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Abstract: When solving constrained multi-objective optimization problems, an important issue
is how to balance convergence, diversity and feasibility simultaneously. To address this issue, this
paper proposes a parameter-free constraint handling technique, a two-archive evolutionary algorithm,
for constrained multi-objective optimization. It maintains two co-evolving archives simultaneously:
one, denoted as the convergence archive, is the driving force to push the population toward the
Pareto front; the other one, denoted as the diversity archive, mainly tends to maintain the population
diversity. In particular, to complement the behavior of the convergence archive and provide as much
diversified information as possible, the diversity archive aims at exploring areas under-exploited by the
convergence archive including the infeasible regions. To leverage the complementary effects of both
archives, we develop a restricted mating selection mechanism that adaptively chooses appropriate
mating parents from them according to their evolution status. Comprehensive experiments on a series
of benchmark problems and a real-world case study fully demonstrate the competitiveness of our
proposed algorithm, in comparison to five state-of-the-art constrained evolutionary multi-objective
optimizers.

Keywords: Multi-objective optimization, constraint handling, evolutionary algorithm, two-
archive strategy

1 Introduction

The constrained multi-objective optimization problem (CMOP) considered in this paper is defined as:

minimize F(x) = (f1(x), · · · , fm(x))T

subject to gj(x) ≥ aj , j = 1, · · · , q
hj(x) = bj , j = q + 1, · · · , `
x ∈ Ω

(1)

where x = (x1, . . . , xn)T s a candidate solution, and Ω = [xLi , x
U
i ]n ⊆ Rn defines the search (or decision

variable) space. F : Ω → Rm constitutes m conflicting objective functions, and Rm is the objective
space. gj(x) and hj(x) are the j-th inequality and equality constraints respectively. For a CMOP, the
degree of constraint violation of x at the j-th constraint is calculated as [1]:

cj(x) =

{
〈gj(x)/aj − 1〉, j = 1, · · · , q
〈|hj(x)/bj − 1| − ε〉, j = q + 1, · · · , `

(2)

∗This manuscript is accepted for publication in the IEEE Transactions on Evolutionary Computation. Copyright of
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where ε is a relax term for the equality constraint, and 〈α〉 returns 0 if α ≥ 0 otherwise it returns the
negative of α. The constraint violation value of x is calculated as:

CV (x) =
∑̀
j=1

cj(x), (3)

x is feasible in case CV (x) = 0; otherwise x is infeasible. Given two feasible solutions x1, x2 ∈ Ω, we
said that x1 dominates x2 (denoted as x � x2) in case F(x1) is not worse than F(x2) in any individual
objective and it at least has one better objective. A solution x∗ is Pareto-optimal with respect to (1)
in case @x ∈ Ω such that x � x∗. The set of all Pareto-optimal solutions is called the Pareto set (PS).
Accordingly, PF = {F(x)|x ∈ PS} is called the Pareto front (PF).

Since evolutionary algorithm (EA) is able to approximate a population of non-dominated solutions,
which portray the trade-offs among conflicting objectives, in a single run, it has been recognized as
a major approach for multi-objective optimization. Over the past two decades, much effort has been
devoted to developing evolutionary multi-objective optimization (EMO) algorithms, e.g., elitist non-
dominated sorting genetic algorithm (NSGA-II) [2–5], indicator-based EA [6–8] and multi-objective
EA based on decomposition [9–13]. Nevertheless, although most, if not all, real-life optimization
scenarios have various constraints by nature, it is surprising that the research on constraint handling
is lukewarm in the EMO community [14], comparing to algorithms designed for the unconstrained
scenarios.

Generally speaking, convergence, diversity and feasibility are three basic issues for CMO. Most, if
not all, currently prevalent constraint handling techniques at first tend to push a population toward the
feasible region as much as possible, before considering the balance between convergence and diversity
within the feasible region. This might lead to the population being stuck at some local optimal or
local feasible regions, especially when the feasible regions are narrow and/or disparately distributed
in the search space.

In this paper, we propose a two-archive EA, denoted as C-TAEA, for solving CMOPs. Specifically,
we simultaneously maintain two co-evolving and complementary populations: one is denoted as con-
vergence archive (CA); while the other is denoted as diversity archive (DA). The main characteristics
of C-TAEA are delineated as follows:

• As the name suggests, the CA is the driving force to maintain the convergence and feasibility of
the evolution process. It provides a consistent selection pressure toward the PF.

• In contrast, without considering the feasibility, the DA mainly tends to maintain the convergence
and diversity of the evolution process. In particular, the DA explores the areas that have not
been exploited by the CA. This not only improves the population diversity of the CA within the
currently investigating feasible region, but also helps jump over the local optima or local feasible
regions.

• To leverage the complementary effect and the elite information of these two co-evolving popu-
lations, we develop a restricted mating selection mechanism that selects the appropriate mating
parents form the CA and DA separately according to their evolution status.

We admit that the two-archive or multi-population strategy is not a brand new technique in the
EMO literature. For example, [15–17] developed several two-archive EMO algorithms that use two
“conceptually” complementary populations to strike the balance between convergence and diversity
of the evolutionary process. Li et al. [18] developed a dual-population paradigm that combines the
strengths of decomposition- and Pareto-based selection mechanisms. In this paper, we would like to,
for the first time, explore the potential advantages of the two-archive strategy for CMOPs.

The rest of this paper is organized as follows. Section 2 briefly overviews the state-of-the-art
evolutionary approaches developed for CMOPs and then elicits our motivations. Section 3 describes
the technical details of the proposed algorithm step by step. Afterwards, in Section 4 and Section 5,
the effectiveness and competitiveness of the proposed algorithm are empirically investigated and com-
pared with five state-of-the-art constrained EMO algorithms on various benchmark problems. Finally,
Section 6 concludes with a summary and ideas for future directions.
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2 Preliminaries

In this section, we first briefly review some recent developments of constraint handling techniques in
the EMO community. Afterwards, we will give our motivations based on some examples.

2.1 Literature Review

Generally speaking, the ideas of the existing constraint handling techniques in multi-objective opti-
mization can be divided into the following three categories.

The first category is mainly driven by the feasibility information where feasible solutions are always
granted a higher priority to survive to the next iteration. As early as the 90s, Fonseca and Flem-
ming [19] developed a unified framework for solving MOPs with multiple constraints. In particular,
they assign a higher priority to constraints than to objective functions. This results in a prioritization
of the search for feasible solutions over optimal solutions. In [20], Coello Coello and Christiansen
proposed a näıve constraint handling method that simply ignores the infeasible solutions. Although
this method is easy to implement, it suffers the loss of selection pressure when tackling problems
with a narrow feasible region. In particular, this algorithm will have no selection pressure when the
population is filled with infeasible solutions. In [2], Deb et al. developed a constrained dominance
relation for CMO. Specifically, a solution x1 is said to constrained dominate another one x2 if: 1) x1

is feasible while x2 is not; 2) both of them are infeasible and CV (x1) < CV (x2); 3) or both of them
are feasible and x1 ≺ x2. By simply replacing the Pareto dominance relation with this constrained
dominance relation, the state-of-the-art NSGA-II and NSGA-III [21] can be readily used to tackle
CMOPs. Borrowing the similar idea, several MOEA/D variants [21–23] use the CV as an alternative
criterion in the subproblem update procedure. Different from [2], Oyama et al. [24] modified the
Pareto dominance relation so that solutions who violate fewer number of constraints are preferred.
To improve the interpretability of infeasible solutions, Takahama et al. [25] and Mart́ınez et al. [26]
proposed an ε-constraint dominance relation where two solutions violate constraints equally in case
the difference of their CVs is smaller than a threshold ε. In particular, this threshold can be adaptively
tuned according to the ratio of feasible solutions in the population. In [27], Asafuddoula et al. pro-
posed an adaptive constraint handling method that treats infeasible solutions as feasible ones in case
their CVs are less than a threshold. Analogously, Fan et al. [28] developed an angle-based constrained
dominance principle by which two infeasible solutions are regarded as non-dominated from each other
when their angle is larger than a threshold.

