
areas (P) or the scaling of intrinsic connectivity (C), for example, were shown
herein to have little (global) effect on the emergence of seizure dynamics, but in a
priori constrained sub-regions have been shown capable of governing transitions
in NMMs [107, 108]. Table 3.4 showed a comparison of parameter importance
when different features were considered. Parameters of the slow inhibitory loop, b
and B, as well as the ratio of time scales r,;,, showed relatively high importance
across all features. Therefore, it is possible that these parameters are important
for transitions between dynamics in general. Verifying this will require exploration
of additional features in model dynamics.

We found that the ratio of parameters of the excitatory and inhibitory loops
plays an important role in the generation of all the features we considered, with
the exception of the amplitude of oscillations. The ratio of time scales (r,;) is the
most important factor governing the emergence of seizures, whereas the ratio of
gains (r4,p) is most important for the onset of cycles and the frequency of these
cycles. Reducing r,/, robustly reduces the likelihood of seizures regardless of
other parameter values (see e.g. Fig 3.8). r4,z on the other hand, presents an
intermediate range of values that have the highest likelihood of seizure dynamics.

Our finding of the importance of r4 5 for the emergence of seizure dynamics is
in line with previous experimental observations. For example, [59] found that the
ratio of Glutaminate to GABA Levels is larger in people with idiopathic generalized
epilepsies compared to healthy controls. This also aligns with the action of some
antiepileptic drugs, for example, those acting via modulation of neurotransmitters
such as GABA [226], the potentiation of which would be reflected in our model
by an increase in B, and hence a decrease in r4 5. Furthermore, Our finding of
the importance of r4 5 for the emergence of seizure dynamics confirms previous
modelling results [265].

Interestingly, since the highest likelihood of emergent seizure dynamics was
found to be for intermediate values of r, 5, this would suggest that, depending on
the choice of other parameters, decreasing the ratio of excitation to inhibition could
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also produce a route into seizure dynamics, in line with evidence of the possibility
of heightened inhibition at seizure onset [9]. Our finding that the slow inhibitory and
excitatory synaptic gains have more influence than the fast inhibitory loop is in line
with previous modelling results [29, 124], as are our findings that the parameter r
and the ratio r,;, are important for dynamics of the NMM [68, 175, 244].

Few experimental studies have investigated the role that different time constants
might play. However, it has been shown that chloride ion homeostasis is perturbed
in patients with mesial temporal lobe epilepsy [133], and intracellular chloride ion
concentrations have been shown to play a role in the time constants of postsynaptic
potentials [130]. This, therefore, presents a possible biophysical interpretation
of the importance of r,/,. Interestingly, a recent study using dynamic causal
modelling applied to a zebrafish model of seizures also demonstrated the potential
importance of excitatory and inhibitory synaptic time constants [217].

In our study, we obtained these results using a method in which the influence of
all parameters was analysed simultaneously and a complete characterisation of the
relative importance of all parameters was possible. In fact, this analysis revealed
new combinations of parameters that can potentially govern the emergence of
seizure dynamics in the Wendling model, for example vq. In addition, given our
finding that the ratio r,/, is most important for seizure generation it would be
interesting to explore the known effect of drugs that could target the inverse mean
time ratio r, ;.

[281] presented detailed, two-dimensional analyses of the effects that changing
system parameters have on emergent dynamics. One of the findings of [281] was
that seizure dynamics predominantly occur when B > 20. However, our results
(Figure 3.7) show that the likelihood of seizures when B > 20 appears rather low
(but not zero) and is, in fact, higher for small values of B. These results indicate
that although a projection of the parameter space in 2 D is helpful to gain a quick
understanding of the system, it does not capture the global picture. In our Figure
3.7, with the help of the tree algorithm, we did indeed find that for large B (> 32)
seizure dynamics occur for the range of parameters used by [281] (fourth leaf
from the left in Figure 3.7). Furthermore, the tree shows that this change appears
around A = 5.4mV. However, our analysis in Figure 3.7 demonstrates that there
are other regions of parameter space, for lower values of b that contain seizure
dynamics.

The approach presented herein relies on the construction of a statistical model
of dynamics based on simulations. This means that we cannot uncover the
dynamic mechanisms that govern the emergence of the features studied, for
example, the presence of unstable invariant sets or changes in stability. However,
our approach could be combined with traditional methods such as numerical
continuation [151]; we would first constraint parameter space by using GI to
identify the most important parameters, together with transition boundaries and
then perform more detailed analyses therein.
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Studies including [12] and [164] describe four alternative mathematical mecha-
nisms underlying the emergence of seizures: bifurcation (a parameter is slowly
varied so that the system crosses a bifurcation point), bistability (background and
seizure attractors co-exist, with perturbations allowing transitions between the
two), transient excitability (the seizure dynamics occurs due to a complex trajectory
elicited by a perturbation) and intermittency (background and seizure dynamics
are part of the same attractor). In this study, we have focussed on a detailed
explanation of the bifurcation mechanism (e.g. how small changes in system
parameters can lead to abrupt changes in emergent dynamics). Specifically, we
find for the chosen Wendling model that under the bifurcation assumption changes
in the slow inhibitory loop or the fact excitatory loop are most likely to underpin the
emergence of seizures. It is important to highlight that this finding is specific to
the chosen model and further, that it does not exclude the other three possibilities.
To explore the possibility of transient excitability and bistability, we would need to
extend our statistical model to include system variables (e.g. initial conditions) and
properties of perturbations as parameters. We investigated the impact of initial
conditions by considering them as parameters and found their GI to be close to
zero, indicating that regions of bistability are small in the context of global changes
in parameters.

Another possible extension to the results presented herein would be to consider
different dynamic models or different characteristic features of their dynamics. For
example [216] or [69] focused their attention on the power spectrum of the model
in comparison with clinically recorded data. Future work could focus on power
spectra as a feature of interest, enabling an appropriate characterisation of the
importance of parameters for generating alpha activity in NMMs.

In summary, we presented a framework for the global characterisation of the
dynamics of NMMs. Our methods have the potential to advance patient-specific
model representations, for example by first determining the relative importance
of parameters, and then reducing the parameter space to a subset in which
model calibration from data becomes tractable. Such an approach will become
increasingly important as the emphasis on networked dynamical systems of the
brain increases. Here the number of model parameters grows rapidly, beyond the
point for which established approaches such as Kalman filtering [94] or genetic
algorithms [190], that work directly with the dynamical system of interest, can be
effective.






Chapter 4

Using power spectrum of the EEG
to define plausible regions of
parameters in the Robinson model

With four parameters | can fit an
elephant, and with five | can make
him wiggle his trunk!

John Von Neumann, [76]

4.1 Introduction

Rhythms of the brain are strongly correlated with cognitive processes [11, 278].
However, the underlying neural structures which generate EEG oscillations re-
mains poorly understood. The alpha rhythm of the cortex (8-13 Hz) [23, 192]
is perhaps the best known EEG phenomenon as human resting state activity
presents a significant peak in this band. Some studies have suggested the thala-
mus as the primary alpha pacemaker [134] whereas other studies [117] argue that
the alpha rhythm would be primarily initiated from cortical areas. Subtle differences
in the power spectrum, particularly in the alpha band, are potential biomarkers
for different neurological conditions such as Alzheimer’s [129], depression [158]
and epilepsy [157]. Hence, understanding the mechanisms underlying these dif-
ferences between healthy and diseased states may advance our understanding of
these conditions.

