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Abstract17

Aim: To test long standing theory on the role of environmental conditions (both mean and18

predictability) in shaping global patterns in the egg sizes of marine fishes.19

Location: Global (50˚ S to 50˚ N).20

Time period: 1880 to 2015.21

Major taxa studied: Marine fish.22

Methods: We compiled the largest geo-located dataset of marine fish egg size (diameter) to23

date (n = 1,078 observations; 192 studies; 288 species; 242 localities). We decomposed sea24

surface temperature (SST) and chlorophyll-a time-series into mean and predictability (sea-25

sonality and colour of environmental noise – i.e. how predictable the environment is between26

consecutive time steps), and used these as predictors of egg size in a Bayesian phylogenetic27

hierarchical model. We test four specific hypotheses based on the classic discussion by Rass28

(1941), as well as contemporary life-history theory, and the conceptual model of Winemiller29

& Rose (1992).30

Results: Both environmental mean and predictability correlated with egg size. Our parsimo-31

nious model indicated that egg size decreases by c. 2.0-fold moving from 1˚C to 30˚C. En-32

vironments that were more seasonal with respect to temperature were associated with larger33

eggs. Increasing mean chlorophyll-a, from 0.1 to 1 mg m-3, was associated with a c. 1.3-fold34

decrease in egg size. Lower chlorophyll-a seasonality and reddened noise were also associ-35

ated with larger egg sizes – aseasonal but more temporally autocorrelated resource regimes36

favoured larger eggs.37

Main conclusions: Our findings support results from Rass (1941) and some predictions from38

Winemiller & Rose (1992). The effects of environmental means and predictability on marine39

fish egg size are largely consistent with those observed in marine invertebrates with feeding40

larvae, suggesting important commonalities in how ectotherm egg size responds to environ-41

mental change. Our results further suggest that anthropogenically-mediated changes in the42

environment will have profound effects on the distribution of marine life histories.43
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Introduction44

Life-history traits vary systematically along environmental gradients, particularly with45

latitude. For example, latitude covaries with adult body size (e.g. mammals, birds, fish,46

insects; Bergamnn’s rule; Meiri, 2011), offspring size (Rass’s rule; Rass, 1941; Marshall,47

1953; Marshall et al., 2012), developmental mode (Thorson’s rule; Thorson, 1950; Marshall48

et al., 2012), and dispersal capacity (O’Connor et al., 2007). For years, biogeographers49

and life-history theoreticians have assumed that the latitudinal gradients in life history are50

driven by differences in average conditions (e.g. mean temperature), but means are not the51

only moments of the distribution that vary in space and influence life-history evolution (e.g.52

Vasseur et al., 2014; Marshall & Burgess, 2015).53

Although ecologists have traditionally emphasised the role of environmental means across54

latitudes as drivers of latitudinal variation, classic biogeography treatises recognised that other55

components of environmental factors also vary systematically with latitude, particularly en-56

vironmental predictability (Cohen, 1966; Slobodkin & Sanders, 1969; Brown, 1973; Crump,57

1981). Environments can be more or less predictable in multiple ways. First, environments58

can be predictable if they remain relatively constant over time – temperature in much of the59

deep sea is a good example of such conditions. Second, environments can be predictable if60

they change in very regular ways – for example, highly seasonal environments, while vari-61

able, are also predictable in the timing of events – temperate latitudes are likely to be warmer62

and drier in summer relative to winter for example. Finally, environments can also be pre-63

dictable if conditions at one time are strongly correlated with conditions at some point into the64

future – i.e. there is a strong temporal autocorrelation in local conditions. For example, if an65

environment is highly autocorrelated, then conditions now are a good indicators of conditions66

later. This type of predictability occurs when the colour of environmental noise is reddened67

(Vasseur & Yodzis, 2004; Burgess & Marshall, 2014). Importantly, all of these types of pre-68

dictability (constancy, seasonality and autocorrelation) can differ across latitudes, and each69

type of predictability will affect life-history evolution differently (Travis, 2001; Burgess &70

