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Network analyses can assist in predicting the course of epidemics.

Time-directed paths or ‘contact chains’ provide a measure of host-

connectedness across specified timeframes, and so represent

potential pathways for spread of infections with different

epidemiological characteristics. We analysed networks and

contact chains of cattle farms in Great Britain using Cattle

Tracing System data from 2001 to 2015. We focused on the

potential for between-farm transmission of bovine tuberculosis,

a chronic infection with potential for hidden spread through

the network. Networks were characterized by scale-free type

properties, where individual farms were found to be influential

‘hubs’ in the network. We found a markedly bimodal

distribution of farms with either small or very large ingoing and

outgoing contact chains (ICCs and OCCs). As a result of their

cattle purchases within 12-month periods, 47% of British farms

were connected by ICCs to more than 1000 other farms and 16%

were connected to more than 10 000 other farms. As a result of

their cattle sales within 12-month periods, 66% of farms had

OCCs that reached more than 1000 other farms and 15% reached

more than 10 000 other farms. Over 19 000 farms had both ICCs

and OCCs reaching more than 10 000 farms for two or more

years. While farms with more contacts in their ICCs or OCCs

might play an important role in disease spread, farms with

extensive ICCs and OCCs might be particularly important by

being at higher riskof both acquiring and disseminating infections.
1. Introduction
Pathogen transmission among hosts may occur by a variety of

routes, from different types of direct contact, to indirect contact

via vectors, fomites and the environment [1]. For livestock,

animal movements between farms can be considered to form a
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directional link from the source to the destination farm, which may therefore indicate potential pathways

for direct and indirect transmission of pathogens [2–5]. Conceiving of farms as nodes and animal

movements as edges in network analyses has been well developed in theory [6], and has been applied

to networks of holdings in multiple livestock species [7–12]. Centrality measures can indicate the

importance of a given farm within a trading network [13], and preferential protection, treatment or

isolation of more central, or more influential, farms might enhance disease control measures [9,14,15].

Network measures such as a farm’s degree and strength (the number of other farms with which they

trade and the number of animals traded, respectively) have been associated with infection risks [16].

In a structured population, the transmission of infection depends on the frequency and nature of

interactions among individuals and groups. Cross et al. [17] noted that for a fixed frequency

of movements, an acute disease with a short infectious period encountering a sparse network will be

unable to spread extensively before extinction. However, a chronic disease in the same network might

be able to persist and disseminate more widely, if it has a long infectious period, relative to the

frequency of between-group interactions [17]. Therefore, investigation of such networks requires

consideration of the temporal aspects of infectiousness of the pathogen, relative to the frequency of

movements [18]. Static network analyses can be particularly useful in evaluating disease transmission

where this period of risk is quantified on the same temporal scale as the network [19–21]. For

example, in studying transmission of foot and mouth disease virus (FMDV), which has an incubation

period of a few days [22], networks encompassing one week of movements are appropriate. But, for a

chronic infection such as bovine tuberculosis (bTB), infection can be asymptomatic or latent for

months to years [23,24], and a longer-term perspective is required. In reality, the edge of a static

network permanently depicts what is truly a transient event, persisting as long as infection does,

either in the incoming animal, a contaminated environment, or via secondary infections in other

livestock or wildlife. It has been shown, in networks constructed from movements of adult dairy

cows, that analysis of groups of statically connected nodes consistently overestimated the epidemic

size of highly transmissible diseases, whereas measures that took into account the temporal order of

movements provided a lower and more realistic estimate [25,26]. The concept of contact or infection

chains has been reasonably well developed in the field of veterinary epidemiology [7,27,28] and the

wider literature contains many examples of essentially the same approach, such as time-directed paths
[29], source counts [30], accessible worlds [31], output domains [25] and reachability [8,32,33]. All of these

terms describe a temporally sequential network to identify the nodes that are accessible through edges

to/from each index node within a selected time period. In this study, we have used the term contact
chain for consistency with the current literature in our field. Ingoing contact chains (ICCs) identify the

number of farms that could potentially transmit infection to the index farm over a defined period arising

from the purchase and importation of animals. Outgoing contact chains (OCCs) quantify the number of

‘downstream’ farms that could potentially acquire infection from the index farm through its onward sale

and export of animals. This structure of contacts may therefore help to predict the risk of the index

farm acquiring and then passing on infection and to characterize patterns of risk across a national herd.