As previously introduced, NMMs approximate the average behaviour of large
populations of neurons and therefore provide an efficient way to simulate elec-
trographic data in order to postulate mechanisms of brain (dys-) function. They
have been used to understand a wide variety of physiological and pathophysi-
ological activities of the brain, including the fundamental rhythms of the brain
[61, 165, 214, 215, 225] or the dynamics resulting from conditions such as
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epilepsy [106—108, 283, 293]. In particular, mechanisms underlying these con-
ditions can be uncovered by estimating model parameters from dynamic data
[81, 94, 161, 185, 190]. Contrary to previous studies, we focus not on the best fit
of the power spectrum but on all plausible fits.

In this chapter we use our approach to estimate a robust computational pa-
rameter space, using on the Robinson model [214] as an example case. Previous
studies of this NMM have shown it to simulate power spectra similar to that ob-
served in the EEG [219], offer a better understanding of the role of the different
circuits in the thalamocortical system [126] and offer insight how different gen-
eralized seizures emerge [38]. To facilitate the use of NMM a subvolume of the
parameter space has been selected [215]. For each individual the best fit was
estimated in [219] by using the Levenberg-Marquardt method [206] which is a
gradient descent algorithm which does not guarantee a global minimum. Even
if the global minimum is obtained, there are often multiple parameter sets that
lead to almost as good fit. Since the data is inherently noisy, any of these minima
are in reality a potential best fit. Further, there is a large variation in the power
spectrum across individuals within a population [116] rendering the concept of
a subspace based on the confidence interval of the mean of the parameter val-
ues unreliable. It is important to remember confidence interval of a parameter
and the prediction interval of an observation are two different notions. There is
a subtle, but important, difference between prediction intervals and confidence
intervals. With a confidence interval, the purpose is to obtain an upper and lower
limit for the parameter. For a prediction interval, the purpose is to estimate the
upper and lower limits on an individual observation. It is relatively frequent to
compute a confidence interval for the mean and use it wrongly as if it were a
prediction interval for a future observation. The trouble is, confidence intervals for
the mean are much narrower than prediction intervals, which can result in a false
sense of the accuracy of a given forecast [125, 137, 153]". To avoid restricting
the parameter space to an unnecessary and potentially misleading subparameter
space we argue the necessity to constrain the parameter space not to the ‘best’
fit but to all ‘plausible’ fits. The approach taken in this chapter is similar to the
approach proposed by [30] who looked beyond the best fit to find a series of
plausible fits. Building on their approach, our method analyses the parameter
space to characterise all plausible submanifolds, using the approach introduced
in chapter 2 (see [83]). In the methodological part of this chapter, we present
the necessary tools to understand the data and the power spectrum, the NMM
of Robinson et al. [214] and, provide a formal definition of a plausible simulated
power spectrum. In the results section, we first identify the regions of parameter
space able to produce a power spectrum similar to the one observed in a human
population. Thus we identify a set of parameters that are both biologically and

'For a meaningful discussion, one can read the post written by Roos Colman,
https://datascienceplus.com/prediction-interval-the-wider-sister-of-confidence-interval/.
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computationally plausible, by taking into account the intra-individual variability. In
the discussion section, we discuss the main findings of this study, its limitations,
and possible directions for further research.

4.2 Methods

4.2.1 Overview

Our approach is to partition the NMM parameter space according to the theoretical
power spectrum and its closeness to the power spectrum of the EEG. To do so,
we transform the NMM first into a database and then a statistical model, which is
a function that maps parameters onto two states: plausible and implausible. This
statistical model can then be analysed to understand the relationship between the
NMM parameters and a realistic power spectrum (see Figure 4.1 for a general
overview).

In this study, we use the model introduced by Robinson et al. [214].

We choose to focus on the broadband power spectrum and consider that a
simulation is plausible when its values lie in the band given by the 90% prediction
interval of the power spectra of the data. As such a simulation is classified as
plausible or implausible.

4.2.2 Subjects EEG data and processing

The dataset contains EEG data with 38 healthy controls between the ages of 16
and 59 years. Healthy control EEG was collected at King’s College Hospital EEG
department. Controls provided written informed consent, and data collection was
approved by King’s College Hospital Research Ethics Committee (08/H0808/157).
Under United Kingdom law, patient data collected during normal clinical routine
and anonymized before research use may be used for research without additional
consent; this procedure was reviewed and approved for this project by St. Thomas’s
Hospital and King’s College Hospital’s Research and Development departments.
A trained clinical EEG technician identified a 20s long state EEG activity from the
initial stage of the recordings from each participant. Because signal amplitude
may vary between individuals due to different anatomic features (such as the
size and shape of the cranium) the data were normalised by dividing the power
spectrum in each channel by the total power in the spectrum averaged across all 19
channels. This normalized power preserves relative differences in power between
bands. The band of the power spectrum at 5% and 95% of each population is
estimated via quantile regression. Whereas the method of least squares results in
estimates of the conditional mean of the response variable given certain values of
the predictor variables, quantile regression aims to estimate either the conditional
median or other quantiles of the response variable. Here, we use a total variation
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Fig. 4.1 Schematic of the methodology. The dynamic features of interest are
identified and characterised as being plausible simulation to reproduce the human
EEG power spectrum. The NMM is simulated a large number of times over
its parameter space. Next, each simulation is given a classification (plausible or
implausible) according to its dynamic features. Then the simulations are partitioned
using decision tree learning. The final partitions are used to characterise the
parameter space of the NMM.

regularization [148]. This is a non-parametric approach to estimate conditional
quantile functions based on g minimising

Pz (vi—8(i)) +2AJ(g). (4.1)

agE

1

~.
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The term y; represents the power at the frequency i, the term

po(yvi—g(i)) = (vi—g(i) (1 —1(vi—g(i) <0)) (4.2)

generates a fidelity term appropriate for conditional quantile estimation, and the
roughness penalty J(g) is taken to be the total variation of the first derivative of g.
By visual inspection A was fixed at 0.4. The R package quantreg [149] was used
to compute the quantile.

4.2.3 Neural mass model

Large-scale neural activity arises from interactions between several neural popula-
tions, notably excitatory and inhibitory cortical neurons and specific subcortical
nuclei such as the thalamus, see Figure 4.2 for a schematic.



