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Abstract—Content caching is a promising approach in edge
computing to cope with the explosive growth of mobile data on 5G
networks, where contents are typically placed on local caches for
fast and repetitive data access. Due to the capacity limit of caches,
it is essential to predict the popularity of files and cache those
popular ones. However, the fluctuated popularity of files makes
the prediction a highly challenging task. To tackle this challenge,
many recent works propose learning based approaches which
gather the users’ data centrally for training, but they bring a
significant issue: users may not trust the central server and thus
hesitate to upload their private data. In order to address this
issue, we propose a Federated learning based Proactive Content
Caching (FPCC) scheme, which does not require to gather users’
data centrally for training. The FPCC is based on a hierarchical
architecture in which the server aggregates the users’ updates
using federated averaging, and each user performs training on
its local data using hybrid filtering on stacked autoencoders. The
experimental results demonstrate that, without gathering user’s
private data, our scheme still outperforms other learning-based
caching algorithms such as m-ε-greedy and Thompson sampling
in terms of cache efficiency.

I. INTRODUCTION

According to the Cisco Visual Networking Index, mobile
data traffic will increase sevenfold between 2016 and 2021,
reaching 48.3 EB per month by 2021 [1]. Especially, video
traffic is expected to become the dominant data traffic due to
the rapid development of smart devices [2] and the growing
success of video streaming services. The steep rise of mobile
traffic causes the increase of user latency and places a heavy
burden on backhaul links which connect local base stations and
the Internet. Content caching has been considered a promising
approach in edge computing to improve performance, alleviate
backhaul link congestion [3] and reduce user delay by storing
popular files at local base stations that may be frequently
requested by users.

Due to the storage limitation of cache entity, it is important
to estimate the future popularity of contents and proactively
cache the most popular files. However, traditional caching
algorithms such as First-In-First-Out (FIFO), Least Recently
Used (LRU) and Least Frequently Used (LFU) do not consider
the popularity of contents in the future [4], which leads to
low cache efficiency. Many recent caching schemes have been
devoted to learning content popularity trends, which is the
primary challenge of proactive caching. For instance, [2] uses

a multi-armed bandit (MAB) method to study the content
popularity distribution for content caching. [5] proposes a
collaborative filtering based caching algorithm for small cell
networks. However, the existing proactive caching schemes
are designed for highly controlled environments, where users
need to upload their local data to the central server that may
bring privacy and security risks. Moreover, scalability is an
issue for those designs as the number of users and the amount
of users’ data grow.

In order to tackle the above challenges, we propose a
Federated learning based Proactive Content Caching (FPCC)
scheme with a hierarchical architecture where the bottom layer
includes the users requesting for contents, and the top layer
contains the central server with a cache entity. Each user
downloads the stacked autoencoder model from the server,
trains the model using its local data, uploads the updates of
model parameters to the server at each communication round
and finally recommends N files (i.e., contents) to the server.
The recommendation is calculated by hybrid filtering, which
uses the users’ and the files’ similarity based on their latent
features extracted using the stacked autoencoder. The server
aggregates the uploaded model parameters from each user by
the federated averaging algorithm [6] and selects the most
popular files from the ones recommended by all the users. The
FPCC could inherently reduce the security and privacy risk,
since the training data are kept locally and only the updates
of model parameters are sent to the central server [6].

The major contributions of this paper are as follows:

1) To the best of our knowledge, the FPCC is the first
learning based proactive content caching scheme that
can keep the training data locally at each user to reduce
the privacy risk.

2) The FPCC is based on a hierarchical architecture where
the server aggregates user-side updates to construct a
global model and selects the most popular files. Each
user performs training on its local data using hybrid
filtering based on a stacked autoencoder.

3) Experimental results based on real-world datasets verify
that the FPCC outperforms other reference algorithms
(Random, m-ε-Greedy, and Thompson Sampling) in
terms of cache efficiency.



The rest of the paper is structured as follows: the related
work is described in Section II. Section III presents the system
model. In Section IV, we describe the proposed FPCC scheme
in details. The performance evaluation of FPCC is provided
in Section V. Finally, Section VI concludes this paper.