Of course, not all movements result in the transmission of infection; at least one animal moved per edge

must be infected and have the prospect of becoming infectious, to have a chance of infecting animals on

other farms down the chain. Crucially, in our study we do not explicitly model transmission of

infection and we use the term ‘contact’ chain, rather than ‘infection’ chain, representing only the

potential for infection spread. For infections that can effectively be clinically hidden, such as bTB, contact

chains can provide a scale, extent and map of potential transmission routes, which may improve our

understanding of epidemiology beyond that available through studying direct contacts. In a 5-year

study of the French cattle movement network, where bTB is rare (relative to the UK), farms in the

highest quartile of ICCs traded indirectly with up to 84% of farms in the network [34]. It was shown

that these farms in the highest quartile of ICCs were more likely to experience a bTB outbreak [34],

suggesting a link between the connectedness of farms through the purchase of animals and their risk of

acquiring this chronic infection. Similarly, the magnitude of ICCs has been associated with the risk of

acquiring an acute infection, bovine coronavirus, on Swedish cattle farms [35].

The cattle industry in Great Britain relies heavily on trade in animals among beef and dairy

producers. Trading occurs privately, through a dealer or via livestock markets [36] and each

movement of a bovine animal is recorded by a national Cattle Tracing System. These records have

been used to study both network structure and cattle demographics [37]; Green et al. [38] analysed the

initial spread of the FMDV outbreak in 2001, before movement restrictions were implemented,

revealing that livestock movements could result in widespread dissemination of the virus and that the

timing of virus introduction affected epidemic spread through seasonal fluctuations in movements
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among farms. The susceptibility of a network to infection also depends on its overall connectivity

(i.e. how many sections or components into which it is divided). Heterogeneity in British cattle

movements is predicted to influence disease spread [39] and so we have looked for known

characteristics of farms that align with their trading behaviours. Production type and herd size have

been found to be important in predicting movements among pig [40,41] and cattle farms [7,10] and

have been associated with the persistence of bTB [42]. We predicted variation in network measures

and contact chains, based on herd size, production type and location, and thereby we expect that they

might have varying influences on potential transmission of infection. We use both static and

temporally relevant network analyses in the context of a chronic livestock disease in Great Britain to

provide insight into the dynamics of cattle trading behaviour, investigate potential unobserved

transmission routes and to characterize the important actors and practices within this network. We

performed our network and contact chain analyses annually over an extended period to determine if

changes within the British cattle industry have been reflected in the network structure or individual

farm behaviour over time, and consequently if they might have the potential to affect disease

transmission within the cattle population.
c.open
sci.6:180719
2. Methods
2.1. Population-level analysis
The Cattle Tracing System (CTS) records all movements, births and deaths of British bovines. For our

study, the Animal and Plant Health Agency provided a cleaned, processed version of CTS data (see

[43]) on the recorded movements of cattle between locations in Britain from 1 January 2001, when

recording became mandatory [43], to 31 December 2015. Data consisted of 158 million individual

animal movements between premises. We removed births (41 million) and deaths (42 million) from

the dataset and aggregated individual animal movements into batch movements of animals moved

between the same farms on the same day. We included only animal holdings (farms) in this study,

omitting 34 million movements to slaughterhouses as they represent sinks in the network where no

epidemiologically significant transmission could occur. Twenty-six million movements (35%) took

place via markets or show grounds; we classed these as transitory and linked them as single edges

from source to ultimate destination, removing the transitory node. Although we acknowledge the

well-documented risks of livestock mixing at showing events and markets [44], and a market’s role in

concentrating and dispersing animals [36], we considered premises that kept animals for longer than

one day to be more relevant for transmission and persistence of slow-spreading infections, such as

bTB. By directly linking the source and ultimate destination, the flow of animals through these

premises remains in the analysis, while allowing us to focus on the farm premises, upon which

opportunities for transmission of infection were most prolonged. We took 12-month periods from 1

January to 31 December for each year between 2001 and 2015 and grouped batch movements into

single links between farms. These processes together left 9.5 million edges in the study network.

Annual herd size was calculated as the mean of the daily number of animals on the farm over the

same 12-month period. We used CTS data to define herd type for each year, defining it by the

predominant classification (beef, dairy or dual purpose) based on breed and then predominant sex

within this classification. Suckler farms were defined by a majority of female beef animals, aiming to

capture those herds where calves are reared by their dams before weaning (cow-calf systems). Dairy
farms were defined by a female dairy majority, identifying herds producing milk commercially.

Fattening units were defined by a male animal majority, identifying herds that did not breed cattle,

but reared them for beef production. Any farms where the breed type or subsequent sex was not

more than 50% were defined as mixed herds.

2.2. Network analysis
We constructed networks in which nodes were defined as unique animal holdings registered as keeping

cattle, and directed edges were defined as a movement of one or more cattle between holdings. Directed

edges were weighted by the number of animals moved to/from the same holdings during the network

year, as we considered the number of animals to be proportional to the risk of a disease incursion,

especially for a disease with low prevalence within herds [15]. Only active holdings (those with a

recorded movement, birth or death in the year of study) were included in each annual network. The
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network timeframe corresponded with previously defined 12-month periods between 2001 and 2015.