Marshall, 2014; Marshall & Burgess, 2015; Rubio de Casas et al., 2017).71

Theory predicts that environmental predictability should shape evolutionary ecology over72
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and above the effects of environmental means (Parker & Begon, 1986; Travis, 2001). For ex-73

ample, theory predicts that fecundity will be optimised by producing many small eggs in en-74

vironments with predictable food regimes (Smith & Fretwell, 1974; Parker & Begon, 1986;75

Rollinson et al., 2013). Moreover, if environmental differences across space are relatively76

stable and predictable over time, theory predicts, and evidence suggests, that dispersal will77

not be favoured (Hastings, 1983; Fronhofer et al., 2014). On the other hand, mothers in un-78

predictable environments should produce fewer and larger offspring (i.e. a conservative bet-79

hedging approach Einum & Fleming, 2004). Contradictions are common however, for exam-80

ple, where populations inhabiting increasingly harsh streams produced more numerous and81

smaller eggs (Morrongiello et al., 2012). Initial studies of trait biogeography support these82

theoretical predictions – latitudinal gradients in marine invertebrate life histories are driven83

strongly by changes in predictability of both food and temperature from the tropics to the84

poles (Marshall & Burgess, 2015). But overall, biogeographical studies of how environmen-85

tal predictability shapes life-history variation at large spatial scales remain exceedingly rare86

(Marshall & Burgess, 2015; Rubio de Casas et al., 2017).87

In fishes, Rass (1941) and Marshall (1953) first noted that lower latitudes and warmer tem-88

peratures are often associated with smaller egg sizes. Winemiller & Rose (1992) proposed89

a conceptual argument that life histories encompass a continuum space among three major90

strategies, and that the interactions among juvenile survival, adult fecundity, and maturity are91

shaped not only by the average environmental state, but also by its predictability (see hypothe-92

ses below). Twenty-five years later, formal tests on how (and if) environmental mean and93

predictability consistently affect marine fish eggs over broad spatial scales are still lacking,94

despite a rich theoretical body of literature (Cohen, 1966; Smith & Fretwell, 1974; Parker &95

Begon, 1986; Winemiller & Rose, 1992; Travis, 2001; Einum & Fleming, 2004).96

Species-level spawning mode is also known to correlate with egg size. For instance,97

species that exhibit parental care (i.e. brooders) are known to have larger eggs when compared98

to many pelagic- and demersal-spawning species (Winemiller & Rose, 1992). Also, demersal99

spawners have on average larger eggs than pelagic spawners, followed by scatterer spawners100

(i.e. species who deposit their eggs on the benthos, but have a long pelagic stage when101

compare to ordinary demersal spawners) (Kasimatis & Riginos, 2016). These correlations102
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between spawning mode and egg size might exhibit a strong phylogenetic effect (e.g. most103

Tetraodontiformes are scatterers, Syngnathidae and Apogonidae are brooders; Kasimatis104

& Riginos, 2016). However, it is unknown whether the effects of spawning mode remain105

substantial after accounting for the effects of environmental variables, and phylogeny on egg106

size.107

Here we present a formal analysis on the role of the environment in shaping marine fish108

egg size. In doing so, we first compile the most comprehensive dataset of marine fish egg109

sizes which dates back to 1880, and use it to explicitly test the following hypotheses: egg size110

responds to changes in average temperature (H1), productivity (H2), some form of environ-111

mental predictability (H3), and spawning mode (H4). Particularly, within H1, we predict that112

egg size will decrease with increasing temperature. Within H2, we predict that egg size will113

decrease with increasing average food regimes. For H3, we derive predictions inspired by114

the conceptual model of Winemiller & Rose (1992): high seasonality and low average food115

regimes drive declines in egg size (Periodic strategy); white-noised environments (i.e. unpre-116

dictable) with low seasonality drive declines in egg size (Opportunistic strategy); predictable117

environments with low average food regime drive egg size to increase (Equilibrium strategy).118