The second category aims at balancing the trade-off between convergence and feasibility during the
search process. In [29], Jiménez et al. proposed a min-max formulation that drives feasible solutions
to evolve toward optimality and drives infeasible solutions to evolve toward feasibility. In [30], Ray et
al. suggested a Ray-Tai-Seow algorithm that uses three different methods to compare and rank non-
dominated solutions. Specifically, the first ranking procedure is conducted by sorting the objective
values; the second one is performed according to different constraints; while the last one is based on
a combination of objective values and constraints. Based on the same rigour, Young [31] proposed a
constrained dominance relation that compares solutions according to the blended rank from both the
objective space and the constraint space. A similar approach is developed by Angantyr et al. [32] that
uses the weighted average rank of the ranks in both the objective space and the constraint space. By
transforming each of the original objective functions of a CMOP into the sum of the distance measure
and penalty function, [14] developed a new constraint handling technique for CMO. In particular, the
modified objective functions are used in the non-dominated sorting procedure of NSGA-II to facilitate
the search of optimal solutions in both feasible and infeasible regions. To improve the population
diversity, Li et al. [33] developed a method that preserves infeasible solutions in case they are in
the isolated regions. More recently, Ning et al. [34] proposed a constrained non-dominated sorting
method where each solution is assigned a constrained non-domination rank based on its Pareto rank
and constraint rank.

The last category tries to repair the infeasible solutions and thus drives them toward the feasible
region. For example, Harada et al. [35] proposed a so-called Pareto descent repair operator that
explores possible feasible solutions around infeasible solutions in the constraint space. However, the
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gradient information is usually unavailable in practice. In [36], Singh et al. suggested to use simulated
annealing to accelerate the progress of movements from infeasible solutions toward feasible ones. Jiao
et al. [37] developed a feasible-guiding strategy in which the feasible direction is defined as a vector
starting from an infeasible solution and ending up with its nearest feasible solution. Afterwards,
infeasible solutions are guided toward the feasible region by leveraging the information provided by
the feasible direction.

2.2 Challenges to Existing Constraint Handling Techniques

From the above literature review, we find that most, if not all, constraint handling techniques in multi-
objective optimization overly emphasize the importance of feasibility, whereas they rarely consider the
balance among convergence, diversity and feasibility simultaneously. This can lead to an ineffective
search when encountering complex constraints.

Let us first consider a test problem C1-DTLZ3 defined in [21], where the objective functions are
the same as the classic DTLZ3 problem [38] while the constraint is defined as:

c(x) = (

m∑
i=1

fi(x)2 − 16)(

m∑
i=1

fi(x)2 − r2) ≥ 0, (4)

Fig. 1 shows a two-objective example where r is set to 6. From this figure, we can see that the
feasible region of this test problem is intersected by an infeasible ribbon. In addition, within this
infeasible region, the CV of a solution increases when it moves away from the feasible boundary, and
decreases otherwise. Therefore, it is not difficult to infer that a feasibility-driven strategy will be easily
trapped in the outermost feasible boundary. To validate this assertion, we employ the state-of-the-art
C-MOEA/D and C-NSGA-III [21] as the benchmark algorithms where the corresponding parameters
are set the same as [21]. As shown in Fig. 1, solutions found by both algorithms are stuck in the
outermost feasible boundary after 1,000 generations.
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Figure 1: Comparative results on the two-objective C1-DTLZ3.

Let us consider another test problem C2-DTLZ2 defined in [21], where the objective functions are
the same as the classic DTLZ2 problem [38] while the constraint is defined as:

c(x) = max

{
m

max
i=1

[
(fi(x)− 1)2 +

m∑
j=1,j 6=i

f2
j − r2

]
,

[ m∑
i=1

(fi(x)− 1√
m

)2 − r2
]}
, (5)

Fig. 2 gives an example in the two-objective scenario, where three feasible regions are sparsely located
on the PF. If the size of each feasible region is small, a feasibility-driven strategy will be easily trapped
in some, not all, of the feasible regions. Furthermore, it is highly likely that none of the weight vectors
used in the state-of-the-art decomposition-based EMO algorithms, e.g., C-MOEA/D and C-NSGA-III,
cross these feasible regions if their sizes are sufficiently small. In this case, the decomposition-based
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EMO algorithms will be struggled to find feasible solutions. The results shown in Fig. 2 fully validate
our assertions, where neither C-MOEA/D nor C-NSGA-III can find Pareto-optimal solutions on all
three feasible regions when we set r to be a relatively small value, say 0.1.
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Figure 2: Comparative results on the two-objective C2-DTLZ2.

Based on these discussions, we find that an excessive use of the feasibility information can restrict
the search ability of a constrained EMO algorithm. In Section 3, we will demonstrate how to use a
two-archive strategy to balance the convergence, diversity and feasibility simultaneously in the entire
search space. In particular, we find that an appropriate use of the infeasibility information can help
to resolve the dilemma between exploration versus exploitation.

3 Proposed Algorithm

Initialization Stop? Reproduction Update CA

Output CA

Y
e
s

No
Update DA

Figure 3: Flow chart of C-TAEA.

The general flow chart of our proposed C-TAEA is given in Fig. 3. As its name suggests, C-TAEA
maintains two co-evolving archives, named CA and DA, each of which has the same and fixed size
N . Specifically, CA, as the main force, is mainly responsible for driving the population toward the
feasible region and approximating the PF; DA, as a complement, is mainly used to explore the areas
under-exploited by the CA. It is worth noting that, to provide as much diversified information as
possible, the update of the DA does not take the feasibility information into account. During the
reproduction process, mating parents are separately selected from the CA and DA according to their
evolution status, as described in Section 3.4. Afterwards, the offspring are used to update the CA and
DA according to the mechanisms described in Section 3.2 and Section 3.3 separately.

3.1 Density Estimation Method

Before explaning the update mechanisms of the CA and DA in C-TAEA, we first introduce the density
estimation method that is useful for both cases. To facilitate the density estimation, we borrow the
idea from [39] to divide the objective space into N subregions, each of which is represented by a
unique weight vector on the canonical simplex. In particular, we employ our previously developed
weight vector generation method [33], which is scalable to the many-objective scenarios, to sample
a set of uniformly distributed weight vectors, i.e., W = {w1, · · · ,wN}. Specifically, a subregion ∆i,

5



Algorithm 1: Association Procedure

Input: Solution set S, weight vector set W
Output: Subregions ∆1, · · · ,∆N

1 ∆1 ← ∅, · · · ,∆N ← ∅;
2 foreach x ∈ S do
3 foreach w ∈W do
4 Compute d⊥(x,w) = x−wTx/‖w‖;
5 k ← argmin

w∈W
d⊥(x,w);

6 ∆k ← ∆k
⋃
{x};

7 return ∆1, · · · ,∆N

where i ∈ {1, · · · , N}, is defined as:

∆i = {F(x) ∈ Rm|〈F(x),wi〉 ≤ 〈F(x),wj〉}, (6)

where j ∈ {1, · · · , N} and 〈F(x),w〉 is the acute angle between F(x) and the reference line formed by
the origin and F(x). After the setup of subregions, each solution x of a population is associated with
a unique subregion whose index is determined as:

k = argmin
i∈{1,··· ,N}

〈F(x),wi〉, (7)

where F(x, t) is the normalized objective vector of x, and its i-th objective function is calculated as:

f i(x) =
fi(x)− z∗i
znadi − z∗i

, (8)

where i ∈ {1, · · · ,m}, z∗ and znad are respectively the estimated ideal and nadir points, where z∗i =
min
x∈S

fi(x) and znadi = max
x∈S

fi(x). The pseudo-code of this association procedure is given in Algorithm 1.