Using a full year avoided bias from seasonal variation of movements [45], yet was sufficient for

transmission of a chronic infection [20]. In- and out-degree, in- and out-strength, betweenness, edge

density, degree assortativity, reciprocity, clustering coefficient, average path length, and the giant

weakly and strongly connected components (GWCC and GSCC) were all calculated using the R [46]

package igraph [47]. Definitions of all network measures and accompanying functions are provided in

electronic supplementary material, table S1. We compared measures from the observed networks in

each year to values calculated from directed random networks of the same size and density,

generated using the Erdös–Renyi model [48] (see electronic supplementary material, Methods).

2.3. Contact chains
We calculated ICCs and OCCs for 1-year periods (starting and ending in January) from 2001 to 2015 using

the R package ‘EpiContactTrace’ [49]. Overall, the effect of seasonal variations in movement patterns [45] on

our contact chains was likely to be minimal as we used a whole year of movements. However, should a farm

have purchased a large group of animals in January every year and calculation of their chains began at the

beginning of January, the chains would never have a chance to ‘build’, as the incoming movements to the

farms from which they had purchased would not be included. Therefore this farm’s ‘true’ chain would only

be apparent in a chain that started in a different starting month, e.g. December. Any such effect could result

in underestimation of the magnitude of the chain for some farms. Therefore, we calculated ICCs and OCCs

starting at consecutive monthly intervals from January 2012 to December 2013, a total of 24 1-year periods

(see electronic supplementary material, figure S1 for schematic). We compared the results from the different

starting months and then combined these 24 1-year periods to create a more robust summary of movements

spanning 36 months (from the start of the earliest chain to the end of the latest), rather than a 12-month

snapshot. We compared the mean, median and maximum number of farms from the combined 24

monthly spaced chains and combined annually spaced chains over the same time period (2012–2014)

using Spearman’s rank analysis. Summary values from both methods were very similar (see electronic

supplementary material), and so our subsequent analysis used the mean of the 24 monthly spaced

chains. For comparison of chains 2001–2015, we used single 12-month chains to reduce computational

load. We set thresholds on a logarithmic scale for the number of farms in chains to aid their description;

0–10 ¼ very small, 11–100 ¼ small, 101–1000 ¼ intermediate, 1001–10 000 ¼ large, more than 10 000 ¼

very large. The maximum number of farms in a contact chain in any 1 year represents the greatest extent

of the potential impact any one farm may have on the network in that year. Correlations between

network measures were randomized to account for non-independence of network data. Temporal

stability of measures was assessed through ranking of nodes and calculating the standard deviation of

mean rank over time [50] (see electronic supplementary material).

To characterize those farms at high risk of acquiring infection (defined as farms with very large ICCs)

or of spreading infection (defined as farms with very large OCCs), or potential ‘superspreaders’ (defined

as farms with very large ICCs and very large OCCs), we used a logistic regression with a binomial error

structure. We performed the analysis using a threshold of 100, 1000 and 10 000 farms (see electronic

supplementary material for ROC values and predicted probabilities). The highest ROC values were

achieved using a threshold of 10 000 farms and so this was used for the final models. Herd type, size

and region have previously been associated with contact chains of cattle farms in Sweden and

Uruguay [7,10] and were therefore used in our logistic regression. We grouped Great Britain into 10

regions for this analysis (electronic supplementary material, figure S10). We tested the full model

using backward stepwise selection based on Akaike’s information criterion (AIC) [51] but found in

every case that the full models had the lowest AIC. We calculated odds ratios and confidence

intervals and performed ROC curve analysis to estimate the model goodness of fit [52].
3. Results
3.1. National herd characteristics
The median number of cattle traded from a single farm to another over the 12-month period was 2

(interquartile range 1–4), and this remained similar across all years, apart from in 2001 when larger

numbers of cattle were moved between farms (median ¼ 3, interquartile range 1–8, max ¼ 3990).

Most cattle holdings (mean ¼ 40 736, 56.8% of all farms) were characterized as suckler herds
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Figure 1. Numbers of cattle moved between animal holdings (cattle farms) and the number of holdings, characterized by herd type,
in Great Britain from 2001 to 2015. Data from the Cattle Tracing System. The numbers of cattle moved are shown with a dashed line
and the numbers of holdings are shown with solid lines.
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(figure 1). The total number of cattle holdings (number of nodes in the network for which we had

sufficient information to classify the herd type) decreased by 20 840 during the study period, and this

reduction was most evident among dairy herds (figure 1 and table 1). Herd sizes increased over the

study period; dairy herd size increased from a median of 166 in 2001 to 243 in 2015, while the

numbers of animals in other herd types remained more stable (electronic supplementary material,

figure S2). The predominant between-herd flows of cattle were among suckler herds (12%), from

suckler to fattening herds (9%), and from dairy to fattening herds (7%) (figure 2a). Suckler and dairy

farms were the source for 23% and 18% of movements, respectively, between 2012 and 2014, despite

the number of dairy farms being approximately a quarter that of suckler farms. Fattening farms

received the most (21%) movements from other farms and dairy farms received the fewest (4%), of

which most were from other dairy herds. Thirty-five per cent of movements were traded through

markets, often from breeding herds (suckler and dairy) back to suckler herds or to fattening herds

