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Abstract 23 

In the current work the uptake of plutonium onto nanoscale zero-valent iron 24 

nanoparticles (nZVI) under anoxic conditions has been investigated. A uranyl solution 25 

was also studied under similar geochemical conditions to provide a comparative dataset. 26 

Following nZVI addition, a rapid and significant decrease in aqueous actinide 27 

concentration was recorded for both systems. The removal rate recorded for plutonium 28 

was slower, with 77 % removal recorded after 1 hour of reaction, compared to 99 % 29 

recorded for uranium. Low aqueous contaminant concentrations (<25 %) were then 30 

recorded for both systems until the end of the 7 day reaction period. XPS confirmed 31 

contaminant uptake onto the nZVI. For the plutonium system, the recorded photoelectron 32 

spectra exhibited Pu 4f lines centred at ~439 eV and ~427 eV, characteristic of Pu4+ and 33 

implying that chemical reduction of the sorbed plutonium had occurred, ascribed to the 34 

formation of PuO2. Similarly, with the U-system, the recorded U 4f photoelectron peaks 35 

were centred at energies of ~380 eV and ~391 eV, characteristic of U4+ in UO2. Results 36 

provide clear evidence that nZVI may be used as an effective material for the removal of 37 

plutonium from contaminated waters. 38 

39 



1. Introduction 40 

To date, a principal environmental legacy of mankind’s military and civil nuclear 41 

activities has been the discharge, either authorised or accidental, of many long-lived 42 

radionuclides. Actinides and other radionuclides present a considerable long-term 43 

environmental concern and have a strong bearing on the potential for site redevelopment. 44 

In addition, the contamination of groundwater by more soluble radionuclides can 45 

compromise drinking water sources and spread contamination over significant distances. 46 

Within most civil nuclear reactors uranium dioxide (UO2) is the primary fuel. However, 47 

transmutation of non-fissile 238U also generates plutonium which contributes 48 

significantly to the overall energy output. This has been estimated to be up to 30 % from 49 

a pressurised water reactor (PWR) during its lifetime. [1] Furthermore, plutonium present 50 

in spent nuclear fuels has, in some countries, been separated for subsequent use in mixed 51 

oxide fission fuels or nuclear weapons. [1] Consequently, there exist several sites 52 

worldwide where plutonium contamination is a significant problem. Perhaps most 53 

notable is the Mayak nuclear reprocessing plant in the Russian Federation where, as a 54 

result of several decades of nuclear fuel reprocessing, plutonium storage and the 1957 55 

Kyshtym disaster, soil and vegetation activities of up to several MBq m-2 have been 56 

recorded across the site. [2] The considerable radioactivity of the plutonium isotopes 57 

means that inventories of 239+240Pu at Mayak have consistently contributed several kBq 58 

m-2, [2],[3] a significant fraction of the total site radiation levels. In the UK, elevated 59 

radioactivity has previously been recorded for water samples taken in proximity to the 60 

Sellafield nuclear reprocessing plant in Cumbria, England. For example, a study in 1999 61 



reported 239+240Pu concentrations in Scottish waters several hundred miles from the site 62 

up to73 mBq m-3. [4] 63 

The most important chemical property which governs the behaviour and fate of 64 

plutonium in groundwater systems is generally considered to be its oxidation state. In the 65 

environment, plutonium can exist as either: Pu3+, Pu4+, Pu5+ or Pu6+. Under oxidising 66 

conditions, Pu5+ and Pu6+ are most common whereas, in chemically reducing conditions, 67 

Pu3+ and Pu4+ typically predominate. [5] In reality, the environmental prediction of 68 

plutonium valence is far from routine because all four oxidation states can exist in one 69 

single groundwater sample. [5] In conditions that typically exist in surface water systems 70 