For H4, we predict that after correcting for phylogeny, spawning mode will not significantly119

affect egg size. We apply this hypothesis-testing approach using Bayesian phylogenetic hier-120

archical models in order to account for shared evolutionary history among species, as well as121

independent evolutionary changes unique to each species.122

Materials and Methods123

Egg size data compilation124

We began by compiling data from multiple previous compilations that provided references125

on egg size (diameter in mm) for different species of marine fishes (Fritzsche, 1978; Duarte126

& Alcaraz, 1989; Elgar, 1990; Moser, 1996; Einum & Fleming, 2002; Hixon et al., 2014;127

Kasimatis & Riginos, 2016). We used only raw data from original references (data extracted128

from tables or directly from figures using DataThief software). We also investigated papers129

cited in these original references, repeating this process exhaustively. Importantly, because130
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we are primarily interested in the role of the environment, we only collected data from pub-131

lications that reported the origin of specimen collection for populations directly collected132

from the wild or that were transferred from the wild to an aquarium facility immediately be-133

fore the measurements. Eggs that were measured immediately following fertilisation (i.e. no134

change in size) were also included. For eggs that present ellipsoidal, elongated shapes, we135

used both diameters (long, l, and short, s) to first calculate the volume, V (mm3; V = (4/3)×136

pi× (l/2)× (s/2)2), and then back transformed to diameter of sphere with equivalent volume137

([((V ×3)/(4× pi))(1/3)]×2). Some papers reported mean egg size for each female while oth-138

ers reported means across multiple females, so we are not able to properly consider the coef-139

ficient of variation in egg size at the same scale across all data (see Einum & Fleming, 2002).140

Our dataset includes 1,078 observations from 192 studies between 1880 to 2015, and includes141

288 species.142

Environmental predictability and data143

We here consider two components of environmental predictability (Colwell, 1974; Marshall144

& Burgess, 2015; cf. Rubio de Casas et al., 2017). The first component is seasonality, which145

entails the regularity in the timing and magnitude of fluctuations in the average environmental146

state over seasons; it is expected to influence the evolution of egg size (Winemiller & Rose,147

1992). The second type is the colour of environmental noise (Halley & Kunin, 1999; Vasseur148

& Yodzis, 2004), which is defined by how predictable and similar the environment is between149

successive time points, or how far into the future the environmental state is likely to stay the150

same, independent of the mean environmental state (Marshall & Burgess, 2015).151

We wrote an R package (noaaErddap, available on www.github.com/dbarneche/noaaErddap)152

to download time-series data from NOAA on chlorophyll-a (mg m-3; 0.08˚ resolution), which153

is used as proxy for environmental food regime, and sea surface temperature (hereafter SST;154

˚C; 0.25˚ resolution), covering a 10-year period from 1997 to 2007. Chlorophyll-a data were155

recorded every eight days (∆t = 8 days, unevenly distributed) and SST data were recorded156

every day (∆t = 1 day, evenly distributed). For both SST and chlorophyll-a, we extracted the157

median environmental value within a 200-km radius around each coordinate in our dataset.158

Following the approach adopted in Marshall & Burgess (2015), only coordinates that had <159
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13% of the time series missing were used, hence all the data from coordinates above 50˚ of160

latitude were excluded for the analysis (i.e. temporal coverage < 87%).161

Our calculations to decompose predictability into seasonality and colour of environmental162

noise are identical to those described by Marshall & Burgess (2015). We first removed linear163

trends by extracting the residuals from a linear regression model fitted to the raw time series.164

For each coordinate, seasonality was estimated as the fraction of the total variance that is due165

to predictable seasonal periodicities, a/(a+ b), where a is the variance of the seasonal trend,166

and b is the variance of the residual time series (i.e. the time series after the seasonal trend was167

removed). The seasonal trend was estimated by binning the time-series data into monthly in-168

tervals, averaging each month across the 10 years, then re-creating a seasonal time-series data169

set on the same time scale of the original data using a linear interpolation between the monthly170

midpoints. The colour of environmental noise was estimated using the 1/ f θ family of noise171

models (Halley & Kunin, 1999; Vasseur & Yodzis, 2004), where white noise (θ = 0) occurs172

when there is no correlation between one measurement and the next, while for reddened noise173