(figure 2b). The number of active farms (those with a birth, death or movement) stayed stable after

2001 (table 1). ‘Isolated’, farms with a birth or death but not participating in the network make up

6.9% of farms (table 1). On average, 34.4% of dairy holdings purchased no cattle in any one year (95%

confidence interval ¼ 31.8–37.1%), followed by suckler farms at 27.0% (23.9–30.1%), mixed holdings

at 22.5% (19.1%–25.7%) and fattening units had the lowest percentage of closed farms at 9.64% (7.5–

11.8%). Farms that did not report any inward movements in a 5-year period (2011–2015), and so

could be considered ‘closed’ within this time, made up 9.6% of herds in the network. This is a similar

value to dairy, suckler and mixed herds at 10.1%, 10.5% and 10.6%, respectively. We found 5.4% of

herds categorized as fattening enterprises were ‘closed’ for that period, suggesting that these were not

typical ‘fattening’ units and that more than one form of enterprise was present.
3.2. Network analysis
The number of edges (created when at least one animal is traded between two farms) in the cattle

movement network was lowest in 2001, after which it stabilized to between 60 000 and 70 000

between-herd links per annum (table 1). Every year, all metrics of the observed network values lay

outside the distribution of values from the random networks (electronic supplementary material, table

S2), showing that all of the observed networks differed from random in a range of key measures. The

density of connections between farms in the network (edge density) increased by over 50% during the

study period (table 1). Degree assortativity was more negative in all years in the observed network,



Table 1. Global network analysis metrics for observed directed, weighted networks of cattle movements between animal
holdings (farms) in Britain from 2001 to 2015. Data are from the Cattle Tracing System.

year

nodes
(farms in
network)

edges
(movements of
at least one
animal
between two
farms)

active
farms
(% of
total
farms)

edge
density

reciprocity
(0 – 1)

clustering
coefficient
(0 – 1)

average
path
length
(no. of
steps)

2001 85 410 444 514 95.2 0.000061 0.0319 0.0035 6.54

2002 82 916 585 262 93.4 0.000085 0.0351 0.0111 7.14

2003 80 428 694 775 92.7 0.000107 0.0368 0.0138 6.45

2004 79 404 707 915 92.7 0.000112 0.0397 0.0150 6.42

2005 77 800 674 776 93.2 0.000111 0.0422 0.0144 6.54

2006 76 970 733 241 93.7 0.000124 0.0382 0.0138 6.33

2007 73 380 622 011 92.2 0.000116 0.0379 0.0139 6.49

2008 72 624 650 563 93.0 0.000123 0.0353 0.0150 6.57

2009 71 485 668 151 93.3 0.000131 0.0339 0.0146 6.41

2010 70 328 639 541 93.1 0.000129 0.0342 0.0143 6.60

2011 69 649 647 205 93.3 0.000133 0.0329 0.0144 6.67

2012 67 820 625 378 92.9 0.000136 0.0315 0.0138 6.62

2013 67 171 616 215 93.0 0.000137 0.0305 0.0134 6.97

2014 66 292 616 627 93.0 0.000140 0.0303 0.0136 6.93

2015 64 624 619 632 92.0 0.000148 0.0306 0.0132 6.89

mean 73 753 636 387 93.1 0.000120 0.0347 0.0132 6.64
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Figure 2. Relative importance of pathways for cattle movements in Great Britain from 1 January 2012 to 31 December 2014.
Movements are shown as a percentage of 13 910 851 movements over this period. Black arrows represent movements weighted
as a percentage of total movements recorded. Flows of less than 1% are marked by grey arrows. The number of farms in each
herd type is the mean number of unique, registered cattle holdings over the years 2012 – 2014, also represented by the area
of the circle for each type. Our analyses are based on the characterization of movements shown in (a) which represents cattle
movements among cattle holdings (farms) and slaughterhouses, and where movements made through markets are included as
direct farm-to-farm/slaughterhouse movements. For comparison, in (b), markets are included explicitly as locations, to indicate
the frequency of cattle movements via markets.
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when compared to random (electronic supplementary material, table S2), meaning that farms with low

degree were connected to those with high degree, and vice versa, indicating that some farms act as ‘hubs’

for movements. The reciprocity of edges was 3–4 orders of magnitude higher in the observed network

than that in the random network (electronic supplementary material, table S2), suggesting trading

partners tend to reciprocate buying and selling cattle with one another. Clustering coefficients were

higher, and average shortest paths were shorter, than in the random networks. GSCCs were smaller

than in random networks, with the observed GSCCs containing fewer than half the number of farms

of the random networks (electronic supplementary material, table S2). Together, this suggests that the

observed networks are modular, consisting of multiple smaller groups of well-connected farms, and

therefore displaying small-world-type properties.