126 Plausible regions of parameters in the Robinson model

bs Pe

>{G,s TRN G o[€

br

/

G
GSTSRN Gool

Sn

)

Fig. 4.2 Schematic showing primary pathways between the cortex, specific and
secondary relay nuclei (SRN) and the thalamic reticular nucleus (TRN) as pre-
sented in [219]. The interconnections are shown with arrows; either black (excita-
tory) or red (inhibitory). These provide two partially overlapping thalamocortical
feedback pathways: one direct and excitatory between the cortex and SRN with
total gain G.;. = G.;Gs; and one indirect and inhibitory pathway from cortex to
TRN to SRN to cortex with total gain G.,. = G.;Gs,G,.: Intrathalamic feedback
between the TRN and SRN is also possible, with gain G,,; = G;,G,s: Propagation
between cortex and thalamus involves delays of 7/2, and additional small delays
are induced by each nucleus due to dendritic filtering. The firing rate in each
pathway is ¢.c. s and ¢, is an independent source of signals.
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It has been suggested that such interactions are responsible for the alpha
waves [32, 165]. The Robinson model [214] has been able to reproduce power
spectra nearly identical to the one observed via EEG [219]. In the next section we
present the principal characteristics of the model, more details can be found in
[215] and reference therein. This model belongs to the class of “lumped” or “mean
field” neural models [88, 141, 166, 282]. The corticothalamic model studied here
is based on the evolution of two dynamical variables within each of the principal
populations of neurons. The variables represent the local mean value of the firing
rate density or the mean dendritic potential of a large number of neurons. There are
four populations which represent respectively excitatory cortical, inhibitory cortical,
specific thalamic nucleus and thalamic reticular nucleus. Excitatory cortical and
inhibitory cortical population are assumed to have exactly the same characteristics
[203, 212], which is a debatable assumption for true biological neurons [203].
The model can be represented as a set of differential equations [38] and can
be simulated using classical numerical approximation such as the Runge-Kutta
method [46]:

de(r)

_dt = (]Se(t),
%@ = R AS(Ve(t) — 4el(t)} — 2700(2),
dVe(t)
i Vel(t),
d‘;t(t) = 0P {veePe(t) +veiS(Ve(t)) +vesS(Vs(t =T /2)) = Ve(t) },
(@ BV, (43)
dvy(t)
o = Vi),
dVC;ff = af {vyedelt — T/2) +vud(t) — V(1) } — (ot + BV (1),
dv.(t)
dr - Vr(t)a
dv,(t

) = af {viede(t —T/2) + v S(Vs(t)) = Vi(t)} — (4 B)Vi (7).

Under conditions of spontaneous EEG the external stimuli ¢, is so complex that
it can be approximated by temporal white noise. The theoretical power spectrum of
the excitatory neurons can be then estimated [215] by using a linear approximation:

) (4.4)

GesnL(0)? ?|| Argg?
(1= GyrsL(0)?)(1 — Geil(w)) H H Img?

0 0
Gab = % (1 - ng:lax> Vab, (45)

Pey(o) = CH

with
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where ¢? is the steady-state value.

) 2 2 3\ ioT
2 — _ E _ 1 GeseL(a)) + GesreL(w) )e
7o) = <1 Ye > 1 -G L(w) {GeeL(a)) * 1 —GysL(®)? :
(4.6)
Gese = GesGsea (47)
Gesre = GesGerre7
Gsrs - Gerrs,
L) =(1-io/a) '(1-io/B)". (4.10)

4.2.4 Parameter constraints

We set out below the different model-based parameter constraints presented in
[215] where the values of the parameters of the different G, v, given the values
of the parameters estimated in table 4.8 and some assumptions based on the
resting values of firing state ¢, of the different population of neurons:
Considering ¢, = 62/ ¢,

Ges = (8:/9:) (NG — Gee — G (4.11)
Gyse = Gese/Gie, (4.12)
G, — Gesrearlnar (4.13)

(Gesre +Gors (6.~ G = Gui) | 6

Gsr = Gesre/(GseGre); (41 4)

Grs — Gsrs/(Gsr)- (41 5)

Given the estimation of the G, the parameters v, can then be estimated from
Vap = G5 /92, (4.16)

and the range of v, can be estimated by:

min G, mine max Gy, max o

Vap € : (4.17)

max¢? ' ming¢?

where the maximum and minimum of G,;,, o and ¢ are specified in table 4.1.
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4.2.5 EMG spectra

The power spectrum observed via EEG data is influenced by two sources; the
activity of excitatory neurons and the tonic or burst firing of pericranial muscles
known as electromyogram (EMG) [267]. EMG can cause apparent power en-
hancements in the EEG spectra above approximately 25 Hz and thus its effect
needs to be removed. The observed power spectrum can be defined as the linear
combinations of the two sources:

Peec(f) =C1 Pen(f) +Ca PEmc(f), (4.18)

where C; and C, are constant which account for the power normalisation factors.
To compensate for EMG artefact in the data, Pgy, we used the theoretical model
used by [219]. This non-biophysical based model introduced by [234, 250] which
reproduced the power spectrum of EMG observed [269]. It is defined by:

(f/ 1)

Pgym = )
W = g hr

(4.19)

with £, = 40.

4.2.6 Formal definition of plausibility

Recall that we consider a simulation to plausible if it belongs to the interval of
prediction with a similar shape of EEG data. Two constants C; and C, have been
added to:

* rescale the experimental power spectrum without affecting its shape [219];
and

» remove the effect of Pz [219].

Effectively, if a linear combination of the two vectors Pgy and Py belongs to the
band delimited by P.;, and Py.x then the simulation is plausible. Formally, given
the vectors Pen;, Pemc;, Pmin; @aNd Pnay,, i € [1,n], are there C; >0 and C; > 0 such
that:

Prin; < C1PeN, + C2PeMG; < Prax;s (4.20)

Prnax;—C1PEN; (4-21)

Poin.—C1 PeN: .
# < Cy,i € [1,n]
l .
4 ZC27.]€[17n]7

P .
EMG

Puax; — C1Pen; Puax; — C1PEN;
max (—— = ! EN’) < min —4_ 2N N (4.22)
i€(1n] Pema; jeltn]  Pemg,
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Let us denote

Bnax, — C1 PeN, Poax; — C1 Pey,
£(Cy) = max (e —ZWENGy gy s ZITEN

(4.23)
i€[1,n] PEMG,' J€[1.n] PEMG]-

The expression 4.23 is a piecewise linear function and can be maximised easly. If
argminc, f(Cy) > 0 linear combinations of the two vectors Pry and Pey ¢ can belong
to the bands between P,;, and P,.x. Furthermore, two constraints were added
to bind the model to have a shape similar to the experimental spectrum. The
theoretical power spectrum had to have at least one peak of frequency in the delta
band and in the alpha band. In Figure 4.3, there is an example of plausible and
implausible simulations.

= implausible
= plausible

band of controls

Power

0 10 20 30 40
Frequency

Fig. 4.3 Plausible and implausible simulations. A plausible simulation belongs to
the band of control while a non plausible simulation lies partially outside.

4.2.7 Model simulations

The power spectrum was simulated 1,000,000 times varying 9 parameters vy, T, «,
B, Geiy, Geey, Geses Gesre and Gy, USINg a latin hypercube design [176] to explore the
parameter space. The simulations were computed using MATLAB 2017b.
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’ \ mm Mean
’ \ mm 90th prediction interval

Power

0 10 20 30 40
Frequency

Fig. 4.4 Power spectrum of the subjects. The exterior bands in red indicate the
interval of prediction for the values of the power spectrum with a confidence of 90%
while the middle lines indicate the mean of the power spectrum. Each individual
power spectrum is represented in grey

4.3 Results

4.3.1 Data

Figure 4.4 shows the power spectrum of each subject and the average and the
band at 5% and 95% are indicated. The presence of alpha peaks can also be
observed.

4.3.2 Partition of the parameter space to identify plausible re-
gions

1,000,000 simulations were computed on the whole parameter space as described
in section 4.2.3, using the biological constraint ranges as in Table 4.1. Analysing
these simulations, we found that the theoretical power spectrum of the Robinson
model is almost always implausible. Genuinely only 4.97% of simulations are
plausible. Despite this, the plausible parameter space is much larger than the
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parameter space defined in [215] which retains less than 10~'2% of the original
defined “biological” parameter space.