(pH >6.5 and positive Eh), Pu4+, Pu5+ and Pu6+ are the most common, [6],[7] with Pu4+ 71 

the most common valence state when sorbed. [7] Plutonium is also recognised to readily 72 

form complexes with various organic ligands, such as acetate, citrate, formate, fulvate, 73 

humate, lactate, oxalate and tartrate, with many inorganic ligands, such as hydroxyl, 74 

carbonate, nitrate, sulphate, phosphate, chloride, bromide and fluoride, and with many 75 

synthetic organic ligands, e.g. EDTA and 8-hydroxyquinoline derivatives. [8] Carbonate 76 

and bicarbonate are common anions in many natural water systems and form extremely 77 

stable aqua-complexes with plutonium and actinide ions in general. [9] Consequently, in 78 

natural waters the bulk of any dissolved plutonium is often comprised of plutonium-79 

carbonate complexes. For example, a typical aerated groundwater sample at pH >6.5 is 80 

likely to be comprised of ~90 % Pu(OH)2(CO3)2
2- species with a minor percentage of 81 

Pu(OH)4(aq), [8] the latter compound tending to polymerise irreversibly. [10],[11] As a 82 

consequence, plutonium in the environment can be in aqueous, solid or colloidal forms. 83 

[12],[13] For example, Kersting et al., (1999) [14] documented the unexpected 84 

appearance of plutonium down-gradient from a known leakage source and showed that 85 

plutonium was transported in association with the colloidal fraction consisting of clays 86 



(namely illite and smectite) and zeolites (namely mordenite and clinoptilolite/heulandite). 87 

Despite such work, there remains significant residual uncertainty with regard to the 88 

environmental fate of plutonium in the natural environmental and more specifically how 89 

plutonium interacts with geologic materials. [15]  90 

A new and potentially potent tool for the clean-up of radionuclide contaminated waters is 91 

nanoscale zero-valent iron particles (nZVI). Compared to the granular ZVI more 92 

commonly used in permeable reactive barriers (ZVI particulates >1 μm in diameter), 93 

nZVI have a significantly greater surface area to volume ratio, and resultantly, a 94 

significantly higher rate of chemical reaction (corrosion). [16] The small size also allows 95 

the deployment of nZVI via injection for the in situ source treatment of contaminant 96 

plumes. [16] To date, nZVI have been investigated for the immobilisation of a range of 97 

metal and metalloid contaminant species, including transitions metals, such as: 98 

chromium, [17] cobalt, [18] copper, [19],[20], molybdenum, [20] nickel, [21], silver, [21] 99 

technetium [22], vanadium [23] and zinc [21]; post transition metals, such as: cadmium 100 

[21] and lead; [21],[24] and metalloids, such as: arsenic [25] and selenium [26]. 101 

Investigations for the remediation of radionuclides, however, remains less widely 102 

researched and includes: barium, [27], pertechnetate [21],[22] and uranium. 103 

[20],[28],[29],[30],[31],[32],[33],[34],[35] As demonstrated by Dickinson and Scott, 104 

(2010) [30], uranium uptake onto nZVI typically occurs via sorption and then surface-105 

mediated chemical reduction. In comparison to the body of work reported for uranium, 106 

the uptake of plutonium by nZVI has not, as far as we are aware, been previously 107 

reported. 108 

The current study aims to address this gap in research but does not, however, start from a 109 

position of complete ignorance with regard to Fe-Pu interactions. Indeed interactions 110 

between aqueous plutonium and iron-bearing minerals/materials are well documented, 111 



with plutonium known to efficiently sorb to a range of iron (hydr)oxides, including 112 

hematite, ferrihydrite and goethite. [36] In addition many forms of plutonium are known 113 

to be redox active with regard to the ferrous iron. For example, aqueous Pu(V) has been 114 

documented to reduce to Pu(IV) when sorbed to hematite (α-Fe2O3) and goethite (α-115 

FeOOH). [37] As a consequence an emerging field of research is the potential utility of 116 

engineered iron bearing materials as sorbents for plutonium. Additionally, as plutonium 117 

and uranium are often associated, a remediation technology that is effective for both 118 

radionuclides would be of great benefit. Correspondingly, this paper presents a 119 

preliminary study to assess the feasibility of using nZVI to remediate both plutonium and 120 

uranium contaminated solutions. 121 

 122 

2. Materials and methods 123 

2.1. Nanoparticle synthesis 124 

nZVI were synthesised following an adaptation of the method first described by Wang 125 

and Zhang, 1997 [38], using sodium borohydride to reduce ferrous iron to a metallic 126 

state. Briefly, 7.65 g of FeSO4∙7H2O were dissolved in 50 mL of Milli-Q water 127 