Farm measures of movements remained consistent when they were ranked by the number of farms

with which they traded (degree), and the number of cattle moved (strength), between years (electronic

supplementary material, figure S4). This applied to trade both in-to and out-from the farm. Ranks of

more global measures of connectivity for each farm (contact chains and betweenness) were also

consistent between years but showed more variation than local measures (degree and strength)

(electronic supplementary material, figure S4). These results indicate that individual farm movements

tended to stay consistent over time.

Observed degree was highly variable, compared to the random network (electronic supplementary

material, table S2). In- and out-degree of individual farms were positively skewed (skewness ¼ 17.5 and

3.07, respectively; figure 3). Degree had power law exponents suggesting that the network might be

characterized as scale-free, with many farms trading cattle with only a few direct partners and a small

number of farms trading with many direct partners (electronic supplementary material, table S4). The

number of premises from which individual farms buy-in cattle had much greater range (in-degree

range ¼ 0–4346) than the number of farms to which individual farms sell cattle (out-degree range ¼

0–305) (figure 4). The number of animals moved in-to and out-from individual farms also showed a

positively skewed distribution and range that was more marked for the number of animals bought in

(in-strength skewness ¼ 16.3, range ¼ 0–15 359) than the number sold (out-strength skewness ¼ 8.67,

range ¼ 0–6,472) (figure 4). These patterns for degree and strength were consistent across all years.

Larger farms tended to trade with more other farms consistently among years, demonstrated by a

positive relationship between herd size and degree (mean rs ¼ 0.619, 95% confidence interval 0.603–

0.634). Larger farms also traded more animals (mean rs ¼ 0.679, 95% CI ¼ 0.662–0.696). Herd size and

out-degree and out-strength (mean out-degree rs ¼ 0.531, 95% CI ¼ 0.501–0.562, s.e. ¼ 0.014; mean out-

strength rs ¼ 0.587, 95% CI ¼ 0.550–0.624) were more strongly correlated than herd size and in-degree

and in-strength (mean in-degree rs ¼ 0.290, 95% CI ¼ 0.280–0.300; mean in-strength rs ¼ 0.283, 95%

CI ¼ 0.274–0.292). Differences between some herd types in the number of farms that were traded with,

and number of animals traded, were clear. Median in-degree and in-strength were higher for fattening

farms, and median out-degree and out-strength were higher for dairy farms (figure 4).

Betweenness values were positively skewed (skewness ¼ 29.2), with a large group of farms showing

low betweenness scores and a smaller proportion of farms with very high betweenness scores, but no
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distinct differences between herd type (electronic supplementary material, figure S3). Mean betweenness

was much larger in the observed network than in the randomized networks in all years but one, and

median betweenness was much lower. This provides further evidence that some farms, not linked to a

particular herd type, act as hubs within the network.

3.3. Contact chains
Most farms had fewer than 100 farms in their ICC; however, up to 40% of holdings had large or very

large ICCs over a 1-year period, creating a strongly bimodal distribution (figure 5). The bi-modal

distribution was also present for OCCs. The sizes of ICCs and OCCs for individual farms remained

reasonably stable between all study years, though 2001 and 2002 have different characteristics

(figure 6c,d ). ICCs and OCCs were both positively skewed (skewness ingoing ¼ 1.85, outgoing ¼ 0.91).

The maximum observed ICC of a single farm encompassed 86% of all British cattle holdings active in

2001 (n ¼ 73 465 farms) and the maximum OCC occurred in 2004, encompassing 43% (n ¼ 34 460

farms) of holdings. Across all years studied, approximately 50% of farms had very small ICCs, while

35–40% had large or very large ICCs (figure 5). More holdings in 2001 and 2002 have very small or

small ICCs, than those from 2003 onwards (figure 6c). OCCs showed a different distribution; in most

years, 50% of farms had very small to medium OCCs, and 50% had large or very large OCCs

(figure 6d ). More farms in 2001 and 2007 had large to very large OCCs, and in 2002, fewer farms had

small or very small OCCs compared to other years (figure 6d ). Clear differences were evident

between herd types (figure 6a,b), with over 50% of fattening units but only 25% of breeding and

mixed herds having large to very large ICCs (figure 6a). Over 80% of dairy farms, 55% of suckler

farms and fewer than 40% of fattening farms had large to very large OCCs (figure 6b).