After associating solutions with subregions, the density of a subregion is counted as the number of its
associated solutions.

3.2 Update Mechanism of the CA

The effect of the CA is similar to the other constrained EMO algorithms in the literature. It first
pushes the population toward the feasible region as much as possible, then it tries to balance the
convergence and diversity within the feasible region. The pseudo-code of the update mechanism of
the CA is given in Algorithm 2. Specifically, we first form a hybrid population Hc, a combination of
the CA and the offspring population Q. Feasible solutions in Hc are chosen into a temporary archive
Sc (lines 3 to 5 of Algorithm 2). Afterwards, the follow-up procedure depends on the size of Sc:

• If the size of Sc equals N (i.e., the predefined size of the CA), it is directly used as the new CA
and this update procedure terminates (lines 6 and 7 of Algorithm 2).

• If |Sc| > N , we use the fast non-dominated sorting method [2] to divide Sc into several non-
domination levels, i.e., F1, F2, and so on. Starting from F1, each non-domination level is
sequentially chosen to construct a temporary archive S until its size equals or for the first time
exceeds N (lines 9 to 11 of Algorithm 2). If we denote the last acceptable non-domination level
as Fl, solutions belonging to Fl+1 onwards are exempt from further consideration. Note that S
can be used as the new CA if its size equals N ; otherwise we associate each solution in S with its
corresponding subregion and calculate S’s density information afterwards. Iteratively, a worst
solution from the most crowded subregion (tie is broken randomly) is trimmed one at a time
until S’s size equals N (line 11 to 21 of Algorithm 2). Note that, to improve the population
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Algorithm 2: Update Mechanism of CA

Input: CA, offspring population Q, weight vector set W
Output: Updated CA

1 S← ∅, Sc ← ∅, i← 1, Hc ← CA
⋃

Q;
2 foreach x ∈ Hc do
3 if CV (x) = 0 then
4 Sc ← Sc

⋃
{x};

5 if |Sc| = N then
6 CA← Sc;
7 else if |Sc| > N then
8 Use non-dominated sorting to divide Sc into {F1, F2, · · · } based on the MOP defined in (1);
9 while |S| < N do

10 S← S
⋃
Fi, i← i+ 1;

11 if |S| > N then
12 foreach x ∈ S do

13 Fk(x) = F(x)−z∗
znad−z∗ ;

14 {∆1, · · · ,∆N} ← Association(S,W);
15 while |S| > N do
16 Find the most crowded subregion ∆i;
17 foreach x ∈ ∆i do
18 dist(x)← min

x′∈∆i,x 6=x′
‖x− x′‖;

19 St ← argmin
x∈∆i

{dist(x)};

20 xw ← argmax
x∈St

{gtch(x|wi, z∗)};

21 S← S \ {xw};

22 CA← S;

23 else
24 SI ← Hc \ Sc;
25 Use non-dominated sorting to divide SI into {F1, F2, · · · } based on the MOP defined in (12);
26 while |Sc| < N do
27 S← S

⋃
Fi, i← i+ 1;

28 while |S| > N do
29 xw ← argmax

x∈Fi−1

{CV (x)}, S← S \ {xw};

30 CA← S;

31 return CA
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diversity within a subregion, we propose the following process to identify the worst solution xw.
First, we calculate the distance between each solution x in ∆i and its nearest neighbor:

dist(x) = min
x′∈∆i,x 6=x′

‖x− x′‖, (9)

where ‖ · ‖ indicates the `2-norm. Afterwards, the solutions having the smallest distance are
stored in a temporary archive St, while xw is defined as

xw = argmax
x∈St

{gtch(x|wi, z∗)}, (10)

where
gtch(x|wi, z∗) = max

1≤j≤m
{|fj(x)− z∗j |/wi

j}. (11)

• Otherwise, if the feasible solutions in Hc do not fill the new CA (|Sc| < N), we formulate a new
bi-objective optimization problem as follows:

minimize F(x) = (f1(x), f2(x))T

where

{
f1(x) = CV (x)

f2(x) = gtch(x|wi, z∗)

(12)

Based on (12), we use the fast non-dominated sorting method to divide the infeasible solutions
in Hc into several non-domination levels (lines 24 and 25 of Algorithm 2). Solutions in the first
several levels have a higher priority to survive into the new CA. Exceeded solutions are trimmed
according to their CVs, i.e., the solution having a larger CV is trimmed at first (lines 28 to
29 of Algorithm 2). These operations tend to further balance the convergence, diversity and
feasibility.

3.3 Update Mechanism of the DA

Different from the CA, the DA aims at providing as much diversified solutions as possible. In partic-
ular, its update mechanism has two characteristics: 1) it does not take the constraint violation into
consideration; 2) it takes the up to date CA as a reference set so that it complements the behav-
ior of the CA by exploring its under-exploited areas. The pseudo-code of this update procedure is
presented in Algorithm 3. Specifically, similar to Section 3.2, we at first combine the DA with the
offspring population Q to form a hybrid population Hd. Then, we separately associate each solution
in Hd and the up to date CA with its corresponding subregion according to the method introduced
in Section 3.1 (lines 1 to 3 of Algorithm 3). Afterwards, we iteratively investigate each subregion and
decide the survival of solutions in Hd to the new DA. In particular, at the itr-th iteration, at most itr
solutions, including those in the CA and Hd, can survive in each subregion. In other words, for the
currently investigating subregion, say ∆i, i ∈ {1, · · · , N}, if there already exists itr solutions in CA at
∆i, no solution in Hd will be considered to survive at ∆i during this iteration. Otherwise, the best
non-dominated solutions in Hd associated with ∆i, denoted as Oi, will be chosen to survive to the
new DA (lines 10 to 12 of Algorithm 3). Here the best solution xb is identified as:

xb = argmin
x∈Oi

{gtch(x|wi, z∗)}. (13)

This iterative investigation continues till the DA is filled.

3.4 Offspring Reproduction

The interaction and collaboration between two co-evolving archives is a vital step in C-TAEA. Apart
from the complementary behavior of the update mechanisms of the CA and DA, the other contributing
factor for this collaboration is the restricted mating selection. Generally speaking, its major purpose is
to leverage the elite information from both archives for offspring reproduction. Algorithm 4 provides
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Algorithm 3: Update Mechanism of the DA

Input: CA, DA, offspring population Q, weight vector set W
Output: Updated DA

1 S← ∅, i← 1, Hd ← DA
⋃

Q;
2 {∆1

d, · · · ,∆N
d } ← Association(Hd,W);

3 {∆1
c , · · · ,∆N

c } ← Association(CA,W);
4 itr← 1;
5 while |S| ≤ N do
6 for i← 1 to N do
7 if |∆i

c| < itr then
8 for i← 1 to itr− |∆i

c| do
9 if ∆i

d 6= ∅ then
10 Oi ← non-dominated solutions in ∆i

d;

11 xb ← argmin
x∈Oi

{gtch(x|wc, z∗)};

12 ∆i
d ← ∆i

d \ {xb}, S← S
⋃
{xb};

13 else
14 break;

15 itr← itr + 1;

16 DA← S;
17 return DA

the pseudo code of this restricted mating selection procedure. Specifically, we first combine the CA
and the DA into a composite set Hm. Afterwards, we separately evaluate the proportion of non-
dominated solutions of the CA and the DA in Hm (lines 2 and 3 of Algorithm 4). If ρc > ρd, it means
that the convergence status of the CA is better than that of the DA. Accordingly, the first mating
parent is chosen from the CA; otherwise, it comes from the DA (lines 4 to 7 of Algorithm 4). As
for the other mating parent, whether it is chosen from the CA or the DA depends on the proportion
of non-dominated solutions (lines 8 to 11 of Algorithm 4). In other words, the higher proportion of
non-dominated solutions, the larger chance to be chosen as the mating pool. As shown in lines 5
to 11 of Algorithm 4, we use a binary tournament selection to choose a mating parent. As shown
in Algorithm 5, this tournament selection procedure is feasibility-driven. Specifically, if the randomly
selected candidates are all feasible, they are chosen based on the Pareto dominance; if only one of
them is feasible, the feasible one will be chosen; otherwise, the mating parent is chosen in a random
manner. Once the mating parents are chosen, we use the popular simulated binary crossover [40] and
the polynomial mutation [41] for offspring reproduction. In principle, any other reproduction operator
can be readily applied with a minor modification.