(resistivity 18.2 MΩ·cm at 25°C) and then a 4 M NaOH solution was used to adjust the 128 

pH to 6.8. The salts were then reduced to metallic nanoparticles by the addition of 3.0 g 129 

of NaBH4. The nanoparticle product was isolated through centrifugation and then 130 

sequentially washed with water, ethanol and acetone (20 mL of each). The nanoparticles 131 

were dried in a desiccator under low vacuum (~10-2 mbar) for 48 hours and then stored in 132 

a nitrogen-filled glovebox until required.  133 

 134 

2.2. Experimental procedure 135 



All preparation and experimentation was performed in the oxygen-free nitrogen 136 

environment of a Saffron Scientific (Alpha series) glovebox under negative pressure. A 137 

Pu-solution of 1 ppm was synthesised by adding 0.3 mL of a 1000 ppm IRMM standard 138 

material to a 500 mL polypropylene bottle containing 300 mL of Milli-Q water. The U-139 

solution was made by adding 0.3 mL of a 1000 ppm uranyl acetate stock solution into 140 

300 mL of Milli-Q water. The pH of each system was measured and then 0.1 M NaOH 141 

was added dropwise to adjust both systems to pH 6. The systems were then left to 142 

equilibrate for a time period of 48 hours.  143 

Prior to nanoparticle addition a 1 mL sample was taken from each batch system (time = 144 

0 h) and the DO and Eh was measured and recorded. The 299 mL solutions were then 145 

divided into two smaller volumes of 99 mL and 200 mL to act as the experimental 146 

control and the sorption experiment, respectively. Two batches of nZVI (0.02 g each) 147 

were then added to 1 mL of absolute ethanol (Sigma Aldrich, ≥99.5%) and dispersed by 148 

sonication for 60 seconds using a Fisher Scientific Ultrasonic cleaner. The resultant 149 

slurry was then added to the batch systems, which were then gently agitated to disperse 150 

the nanoparticles throughout the sample. 151 

Both systems were sampled at 1 h, 2 h, 4 h, 24 h, 48 h and 7 d. Prior to sampling, the jars 152 

were gently shaken to ensure homogeneity and then a disposable pipette was used to 153 

extract a 1 mL volume of liquid/nanoparticle mix which was expelled into a 1.5 mL 154 

Eppendorf tube. Two Eppendorfs were filled in this way, the lids closed and the tubes 155 

centrifuged for two minutes at 10,000 RPM using an Eppendorf MiniSpin centrifuge. 156 

The supernatant was then poured off into a 10 mL beaker and the process was repeated 157 

until approximately 10 mL of liquid had been sampled. (The small volume of solution 158 

and sample aliquots was determined by the limitations inherent with working within a 159 

glovebox and by the safety considerations around handling plutonium and uranium). Half 160 



of the liquid was taken for pH and ORP (oxidation reduction potential) measurements, 161 

using a Hanna Instruments meter (model HI 8424) with a combination gel electrode pH 162 

probe and a platinum ORP electrode (model HI 3230B), respectively. The aqueous 163 

samples collected were then filtered through a 0.22 µm cellulose acetate filter and stored 164 

with a drop of concentrated HNO3
 prior to further preparation for inductively coupled 165 

plasma mass spectrometry (ICP-MS) analysis. The solids were rinsed sequentially in 2 166 

mL each of water, acetone and then ethanol to remove any physi-sorbed species and 167 

residual water. At each sampling period the water rinse was also prepared for ICP-MS in 168 

order to study the physi-sorbed species. Solid samples were prepared by pipetting an 169 

acetone suspension of a small volume of material onto a copper stub for X-ray 170 

photoelectron spectroscopy (XPS) analysis and allowing them to dry under a vacuum of 171 