Figure 4.5 provides a 2-dimensional representation of the distribution of plausi-
bility throughout the whole parameter space. It can be seen that the parameter
subspace in which plausible power spectrum can be found (regions which are not
in dark blue) is large and is not concentrated in small sub-regions. There are how-
ever some regions with a high concentration of plausible power spectrum (yellow
colour). This is the case when T is large or y is small. Figure 4.5 shows there are
interactions between parameters. For specific values of two parameters, there is a
larger proportion of plausible power spectrum simulations. For example there are
complex interactions between o and G,,; and a linear interaction between G., and
G.i;. On the contrary, the subfigures for the parameter 8 appears homogeneous,
and therefore do not influence the likelihood of plausibility.

We used decision trees (see section 2.1.5) to effectively identify the plausible
region of space and summarise how a change in a parameter can impact the
dynamics of the model. Figure 4.6 presents one such tree that describes the
segmentation of parameter space according to the plausibility. Recall that, for each
branch, the tree algorithm scans through the sub-parameter space to identify the
optimal separation between the maximum and minimum likelihood of observing
the feature of interest (in this case, plausibility).

The different leaves of the tree in Figure 4.6 partition the parameter space in
different regions with different densities of plausible simulations. In the regions
on the left, the rate of plausibility is small: a negligible number of parameter sets
are able to produce plausible simulations. Some regions have a greater ratio
of implausibility. The standard values estimated by [215] are situated in the 3"
regions from the right. In this region of parameter space, the ratio of plausibility
is close to 0.34%. Interestingly, there are other regions with a greater ratio of
plausibility: in these regions, the ratio of plausibility is 0.39% and 0.44%. We
focus on these three regions of high plausibility density. The main differences
between these regions of higher density of plausibility and the standard values
are for a region the values of G,, and G, for another, it is a smaller Gy,,. Figure
4.7 shows the values of the parameters in these three regions and compares the
values to those found in [215]. One can directly observe that in these subregions
the values of certain parameters differ. This is the case for G., and G,,;. While
region 1 constrains G, to large values and G, to small values, region 2 does the
opposite; G,. is constrained to small values and G, to large values. The different
regions share common constraints; 7, ¥ and G,y have similar values on the four
regions of interest. Some parameters are poorly constrained for the three regions.
For example, this is the case for «, 8 and G,;. Finally, some parameters are only
constrained in specific regions. This is the case of a: only constrained in region
2 and G, only constrained in regions 1 and 3. However, the region identified by
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100% Percentage of the total volume
100 % Percentage of the total volume of plausible power spectrum
yes| T <0.056 |no o
7 % Likelihood of
83 % plausibility
yes no in the region 0 005 01 015 02 025 03 035 04 045 05
26 %
68 %
1% 15%
13 % 54 %
yes| Alpha >= 81 |no —yesno
4% 12 %
12% 51%
yes| Beta < 381 |no yes no
2%
7%
yes no yes| Gsrs <-0.63 |no yes| Alpha < 52 |no

Fig. 4.6 The root region is at the top of the figure and represents the total
parameter space, while the leaves are at the bottom. The upper label of each
region indicates the size of the parameter space represented in this region. The
lower label indicates the percentage of all parameter combinations that result in a

plausible power spectrum. In the rest of the chapter, we focus on the three leaves
in dark red. Values are given to two digits precision.
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Fig. 4.7 Boxplot of the value of the parameters in the three regions with the highest
density of plausibility of the tree in Figure 4.6 and the one presented in Robinson
et al. [215]. Some parameter are similarly constrained for each region such as y
and T. The four plausible regions of the parameters space have low values for y
and high values for T. Other parameters follow more complex patterns such as
G,. or Gyy. G, and Gy, values change a lot for a region to another.

The range of each parameter has been normalised between 0 and 1.
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[215] is strongly constrained for all parameters, giving the misleading impression
that all parameters are equally important.

4.3.3 Importance of parameters

Whilst identifying regions with high density of plausible simulations is interesting
it does not completely answer the question of which parameters it is safe to fix
and which ones are the most influential on the plausibility of a simulation and
should, therefore, be allowed to vary in a further study. Analysis of the measure of
importance over 500 trees, GI and PI, as defined in section 2.1.7, shows that one
parameter is much more important than other in term of plausibility: the time delay
T. This parameter is consistently the most important parameter in terms of different
importance measures. For other parameters, the measures can differ. The three
parameters which appears the most of the root of the trees are T, G, and .
For these parameters, there is a threshold at which the likelihood of plausibility
changes abruptly. As indicated by Figures 4.5 and 4.6 this happens around 7 ~ 0.5,
Gesre = 6 Or Yy~ 70. The Gini importance measures indicate that the parameter T
is an outlier. The Gl of T is twice as high as the second highest GI. This means
that it is by far the best parameter to partition effectively the parameter space. The
permutation importance reveals that the other parameters can have an important
role in plausibility or implausibility of the simulations depending on the values of
the other parameters. T is still the most important parameter in this respect but
the gain G, is nearly as important. Figure 4.5 shows that a modification of the
values of Gy,; changes the likelihood of plausibility. We can observe that other
parameters have a Gini and permutation index not negligible as the gains G,
G.., decay time a and the cortical damping rate y. There is one last group, G.; and
B, with negligible importance. Indeed the values of these parameters do not seem
to impact the plausibility of the simulations.

4.3.4 Interaction between parameters

As observed in Figure 4.9. There are multiple interactions between the parameters.
Some parameters have a particularly strong interactions such as a and Gy, Ge.
with G.; and G,, or G, With G, and Gy, or T With ¥, Gps, Gegre OF Gege. We can
identify two broad types of interactions:

» Simple interaction such as yand T or T and G... The effect of the interaction
on the likelihood of plausibility can be easily summarised. For example, the
effect of low values of y and large values of T has an effect which is more
that additive. At the opposite a large value of T coupled with a small value of
G.sre has a strong negative influence of the likelihood of plausibility. These
interactions are easily taken into account to constrain the parameter space.
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Multi-way importance plot
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Fig. 4.8 Parameter importance in the Robinson model. The importance of pa-
rameters as determined by variable importance measures (see section 2.1.7 )
averaged over a random forest of 500 trees. The parameter T appears to be a
leading parameter to influence the plausibility of a simulation

» Complex interaction; the manifold of the effect of the interaction is hard to
describe, this is the case for the interaction between « and G, or G, and
G4s- These interactions are not easily taken into account to constrain the
parameter space.

The large number of interactions, particularly the complex ones, renders difficult to
constrain the parameter space with straightforward statistics such as the mean
and some confidence intervals.