(θ > 0), there is some correlation between measurements separated by a finite timescale. To174

do so, we first calculated a residual time series by subtracting the corresponding seasonal175

value from each data point in the time series. The spectral density (i.e. variance in the resid-176

ual time series) was assumed to scale with frequency, f , according to an inverse power law,177

1/ f θ . The spectral exponent θ was estimated as the negative slope of the linear regression of178

logespectral density as a function of logefrequency. Spectral density was estimated in R using179

the spectrum function form the stats R package v. 3.4.3 for the evenly-distributed SST time180

series, and the Lomb-Scargle function lsp from the lomb R package v. 1.0 for the unevenly-181

distributed chlorophyll-a time series (Glynn et al., 2006). Spectral densities and subsequent182

θ ’s were calculated between the frequencies of 2/n∆t and 1/2∆t (n = number of observations183

in the time series), which translates to periods of 16 days to 5.05 years for chlorophyll-a, and184

2 days to 5.05 years for SST. Both seasonality and colour of environmental noise metrics are185

implemented in an R package (envPred, available on www.github.com/dbarneche/envPred).186
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Phylogeny and spawning mode187

Phylogenetic relatedness might influence broad-scale variation in fish life-history traits (Kasi-188

matis & Riginos, 2016). From an evolutionary perspective, closely related species might189

have a higher likelihood of sharing some ancestral-state trait (Pagel, 1999), such as egg-type190

(pelagic, demersal, brooded). At the same time, species may present unique variations in traits191

that are independent of phylogenetic non-independence. From a technical perspective, both of192

these unmeasured biological factors (i.e. species uniqueness and non-independence), as well193

as the possibility for different species composition to underlie differences in egg size across194

latitudes, likely contribute to variance in a particular life-history trait (Hadfield & Nakagawa,195

2010) and, consequently, it is necessary to account for these possible effects. To do so, we196

created a tree from the Open Tree of Life (OTL) using the rotl R package v. 3.0.3 (Michon-197

neau et al., 2016) in order to test for significant phylogenetic heritability in our models (Hous-198

worth et al., 2004). We first downloaded the full Actinopterygii tree from OTL (n = 38,939199

tips) and then added species from our dataset that were missing in the tree: the Pomacentri-200

dae species relationship followed a recent consensus topology (Frédérich et al., 2013) and we201

inserted them as a sister group to the family Labridae; Heterostichus rostratus (family Clin-202

idae), and Sphyraena argentea (family Sphyraenidae) were respectively inserted right next203

to the families Blenniidae and Carangidae (Betancur-R. et al., 2013). This tree was pruned to204

retain focal species only, and then used to derive a variance-covariance matrix based on Brow-205

nian evolution. The tree included a total of 30 polytomies. Branch lengths are unknown for206

the phylogeny, so the arbitrary method of Grafen (1989) was applied, whereby branch lengths207

are set to a length equal to the number of descendant tips minus one.208

We compiled spawning mode for all 288 species in our dataset. We classified species ac-209

cording to 5 categories: Demersal: n = 188 obs., 65 spp; Mouth brooder: n = 15 obs., 13 spp;210

Pelagic: n = 836 obs., 180 spp; Pouch brooder: n = 19 obs., 15 spp; Scatterer: n = 20 obs.,211

15 spp. Information on spawning modes were obtained from the literature (e.g. Kasimatis212

& Riginos, 2016), www.FishBase.org, and by consulting with experts. We were able to reli-213

ably reference the spawning mode of 262 species (91 %). The information on spawning mode214

for the remaining 26 species was approximated based on other species within the same fam-215

ily. Removing these species had no effect in our results (Table S1). The spawning mode in-216
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formation and associated references can be directly downloaded from our GitHub repository217