II. RELATED WORK

Due to the limited cache storage, it is essential to place
the contents that are most likely to be requested by users
in the local cache. Traditional caching schemes [7] update
cache contents based on static rules such as FIFO, LRU
and LFU. However, they are not adapted to the dynamically
changing content popularity. Recent research has put in effort
to develop dynamic cache schemes based on the popularity of
contents. They can be generally classified into two categories:
the cache algorithms with or without the prior knowledge of
content popularity distribution. We start by briefly introducing
related work which assumes the content popularity with prior
knowledge. In some cases, the contents request from users
are modeled by a Zipf distribution. With knowing the demand
of users, Maddah-Ali et al. [8] exploits the broadcast nature
of the wireless medium by coded caching to improve cache
efficiency. The aim of improving downlink energy efficiency
of proactive content caching has been derived in [9] which
supposes the user requests can be predicted.

Additionally, some content caching schemes without prior
knowledge of content popularity have been developed. Ma-
chine learning techniques could be used in caching algorithms
to estimate the popularity of files, such as reinforcement
learning and collaborative filtering. Bastug et al. [5] proposes
a caching algorithm for small cell networks based on col-
laborative filtering (CF). It provides the estimation of con-
tent’s popularity after training phase by using sparse training
data, whereas multi-armed bandit (MAB) as another caching
algorithm learns popularity of files online by firstly observing
demands of cached content and then updating the content of
cache at a fixed time [2]. Sengupta et al. [10] proposes a coded
caching scheme, where the base station is based on demand
history to estimation the popularity of files via a combinatorial
multi-armed bandit formulation. It combines the popularity
estimation and content placement scheme. Besides, because
of different users contributes content popularity, a contextual
MAB algorithm [2] is used to learn the content’s popularity
with considering different users’ information. It is an extended
work of [11] which aggregated context information, such as
user density and request file time. However, above methods
all designed for the central environment where server gather
all data, which may raise user privacy fears. Users do not trust
the server and hesitate to upload their private data.

Therefore, we propose a novel proactive content caching
method which firstly joint collaborative stacked auto-encoder
and federated learning to predict the popularity of the content
while protecting user privacy.

III. SYSTEM MODEL

The system model of FPCC is depicted in Fig. 1. We
consider the base station (BS) as a wireless caching entity
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Fig. 1. System model

with a reliable backhaul link to the Internet. The caching
entity has limited storage and a learning model to decide
what and how to cache on the storage. We assume the cache
entity can store up to m same size files. Mobile users send
content requests to the BS when they are within its coverage
area. If the requested content is cached in the BS (i.e., the
cache hit), the content file would be directly delivered from
the BS; Otherwise (i.e., the cache miss), the content needs to
be downloaded from the original server on the Internet. Hence,
the primary goal of the cache enabled BS is to improve the
cache efficiency and reduce the users’ service response time. In
order to achieve this goal, the FPCC is designed based on the
federated learning framework where the users independently
compute an update to the current global model by using its
local data and communicate these updates to the central server
to aggregate a new global model.

In our system model, each user equips with a mobile device.
The user connects the BS when he/she locates in the coverage
area. Each connected user is based on its local data to compute
an update of the global model which is downloaded from the
server. Then, each user sends the update back to the server.
Typically, the local training dataset are generated from the
usage of user’s device, such as video demands in the daily
life. Different places, different times of a day, different current
activities and even different types of portable devices [2] may
lead users to request different contents. Therefore, the past
user requests under different situations form a part of the
local training dataset. The local training dataset also includes
user’s contextual information. However, each connected user
may have an individual context space with different context
dimension which depends on the personal setting of sensors
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on the mobile device.
A shared global model is maintained in the central server,

which will be sent to each connected users. Users are re-
sponsible for learning the updates of the global model and
recommending popular files by their local data. Next, the
server aggregates all the user-side updates to construct an
improved global model by using federated averaging. How-
ever, some users may make the heavy use of some particular
services or apps, leading to varying amounts of user’s local
data. To address this problem, our proposed method reflects the
weight proportional to data size when the server aggregates the
global model. It reduces complexity and improves the cache
efficiency. After that, the improved model will be sent to user-
side again. We refer to the above steps as a communication
round.