4.3.5 Identifying a suitable parameter space

These constraints can be used to identify a suitable parameter space for futher
study. To identify the ranges of the parameters required for the non-linear version
of the model we use the approach presented in [215]. The ranges of the synaptic
products v, is many times larger than the range found in [215]. The reason for this
is that unlike [215] which gave a band of G, € [5.6;6] and G,; € [—8.4;—7.8], G.. and
G,.; are not constraint by the feature “plausibility” and so we have G, € [1;20] and
G,i € [-20; —1]. As such the ranges of G, Gs., G, G,. and G, are large according
equations 4.11 to 4.15 and the range of v, are large according 4.17. Nevertheless
these larger intervals take into account the plausibility of the distribution of the
power spectrum and not only its average. This can be useful when one wishes to
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Fig. 4.9 Partial interaction plots of the parameter space of the Robinson model (as defined in section 2.3.2). Each subfigure represents the
partial interaction plot over two parameters. Each subfigure was computed using equation 2.39 with 20 bins over the parameter ranges
provided in Table 4.1. A subfigure with a large gradient of colours indicates a possible interaction. Multiple interactions between parameters
are visible. There is a complex relationship between many parameters. There are strong interactions such as o and Gy, G.. with G,; and
Gee OF Gg With G,y and Gy,5. T interacts with all parameters.
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study power spectrum at individual level and does not want to take the risk of a bad
fit because the initial parameter space was too constrained. Results summarising
the biological range, the Robinson range [215] and the plausible range can be
found in Table 4.1.

4.4 Discussion

In this chapter, we took a classical NMM of the thalamocortical system [215], and
use TDM to characterise the relative importance of model parameters in explaining
features of the power spectrum observed in human EEG experiments.

We defined and identified the plausible regions of parameter space. This is
useful for future studies using the Robinson NMM as it gives a robust estimation
of meaningful parameter regions for which plausible power spectra are possible.
The subset of the parameter space determined by [215] belongs to a zone with
a high density of plausibility as we might expect. However, the exploration of the
parameter space, further showed that the small sub-parameter space selected
in [219] did not reflect the fact that other parts of the parameter space are able
to fit the power spectrum of people equally well. Indeed, there are other regions
of parameters space with a higher density of plausibility. A challenge is that
these interactions between parameters are complex and cannot be summarised
straightforward statistics such as the mean and some confidence interval as in
previous studies [215, 219].

We chose to focus on three regions of the parameter space which include a
large proportion of the plausible dynamics while representing a small proportion
of the parameter space. For some parameters, the conclusions we reach are the
same as in [215], ie, only specific ranges are plausible parameter sets. On the
other hand, some parameters are not constrained and any parameters values
can lead to plausible simulations. We find the most important parameter by some
margin to be the time delay 7. Given that T is well constrained, other parameters
such as the values of the intrathalamic loop couplings have some influence on the
plausibility in conjunction with others parameters. Some parameters do not seem
to affect the plausibility of a simulation, whilst for others, the value of a parameter
becomes important only given specific combinations of the others.

4.4.1 Best fit versus plausible fit

The partition and the mapping of the parameter space highlight different aspects
of the model that were previously ignored. Given the large discrepancy observed
in the population, it is, therefore, important to explore a large region of parameter
space. As a result, there are large sets of parameters which give a similar power
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Quantity symbol biological range [215] range plausible regions Unit
Cortical damping rate Y 40-400 112-120 0-199 s
Loop delay T 0.005-0.1 0.084-0.086 0.056-0.1 S
Decay time o 35-150 71.5-100 35-150 s’
Rise time B 150-1000 625-1000 150-1000 s’
Maximum firing rate Omax 220-500 220-500 220-500 s
Firing threshold 0 10-17 10-17 10-17 mV
Threshold spread c 3.6-4 3.6-4 3.6-4 mV
Firing rate e e 14-18 14-18 14-18 s’
Firing rate s oy 09-23 09-23 09-23 s’
Firing rate r o, 19-29 19-29 19-29 s’
Gain ei |Gei 1-20 7.9-8.3 1.0-20 -
Gain ee Gee 1-20 6.6-7 1.0-20 -
Gain ese Gege 1-20 4-4.4 2.7-10 -
Gain esre |Gesre| 0.01-20 3-3.2 0.1-5.8 -
Gain srs |G| 0.01-2.5 0.365-0.375 0.1-2.5 -
Synaptic product ee Vee 0.3-340 1.2-2 0.002-5.7 mV s
Synaptic product ei [Veil 0.04-60 1.4-2.4 0.002 -5.7 mV s
Synaptic product es Ves 0.02-40 0.2-1.0 0.002-5.7 mV s
Synaptic product se Vse 0.03-48 0.2-2.0 0.001-8.9 mV s
Synaptic product sr [Vsr| 0.02-32 0.2-2.8 0.001-8.9 mV s
Synaptic product sn Vsn 0.0.1-40 0.1-0.5 0.1-0.5 mV s
Synaptic product re Vre 0.07-64 0.03-0.3 0.001-4.2 mV s
Synaptic product rs Vrs 0.02-24 0.007-0.06 0.001-4.2 mV s

140

Table 4.1 parameter space of the Robinson model according different sources; the biological range, the initial work of Robinson et al. [215]
and a plausible region as defined in this chapter.
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spectrum. As such the fitting of the model without more accurate a priori on the
values of the different parameters could lead to overfitting.

Multiple recent studies focus on the best fit instead of on plausible fits. Ap-
proaches to exploit NMM to understand the mechanisms of the brain try to estimate
the best fit given the data such as genetic algorithm [62], particle swarm optimiza-
tion algorithm [233], Kalman filter [95] or dynamical causal modelling [98]. Regard-
ing the physiological interpretation of experimental studies, a natural question is
whether the modulation of the system circuits can be inferred directly from the
recorded EEG data. Generally, in regard to the high number of parameters and the
complex relationship between them this inverse problem is ill-posed. Furthermore,
focussing exclusively on the best fit removes the critical idea that the best fit of
data does not necessarily give a true parameter set. Indeed two elements need to
be taken into account, the noise and the discrepancy of the model, i.e, how much,
the mathematical model differs from the biological system. We saw that different
parameter sets can lead to similar power spectra. As demonstrated in [116], there
is the presence of important noise at an individual level in the power spectrum.
This means that the average power spectrum cannot be robustly used to represent
the power spectrum distribution of an individuals and even less a group of people.

4.4.2 Constraints on the parameter space

The concept of a plausible fit is one that has been previously explored in [30].
Here, our only constraint on the parameters space is the power spectrum. It is
possible to further reduce the plausible parameter space by adding constraints. For
example [30]; by adding a constraint of “strong biphasic” power rise in the context
of modelling the effect of anaesthesia, reduced the number of plausible simulations
from 73,454 to 86. We could adopt a similar approach in the case of the Robinson
model. In this study, we used biological constraints, power spectrum and firing
rates to constrain our parameter space. It could be possible to add temporal
constraints to further limit our parameter space. Another constraint could be to
do a local sensitivity analysis as in [126] to study the stability of our simulation
and verify that modification of key parameters reproduces results observed in
experiments. For example, one could seek to observe whether a given parameter
set, would a modification of the excitability of excitatory cortical neurons or the
inhibition of inhibitory neurons could lead to seizure dynamics or not.

4.4.3 Interactions between parameters

The external constraints on one parameter are assumed to be independent of the
constraints on another. This is implied in stating upper and lower bounds for all
parameters hence specifying a hypercube in parameter space. However, in reality,
these parameters are interrelated in highly complex ways; hence parameters rep-
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resenting real human thalamocortical system would map out complex manifolds in
the parameter space. Furthermore, the simplifications and assumptions necessary
in developing such models mean that the mapping of experimental data to model
parameter remains a gross approximation.