4 Experimental Setup

Before discussing the empirical results, this section briefly introduces the benchmark problems, per-
formance metrics and the state-of-the-art constrained EMO algorithms used for peer comparisons in
our empirical studies.

4.1 Benchmark Suite

Five constrained test problems (i.e., C1-DTLZ1/DTLZ3, C2-DTLZ2 and C3-DTLZ1/DTLZ4) from [21]
and six newly proposed test problems (DC1-DTLZ1/DTLZ3, DC2-DTLZ2/DTLZ4 and DC3-DTLZ1/DTLZ4)
are chosen to form the benchmark suite. All these test problems are scalable to any number of ob-
jectives, where we set m ∈ {3, 5, 8, 10, 15} here. Detailed descriptions, including the mathematical
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Algorithm 4: Restricted Mating Selection

Input: CA, DA
Output: Mating parents p1, p2

1 Hm ← CA
⋃

DA;
2 ρc ←proportion of non-dominated solution of CA in Hm;
3 ρd ←proportion of non-dominated solution of DA in Hm;
4 if ρc > ρd then
5 p1 ←TournamentSelection(CA);
6 else
7 p1 ←TournamentSelection(DA);

8 if rand < ρc then
9 p2 ←TournamentSelection(CA);

10 else
11 p2 ←TournamentSelection(DA);

12 return p1, p2

Algorithm 5: Tournament Selection

Input: Solution set S
Output: Mating parent x

1 Randomly pick two solutions x1 and x2 from S;
2 if x1 and x2 are feasible then
3 if x1 � x2 then
4 x← x1;
5 else if x2 � x1 then
6 x← x2;
7 else
8 x←Randomly pick one from x1 and x2;

9 else if Only one solution is feasible then
10 x←feasible one from x1 and x2;
11 else
12 x←Randomly pick one from x1 and x2;

13 return x

definitions and properties, of these test problems are given in Section I of the supplementary docu-
ment.

4.2 Performance Metrics

Two widely used metrics are chosen to assess the performance of different algorithms.

1. Inverted Generational Distance (IGD) [42]: Given P ∗ as a set of points uniformly sampled along
the PF and P as the set of solutions obtained from an EMO algorithm. The IGD value of P is
calculated as:

IGD(P, P ∗) =

∑
z∈P ∗ dist(z, P )

|P ∗|
, (14)

where dist(z, P ) is the Euclidean distance between z and its nearest neighbor in P .

2. Hypervolume (HV) [43]: Let zr = (zr1, · · · , zrm)T be a worst point dominated by all the Pareto
optimal objective vectors. The HV of P is defined as the volume of the objective space dominated
by solutions in P and bounded by zr:

HV (P ) = VOL(
⋃
z∈P

[z1, z
r
1]× · · · × [zm, z

r
m]), (15)
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where VOL indicates the Lebesgue measure.

To calculate the IGD, we need to sample a sufficient number of points from the PF to form P ∗.
For C-DTLZ problem instances, we use the method developed in [33] to fulfill this purpose. Before
calculating the HV, we remove the solutions dominated by the zr, which is set as (1.1, · · · , 1.1︸ ︷︷ ︸

m

)T in our

empirical studies, except for C3-DTLZ4 where zr = (2.1, · · · , 2.1︸ ︷︷ ︸
m

)T . Note that both IGD and HV can

evaluate the convergence and diversity simultaneously. A smaller IGD or a larger HV value indicates
a better approximation to the PF. Each algorithm is independently run 51 times. The median and
the interquartile range (IQR) of the IGD and HV values are presented in the corresponding tables. In
particular, the best results are highlighted in boldface with a gray background. To have a statistically
sound conclusion, we use the Wilcoxon’s rank sum test at a significant level of 5% to validate the
significance of the better performance achieved by the proposed C-TAEA with respect to the other
peer algorithms.

4.3 EMO Algorithms Used for Comparisons

Five state-of-the-art constrained EMO algorithms, i.e., C-MOEA/D, C-NSGA-III, C-MOEA/DD [33],
I-DBEA [27] and CMOEA [14], are chosen for peer comparisons. All algorithms use the simulated
binary crossover and the polynomial mutation for offspring generation. The termination criteria is a
predefined number of function evaluations. Section II of the supplementary document briefly describes
these peer algorithms and lists their corresponding parameter settings.

5 Empirical Studies

In this section, we discuss the empirical results on different benchmark problems separately.

5.1 C-DTLZ Benchmark Suite

Table 1: Comparison results on IGD metric (median and IQR) for C-TAEA and the other peer
algorithms on C-DTLZ Benchmark Suite

m C-TAEA C-NSGA-III C-MOEA/D C-MOEA/DD I-DBEA CMOEA

C1-DTLZ1

3 2.069E-2(1.33E-5) 2.037E-2(7.06E-5)‡ 2.110E-2(3.17E-4)† 2.116E-2(4.75E-4)† 2.180E-2(6.03E-6)† 2.140E-2(5.45E-4)†

5 5.278E-2(1.16E-3) 5.427E-2(1.62E-3)† 5.294E-2(7.79E-5)† 5.287E-2(1.81E-5) 5.285E-2(6.62E-5) 5.284E-2(1.97E-5)
8 9.912E-2(1.60E-3) 1.009E-1(1.59E-3) 1.006E-1(6.93E-4) 1.024E-1(1.86E-3)† 1.009E-1(5.30E-4) 1.008E-1(5.76E-4)
10 1.061E-1(3.82E-3) 1.038E-1(8.86E-3)‡ 1.074E-1(7.81E-2) 1.065e-1(9.08E-2) 1.072E-1(7.87E-3) 1.072E-1(3.39E-3)
15 2.233E-1(8.02E-4) 2.351E-1(3.40E-3)† 2.608E-1(7.62E-3)† 2.490E-1(6.53E-3)† 2.506E-1(4.47E-3)† 2.611E-1(7.25E-3)†