In each communication round, the costs of sending and
downloading updates are considered as communication costs,
which dominate [12] in federated optimisation, while com-
puting costs are relatively small as modern mobile device
have fast processors. Therefore, the number of communication
rounds could be reduced with more participating users and/or
more computation at each user. Also, the communication
rounds are carried out until the results tend to be stable.
Finally, according to the recommendation list from each user,
the m most popular files are selected in the server for caching.
The model in each user’s equipment and central server is
collaborative stacked autoencoder based on hybrid filtering
which will be described in the Section 4. It predicts the
popularity of files more precisely.

IV. THE FPCC SCHEME

The proposed proactive content caching algorithm consists
of three procedures: encoding, hybrid filtering and federated
learning. For content caching, a critical consensus is that users’
requests together with their contextual information can be
exploited to learn caching decisions in the future. Therefore,
given the users’ contextual information, a caching entity
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Fig. 3. The selection of the most popular files on Server

should learn context-specific content popularity in order to
cache the most popular files for these users proactively. The
core problem is to find the latent features from a complex
dataset, which is obtained from the users’ contextual informa-
tion and make use of these essential correlations to work out
the similarities of different sets of contents for the user and
that between files. This problem is naturally suitable to be
solved by using neural network model, and thus we will adapt
and extend a neural network model called stacked autoencoder
based on hybrid filtering to resolve the problem.

A. Stacked Autoencoder

The stacked autoencoder is an unsupervised learning model,
which trains an one-hidden layer neural network to recon-
struct input data from the latent representation [13]. In recent
years, neural network models [14] show a great potentials in
learning hidden representations. Given a set of data instances{

x(1), x(2), x(i), ..., x(m)
}

where i = 1,2,...,m, x(i) ∈ Rd as input,
an encoder is used to map the input to a hidden representation
y(i) ∈ Rd through an activation function h (x). Then the latent
representation is mapped back with a decoder to reconstruct
x. Essentially, it is to learn a function hW,b (x) ≈ x̂, where W,
b are weight matrices and the bias vectors respectively [15].

After the training of the autoencoder neural network, the
hidden features of the training data can be obtained which are
exploited for hybrid filtering and federated learning afterwards.

B. Hybrid Filtering

The users’ similarity and files’ similarity are calculated by
the features of users and files that are extracted from stacked
autoencoders. The recommendation list of popular files for
caching is generated based on the files’ similarity of the active
user’s watch history and their K neighbour users’ watch his-
tory. We suppose an active user represents the user’s requests
in particular scene. K neighbour users’ watch history stand for
similar scenes for this specific scene. Hybrid filtering combines
content-based, demographic and collaborative filtering. It is
mainly based on similarity measures to obtain the distance
between two files or two users according to their files’ ratings
and personal profile.



Fig. 2 describes the whole process of estimating the most
popular files for one user corresponding to one specific scene.
The following five steps are executed and the index number
in the Fig. 2 is the same with the following number of step:

1) Data pre-processing: Based on the request history from
each user, a rating matrix is created. The personal detail
of users such as location and the time of day, generate
a user information matrix.

2) Exploration of latent representation: The rating ma-
trix is the input data for autoencoder. It is used to
discover the hidden features and the correlations be-
tween users and that between files. These features is
combined with the user information matrix to calculate
the similarity matrix of users and the similarity matrix
of files. We employs the cosine similarity, which is
highly effective for sparse matrices. The elements in the
user’s similarity matrix and the file’s similarity matrix
represent the distance between each user, and each file,
respectively.

3) Construction of the historical matrix: We assume the
current user is the active user. Based on the similarity
matrix of the user, K nearest neighbour users of the
active user could be determined, and then a matrix
of historical watch list (K∗) from these K selected
neighbour users can also be constructed.

4) Obtaining the similarity: The matrix of historical
requests of the active user is referred as A∗. The average
value of the similarity between each element in A∗ and
K∗ is obtained through the similarity matrix of files.