(https://github.com/dbarneche/fishEggSize/blob/master/data/spawningMode.csv).218

Testing hypotheses H1–H4219

Before running our statistical analysis, we first checked for any systematic correlation among220

our predictor variables (Table 1). Temperature mean and its predictability components were221

strongly correlated (i.e. ~ 0.7; Dormann et al., 2013) and, given this caveat, we interpret our222

temperature model coefficients as being non-independent. We note however that the colour of223

temperature noise was not a significant variable and therefore dropped from our parsimonious224

model (see Results section).225

The full model was constructed using all the original six variables with the following struc-226

ture:227

lnE = βX + γspp + γphy + ε, (1)

where lnE represents log-transformed egg size, β is a vector of 7 fixed-effect coefficients,228

with 1 intercept and 6 slopes each corresponding to an environmental variable (i.e. both SST229

and chlorophyll-a averages, seasonalities, and colours of environmental noise) in the model230

matrix X . γspp and γphy are respectively vectors of random-effect coefficients that account for231

residual intercept deviations attributable to species uniqueness and patterns of relatedness as232

described by the phylogeny, and ε is the model unexplained residual variation.233

Fixed effects were assigned weakly informative priors following a Gaussian distribution.234

Standard deviations (σγspp , σγphy and σε ) were assigned more informative priors following235

a Student-t distribution to speed-up model convergence (notice, though, that the full model236

was first fitted with weakly informative priors in order to obtain estimates for the more in-237

formative priors). We account for the phylogenetic non-independence among species follow-238

ing the method of Hadfield & Nakagawa (2010), where the non-independence random-effect239

coefficients (γphy) are distributed following a multivariate normal distribution with means240

of zero (such that γphy represents actual deviations from the model intercept) and a single241

standard deviation (σγphy) which is weighted by the variance-covariance matrix, A, obtained242
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from the tips of the phylogeny (i.e. σγphy × A, with A being obtained using the R package243

ape version 5.0; Paradis et al., 2004). The phylogenetic heritability (equivalent to Pagel’s244

λ ; Pagel, 1999; Hadfield & Nakagawa, 2010), was estimated as the proportion of total vari-245

ance, conditioned on the fixed effects, attributable to the random effect of phylogeny (i.e.246

σ2
γphy

/(σ2
γspp

+σ2
γphy

+σ2
ε )). The posterior distributions of model parameters were estimated247

using Markov chain Monte Carlo (MCMC) methods with NUTS sampler using the R pack-248

age brms version 2.1.0 (Bürkner, 2017) by constructing three chains of 15,000 steps, including249

7,500-step warm-up periods, so a total of 22,500 steps were retained to estimate posterior dis-250

tributions (i.e. (15,000 - 7,500) × 3 = 22,500).251

We performed a model selection procedure by first dropping any non-significant slope252

(i.e. those whose 95% posterior credible intervals overlap zero) and then testing whether this253

simpler model was significantly better than the original full model. After this procedure, we254

also tested whether the best of the two models was significantly improved by adding egg255

spawning mode. Model comparisons were done using leave-one-out cross-validation (LOO),256

which, similarly to widely applicable information criterion (WAIC), is a fully Bayesian model257

selection procedure for estimating pointwise out-of-sample prediction accuracy (Vehtari et258

al., 2016). We calculated the expected log pointwise predictive density (êl pdloo) using the259

log-likelihood evaluated at the posterior simulations of the parameter values (Vehtari et al.,260

2016). We calculated p-values for the pairwise differences in êl pdloo (∆êl pdloo) using stan-261

dard errors (s.e.) and a normal probability density function. This method of calculating s.e.’s262

is reliable for data sets with many observations (n = 1,078 in our analysis) because the dis-263

tribution of ∆êl pdloo is well approximated by a Gaussian distribution (Vehtari et al., 2016).264

Results were similar using K-fold cross-validation (K = 10). Model comparison was imple-265

mented using the loo R package (Vehtari et al., 2016) version 1.1.0. All analyses, tables and266

figures are fully reproducible in R. Data and code are available via the GitHub repository267

(https://github.com/dbarneche/fishEggSize).268

Results269

Fish egg size varied in diameter from 0.24 mm to 6.5 mm, spanning 1.4 orders of magnitude270

in egg size variation. There was a significant relationship between latitude and egg size (p <271
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0.0001), although only 3.5% of variation in egg size is explained by latitude alone (Fig. 1).272

For every 10 degrees of latitude moving poleward, egg size increases by 7% on average.273