1 × 10-2 mbar. 172 

 173 

2.3. Sample analysis methods 174 

2.3.1. ICP-MS preparation and conditions 175 

Samples were prepared for ICP-MS by a 100 times dilution in 1 % nitric acid (analytical 176 

quality concentrated HNO3 in Milli-Q water). Blanks, plutonium and uranium standards 177 

at 0.1, 0.25, 0.5, 1, 5 and 10 ppb were also prepared in 1 % nitric acid. An internal 178 

bismuth standard of 10 ppb was also added to all blanks, standards and samples. The 179 

ICP-MS instrument used was a VG Thermo Elemental PQ3. 180 

2.3.2. TEM instrument conditions 181 

TEM images were obtained with a JEOL JEM 1200 EX Mk 2 TEM, operating at 182 

120 keV. The nZVI samples were mounted on 200 mesh holey carbon coated copper 183 

grids. 184 



2.3.3. XRD instrument conditions 185 

A Phillips Xpert Pro diffractometer with a CuKα radiation source (λ = 1.5406 Å) was used 186 

for XRD analysis (generator voltage of 40 keV; tube current of 30 mA). XRD spectra 187 

were acquired between 2θ angles of 0–90°, with a step size of 0.02° and a 2 s dwell time. 188 

2.3.4. XPS instrument conditions 189 

A Thermo Fisher Scientific Escascope equipped with a dual anode X-ray source 190 

(AlKα 1486.6 eV and MgKα 1253.6 eV) was used for XPS analysis. Samples were 191 

analysed at <5×10−8 mbar with AlKα radiation of 300 W (15 kV, 20 mA) power. High 192 

resolution scans were acquired using 30 eV pass energy and 300 ms dwell time. 193 

Following the acquisition of survey spectra over a wide binding energy range, the Fe2p, 194 

C1s, O1s, Pu4f and U4f spectral regions were then scanned at a higher energy resolution 195 

such that valence state determinations could be made for each element. Data analysis was 196 

carried out using Pisces software (Dayta Systems Ltd) with binding energy values of the 197 

spectra were referenced to the adventitious hydrocarbon C1s peak at 284.8 eV. In order 198 

to determine the relative proportions of Fe2+ and Fe3+ in the sample analysis volume, 199 

curve fitting of the recorded Fe2p photoelectron peaks was performed following the 200 

method of Grosvenor et al., 2004. [39] The Fe2p profile was fitted using photoelectron 201 

peaks at 706.7, 709.1, 710.6 and 713.4 eV corresponding to Fe0, Fe2+
octahedral, Fe3+

octahedral 202 

and Fe3+
tetrahedral, respectively. These parameters were selected on the basis that the 203 

surface oxide was assumed to be a mixture of wüstite and magnetite, as the oxide Fe2+ is 204 

in the same coordination with the surrounding oxygen atoms in both forms of oxide. 205 

3. Results and discussion 206 

3.1. Preliminary characterisation of the nZVI 207 



Preliminary characterisation of the nZVI was performed using BET surface area analysis, 208 

TEM, XRD and XPS. The physical and chemical properties of nZVI has been 209 

extensively characterised elsewhere. [40] Briefly, BET surface area recorded the nZVI as 210 

exhibiting a specific surface area of 14.8 m2 g-1. TEM analysis (Figure 1) determined that 211 

the nZVI are roughly spherical and loosely aggregated into chains and rings (when dry), 212 

a feature attributed to electrostatic and/or magnetic attraction forces between individual 213 

nanoparticulates. [16] XRD analysis (Figure 2a) confirmed that the nZVI consisted 214 

principally of poorly crystalline/amorphous metallic α-Fe with bcc structure. XPS 215 

analysis (Figure 2b) recorded a Fe0/Fe2+ + Fe3+ ratio of 0.02, indicating that the surface 216 

oxide layer of the nZVI extended through the majority of the XPS analysis depth, which 217 

is approximately 5nm for Fe oxide materials. [40] Indeed, previous TEM studies have 218 

documented the oxide thickness of nZVI to be approximately 3-5 nm. [40] A Fe2+/Fe3+ ratio of 219 