5) Aggregation: An aggregation approach to predict the
popularity of files is executed by the selecting highest
to n-th highest similarity files to produce the recommen-
dation list of popular files for caching. Each user uploads
their recommendation list to the server. As shown in Fig.
3, the server then aggregates all the calculated results
from users and selects the top N the most popular files
as the cache content for the cache entity.

C. Federated Learning

The parameters in the stacked autoencoder need to be
uploaded to the central server from the user side, because
the server aggregates all the results. A principal advantage
of this approach is that the model is trained using the local
data at users without uploading the data to the central server.
It can significantly reduce security and privacy risks. To
achieve this, users firstly download the global model W from
the central server. Next, users compute the updated models
W1

t ,W
2
t ,W

3
t , ...,W

c
t based on their local data. t represents the

round number. 1, 2, 3, ..., c means the index number of the
participant user. The updates are written as Hc

t := Wc
t −Wt .

Lastly, the updates and a recommendation list of popular files
that are estimated by hybrid filtering send to the central server.
The detailed process is shown in Algorithm 1.

On the server-side, the central server aggregates all the
user-side updated models to improve its global model [6]
using Federated Averaging, see Equation (1). ηt is the learning

Algorithm 1 Content caching algorithm: User
User Updates(c,w, b):

B: Split training data into batchsize of B
E: The number of local epochs
η: The learning rate

1: for each local epoch i from 1 to E do:
2: for batch b ∈ B do:
3: w ← w − η 5 ι (w; b)
4: end for
5: end for
6: UserFeatures = AUTOENCODERUSER(user-file matrix)
7: UserSim = SIMILARITY(UserFeatures)
8: FileFeatures = AUTOENCODERFILE(file-user matrix)
9: FileSim = SIMILARITY(FileFeatures)

10: AUTOENCODERUSER(x)
11: autoencoder(x,x,E ,B)
12: AUTOENCODERFILE(y)
13: autoencoder(y,y,E ,B)
14: SIMILARITY(x)
15: sim

(
Iti, It j

)
= It i It j

|It i | |It j |
16: Select K1,K2,K3, ...,Kn from userSim → K∗

17: Average: 1
n

∑n
n=1 n∗ for the similarity between requested

content of target user K∗ and A∗ → N∗

18: Select N1, N2, N3, ..., Nn from N∗

19: return c,w, b, N

Algorithm 2 Content caching algorithm: Server
Server Executes:

C: users are indexed by c
t: the number of communication round
w, b: the parameter of model
Nc: predict popular files from each user

1: Initialize w, b
2: for each round t = 1,2,... t do:
3: for each user c ∈ St in parallel do:
4: wc

t+1, b
c
t+1, N

c
t+1← User Updates(c, wc , bc)

5: wt+1 ←
∑C

c=1
1
Cwc

t+1
6: bt+1 ←

∑C
c=1

1
C bc

t+1
7: for end
8: Count Ac

9: Select top-N N1, N2, N3, ..., Nn

10: for end

rate. Federated Averaging utilises the weighted average sum
to aggregate all updates as it considers the quantity of each
selected user’s training dataset. Finally, the server generates a
recommendation list of popular files for caching. The pseudo-
code of the algorithm running in the server is provided in
Algorithm 2.

Wt+1 =Wt + ηtHt, Ht :=
1
nt

∑
i∈St

Hi
t (1)
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V. EXPERIMENTAL RESULTS

In this section, we present the results of the experiments
conducted to evaluate the proposed content caching algorithm
by comparing its performance to four reference algorithms.

A. Datasets

We use real-world datasets – MovieLens [16] in our exper-
iments. MovieLens 1M dataset contains 1,000,209 ratings on
3883 movies made by 6040 users, while there are 100,000
ratings from 943 users on 1682 movies in the MovieLens
100K dataset. For both datasets, the rating scale is from 0
to 5. Each user at least rates 20 movies. They also provide
the demographic information of users, such as gender, age,
occupation and zip-code. To simulate the content requests, we
assume that the rated movies are the files requested by users.
Each movie rating corresponds to a downloading or streaming
request. [2] and [17] use a similar approach to simulate the
process of user requests.