Our parsimonious model contains all original variables except the colour of temperature274

noise; the full model had a lower average predictive accuracy over the parsimonious model275

(∆êl pdloo = -1.6; p = 0.399). Although adding spawning mode to this model improved the av-276

erage predictive accuracy (∆êl pdloo = 6.1), it was not significant (p = 0.136), and we therefore277

retained the simpler model as the parsimonious model (i.e. rejected hypothesis H4; Table 2).278

After accounting for the fixed effects, the majority of the variance observed in the residuals279

is explained by substantial heritability among species (95.5%; 95% CI: 91.6% – 97.7%), sug-280

gesting a substantial effect of phylogeny, and a minor contribution of non-heritable variation281

within species (2.4%; 95% CI: 1.1% – 5.0%).282

In agreement with our prediction of hypothesis H1, the parsimonious model indicated that283

egg size decreases systematically with increasing mean temperature (Fig. 2a). Particularly, the284

mean temperature slope (βSST = -0.02; 95% CI: -0.03 – -0.01) suggests that egg size will de-285

crease by c. 2.0-fold moving from 1˚C to 30˚C after accounting for the effects of environmen-286

tal predictability and mean food regime. Environments that were more seasonal with respect287

to temperature had lower mean temperatures, and were therefore associated with larger egg288

sizes (βSeasonSST = 0.82; 95% CI: 0.47 – 1.19), which is opposite to our prediction of H3.289

Food regime (indexed by mean chlorophyll-a) showed a negative relationship with egg290

size, in agreement with our prediction of hypothesis H2 (βChl = -0.27; 95% CI: -0.37 – -0.16;291

Fig. 2b). Increasing mean chlorophyll-a from 0.1 to 1 mg m-3 was associated with a c. 1.3-292

fold decrease in egg size after holding all the remaining variables constant. Chlorophyll-a sea-293

sonality had a stronger effect than that observed for mean chlorophyll-a (βSeasonChl = -0.69;294

95% CI: -0.87 – -0.51), in agreement with our prediction of H3: higher seasonality was as-295

sociated with smaller egg sizes. Additionally, increasing the colour of chlorophyll-a noise296

(i.e. more temporally-autocorrelated food regime) was associated with a larger egg size (βθChl297

= 0.27; 95% CI: 0.14 – 0.40), also in line with our prediction of H3 (Fig. 3).298
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Discussion299

Here we present a formal and comprehensive test of the role of the environment in shaping300

marine fish egg size at a global scale, after controlling for potential effects that are attributable301

to species and phylogenetic relatedness. Importantly, our dataset is composed of geo-located302

data only, instead of averages for species, thus it is well suited to evaluate the direct effects303

of the environment on egg size. Our approach builds on decades of empirical (Rass, 1941;304

Thorson, 1950; Marshall, 1953; Kasimatis & Riginos, 2016), experimental (Kokita, 2003;305

Shama, 2015), theoretical (Smith & Fretwell, 1974; Parker & Begon, 1986) and conceptual306

work (Winemiller & Rose, 1992) documenting the effects of the environment on egg size. On307

the one hand, our parsimonious model largely confirms predictions based on previous find-308

ings, indicating that higher temperatures are associated with smaller egg sizes (Fig. 2a; Rass,309

1941; Marshall, 1953; Kokita, 2003; Kasimatis & Riginos, 2016). On the other hand, for the310

first time, our results support previously untested concepts relating the effects of environmen-311

tal predictability (here measured as seasonality and the colour of environmental noise) on ma-312

rine fish egg size (Winemiller & Rose, 1992).313

Higher mean temperatures were home to fish with smaller egg size, largely supporting314

Rass’s rule (Rass, 1941), and hence our results add to the vast literature reporting the effects315

of temperature on fish egg size (Rass, 1941; Marshall, 1953; Kokita, 2003; Laptikhovsky,316