There was a weak correlation between ICC and OCC (rs ¼ 0.181, 95% CI ¼ 0.174–0.187, p , 0.001,

n ¼ 76 031) for the mean values calculated from 24 monthly spaced contact chains. This relationship
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was weaker when correlations of ICC and OCC were compared within all study years (mean rs ¼ 0.0398,

95% CI ¼ 0.020–0.594, p , 0.001 in all years, n ¼ 15). Farms tended to cluster at small ICC and OCC,

large ICC and OCC, and small ICC but large OCC (figure 7a). Regardless of ICC magnitude, dairy

farms tended to have many farms in their OCC (figure 7b). Suckler herds tended to have more chains

with large ICC and large OCC (figure 7c). Fattening herds had generally high ICCs with clustering at

the low and high end of OCCs (figure 7d ) and mixed herds tended to cluster more with low ICC and
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OCC (figure 7e). There was a strong positive and consistent correlation between in-degree and annual

ICC over all years from 2001 to 2015 (mean rs ¼ 0.869, 95% CI 0,858–0.879, p , 0.001 in all years).

This was true to a lesser extent between OCC and out-degree (mean rs ¼ 0.768, 95% CI ¼ 0.754–0.782,

p , 0.001 in all years). Over three-quarters of farms that sold animals to between 6 and 10 farms in

the study period had an OCC linking over 1000 farms, and farms that purchased animals from the

same number of farms had a median ICC with 6486 farms. Some farms, despite low in- or out-degree,

nevertheless had many farms in their contact chains (figure 8).



Table 2. Odds ratios and 95% confidence intervals for three logistic regression analyses to identify characteristics of farms with
very large contact chains. The response variable is whether or not farms have (a) ICCs, (b) OCCs, and (c) ICCs and OCCs
containing over 10 000 farms (values from combined 24 monthly-spaced chains). Herd size has been mean centred and is
displayed for increments of 10 cattle (see electronic supplementary material, figure S7 for further herd size analysis).

response variable explanatory variable levels odds ratio 2.50% 97.50%

(a) ingoing contact chain

greater than 10 000

(intercept) 0.151 0.131 0.172

herd size ( per 10 cattle) 1.004 1.002 1.006

herd type dairy Ref

fat 9.509 8.659 10.454

mixed 1.280 1.162 1.411

suckler 1.281 1.189 1.381

region east of England Ref

east Midlands 1.187 1.036 1.362

northeast 1.517 1.302 1.769

northwest 1.463 1.288 1.665

Scotland 0.767 0.677 0.872

southeast 0.297 0.251 0.350

southwest 0.577 0.509 0.656

Wales 0.484 0.425 0.553

West Midlands 1.073 0.942 1.225

Yorkshire 1.532 1.344 1.748

herd type: fat herd size ( per 10 cattle) 1.186 1.176 1.196

herd type: mixed herd size ( per 10 cattle) 1.052 1.047 1.057

herd type: suckler herd size ( per 10 cattle) 1.046 1.043 1.049

(b) outgoing contact

chain greater than

10 000

(Intercept) 0.211 0.161 0.272

herd size ( per 10 cattle) 1.010 1.008 1.012

herd type dairy Ref

suckler 0.093 0.087 0.100

mixed 0.112 0.101 0.123

fat 0.051 0.046 0.057

region east of England Ref

east Midlands 1.526 1.153 2.047

northeast 11.584 8.817 15.442

northwest 18.075 14.009 23.716

Scotland 15.212 11.815 19.923

southeast 0.961 0.713 1.308

southwest 2.534 1.963 3.326

Wales 2.305 1.780 3.034

West Midlands 1.878 1.439 2.489

Yorkshire 3.646 2.796 4.828

herd type: fat herd size ( per 10 cattle) 1.011 1.006 1.016

herd type: mixed herd size ( per 10 cattle) 1.040 1.035 1.045

herd type: suckler herd size ( per 10 cattle) 1.041 1.038 1.044

(Continued.)
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Table 2. (Continued.)

response variable explanatory variable levels odds ratio 2.50% 97.50%

(c) ingoing and outgoing

contact chains greater

than 10 000

(Intercept) 0.025 0.016 0.036

herd size ( per 10 cattle) 1.003 1.001 1.006

herd type dairy Ref

fat 0.493 0.433 0.561

mixed 0.496 0.428 0.574

suckler 0.372 0.335 0.412

region east of England Ref

east Midlands 1.153 0.739 1.853

northeast 8.152 5.463 12.674

northwest 10.429 7.163 15.909

Scotland 6.360 4.371 9.696

southeast 0.383 0.215 0.678

southwest 2.263 1.545 3.468

Wales 1.197 0.801 1.863

West Midlands 2.156 1.447 3.347

Yorkshire 3.358 2.265 5.195

herd type: fat herd size ( per 10 cattle) 1.020 1.014 1.025

herd type: mixed herd size ( per 10 cattle) 1.031 1.025 1.036

herd type: suckler herd size ( per 10 cattle) 1.034 1.030 1.037
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Logistic regression indicated that fattening farms were overall 9.5 (95% CI 8.7–10.5) times more likely

to have very large ICCs (greater than 10 000 farms in their ICC) than dairy farms (table 2). There were

also regional differences, where farms in the north of England were more likely to have very large

ICCs (table 2). Overall, dairy herds were more likely than any other herd type to have very large

OCCs. However, with herd sizes above 500, mixed and suckler herds were more likely to have very

large OCCs (electronic supplementary material, figure S7). Herds in the north of England and

Scotland were much more likely to have very large OCCs than herds in the east of England (table 2).