B. Reference Algorithms

We compare our algorithm with four reference algorithms,
which are described below:
• Oracle: Oracle algorithm has the perfect prior knowledge

about the future demands. It provides the best possible
cache efficiency.

• Random: Random algorithm selects N files randomly to
cache. It gives the lowest cache efficiency.

• m-ε-Greedy: m-ε-Greedy algorithm is one of the multi-
armed bandit algorithms, which is an extension of simple
ε-Greedy algorithm. The m-ε-Greedy picks m files of the
most rewards with the probability of (1 - ε ), but with the
probability ε (0 < ε < 1), to select m files randomly from
all the files. In our experiments, we set ε = 0.1 based on
empirical results.

• Thompson Sampling: Thompson Sampling is an algo-
rithm widely used in the multi-armed bandit problem. It
assumes that a value for each file is sampled from the beta
distribution with two parameters: wins and losses. The file
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Fig. 5. Cache efficiency with different cache sizes (MovieLens 1M)

with the highest value is selected. For every trial, the beta
distribution is modified based on cache hit or cache miss.

C. Performance Evaluation

We use cache efficiency [2] as the performance metric to
evaluate our algorithm, which is the ratio of cache hits to the
number of user requests on the cache. Our experiments include
two autoencoders to find latent features between users and be-
tween files to calculate similarity matrices. Both autoencoders
have one hidden layer using ReLu activation. We investigate
the cache efficiency for varying cache sizes between 50 and
400 files. Oracle algorithm provides an upper bound of cache
efficiency, while the random algorithm gives the worst cache
efficiency among the reference algorithms. As shown in Figs.4
and 5, the cache efficiency of all the algorithms rises with the
increasing cache size. For both datasets, the FPCC and the m-
ε-Greedy algorithm show the better performance compared to
the Thompson sampling and the random algorithm. It is due
to the fact that both FPCC and m-ε-Greedy algorithm learn
from the past requests of users, while the Thompson sampling
or the Random algorithm does not observe the past requests
at all. Moreover, it is shown that the FPCC outperforms the
m-ε-Greedy, as the m-ε-Greedy does not consider the context
information of users. The cache efficiency of the FPCC is
closer to the Oracle algorithm (optimum) with 1M dataset than
with 100K dataset, because that the FPCC algorithm trains
better with more data.

Fig. 6 depicts the cache efficiency against the number of
federated communication rounds with different numbers of
participated users. On both 100K and 1M datasets, we observe
that more communication rounds are needed to achieve the
sub-optimal cache efficiency (15% for 100K and 10% for 1M)
with fewer users. Fig. 6 shows that when the cache size is 50,
the cache efficiency reaches 15% after 20 rounds, 13 rounds
and 8 rounds with 20%, 60%, and 100% participated users,
respectively. For the MovieLens 1M dataset, the experiment
results exhibit the same trend as MovieLens 100k. The cache
efficiency reaches 10% after 20 rounds, 8 rounds and 6 rounds
with 20%, 60%, and 100% participated users, respectively. The
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Fig. 6. Cache efficiency vs. Communication rounds with different sizes of datasets: 100k(a,b,c);1M(d,e,f)

results indicate that if the size of training data is larger for
each participated user, fewer users need to achieve the same
cache efficiency. In addition, fewer communication rounds are
needed with more users or larger datasets.

VI. CONCLUSIONS

In this paper, we propose a Federated learning based
Proactive Content Caching algorithm (FPCC), which could
achieve high cache efficiency as well as protect the privacy
of users. The FPCC is based on a hierarchical architecture
where each user calculates the model updates using the local
data and the server aggregates user-side updates to construct
a global model. Our experiments demonstrate that the FPCC
outperforms other reference algorithms (Random, m-ε-Greedy,
and Thompson Sampling) on a real-world dataset (MovieLens)
in terms of cache efficiency. Moreover, the results show that
high-quality models can be trained in fewer rounds with more
users or more data at users.
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