2006; Shama, 2015; Kasimatis & Riginos, 2016) and effects of temperature on egg size in317

aquatic organisms more generally (Marshall et al., 2012). Environments that are seasonal with318

respect to temperature were associated with a larger egg size, but we note we cannot disen-319

tangle this effect from those of mean temperature because these two variables were substan-320

tially correlated. Importantly, temperature is predicted to have multiple effects, within and321

among species. Within species, for example, increasing temperatures are associated with an322

earlier onset of maturity and declines in maximum adult body size (i.e. temperature-size rule;323

Zuo et al., 2012). Considering that, within a population, smaller females may produce smaller324

eggs (e.g. Braga Goncalves et al., 2011), increasing ocean warming will likely decrease the325

reproductive contribution of populations via effects on both female and egg size (Kokita,326

2003). Moreover, warming oceans are expected to alter current distributions of some tropical327

and temperate fish species (e.g. Feary et al., 2014). Thus, changes in temperature will likely328
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change the dynamics and quality of larvae provided in the system by altering their richness,329

abundance, size, and dispersal capacity (Rass, 1941; Marshall, 1953; Kokita, 2003; O’Connor330

et al., 2007; Hixon et al., 2014).331

Our results highlight congruences between latitudinal patterns in fish and marine inverte-332

brate egg size. Particularly, both groups exhibit a general increase in egg size with increasing333

latitude (Fig. 1; Marshall et al., 2012) despite a substantial variation around this central ten-334

dency. A portion of this variation is explained by incorporating the additional moments of335

distributions of environmental factors. Our results indicate that productivity (here measured336

as chlorophyll-a as a proxy) mean, seasonality and noise colour influence patterns in marine337

fish egg size, in agreement with the early propositions of Thorson (1950), which were re-338

cently corroborated by Marshall & Burgess (2015). Interestingly, our results (i.e. directions339

of effects) are consistent with the recent analysis of environmental predictability on marine340

invertebrates egg size with feeding larvae (Marshall & Burgess, 2015). Our findings may341

therefore reflect fundamental commonalities regarding how feeding larvae of ectotherms (both342

zoo-planktivorous fish and phyto-planktivorous invertebrates) respond to environmental pre-343

dictability.344

To the best of our knowledge, our study presents the first formal test of the effects of en-345

vironmental predictability on marine fish egg size at the global scale. Specifically, we dis-346

cuss our results in light of the three extreme strategies in the trilateral continuum proposed347

by Winemiller & Rose (1992). Environments with autocorrelated fluctuations (i.e. reddened348

noise) with a low mean food regime exhibit eggs that are 86.6% larger than the average, con-349

sistent with the Equilibrium strategy suggested by Winemiller & Rose (1992). Similarly,350

our results indicate that environments with high seasonality and low mean food regime will351

have eggs that are on average 10.5% smaller, consistent with a Periodic strategy sensu Wine-352

miller & Rose (1992). However, our results indicate that environments with low seasonality353

and white-coloured noise (i.e. not temporally autocorrelated) have eggs that are 15.2% larger354

on average, contrary to the expectations of Winemiller and Rose’s suggested Opportunistic355

strategy. Instead, this finding is consistent with Einum & Fleming (2004) suggestion that356

mothers employ a conservative bet-hedging strategy under such conditions. Einum & Flem-357

ing (2004) suggested that when mothers cannot anticipate the environment of their offspring,358
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they should insulate them from poor conditions through better provisioning. Overall our find-359

ings strongly support the notion that environmental quality directly affects egg size (Smith &360

Fretwell, 1974; Parker & Begon, 1986; Rollinson et al., 2013; Shama, 2015). Importantly, all361

three components of environmental variation: mean, seasonality, and colour of environmental362

noise drove the patterns in egg size.363

After accounting for the effects of the environment and phylogeny, a portion of the varia-364

tion in the data was left unexplained (i.e. residuals in Fig. 2). For the majority of our records,365

we were not able to properly assess the depth in which the egg was collected. Depth is known366

to affect patterns in egg size in marine organisms (Laptikhovsky, 2006). So it is possible367

that some of our records for “tropical” species were obtained at greater depths were temper-368

atures are much lower. Another aspect that could influence part of the unexplained variance369

is spawning mode (Kasimatis & Riginos, 2016). However, our phylogenetic hierarchical370

model already accounts for clade-specific deviations that drive substantial changes in egg size371