Herds with over 500 cattle had an increased likelihood of very large ICCs and OCCs, especially in

non-dairy holdings (electronic supplementary material, figure S7). Again, herds in the north of

England and Scotland were at higher risk of having very large ICCs and OCCs (table 2). ROC curve

analysis showed all models had acceptable to excellent goodness of fit (electronic supplementary

material, figure S8).
4. Discussion
Epidemics can be difficult to control if underlying transmission dynamics are not fully understood,

especially in large networks where potential transmission pathways can be extensive and convoluted.

The 9.5 million edges and approximately 70 000 nodes included in this study show that the British

cattle network is complex, and potential transmission pathways can be extensive. Quantifying the

extent of these chains is an important step in trying to understand the potential transmission routes

for infections.

In respect of their contact chain distributions, British cattle holdings form two groups; those with very

few (fewer than 10) contacts in their chains, and those with very many (more than 1000). Variation in this

measure within a relatively short period could reflect important differences in a farm’s risk of acquiring

and spreading infection, and key opportunities for action at ‘critical control points’ in the network.

Previous studies have reported similarly skewed data in annual cattle farm contact chains in Sweden

and Switzerland [7,32], and ICCs of pig farms in Germany [53]. In our study, contact chains of

individual farms were stable over time; however, larger chains showed some variation.
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Large herd sizes are commonly associated with increased risk of disease [54] and this is often

attributed to large numbers of animals being purchased [42], we found that although there is an

overall positive relationship between herd size and the number of linked farms, numbers of animals

traded and chain magnitude, these relationships varied among herd types. This suggests that there

are other mechanisms, beyond more animals entering the herd, that contribute to the apparent

increased risk of disease in large herds [55]. Dairy, suckler and fattening herds have distinct patterns

of degree and contact chains, indicating that they play different roles in the network. Through the

purchase of animals from many other farms, fattening herds may be more susceptible to acquiring

infection, while being less likely to pass on infection via movements as, clearly, many fattening cattle

move straight to slaughter. Through selling animals to many different farms, dairy farms that become

infected may be disproportionately influential for disease spread in the cattle network, offering a

potential target for control measures [53]. In addition to the established role of markets as a ‘mixing

pot’ for highly transmissible diseases while animals are on site, here we emphasize their part in

facilitating the dispersal of animals to many premises from one source farm, thereby potentially

amplifying the spread of fast and slow-spreading diseases alike. In characterizing farms into only four

groups, we inevitably simplify the diversity of cattle farming operations in the British cattle industry.

Fattening farms represent animals most probably intended for beef production, but we do not

distinguish between premises rearing animals from calves to slaughter weight and cattle ‘dealers’

purchasing store cattle to sell on to other dealers, markets or farms. These differing businesses may

have varying impacts on disease dynamics, where dealers may exhibit properties similar to markets,

in acting to disperse animals to many farms. Farms in the southeast and east of England, where cattle

densities are lower [56], may be less well connected due to fewer chances to trade. Pre-movement bTB

tests are not required for movement within the north of England and Scotland [57] and this may be

responsible for the higher connectivity of their farms.

The cattle movement network in Britain displays scale-free properties, typical of those seen in

movement networks in other countries. The number of cattle farms in Britain has decreased, driven

largely by a reduction in numbers of smaller dairy farms and the formation of larger dairy herds

(figure 1; electronic supplementary material, figure S2). However, similar numbers of cattle were

traded between fewer farms over the study period, resulting in a substantial increase in network

density. Movement restrictions for nine months of 2001, due to the FMDV outbreak [58], account for

low numbers of separate movements (edges), smaller GSCC and low edge density that year

(electronic supplementary material, table S2). However, the restocking of farms from larger batches of

animals after resumption of movements gave rise to the larger number of cattle moved that year [37].

Although it is well documented that the cessation of bTB testing during 2001 [59] contributed to the

spread of bTB [3,60], the increased volume of animals moved could have made a significant

contribution to the subsequent increase and spread of bTB infection. The number of animals in a

batch is likely to affect the risk of farms acquiring or transmitting infection [12], especially for

pathogens with relatively low transmissibility such as bTB. Some studies have combined the number

of animals traded with contact chains [21,32], and this could be incorporated in further analyses.