C1-DTLZ3

3 5.661E-2(8.49E-3) 8.020E+0(4.22E-3)† 8.007E+0(1.72E-3)† 8.012E+0(1.08E-3)† 8.013E+0(7.59E-3)† 8.007E+0(2.07E-3)†

5 5.364E-1(9.03E-1) 1.162E+1(3.96E-2)† 1.154E+1(4.41E-3)† 1.155E+1(1.12E+1)† 1.153E+1(4.79E-3)† 1.154E+1(9.23E-3)†

8 4.115E-1(1.31E-2) 1.180E+1(8.59E-2)† 1.160E+1(2.64E-3)† 1.161E+1(4.47E-4)† 1.160E+1(6.98E-3)† 1.159E+1(1.84E-2)†

10 3.896E-1(8.75E-2) 1.430E+1(3.30E-2)† 1.414E+1(1.93E-2)† 1.414E+1(7.36E-3)† 1.416E+1(6.11E-3)† 1.412E+1(2.90E-2)†

15 8.749E-1(3.16E-2) 1.470E+1(5.33E-3)† 1.466E+1(8.22E-2)† 1.461E+1(4.30E-2)† 1.463E+1(1.26E-2)† 1.461E+1(6.31E-2)†

C2-DTLZ2

3 1.594E-2(2.95E-3) 9.043E-1(1.25E-4)† 9.069E-1(3.74E-1)† 5.648E-1(3.67E-1)† 9.069E-1(1.76E-3)† 9.069E-1(1.05E-2)†

5 3.386E-1(1.46E-1) 1.068E+0(2.59E-5)† 4.863E-1(5.93E-1)† 1.069E+0(3.97E-2)† 1.070E+0(1.54E-3)† 1.074E+0(4.35E-3)†

8 1.310E-4(8.22E-4) 1.206E+0(1.25E-5)† 1.220E+0(7.64E-3)† 1.237E+0(2.27E-6)† 1.051E+0(1.84E-1)† 1.223E+0(6.64E-4)†

10 2.600E-5(1.03E-6) 1.241E+0(7.00E-6)† 1.254E+0(5.57E-3)† 1.273E+0(1.28E-5)† 1.263E+0(1.46E-1)† 1.257E+0(4.48E-3)†

15 5.658E-1(2.38E-3) 1.287E+0(3.34E-4)† 1.317E+0(6.43E-2)† 1.320E+0(7.21E-1)† 1.315E+0(3.64E-2)† 1.316E+0(3.79E-2)†

C3-DTLZ1

3 4.311E-2(1.22E-4) 7.653E-2(1.40E-3)† 4.344E-2(2.86E-2)† 9.344E-2(1.98E-4)† 4.435E-2(4.79E-3)† 4.435E-2(1.22E-3)†

5 1.073E-1(3.06E-5) 1.124E-1(2.76E-3)† 1.073E-1(5.84E-5) 1.438E-1(5.19E-4)† 1.074E-1(6.95E-6) 1.077E-1(3.30E-4)
8 1.993E-1(8.34E-3) 2.052E-1(4.98E-3) 2.009E-1(4.97E-3) 2.460E-1(1.11E-4)† 2.031E-1(2.07E-3) 2.011E-1(8.72E-4)
10 2.104E-1(2.27E-4) 2.310E-1(2.52E-2)† 2.151E-1(2.72E-3)† 2.655E-1(7.16E-3)† 2.154E-1(5.21E-3)† 2.163E-1(3.30E-3)†

15 3.463E-1(4.76E-3) 3.686E-1(1.41E-2)† 3.989E-1(8.25E-3)† 3.688E-1(2.49E-2)† 3.680E-1(8.14E-2)† 3.909E-1(5.29E-2)†

C3-DTLZ4

3 4.789E-1(2.00E-6) 4.838E-1(1.03E-4)† 4.841E-1(4.21E-3)† 4.848E-1(2.57E-4)† 4.824E-1(3.57E-4)† 4.813E-1(8.11E-4)†

5 4.170E-1(5.51E-4) 4.358E-1(5.65E-3)† 4.484E-1(4.89E-3)† 4.249E-1(5.17E-3)† 4.430E-1(5.07E-3)† 4.389E-1(1.36E-2)†

8 5.049E-1(4.77E-4) 5.020E-1(5.33E-4) 5.268E-1(7.46E-3)† 6.481E-1(1.35E-4)† 5.234E-1(6.96E-3)† 5.236E-1(3.33E-4)†

10 5.604E-1(3.19E-3) 5.571E-1(5.34E-3) 5.651E-1(1.18E-3) 5.735E-1(4.11E-3)† 5.643E-1(2.22E-2) 5.645E-1(8.09E-2)
15 7.587E-1(5.23E-3) 7.627E-1(3.79E-2)† 7.589E-1(4.40E-2)† 7.587E-1(3.78E-2) 7.590E-1(8.28E-3)† 7.589E-1(2.25E-2)†

† denotes the performance of C-TAEA is significantly better than the other peers according to
the Wilcoxon’s rank sum test at a 0.05 significance level; ‡ denotes the corresponding algorithm
significantly outperforms C-TAEA.
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Table 2: Comparison results on HV metric (median and IQR) for C-TAEA and the other peer algo-
rithms on C-DTLZ Benchmark Suite

m C-TAEA C-NSGA-III C-MOEA/D C-MOEA/DD I-DBEA CMOEA

C1-DTLZ1

3 1.3042(1.01E-3) 1.3020(1.89E-3)† 1.3043(5.43E-4) 1.3043(1.07E-3) 1.3033(2.42E-4) 1.3039(1.60E-3)
8 2.1435(3.02E-3) 2.1431(6.59E-4) 2.1436(1.00E-6) 2.1436(8.00E-6) 2.1436(6.01E-6) 2.1436(1.35E-6)
10 2.5937(2.01E-6) 2.5940(3.52E-4) 2.5937(1.02E-6) 2.5937(5.11E-6) 2.5937(1.03E-6) 2.5937(2.03E-6)
15 4.1022(3.83E-2) 4.0812(8.86E-2) 4.0072(7.77E-2)† 4.0277(9.15E-2) 4.0911(7.93E-2) 4.0288(3.35E-2)

C1-DTLZ3

3 0.7351(4.00E-2) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

5 0.1761(1.76E-1) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

8 1.5943(8.54E-2) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

10 2.5132(6.34E-1) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

15 2.1825(3.86E-2) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

C2-DTLZ2

3 0.4130(2.81E-4) 0.1225(1.00E-5)† 0.1225(1.11E-1)† 0.0000(1.21E-1)† 0.1225(3.50E-5)† 0.1225(6.50E-5)†

5 0.8607(2.50E-1) 0.1482(3.00E-6)† 0.6117(4.63E-1)† 0.1482(7.30E-3)† 0.1482(6.13E-2)† 0.1482(5.21E-4)†

8 1.1426(6.57E-3) 0.1973(2.90E-5)† 0.1973(3.12E-6)† 0.1949(7.21E-3)† 0.3764(1.79E-1)† 0.1973(2.32E-6)†

10 1.5937(2.70E-5) 0.2387(1.20E-5)† 0.2387(2.03E-1)† 0.2358(7.21E-2)† 0.2386(2.17E-1)† 0.2387(3.71E-6)†

15 2.4033(6.90E-2) 0.3840(5.90E-3)† 0.3843(7.63E-2)† 0.3797(9.26E-2)† 0.3845(5.40E-2)† 0.3843(4.26E-2)†

C3-DTLZ1

3 1.1515(5.15E-4) 1.1499(1.46E-2) 1.1253(2.37E-2)† 1.1086(5.30E-4)† 1.1310(3.56E-2) 1.1427(6.03E-6)
5 1.5781(2.15E-4) 1.5736(1.28E-2) 1.5776(7.27E-4) 1.5656(2.20E-5)† 1.5780(1.04E-4) 1.5779(7.30E-5)
8 2.1386(5.66E-4) 2.1332(3.07E-3) 2.1386(3.14E-4) 2.1367(4.00E-6) 2.1385(5.80E-5) 2.1386(9.00E-6)
10 2.5929(2.20E-5) 2.5890(3.95E-3) 2.5929(1.50E-5) 2.5926(1.72E-2) 2.5929(7.36E-2) 2.5929(2.11E-2)
15 4.1422(3.68E-1) 4.1769(5.67E-1) 4.1631(4.29E-2) 4.1701(7.82E-2) 4.1202(5.30E-2) 4.1663(8.62E-2)