0.38 was also recorded, indicating that the oxide layer is comprised of a ferrous and ferric iron 220 

mixture, with a stoichiometry similar to magnetite (Fe3O4). A summary of the experimental 221 

results is presented in Table 1.   222 

 223 

Figure 1. Transmission electron microscopy (TEM) images of the nZVI used in this study. 224 



 225 

Figure 2.  X-ray diffraction (XRD) spectra for the range 20-90° 2θ (a); and X-ray photoelectron 226 

spectroscopy (XPS) Fe 2p3/2 photoelectron spectra of the nZVI. 227 

 228 

Particle size distribution (%) 

0-50 nm 85 

50-100 nm 8 

>100 nm 7 

Oxide thickness (nm)  3-4 

Surface area (m2 g-1)  14.8 

Surface composition (at. %) 

Fe 30.5 

O 32.1 

C 14.5* 

B 22.9 

Iron stoichiometry 

 

Fe0/(Fe2+ + Fe3+) 0.02 

Fe2+/Fe3+ 0.38 

Table 1. A summary of the experimental results regarding the bulk and surface 229 

properties of the nZVI. * It is likely that a high proportion of this is adventitious carbon. 230 

3.2. Analysis of liquids 231 

3.2.1. Changes in actinide concentration  232 

The plutonium and uranium concentrations, shown as percentages of the initial 233 

concentrations, at different reaction times are shown in Figure 3. For the Pu-system the 234 

initial concentration was significantly lower than the intended value of ~1 ppm; it was 235 

measured at 64 ppb. This significantly reduced aqueous plutonium concentration was 236 

ascribed to the adsorption of plutonium onto the clean walls of the reaction vessels and 237 

glassware used for sample preparation. Following the study of Anderson et al., 2007, 238 



[41] this was not an unexpected result. This previous study showed that up to 14% of 239 

total-Pu had sorbed to their reaction vessels. However, in the current work plutonium 240 

‘loss’ was significantly greater than expected.  241 

For the subsequent nZVI uptake experiments, the plutonium control systems indicated a 242 

similar adsorption phenomenon over the reaction period, with aqueous plutonium 243 

concentrations decreased to 53 % of initial values during the first two hours. This initial 244 

significant decrease is attributed to the transfer of the initial 300 mL of plutonium 245 

solution into the two smaller reaction vessels (a 200 mL nanoparticle experiment and 100 246 

mL control) and the consequential sorption of plutonium onto the new vessels. After this 247 

period there was a slight, but less significant, decrease of plutonium concentration over 248 

the remaining time period implying that sorption to the vessel walls, or precipitation out 249 

of solution, continues to occur slowly over time. Correspondingly, in order to present the 250 

nZVI uptake results for plutonium more accurately, the initial decrease in plutonium 251 

concentration observed in the control system has been used to adjust the 0 h plutonium 252 

concentration in the nZVI sorption experiments, e.g. the initial 64 ppb plutonium 253 

concentration has been reduced by 53 % to become a more accurate initial aqueous value 254 

of 34 ppb. 255 

Figure 3 displays the aqueous plutonium and uranium concentrations as a function of 256 

time for the 7 d reaction period. Following the addition of nZVI the concentration of both 257 

contaminants was recorded to decrease rapidly, with 77 and 99 % removal recorded for 258 

plutonium and uranium respectively at the 1 h sampling point. A further decrease in 259 

plutonium concentrations was then recorded throughout the 7 d reaction period. This 260 

occurred most rapidly during the initial stages, with 85 and 86 % removal recorded at the 261 

2 and 4 h sampling points respectively. At the 24 h sampling point a relative plateau was 262 

reached with 90 % removal recorded, increasing to 91 % by the end of the 7 d sampling 263 



period. In comparison, uranium removal was recorded to decrease slightly to 97 and 95 264 