The density and clustering of the network are mid-range compared with other livestock movement

networks [7,10,12,61], apart from an Italian network which had much lower clustering [9], suggesting

British farms trade in small communities, and exhibit small-world properties. In the British network

after 2004, clustering coefficients stayed stable and, after 2005, reciprocity decreased, suggesting that

although the network becomes denser, it also becomes more dispersed, perhaps due to an increased

propensity to travel further to trade cattle. The pattern of GSCC size in our results reflects that seen in

previous studies [58,62], and the reduction in size seen from 2004 to 2009 is continued in our analysis,

which extends to 2015. Reduction of the size of such key components has previously been associated

with reduced risk of epidemics [15].

A small number of farms in our network act as hubs (nodes with many more direct trading partners

than the majority). Previously, this network role was considered to be fulfilled predominantly by markets

[62], hub farms provide similar linkages in the network that might facilitate epidemic spread by creating

potential transmission ‘shortcuts’ through the network [63]. Negative degree assortativity, similar to

Scandinavian networks, where direct sales between farms, rather than via markets, are the norm

[7,61], combined with highly skewed degree distribution makes this type of network highly receptive

to control measures targeted at hubs, rather than random selection [53]. It may therefore be beneficial

to apply control measures, which have previously been aimed solely at markets, to hub farms as well.

Risk-based trading measures might employ a proxy value for ‘superspreader potential’ that used

network measures, similar to an ‘infection potential’ value [64], a probability of disease ratio [21], or
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selecting a threshold for the most highly connected farms. This value would provide additional

information on which farmers might base their buying decisions. However, it may be commercially

harsh to rate farms in this way, as they have little control over this value beyond their direct

purchases, and some farms even with very few direct trading partners are connected to very large

contact chains (figure 8).

We used contact chains as temporally relevant network characteristics by which to assess the

potential for acquiring and/or transmitting a slow-spreading infection arising from a farm’s trading

network. There are numerous methods by which to achieve similar proxy measures from analysis of

movement networks, such as those used by Frössling et al. [21] and Büttner et al. [65]. The algorithms

used by Rossi et al. [64] and Konschake et al. [66], allow a very fine scale of analysis, such that each

node has its own infectious period and time of infection. We adopted a broader measure of contact

chains, applied over an extended period of 15 years, to detect how variable farms may be in their

network positions over time and in the context of infections with long incubation and infectious periods.

Although moving an infected animal into the herd presents the clearest risk of disease transmission,

farms have other ‘connections’, including neighbouring farms and contacts via fomites, service providers

and wildlife, any of which might be important for transmission of infections [67–69]. These connections

often occur at a local scale and have varying importance depending on the pathogen of interest. Animal

movements, however, can be implicated at all spatial scales, from 43% of movements which occur within

20 km of the source farm to the substantial number of long-range movements documented in Britain [70].

Animal movements between neighbouring farms are also likely to be underestimated due to local

practices [71]. Here, we have focused on this movement of animals as a potential pathway for the

transmission of chronic infections and suggest that due to the long timescale, infections transmitted

via movements may be more extensive through the network than we expect and that investigations

into direct contacts may not be sufficient to trace the source and reach of some infections. Thus

more extensive contact chains may better guide us to some of the varied sources and transmission

pathways of cattle infections.

By examining networks of cattle movements, we observed two distinct patterns of interaction; many

farms quickly became connected to a large proportion of the national network, yet some remained

relatively isolated. We have shown marked variation between farms, not only in degree and

betweenness but also in the more complex contact chains among British cattle farms, sustained over a

period of 15 years, that has been characterized by change in the industry and recovery from

catastrophic disease outbreaks. Farms that exhibit extremes in ICCs and OCCs fit with expectations of

‘superspreaders’ of infection [72]. The British networks’ scale-free type properties suggest that the

industry may benefit from targeted control of these influential nodes [53].

Risks associated with direct trading partners are relatively easy for farmers to consider. However, the

chains to which they can become connected remain hidden, along with the potential risks of exposure to

infection they bring. By increasing the number of their direct trading partners, farmers are likely to see

large, and sometimes very large, increases in the number of farms in their contact chain. Chains can also

quickly become large, even with very few direct contacts, perhaps leaving farmers who believe they trade

‘carefully’ with a false sense of security. Knowledge of contact chains, and the trading patterns and

history of the farms from which they are buying, might better equip farmers to judge the exposure

associated with their animal trading behaviour. Contact chains allow us to assess a farm’s role within

the network and further investigation should explore their application to target certain farms, herd

types or practices for improved control of diseases.
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48. Erdös P, Rényi A. 1959 On random graphs. Publ.
Math. 6, 290 – 297. (doi:10.2307/1999405)
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