C3-DTLZ4

3 8.4280(1.23E-2) 8.4280(1.16E-3) 8.4165(6.70E-3)† 8.4161(1.35E-2)† 8.4150(9.29E-2)† 8.4166(8.02E-2)†

5 49.5453(2.20E-3) 49.5451(7.20E-2) 49.5330(5.80E-3)† 49.5327(6.90E-3)† 49.5346(1.67E-2)† 49.5257(3.93E-2)†

8 546.4971(4.56E-2) 546.4971(1.10E-3) 546.4951(4.20E-3) 546.4943(2.29E-2) 546.4933(3.73E-2) 546.4942(4.21E-2)
10 2654.4042(9.19E-2) 2654.4042(7.84E-2) 2654.4042(5.37E-2) 2654.4041(1.98E-2) 2654.4042(3.24E-2) 2654.4042(3.15E-2)
15 136803.0202(4.13E-2) 136802.2201(3.70E-2)† 136802.2302(5.26E-2)† 136802.1233(9.10E-2)† 136802.1921(9.80E-0)† 136802.0201(6.23E-1)†

† denotes the performance of C-TAEA is significantly better than the other peers according to
the Wilcoxon’s rank sum test at a 0.05 significance level; ‡ denotes the corresponding algorithm
significantly outperforms C-TAEA.

The comparison results of IGD and HV values are given in Table 1 and Table 2 respectively. Gen-
erally speaking, our proposed C-TAEA produces superior IGD and HV values on most test instances.

Let us first look at the Type-1 constrained problem. Although the feasible region of C1-DTLZ1
is only a narrow region above the PF, it actually does not pose any difficulty to all algorithms. In
particular, all algorithms, especially those purely feasibility-driven ones, just simply push solutions
toward the feasible boundary. As for C1-DTLZ3, C-TAEA shows the best performance on all 3- to
15-objective problem instances. In particular, it obtains around 50 times smaller IGD values than
the other peer algorithms on average; only C-TAEA obtains effective HV values while the HV values
obtained by the other peer algorithms are all 0, which means that the obtained non-dominated solutions
are all dominated by zr. As shown in Fig. 2 of the supplementary document, C1-DTLZ3 places an
infeasible barrier in the attainable objective space, which obstructs the population for converging to
the true PF. As discussed in Section 2.2, due to their feasibility-driven selection strategy, the other
peer algorithms cannot provide any further selection pressure to push the population forward when it
approaches the outer boundary of this infeasible barrier, as shown in Fig. 41. In contrast, since the
selection mechanism of the DA does not take the feasibility information into account, it can constantly
push the solutions of the DA toward the PF without considering the existence of this infeasible barrier.
In the meanwhile, the CA can at the end overcome this infeasible barrier via the restricted mating
selection between the CA and DA. We also notice that C-TAEA cannot push solutions to fully converge
on the PF in high-dimensional cases as shown in Fig. 17 to 20 of the supplementary document. This
is because the size of the infeasible barrier increases with the dimensionality. It makes C1-DTLZ3
even more difficult in a many-objective scenario. Nevertheless, the solutions obtained by C-TAEA are
much closer to the PF than the other peer algorithms.

The Type-2 constrained problem, i.e., C2-DTLZ2, spreads several feasible regions on disparate
parts of the PF. All algorithms do not have any difficulty in finding at least one feasible PF seg-
ment, whereas only C-TAEA can find all disparately distributed small feasible PF segments as shown
in Fig. 5. The reason that leads to this phenomenon is similar to C1-DTLZ3. Specifically, each feasible
region is small when setting a small r in C2-DTLZ2, thus different feasible regions are separated by
large infeasible barriers. In this case, if an algorithm finds one of the feasible PF segments, it hardly
has a sufficient selection pressure to jump over this local feasible PF segment. However, due to the

1We only show the 3-objective scatter plots in this paper, while the high-dimensional plots, which are not as intuitive
as the 3-objective scenarios, are put in the supplementary document.
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Figure 4: Scatter plots of the population obtained by C-TAEA and the peer algorithms on C1-DTLZ3
(median IGD value).

existence of the DA in C-TAEA, it complements the coverage of the CA. As shown in Fig. 6, solutions
in the CA and DA perfectly complements each other in terms of the coverage over the PF. As a result,
the DA helps drive the CA explore new feasible regions.
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Figure 5: Scatter plots of the population obtained by C-TAEA and the peer algorithms on C2-DTLZ2
(median IGD value).

As for the Type-3 constrained problems, i.e., C3-DTLZ1 and C3-DTLZ4, the original PF of the
baseline problem becomes infeasible when considering the constraints while the new PF is formed by
the feasible boundaries. In terms of the constraint handling, this type of problems does not provide too
much difficulty. From the comparison results shown in Table 1 and Table 2, we find that all algorithms
obtain comparable IGD and HV values on all C3-DTLZ1 and C3-DTLZ4 problem instances. In
particular, C-TAEA is outperformed by C-MOEA/D on the 5-objective C3-DTLZ1 problem instance;
and it is outperformed by C-NSGA-II on the 8- and 10-objective C3-DTLZ4 problem instances. In
general, due to the advanced selection mechanisms of the CA and DA for balancing convergence and
diversity, C-TAEA obtains better IGD and HV values on most cases.

5.2 DC-DTLZ Benchmark Suite

The comparison results of IGD and HV values on the DC-DTLZ benchmark suite are given in Table 3
and Table 4 respectively. From these results, it is obvious to see the overwhelmingly superior perfor-

13



0

0.25
0.5

0.75
1

0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

f1

f2

f 3
C-TAEA (CA + DA)

0

0.25
0.5

0.75
1

0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

f1

f2

f 3

C-TAEA (CA)

0

0.25
0.5

0.75
1

0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

f1

f2

f 3

C-TAEA (DA)

Figure 6: Comparison of the solutions finally obtained in CA and DA on C2-DTLZ2 (median IGD
value).

Table 3: Comparison results on IGD metric (median and IQR) for C-TAEA and the other peer
algorithms on DC-DTLZ Benchmark Suite