% respectively for sampling points at 2 and 4 hours respectively. A further gradual 265 

increase was then recorded with 84 % uptake recorded for the 7 d sampling point. It can 266 

therefore be concluded that both contaminants exhibited similar trends, in general, for 267 

their removal onto nZVI, with rapid and significant initial uptake (sampling periods ≤ 4 268 

h), followed by significant retention of the sorbed actinides. It can also be noted, 269 

however, that the kinetics of plutonium uptake was much slower than uranium, and also 270 

no re-release was recorded for the former actinide specie whilst some re-release was 271 

recorded for the latter specie. With the surface area of nZVI assumed as the same for 272 

both systems this behaviour could be attributed to the aforementioned significantly 273 

higher starting concentration of uranium in comparison to plutonium. One further 274 

explanation could be related to any differential sorption affinities of the two actinides. 275 

For example, it is likely that for the starting redox conditions and pH tested in the current 276 

work (Eh = 185, pH = 6) plutonium and uranium would have been present predominantly 277 

as Pu(OH)3
+ and UO2

2+ respectively, [42] with a lower sorption affinity likely to have 278 

been exhibited by the former species since it is a singly charged ion. [43] In addition, the 279 

partial re-release of uranium in comparison to the full plutonium retention recorded could 280 

also be related to differential chemical transformation (once sorbed) of the actinides. For 281 

example, uncomplexed pentavalent and hexavalent plutonium species are typically more 282 

easily chemically reduced than uranyl (UO2
2+), and would therefore be more easily 283 

transformed into a more stable surface-bound state. [44]  284 

A final consideration is that during the 7 day reaction period, the surface area of the nZVI 285 

would have changed due to progressive corrosion of the particles to form iron oxy-286 

hydroxide products. This is assumed to have resulted in a progressive increase in the 287 



available reactive surface area, which would in turn have encouraged further Pu 288 

adsorption. 289 

 290 

3.2.2. Changes in pH and Eh 291 

Prior to nanoparticle addition, the pH of both systems was measured as 6.0. The Eh and 292 

dissolved oxygen content were also measured as 185 mV and 3.18 mg L-1, for the Pu-293 

system and 186 mV and 4.43 mg L-1 for the U-system. Following the addition of the 294 

nZVI, an increase in solution pH was recorded, reaching a maximum of pH 10.5 and pH 295 

9.35 in the Pu- and U-systems, respectively, Figure 3. Concurrent with this was a 296 

decrease in solution Eh, reaching minimum values of -233 mV after 1 h for the Pu-297 

system and -294 mV after 2 h for the U-system, Figure 3. This behaviour is attributed to 298 

the rapid aqueous oxidation of the surface of the metallic iron nanoparticles (Eq. 1-4). 299 

The primary components available for corrosion reactions would have likely been 300 

dissolved oxygen (DO) and water itself, with the former being strongly 301 

thermodynamically favoured (Eq. 1). 302 

2Fe0
(s) + 4H+

(aq) + O2(aq) → 2Fe2+ + 2H2O(l)    E0 = +1.67 V (Eq. 1) 303 

2Fe0
(s) + 2H2O(l) → 2Fe2+ + H2(g) + 2OH−

(aq)    E0 = −0.39 V  (Eq. 2) 304 

Ferrous iron (Fe2+) is the primary product from these reactions and, in turn, can undergo 305 

further oxidative transformation (Eq. 3 and 4).  306 

Fe2+
(s) + 2H+

(aq) + ½O2(aq) → 2Fe3+
(aq) + H2O(l)   E0 = +0.46 V (Eq. 3) 307 

2Fe2+
(s) + 2H2O(l) → 2Fe3+ + H2(g) + 2OH−

(aq)   E0 = −1.60 V  (Eq. 4) 308 

As a result of these corrosion mechanisms the nZVI would have been an active and 309 

dynamic source of various corrosion products, which may have included Fe(OH)2, 310 



Fe(OH)3, Fe3O4, Fe2O3, FeOOH, Fe5HO8·4H2O and green rusts. It is likely that the 311 

formation of these corrosion product(s) and the aforementioned chemically reducing 312 

conditions would have been responsible for the physical removal (sorption or 313 

enmeshment) and in some instances chemical reduction of the exposed aqueous 314 

plutonium and uranium species. It must be noted that whilst Eq. 1 and 2 are useful for 315 

illustrative purposes that it would have been highly unlikely that quantitative removal of 316 

either plutonium or uranium would have occurred directly on Fe0 surfaces due to its 317 

extremely low aqueous stability. Instead it is likely that the contaminants would have 318 

been sorbed onto structural and/or precipitate ferrous or ferric iron species. [16]   319 