(e.g. brooding in seahorses and cardinalfishes), and adding spawning mode to the model, as372

tested through our hypothesis H4, did not significantly improve model fit. This could be due373

to the fact that some spawning modes are under-represented in the database (e.g. brooders and374

scatterers), and therefore future studies with more estimates for these groups might be able to375

resolve the parameter estimates with greater precision.376

Here we synthesised large amounts of data to uncover the role of multiple environmen-377

tal components in shaping marine fish egg size. By doing so, we have confirmed previous378

results reported in the literature as well as revealed novel patterns. Particularly, our analysis379

formally decomposed two axes of environmental predictability, showing that they both af-380

fect egg size, and in ways consistent to those observed in marine invertebrates, suggesting381

commonalities in how ectotherm egg size responds to environmental change. Future environ-382

mental change in the world’s oceans will not only drive the average environmental state at383

different locations, but also their degree of environmental predictability, so our study suggests384

that anthropogenically-mediated changes in the environment will have profound effects on the385

distribution of marine life histories.386
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Tables541

Table 1. Pearson correlation (n = 1078 observations) among predictor environmental variables542

after excluding data with environmental coverage < 87% (see methods). Bold values represent543

statistically significant correlations (i.e. p < 0.001).544

SST
(Season.)

SST
(Colour)

SST
(Mean)

Chl
(Season.)

Chl
(Colour) Chl (Mean)

SST (Season.) - 0.68 -0.73 0.39 -0.22 0.27
SST (Colour) 0.68 - -0.71 0.24 -0.05 0.39
SST (Mean) -0.73 -0.71 - -0.32 -0.03 -0.49
Chl (Season.) 0.39 0.24 -0.32 - 0.16 -0.16
Chl (Colour) -0.22 -0.05 -0.03 0.16 - -0.02
Chl (Mean) 0.27 0.39 -0.49 -0.16 -0.02 -

545

546

Table 2. Average estimates and 95% posterior credible intervals (of Bayesian posterior distri-547

butions) for fitted parameters in the parsimonious model.548

Parameter Mean
Estimate 2.5% 97.5% Effective

sampling
Random Effects
σγspp 0.24 0.20 0.28 5346
σγ phy 1.57 1.13 2.04 4275

Fixed effects
β0 (intercept) 0.43 -1.31 2.24 6309
βSST -0.02 -0.03 -0.01 17046
βChl -0.27 -0.37 -0.16 22500
βθChl 0.27 0.14 0.40 22500
βSeasonChl -0.69 -0.87 -0.51 22500
βSeasonSST 0.82 0.47 1.19 12568

549
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Figure legends550

Figure 1. Raw data showing the relationship between egg size (diameter in mm) and abso-551

lute latitude. Blue and red points represent data from the southern and northern hemispheres552

respectively.553

Figure 2. Fish egg size (diameter in mm) as a function of (a) mean SST (b) and mean554

chlorophyll-a. Parameter estimates (parsimonious model in Table 2) were obtained using555

Bayesian phylogenetic hierarchical models. The effects of environmental predictability and556

mean chlorophyll-a on egg size were controlled for in (a), and the environmental predictability557

and mean SST in (b). Random effects attributable to relatedness among species and species558

uniqueness (γ phy and γspp in eqn 1) have also been controlled for. Thus, the deviations from559

the mean model fit represent the actual model residuals. Top-left equations show average560

fixed-effect predictions. Dashed thick line represents average posterior fixed-effect fit, and561

dashed thin lines represent the 95% posterior credible intervals extracted from 22,500 MCMC562

samples from our Bayesian analysis.563

Figure 3. Predictive surface between chlorophyll-a seasonality and noise colour on the aver-564

age size of marine fish eggs (diameter in mm). Each black circle represents a separate obser-565

vation in our dataset and the colour coding represents the predicted surface using parameters566

from our parsimonious Bayesian phylogenetic hierarchical model (Table 2). Predicted egg567

sizes were calculated for mean SST and chlorophyll-a, as well as mean SST seasonality.568
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