m C-TAEA C-NSGA-III C-MOEA/D C-MOEA/DD I-DBEA CMOEA

DC1-DTLZ1

3 5.638E-2(8.10E-5) 5.990E-2(1.59E-5)† 1.835E-1(1.26E-1)† 1.042E-1(2.03E-3)† 5.843E-2(3.38E-3)† 5.843E-2(3.65E-3)†

5 7.301E-2(3.76E-3) 7.655E-2(1.41E-2)† 7.327E-2(1.71E-4)† 8.705E-2(3.75E-3)† 7.344E-2(3.91E-4)† 7.640E-2(3.38E-3)†

8 1.086E-1(6.44E-4) 1.104E-1(9.78E-4)† 1.414E-1(1.51E-2)† 1.175E-1(7.30E-2)† 1.290E-1(8.13E-2)† 1.291E-1(5.20E-3)†

10 1.189E-1(2.84E-3) 1.206E-1(3.34E-3)† 1.524E-1(5.84E-3)† 1.278E-1(4.24E-2)† 1.545E-1(6.27E-2)† 1.529E-1(8.16E-3)†

15 1.753E-1(1.83E-2) 1.984E-1(4.11E-3)† 2.017E-1(6.17E-2)† 1.772E-1(5.25E-3)† 2.070E-1(7.79E-2)† 1.986E-1(2.06E-2)†

DC1-DTLZ3

3 1.466E-1(7.62E-4) 2.720E-1(1.31E-1)† 1.349E-1(3.77E-1)† 2.908E-1(1.18E-1)† 5.140E-1(3.75E-1)† 5.140E-1(3.77E-1)†

5 2.083E-1(2.54E-3) 2.040E-1(1.01E-2)† 3.947E-1(1.18E-4)† 2.318E-1(7.15E-4)† 3.948E-1(8.69E-4)† 3.947E-1(2.47E-4)†

8 3.405E-1(8.35E-5) 4.062E-1(3.03E-2)† 4.330E-1(1.68E-3)† 3.639E-1(5.28E-2)† 4.344E-1(8.13E-3)† 3.422E-1(4.01E-2)†

10 3.886E-1(3.18E-3) 4.586E-1(4.89E-2)† 4.596E-1(4.06E-3)† 4.154E-1(9.14E-3)† 4.456E-1(2.23E-3)† 4.235E-1(5.23E-3)†

15 8.009E-1(5.10E-3) 8.287E-1(6.23E-3)† 8.456E-1(6.28E-2)† 8.034E-1(5.80E-3)† 8.150E-1(1.26E-2)† 8.144E-1(7.20E-3)†

DC2-DTLZ1

3 2.199E-2(8.44E-3) 1.760E+1(3.28E-2)† 2.328E+1(3.38E-2)† 2.744E+1(5.08E-2)† 2.167E+1(8.49E-2)† 2.248E+1(7.27E-2)†

5 5.371E-2(3.07E-2) 1.644E+1(8.56E-2)† 1.308E+1(1.24E-2)† 2.696E+1(9.03E-2)† 1.684E+1(5.80E-2)† 1.894E+1(5.53E-2)†

8 9.937E-2(8.10E-2) 1.275E+1(3.69E-2)† 2.033E+1(4.32E-2)† 2.393E+1(3.55E-2)† 1.774E+1(4.34E-3)† 2.629E+1(7.50E-2)†

10 1.048E-1(8.65E-3) 1.056E-1(8.09E-2)† 1.489E+1(2.84E-2)† 1.851E+1(1.76E-2)† 1.058E-1(7.89E-2)† 2.176E+1(5.82E-2)†

15 2.308E-1(4.02E-2) 1.720E+1(6.54E-2)† 1.918E+1(7.47E-2)† 1.510E+1(4./7E-2)† 1.881E+1(9.25E-2)† 1.564E+1(6.04E-3)†

DC2-DTLZ3

3 5.498E-2(6.78E-2) 1.203E+2(3.71E-2)† 5.668E+1(7.42E-2)† 1.204E+2(1.18E-3)† 1.202E+2(2.29E-2)† 1.204E+2(5.93E-2)†

5 1.667E-1(9.36E-3) 5.692E+1(5.38E-2)† 5.657E+1(8.00E-2)† 1.204E+2(5.72E-2)† 1.204E+2(4.31E-2)† 5.679E+1(3.80E-2)†

8 5.674E+1(4.65E-2) 5.701E+1(6.01E-2)† 1.206E+2(9.71E-3)† 5.701E+1(9.00E-2)† 5.688E+1(3.18E-2)† 1.206E+2(4.85E-2)†

10 3.836E-1(6.50E-2) 5.715E+1(7.56E-2)† 5.700E+1(3.04E-2)† 1.206E+2(2.76E-2)† 5.701E+1(2.92E-2)† 1.205E+2(4.35E-2)†

15 7.959E-1(8.68E-2) 5.726E+1(6.86E-2)† 1.208E+2(4.42E-2)† 1.209E+2(6.18E-2)† 5.734E+1(4.44E-2)† 5.729E+1(7.27E-2)†

DC3-DTLZ1

3 5.034e-2(1.72E-4) 9.745E+0(5.64E-3)† 9.746E+0(7.80E-3)† 9.789E+0(8.76E-4)† 9.745E+0(2.02E-3)† 9.755E+0(1.29E-2)†

5 8.554E-1(1.29E-3) 7.702E+0(2.60E-2)† 8.165E+0(1.78E-1)† 8.467E+0(1.21E-1)† 1.847E+1(1.03E+1)† 8.408E+0(1.71E-3)†

8 1.250E-1(6.01E-1) 6.450E+0(2.30E+0)† 9.729E+0(2.03E+0)† 6.988E+0(3.74E-3)† 8.409E+0(1.30E-2)† 5.938E+0(2.83E+0)†

10 2.332E-1(5.29E-3) 5.598E+0(8.71E-2)† 2.120E+1(7.29E-3)† 6.004E+0(8.26E-3)† 8.432E+0(5./9E-2)† 7.166E+0(1.93E-3)†

15 1.837E-1(3.43E-5) 5.431E+0(4.38E-1)† 2.567E+1(1.10E+1)† 2.346E-1(7.51E+0)† 7.204E+0(1.76E+1)† 2.584E+1(1.66E+1)†

DC3-DTLZ3

3 1.250E-1(8.04E-4) 3.334E+1(7.20E-2)† 3.335E+1(6.20E-2)† 3.337E+1(2.54E-2)† 7.335E+1(8.46E-2)† 7.335E+1(4.52E-2)†

5 2.219E-1(9.16E-3) 3.349E+1(5.57E-3)† 3.340E+1(3.75E-3)† 3.341E+1(4.86E-4)† 3.340E+1(7.59E-1)† 3.339E+1(2.28E-2)†

8 3.429E-1(8.37E-2) 3.360E+1(3.52E-3)† 3.350E+1(1.88E-2)† 3.343E+1(5.02E-3)† 3.369E+1(3.39E-3)† 3.359E+1(7.59E-3)†

10 3.835E-1(1.16E-3) 3.362E+1(9.10E-2)† 7.377E+1(9.92E-3)† 7.346E+1(8.57E-3)† 7.376E+1(7.36E-2)† 7.377E+1(4.91E-2)†

15 7.872E-1(2.33E-2) 7.411E+1(3.62E-3)† 1.541E+2(8.61E-3)† 7.407E+1(9.35E-2)† 7.416E+1(4.29E-2)† 7.407E+1(5.49E-2)†

† denotes the performance of C-TAEA is significantly better than the other peers according to the Wilcoxon’s rank sum test at
a 0.05 significance level; ‡ denotes the corresponding algorithm significantly outperforms C-TAEA.
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Table 4: Comparison results on HV metric (median and IQR) for C-TAEA and the other peer algo-
rithms on DC-DTLZ Benchmark Suite