 320 



Figure 3. Actinide concentration, pH and Eh for the batch systems containing Pu- and U-321 

systems at reaction times of 0h, 1h, 2h, 4h, 24h, 48h and 168h. 322 

 323 

Analysis of the Milli-Q water used to rinse the nanoparticles from the Pu-system is 324 

shown in Figure 4. The low concentration typically recorded suggests that the majority of 325 

the sorbed Pu was chemi-sorbed (in a chemically reduced state) upon the nanoparticle 326 

surfaces.  327 

 328 

Figure 4. Plutonium concentration (ppb) in solution and in the nanoparticle rinse water. 329 

 330 

3.3. Analysis of reacted nanoparticulate solids 331 

XPS Fe 2p3/2 spectra of the unreacted nZVI and extracted samples taken at periodic 332 

intervals (1 h, 24 h, 48 h and 7 d) during the experiment is displayed in Figure 5. 333 

Analysis of the unreacted nanopowder using XPS recorded a Fe 2p3/2 photoelectron peak, 334 

centred at 710.3 eV (±0.3 eV), characteristic of a mixed-valence iron oxide (such as 335 

magnetite). A shoulder was also recorded on the low energy side of the primary peak, 336 

centred at 706.9 eV (±0.3 eV) indicating the presence of metallic iron, Fe0. XPS analysis 337 

of the nanopowder extracted during the sorption experiment from both systems recorded 338 



an increase in the binding energies of the Fe2p3/2 profiles throughout the 7 day reaction 339 

period, which is ascribed to the oxidation of the surface oxide from Fe2+ to Fe3+. Analysis 340 

of the O1s photoelectron peak for the standard (unreacted) nanopowder recorded a broad 341 

peak centred at ~530.2 eV, indicating the presence of chemi-sorbed OH- groups on the 342 

surface of the nZVI prior to reaction. A shoulder peak was also recorded on the lower 343 

binding energy side (~529.8 eV), representing O within the surface iron oxide layer. 344 

Analysis of nanoparticulate solids taken during the reaction from both systems recorded 345 

an increase in the contribution of the sorbed OH- concurrent with a decrease in the iron 346 

oxide contribution, with a shift in the O1s peak to ~530.9 eV recorded for both systems, 347 

confirming the oxidation of the nanoparticle surfaces during the experiment. 348 

For the nanoparticulate solids taken from the solution containing aqueous plutonium, the 349 

binding energy region between 420 eV and 445 eV was scanned to determine whether 350 

plutonium could be detected to confirm that was present on the nanoparticles. Although 351 

the intensity of the photoelectron signal was often quite low, plutonium was identified on 352 

all nanoparticulate samples from the sampled time periods. The central peaks were 353 

located at ~439 eV and ~427 eV but the signal intensities were insufficient to permit 354 

reliable curve-fitting. Larson, (1980) [45] reported the XPS binding energy of plutonium 355 

within PuO2 as between 426.1eV and 426.7eV. Consequently, the recorded peak energies 356 

in the present study are typical of those previously reported for PuO2. This provides 357 

direct evidence to indicate that a considerable proportion of the plutonium removed on 358 

the nanoparticle surfaces was in a tetravalent state. Furthermore, this implies that a 359 

chemical reduction of the sorbed plutonium has occurred, which is ascribed to a coupled 360 

redox reaction with Fe2+ at the nanoparticle surfaces, similar to the reaction mechanism 361 

previously observed for aqueous uranium [46],[44]. For the nanoparticulate solids taken 362 

from the solution containing aqueous uranium, the binding energy region between 374 363 



eV and 396 eV was scanned to determine the presence and valence state of any uranium 364 

present on the nanoparticle surfaces. Again, uranium was identified on all nanoparticulate 365 

samples from the sampled time periods. The central peaks were located at ~380.1 eV 366 