4.4.4 Future use of the approach

We saw that the use of non-global methods to study NMMs can lead to overfitting
and misleading results. It is thus necessary to use a global approach with realistic,
and no overconfident a priori estimate, to study a NMM. This is the only way to
achieve robust results when there is a large uncertainty in the parameter values.
Mapping a mathematical model in high dimension leads to a new comprehension
of the limit and the potential of the NMM.



Chapter 5

Comparison of the plausible
parameters of people with and
without epilepsy

There is a saying “all models are
wrong, but some are useful”-not
understanding that the real problem
is that “some are harmful”.

Nassim Nicholas Taleb.
The Black Swan [256]

In this chapter, we focus on the differences between the parameter spaces of
people with epilepsy and without epilepsy. We use the same methodology as in
chapter 4, i.e. we clean the data with the same process and use the same model.
The only major difference is that the focus is made on the comparison between
the plausible parameter space of different population groups and not, as in the
previous case, plausible versus implausible parameter space.

5.1 Introduction

Slight differences in the power spectrum, particularly in the alpha band, are
potential biomarkers for different diseases such as Alzheimer [129], depression
[158] or epilepsy [157]. Particularly a lower mean alpha frequency and a larger
amplitude was recorded for people with epilepsy but as noted by [116] there
are large discrepancies within the populations and it is frequent to find people
with epilepsy with a high alpha peak and people without epilepsy with a low
alpha peak. [227] showed that is was not possible to identify correctly the alpha
peak as a biomarker because of this discrepancy. Nonetheless, differences
between the healthy cohort and IGE cohort remains constant at a population
level. Understanding the underlying mechanisms behind the differences between
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unhealthy and healthy people is still a key question in neuroscience. Studies have
pointed to the thalamus as the primary alpha pacemaker [134, 169, 221] while
others point out the cortex as the primary alpha pacemaker [45, 162, 270].

To study the mechanisms behind the differences between unhealthy and healthy
people we compare the plausible parameter space of different groups of people,
controls, IGEs and their relatives.

In the methodological part, we introduce the data used in this chapter. In the
results section, we compare which parameters explain the difference of power
spectrum (mainly focussed on the alpha band) between people with idiopathic
generalized epilepsy (IGE), their first-degree relatives, and healthy controls. In the
discussion section, we compare our results with previous studies.

5.2 Methods

EEG data

The dataset contains EEG recordings from people with idiopathic generalized
epilepsy (IGE) (30 people), their first-degree relatives (42 people), and healthy
controls (38 people) between the ages of 16 and 59 years. The individuals with
IGE were drug-naive and recruited through clinics at St Thomas’s Hospital. A
diagnosis of epilepsy was confirmed in each case by an experienced epilepsy
specialist through observation of typical generalized spike-wave (GSW) activity
on EEG either spontaneously or following hyperventilation or photic stimulation.
For 10 of these people, the diagnosis was confirmed following an initial routine
EEG. For the remaining 20, the diagnosis was confirmed following sleep-deprived
or longer-term EEG monitoring (including sleep). Similar healthy control EEG was
collected at King’s College Hospital EEG department. Controls provided written
informed consent, and data collection was approved by King’s College Hospital
Research Ethics Committee (08/H0808/157). Under United Kingdom law, patient
data collected during normal clinical routine and anonymized before research use
may be used for research without additional consent; this procedure was reviewed
and approved for this project by St. Thomas’s Hospital and King’s College Hospi-
tal’s Research and Development departments. A trained clinical EEG technician
identified a 20s long state EEG activity from the initial stage of the recordings
from each participant. Because signal amplitude may vary between individuals
due to different anatomic features (such as the size and shape of the cranium)
the data were normalized by dividing the power spectrum in each channel by the
total power in the spectrum averaged across all channels. This normalised power
preserves relative differences in power between bands.

The methods used to process the data and to analyse the parameter space
are presented in section 4.2 and chapter 2 respectively.
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5.3 Results

5.3.1 Power spectrum

The power spectra of the different groups, illustrated in Figure 5.1, are relatively
similar. This figure shows the power spectrum of each subject. The average and
the band at 5% and 95% of each group are indicated. We can observe that the beta
peak around 20 Hz is present in many individuals group but not always observed.
Finally, we can see that in each group some individuals do not follow the global
trend. This is particularly the case in the relatives group, where two individuals
(blue shaded lines) have a lower alpha peak. The data reflect previous knowledge
that there is a large discrepancy in the power spectra among the population as a
whole [116].
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Fig. 5.1 Power spectrum of the subjects. For each group, the exterior bands
indicate the interval of confidence for the values of the power spectra with a
confidence of 90% while the middle lines indicate the mean of the power spectra.

5.3.2 Alpha peak

On average the alpha peak frequency of IGE cohort is at a lower frequency and
with higher power amplitudes than the non-IGE cohorts which is consistent with
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previous studies [157]. The band of predictions of the different groups reproduce
these trends: the band of the IGEs group is shifted to the low frequencies in the
alpha band compared to the two other groups. Visually, there is more power in the
alpha band in the IGEs group. The mean of the peak alpha frequency is 9.5Hz
for the IGE cohort, 9.97Hz for relatives and 10.13Hz for the control cohort. As
seen in Figure 5.2, the intergroup discrepancies are important. There are some
trends reflected in the mean; controls mainly have a high alpha peak while IGEs
mainly have low alpha peaks and relatives are more balanced with both low and
high alpha peaks. We note that the peaks can be found outside the classical alpha
band (8-12Hz) with values at 7 and 13. Nevertheless, the large majority of peaks
are in the classical alpha band.
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Fig. 5.2 Peak alpha frequency for the different groups. The peak alpha frequency
of the control is often at high frequency while the IGEs often has a peak alpha at
low frequency.
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5.3.3 Difference between the plausible parameter space of IGEs,
relatives and controls

Over the simulations, 4.72% of the parameter space was plausible for the controls’
cohort, 4.26% for the relatives’ cohort and 5.18% for the IGEs’ cohort. We used
a Venn diagram to depict the connection between the different plausible spaces.
The Venn diagram indicates the proportion of sets which are plausible for each
group and the sets which are plausible for two or more groups, see Figure 5.3.

As expected, the plausible parameters spaces of the three populations are
largely overlapping. 41.2% of the total plausible parameter space, i.e. the set of
parameter which gives a plausible power spectrum for at least one of the group, is
plausible for the three groups. The control’s plausible space and relative’s plausible
space are the two cohorts overlapping the most; most (86.5%) of the plausible
space of the control population is within the relative population’s plausible space.
Furthermore, controls and relatives cohorts share a large plausible parameter
space which is not a plausible space for the IGEs. This shows that the plausible
parameter space of the relatives and the controls are similar. On the contrary,
IGEs plausible parameter space can be slightly different to the control and relative
cohorts’ and 18.6% of its plausible space is considered as implausible for the
power spectrum observed in both controls and relatives. For controls and relatives,
it is respectively at 7.76% and 8.48%. Controls and relatives plausible parameter
spaces are similar. The fact that the parameter spaces are highly overlapping does
not come as a surprise. The difference in the three plausible parameter spaces is
consistent with the difference in the three EEG data cohorts, see Figure 5.1.

Controls IGEs
3.74%
6.34% 11.9%
41.2%

23.5% 7.24%

6.05%

Relatives

Fig. 5.3 Venn diagram showing the plausible space shared by the three popula-
tions. The three plausible parameter spaces overlap, however, the IGE cohort is
sensibly different from the other two. The diagram is made with the package of
[54].
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5.3.4 Importance of parameters

The fact that the relative and control populations are closer to each other than
IGE is an interesting finding. In the next section, we determine the parameters
which are able to differentiate between the IGE plausible space and the non-IGE
plausible space. To compare the plausible parameter space of the IGEs group
against the non-IGEs groups we selected the joint plausible parameter space of
both groups and use the tree-decision learning group to split the parameter space
according to being solely plausible for IGEs or plausible for both groups.

Figure 5.4 computes the different measures of importance. Permutation and
Gini importances order the parameters in the same way. One parameter T is
highlighted as the most important parameters with more than twice the permutation
and Gini importance than the second most important parameter, G.y.. Other
parameters of importance are «, G.., G.; and Gys. Then the least important
parameters are G, ¥ and finally 3.
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Fig. 5.4 Parameter importance in the Robinson model. The importance of pa-
rameters as determined by variable importance measures (see section 2.1.7 )
averaged over a random forest of 500 trees. The parameter T appears is the
leading parameter to influence the plausibility of a simulation for IGE cohort only.

5.3.5 Plausible parameter space for control population

As previously, we used tree statistic measures (see section 2.1.5) to efficiently
identify the plausible region of space and summarise how a change in a param-
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eter can impact upon the dynamics of the model. Figure 5.5 presents one tree
that describes the segmentation of parameter space according to the plausibility.
Recall that, for each branch, the tree algorithm scans through the sub-parameter
space to identify the optimal separation between the maximum and minimum
likelihood of observing the feature of interest (plausibility in this case). The parti-
tion of the parameter space shows how the parameters with the most important
measures influence the power spectrum, see Figure 5.5. As T is the most im-
portant parameter, we will focus particularly on it. In Figure 5.5, the parameter T
appears four times. Three times, an increase of T indicates an increase to have a
power spectrum corresponding to IGE only and once decreasing T indicates an
increase to have a power spectrum corresponding to IGE only. When T < 0.039
the likelihood to fit only control or relative is small. However, for T between 0.039s
and 0.075s, the probability to fit relative and control is higher than simulating an
IGE power spectrum. Finally, over 0.075s the probability of only fitting the IGE
power spectrum is higher. In summary, the lower frequency alpha peak of IGE
group can be explained by two reasons: asmall T or alarge T. The large T is
expected, T is dominating the peak frequency: 1/T. Without the influence of the
other parameters, T=0.105s would correspond to a peak of 9.5Hz. However, when
T becomes small it is possible to find plausible parameter sets for the IGE cohort.
This is due that for T below 0.04s and rare combinations of the other parameters,
the power spectrum simulated has its delta band with a smaller amplitude and an
alpha band with a large power and this case can only be found for the IGE cohort
data.

We can observe that other parameters can change the probability to be plau-
sible only for the IGE cohort. Smaller values of |G..| and |G| decrease the
chance of only fitting the IGE group while large values of a decrease the chance
of only fitting the IGE group.

5.4 Discussion

In this study, we explored the plausible parameter space of the Robinson NMM in
the case of cohorts of people with and without epilepsy. Our hypothesis was that
the plausible parameter space estimated from the power spectrum of background
EEG from the people with epilepsy is different from that of their relatives and
of a control group. We verified this hypothesis, finding that the parameter T,
representing the delay between the thalamus and cortex neural populations, was
the most different.
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Fig. 5.5 The root region is at the top of the figure and represents the total
parameter space, while the leaves are at the bottom. The upper label of each
region indicates the size of the parameter space represented in this region. The
lower label indicates the percentage of all parameter combinations that result in a
plausible power spectrum. Values are given to two digits precision.
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5.4.1 Difference between parameter spaces

The fact that for the group IGE, the only plausible regions of parameter space can
be identified within two disparate sets of values of T could indicate that different
thalamocortical network configurations are able to support the power spectrum
characteristic IGE cases. The importance of the parameter T have been identified
but the partition values are different. The partition of the parameter space has
indicated that for large T there is a non-negligible likelihood of having a plausible
simulation while for low values of T the likelihood was negligible. As such, a person
with a low value of T (< 0.39s) will have a higher likelihood that his power spectrum
will look like an IGE power spectrum while a person with a large T'(> 0.85s) could
have a power spectrum similar to any group (but with an increased probability of
belonging to IGE power band only). A T value between 0.39s and 0.85s increases
the chance of having a power spectrum between the interaction of the three band
interval of prediction or only the relatives and controls. In particular, we observe
that other parameters can influence the plausibility, such as the gain G, the
decay time a and the gain G, however, this influence is marginal compared
to that of T. These parameters influence the output but less directly than T,
however, specific combinations of parameters can have the same effect as a large
T. Beyond this, the plausible parameter space identified in the IGE group differs
only slightly from the parameter space identified in chapter 4 for healthy controls.

5.4.2 Experimental validation

In light of this strong dominance of T on the plausibility of solutions, we discuss
what previous experimental studies identify as important parameter to play a role
on the EEG alpha peak. We could find a large number of experimental studies
that identify the thalamus [134, 169, 221] or the cortex [45, 162, 270] as the main
important part of the brain responsible for the EEG spectrum. However, even if
the cortex and thalamus parameters did not have negligible importance measures,
they were much smaller than the delay time constant between the thalamus and
the cortex, T. The importance measure of the parameters T highlights the role that
this parameter plays to determine the appearance of the power spectrum in the
Robinson model. This is remarkable because we could not find any experimental
articles which would highlight the role of this parameter to influence the EEG power
spectrum. Such a difference between what has been experimentally demonstrated:
that the cortex or the thalamus play an important role, and what this study shows,
lead us to highlight the need of more experimentations to confirm or infirm the
importance of the time delay between the thalamus and the cortex.
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5.4.3 Assumption of the Robinson model

Chapter 2 of the thesis of Peterson [203] summarises some assumptions made
to make the Robinson model and recall that some are known to be false from
a biological point of view; for example, excitatory cortical and inhibitory cortical
population are assumed to have exactly the same characteristics [203, 212].
Another possible improvement of the Robinson model could be to focus on the
way to model the time delay between thalamus and cortex and acquire better
experimental approximation. Another fact about the delay between vivo, axonal
conduction from cortex to thalamus is much slower than in the reverse direction
[249] and so the two different speeds could be modelled by two parameters. There
is another connection between the thalamus and the cortex which has not been
modelled in the Robinson model; It is a fast ( 2ms) route which involves activation
of the specific nuclei of the thalamus which project mainly to target areas in cortical
layer IV as opposed to the target areas in layers | and Il of the nonspecific thalamic
and brainstem systems [213]. Nevertheless, the addition of new parameters
without accurate a priori values would only increase the sensitivity of the model.
It is more important than ever to accumulate in vivo data to be able to calibrate
meaningful models.

5.4.4 Using decision tree mapping to detect potential mislead-
ing model

We have used the DTM approach to identify the abnormal importance of the
parameter T demonstrating that whilst the Robinson model is able to accurately
reproduce power spectrum from different cohorts of people, our ability to reliably
interpret its meaning is questionable. Typical approaches to parameters studies
restrict the number of parameters for analysis and consequently the relative
importance if a parameter overall can be missed. With complex models, it is
often possible to find results similar to experiments. However, care is needed
in their interpretation. Here, we find that the Robinson model places significant
importance to the value of the time delay, T for which this is limited experimental
justification. We argue that combining a systematic study of plausible sets of
parameters, alongside detailed understanding of the biological observations is
important for making robust observations.