(±0.2 eV) and ~391.2 eV (±0.2 eV), comparing well with values previously reported for 367 

non-stoichiometric UO2, commonly referred to as UO2+x, where x≤2. [47] Results from 368 

curve fitting following the method of Scott et al., (2008) [47] recorded a U4+/U6+ ratio of 369 

0.64 after 1 hour reaction, 0.61 after two hours of reaction, 0.74 after 24 hours of reaction 370 

and 0.79 after 7 days reaction. This provides clear evidence of rapid and sustained 371 

chemical reduction of U6+ to U4+ on the surface of the nZVI throughout the 7 day 372 

reaction period. 373 

 374 

Figure 5. Photoelectron spectra acquired from nZVI taken from the batch systems after 375 

0h, 1h, 24h, 48h and 168h: a) Fe2p from the Pu system; b) Pu4f from the Pu-system; and 376 

c) U4f from the U-system. 377 

 378 



The results displayed here provide an indication the nZVI may be successfully utilised as 379 

a material for scavenging actinides from water. However, significant further research and 380 

development is required in order to achieve a technology that may be simply and reliably 381 

deployed and then subsequently recovered. One specific avenue for investigation is the 382 

development of composite filter materials in which nZVI may be incorporated as a 383 

reactive material, potentially alongside others. In such a structure the nZVI would be 384 

trapped or anchored such that the reactive properties are still exploited but the particles 385 

are immobilised. In this way the scavenged actinides may be efficiently recovered after 386 

being concentrated on the filter surfaces. 387 

3.4. Potential utility of nZVI as a sorbent for plutonium and uranium 388 

To date a wide array of sorbent materials have been investigated for the removal of 389 

plutonium and uranium from waste water, including titania microspheres [48], silica gel 390 

[49, transitional metal oxides [50], [51] and activated carbon [51]. The results presented 391 

in the current work demonstrate nZVI as effective for both plutonium and uranium 392 

removal; however, a direct comparison with the aforementioned conventional actinide 393 

sorbent materials cannot be drawn due to differences in experimental setup between the 394 

studies. It is clear, however, that a key advantage of nZVI is their ability to be suspended 395 

in solution as a colloid for maximum actinide scavenging and then recovered via 396 

magnetic attraction. This unique deployment and recovery mechanism could prove of 397 

considerable benefit for the treatment of radionuclide bearing waste streams where the 398 

magnetic nanoparticles (and sorbed radionuclides) can be efficiently recovered in a one-399 

step and automated process, and then directly vitrified or stripped for re-use. There reuse 400 

efficacy, however, will depend on the concentration of dissolved oxygen in the batch 401 

treatment solutions. Time periods in the order of hours (approximately <48 hours) are 402 

typical for the transformation of nZVI into non paramagnetic (hydr)oxides in oxygenated 403 



water compared to significantly longer time periods (e.g. >28 days) for anoxic systems. 404 

[52] 405 

4. Conclusions 406 

The current work has provided a preliminary investigation of the mechanisms and 407 

kinetics of the uptake of aqueous plutonium and uranium onto nanoscale zero-valent iron 408 

particles. Following the addition of the nZVI to separate batch systems containing 409 

plutonium and uranium, a rapid and significant decrease in aqueous concentrations were 410 

recorded for both actinide species. Low aqueous contaminant concentrations (<25 %) 411 

were then recorded for both systems until the end of the 7 day reaction period. Analysis 412 

of extracted nanoparticulate solids using XPS confirmed the uptake of the contaminants 413 

onto the nZVI. For the plutonium system, the recorded photoelectron spectra exhibited 414 

Pu4f lines centred at ~439 eV and ~427 eV, characteristic of PuO2. Similarly, with the U-415 

system U4f photoelectron peaks were recorded centred at energies of ~380 eV and ~391 416 

eV, characteristic of UO2. Results therefore indicate a removal mechanism for both 417 

actinide species of sorption followed by chemical reduction on nZVI surfaces. Further 418 

work will be aimed at determining the extent of chemical reduction more precisely. 419 
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