Chapter 6
Conclusion

Even if a scientific model, like a car,
has only a few years to run before it
is discarded, it serves its purpose
for getting from one place to
another.

B. Mankin, R.V. O’Neill, H.H.
Shugart and B.W. Rust, The
Importance of Validation in
Ecosystem Analysis [174]

6.1 Summary

Advancing our understanding of the brain will play an important role in better
characterising and treating neurological conditions such as epilepsy. Here, the
approach used to enhance our understanding is to use NMMs. These models
describe the average activity of a large group of neurons. We have seen that
classical rhythms of the brain and seizure dynamics can be effectively replicated
by the Wendling model and that the Robinson model can reproduce typical EEG
power spectra. Such models can be useful to make hypotheses about the gross
mechanisms that give rise to the rhythms in EEG.

In this thesis, we introduced a statistical approach to examine how different pa-
rameters affect the output of a model and at which parameter values the transitions
occur. We applied our approach to different problems using different mathematical
models.

In chapter 2, we presented the DTM method to explore and understand the
parameter space of a mathematical model. We presented existing tools such
as decision tree, random forest and partial plots and introduced a new way to
combine them in order to analyse the parameter space. The limitations of these
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methods are often due to a lack of data. One of the key advantages of NMMs is
the fact that the models can be simulated a large number of times on a simple
computer desk in a relatively small amount of time. By creating a large database
we can then use machine learning tools to their full potential. In our examples,
we showed how DTM was performant on relatively complex models even with a
relatively small number of simulations.

The other chapters demonstrated the applications of the DTM approach in
different studies related to epilepsy.

In chapter 3, we presented the results achieved with the Wendling model to
identify the parameters which are the most important for the transition to seizure
dynamic. We reproduced known results, showing that the ratio between the gain
and the meantime in the loop of the excitatory and slow inhibitory neurons influence
seizure onset. We discovered that previously unstudied parameters can also play
a critical role on the dynamics of the neural mass model such as the parameters
of the sigmoid function. Furthermore, we showed that the roles of parameters are
targeting different characteristics of the dynamics of the Wendling model; some
have a huge impact on many characteristics such as the mean time parameter of
slow inhibitory interneurons. Other, such as the postsynaptic potential threshold,
mainly influence the amplitude of oscillations.

In chapter 4, we applied the TDM method to clinical data. We defined the
concept of plausible fit which is more meaningful than the concept of best fit when
working with noisy data and a population with intra-variability. We applied this
definition to define the plausible parameter space of the Robinson model, fitted to
the power spectrum of EEG. Previous analyses have been done on this model but
we showed that our global analysis extends these previous results. We showed
that the plausible parameter space is much wider than the previous one and that
many combinations of parameter sets can lead to similar simulations. Particularly,
we observed that the parameter representing the loop delay between the cortex
and the thalamus has a leading role in the dynamic of the model.

In chapter 5, we used the same model to compare the plausible parameter
space of different groups of people, control, idiopathic generalised epilepsy and
their relatives. Controls and relatives share a similar plausible parameter space.
However, patients with idiopathic generalised epilepsy have a slightly different
plausible parameter space from the two other groups. We observed that the
parameter of the loop delay between the cortex and the thalamus was the most
important parameter by a significant margin. This parameter has few biological
reasons to exist and does not appear in any experiment as being important. As



6.2 Discussion 155

such new experimentations are needed to validate the importance of the time
delay between the thalamus and the cortex.

6.2 Discussion

6.2.1 Mathematical models are highly dependent on their pa-
rameters

As we have seen in the chapters 3, 4 and 5, the parameter space of the models
studied is much more complex than previously considered. We argued that in
only exploring a limited number of parameter simultaneously, there is a danger
of missing important information as to the role of certain parameters. By simul-
taneously studying the whole parameter space, we have shown the complexity
of the relationships between the parameter spaces and the dynamics of interest.
Some parameters have a global role and changes in their values have an impact
on the dynamics of the model. Other parameters have a local role, changes in
the values of these parameters change the dynamics only if the other parameters
have specific values. Finally, some parameters have a relatively small influence on
the dynamics.

6.2.2 Machine learning, a promising tool to analyse the param-
eters space

The exploration of the parameter space of the models has been made possible
thanks to the use of statistical and machine learning approaches. Previous find-
ings have been rediscovered using DTM approach, confirming the validity of the
approach. New findings have been discovered, confirming that the approach is
complementary to bifurcation analysis or activity map approaches. The use of
machine learning offers new insights into understanding and using mathematical
models. Furthermore, machine learning approaches make the most of one of the
main advantages of mathematical models; the cost of a simulation is cheaper than
the cost of experimental observations. This makes it possible to compute a large
number of simulations and to create a large database.

6.3 Future research direction

As the mathematical models used in science increase in complexity and detalil, the
number of parameters is increasing. It will become more important than ever to
identify the role of the different parameters on the model’s dynamics. We saw that
it is critical to explore the parameter space with all the parameters simultaneously.
The method proposed offers a fast and efficient way of identifying the parameters
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with the most impact on the dynamics and observe how parameters can interact.
However, the capacity of the DTM approach to analyse a parameter space can be
limited by the sampling and the decision tree methods:

» parameter space can be highly complex in some subregions and simple in
other regions, making it necessary to compute more simulations in the highly
complex subregions. To increase the number of simulations in regions which
seem to be under sampled, one solution could consist of adapting the history
matching approach [288];

* we used a decision tree approach to analyse the parameter space but there
are other methods which could be used to take into account specific charac-
teristics of the studied mathematical model. For example, for mathematical
models which are computationally costly to simulate, there are other ma-
chine learning methods such as Gaussian process [78, 287]. Gaussian
process can give insightful results even with a small number of simulations.
The mapping, however, would be less intuitive than the method presented
in this thesis as this approach does not have intuitive visualisation as it is
the case for decision trees. Furthermore transitions would not be detected
efficiently, either. It can be hoped that new machine learning methods will in-
crease our capacity to explore and analyse the parameter spaces of complex
mathematical models; and

« the partition done in this study analyses the output of a mathematical model
without taking into account the potential effect of noise on the simulation. To
increase the robustness of the partition of the parameter space analyses it
could be interesting to integrate a local sensitivity analyse on each simulation
to test the stability of its dynamics.

6.4 Final remarks

Mathematical models do not need to reproduce the dynamics of interest exactly,
they are only tools to better understand the underlying mechanism of interest.
However, to use them to their fullest potential, it is important to fully analyse the
parameter spaces of the models of interest. We propose an approach which
offers new insights into understanding the relationships between the model’s
parameter and its dynamics. Our understanding of neural dynamics will continue
to improve as more experimental, anatomical and physiological data becomes
available. Neural modelling paradigms give us a theoretical framework from which
to interpret and explain the plethora of experimental data. The future of neural
models, especially when interfacing with experimental neuroscience, is through the
validation and veracity of the NMMs. The use of tools is a step in this direction as it
helps to invalidate models which produce abnormal results and better understand
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models with coherent results. This direction will drive NMMs to keep evolving
towards reaching a ‘predictive’ status, where they will become invaluable clinical
tools.
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