m C-TAEA C-NSGA-III C-MOEA/D C-MOEA/DD I-DBEA CMOEA

DC1-DTLZ1

3 1.2006(1.70E-2) 1.1982(9.96E-2)† 0.9631(2.81E-2)† 1.1845(3.05E-2)† 1.1883(9.25E-2)† 1.1883(8.40E-3)†

5 1.4783(3.27E-2) 1.4725(3.36E-2)† 1.4783(5.05E-2)† 1.4762(8.46E-2)† 1.4782(7.29E-2)† 1.4779(3.13E-2)†

8 1.9682(1.24E-2) 1.9347(8.57E-2)† 1.9660(8.95E-2)† 1.9655(5.82E-2)† 1.9678(5.45E-2)† 1.9676(8.14E-2)†

10 2.3890(3.67E-3) 2.3113(4.34E-2)† 2.3792(3.64E-2)† 2.3801(4.30E-3)† 2.3797(7.50E-2)† 2.3810(8.70E-3)†

15 4.1012(1.73E-2) 4.0031(2.76E-2)† 4.0122(1.78E-2)† 4.0823(7.88E-2)† 4.0911(5.84E-2)† 4.0532(4.03E-2)†

DC1-DTLZ3

3 0.6339(6.51E-2) 0.5088(7.54E-2)† 0.6694(3.99E-2)† 0.5386(9.32E-2)† 0.4545(6.00E-3)† 0.4545(6.76E-2)†

5 1.2656(3.68E-2) 1.2582(7.39E-2)† 1.1463(1.20E-3)† 1.1712(2.26E-2)† 1.1467(5.86E-2)† 1.1462(9.40E-3)†

8 1.9829(5.39E-2) 1.8461(7.95E-2)† 1.9301(5.70E-2)† 1.9640(4.34E-2)† 1.9284(3.78E-2)† 1.9793(4.67E-2)†

10 2.5181(6.01E-2) 2.3880(9.70E-3)† 2.4903(9.02E-2)† 2.5083(3.17E-2)† 2.4902(4.92E-2)† 2.4986(6.52E-2)†

15 4.1700(7.56E-2) 4.0321(3.01E-2)† 4.0422(2.80E-2)† 4.0282(2.86E-2)† 3.9123(4.41E-2)† 4.1028(8.65E-2)†

DC2-DTLZ1

3 1.1610(5.15E-4) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

5 1.5781(2.15E-4) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

8 2.1386(5.66E-4) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

10 2.5929(2.20E-5) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

15 4.1422(3.68E-1) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

DC2-DTLZ3

3 0.7377(3.68E-2) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

5 1.3087(7.23E-2) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

8 2.0013(5.55E-2) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

10 2.5101(3.50E-2) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

15 4.0832(9.14E-2) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

DC3-DTLZ1

3 1.2134(1.10E-5) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

5 1.4751(2.53E-3) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

8 1.9429(1.94E+0) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

10 2.3933(1.05E-1) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

15 4.0012(4.32E-2) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

DC3-DTLZ3

3 0.6298(4.74E-2) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

5 1.1880(2.35E-2) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

8 1.7614(9.28E-2) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

10 2.3748(6.13E-2) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

15 4.1326(1.28E-2) 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)† 0.0000(0.00E+0)†

† denotes the performance of C-TAEA is significantly better than the other peers according to
the Wilcoxon’s rank sum test at a 0.05 significance level; ‡ denotes the corresponding algorithm
significantly outperforms C-TAEA.
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mance of C-TAEA over the other peer algorithms, given the observation that C-TAEA obtains the
best IGD and HV values in all comparisons. The following paragraphs try to decipher the potential
reasons that lead to the ineffectiveness of the other peer algorithms.

Let us start from the Type-1 constrained problem. As described in Section I-B1) of the sup-
plementary document, the constraints restrict the feasible region to a couple of narrow cone-shaped
strips. Similar to C2-DTLZ2, the other peer algorithms have a risk of being trapped in one feasi-
ble region thus fail to find all feasible PF segments. However, DC1-DTLZ1 and DC1-DTLZ3 seem
to be less challenging than C2-DTLZ2 with a small r setting, given the observation that some peer
algorithms are able to find a good number of solutions in different feasible PF segments as shown
in Fig. 7 and Fig. 8. This might be attributed to the g(x) function of the baseline test problems,
i.e., DTLZ1 and DTLZ3, which can make the crossover and mutation generate offspring far apart
from their parents. Therefore, we can expect that solutions have some opportunities to jump over
the locally feasible region. Nevertheless, as shown in Table 3 and Table 4, the IGD and HV values
obtained by our proposed C-TAEA constantly outperform the other peer algorithms and the better
results are with a statistical significance.
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Figure 7: Scatter plots of the population obtained by C-TAEA and the peer algorithms on DC1-DTLZ1
(median IGD value).
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Figure 8: Scatter plots of the population obtained by C-TAEA and the peer algorithms on DC1-DTLZ3
(median IGD value).

The Type-2 constrained problem seems to be similar to C1-DTLZ1, at first glance, as shown in
Fig. 8 and Fig. 9 of the supplementary document, where the constraints make the feasible region be
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reduced to a thin ribbon zone above the PF. However, it is more challenging due to the fluctuation in
the CV of an infeasible solution when it approaches the PF, as shown in Fig. 10 of the supplementary
document. As shown in Fig. 9 and Fig. 10, we can clearly see that all other peer algorithms are
trapped in a region far away from the PF. As the problem definitions of DC2-DTLZ1 and DC2-
DTLZ3 shown in the supplementary document, all solutions obtained by the other peer algorithms
are infeasible. Their failures on this type of constrained problems can be attributed to their feasibility-
driven selection mechanisms, which drive the population fluctuate between the CV’s local optima. As
for our proposed C-TAEA, its success can be owed to the use of the DA. In particular, the selection
mechanism of the DA does not take the CV into account so that it has sufficient selection pressure to
move toward the PF. As shown in Fig. 9 and Fig. 10, only C-TAEA finally find solutions on the PF.
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Figure 9: Scatter plots of the population obtained by C-TAEA and the peer algorithms on DC2-DTLZ1
(median IGD value).

0

0.25
0.5

0.75
1

0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

f1

f2

f 3

C-TAEA

0
26

52
78

104
130

0
26 52 78

104 130

0

26

52

78

104

130

f1

f2

f 3

C-NSGA-III

0
12

24
36

48
60

0
12 24 36 48 60

0

12

24

36

48

60

f1

f2

f 3

C-MOEA/D

0
20

40
60

80
100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

f1

f2

f 3

C-MOEA/DD

0
20

40
60

80
100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

f1

f2

f 3

I-DBEA

0
22

44
66

88
110

0 22 44 66 88 110

0

22

44

66

88

110

f1

f2

f 3

CMOEA

Figure 10: Scatter plots of the population obtained by C-TAEA and the peer algorithms on DC2-
DTLZ3 (median IGD value).

As for the Type-3 constrained problem, its constraints are a combination of the previous two. In
particular, the feasible regions are restricted to a couple of segmented cone stripes. In addition, there
exists the same fluctuation, as the Type-2 constrained problem, in the CV of an infeasible solution
when it approaches the PF. In this case, the other peer algorithms are not only struggling on jumping
over a particular locally feasible region, but also have a significant trouble with the fluctuation (back
and forth) of the population. Again, the success of our proposed C-TAEA is also attributed to the
collaborative and complementary effects of two co-evolving archives. As shown in Fig. 11 and Fig. 12,
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only C-TAEA finds all feasible PF segments while the other peer algorithms are stuck at some locally
feasible regions away from the PF.
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Figure 11: Scatter plots of the population obtained by C-TAEA and the peer algorithms on DC3-
DTLZ1 (median IGD value).
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Figure 12: Scatter plots of the population obtained by C-TAEA and the peer algorithms on DC3-
DTLZ3 (median IGD value).

5.3 Further Analysis

From the experimental results shown in Section 5.1 and Section 5.2, we have witnessed the superior
performance of C-TAEA for solving various constrained multi-objective benchmark problems. To
have a better understanding of its design principles, this subsection will investigate some important
algorithmic components of C-TAEA by comparing it with the following two variants.

• Variant-I: As shown in lines 15 to 21 of Algorithm 2, we iteratively remove the worst solution from
the most crowded region when updating the CA. In particular, the worst solution is determined
in terms of both its local crowdedness and its fitness value as defined in equation (11). This
operation mainly aims to further improve the population diversity. To validate its effectiveness,
we develop a variant in which the worst solution is simply defined as the one having the worst
fitness value within the currently identified most crowded region.
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• Variant-II: We claimed that the collaboration between the CA and DA is partially implemented
by the restricted mating selection that automatically chooses the appropriate mating parents for
offspring reproduction according to their evolution status. To validate the effectiveness of this
operation, we develop another variant that randomly chooses mating parents from the CA and
DA with an equal probability.

In the empirical studies, we use the same parameter settings as Section 5.1 and Section 5.2 and
compare the performance of C-TAEA with these two variants on C-DTLZ and DC-DTLZ benchmark
problems. From the comparison results, i.e., the IGD and HV values respectively shown in Table
IV and Table V of the supplementary document, we can see that the performance of C-TAEA and
its two variants are comparable when the constraints are not difficult to solve, e.g., C1-DTLZ1, C3-
DTLZ1/DTLZ4; whereas the superiority of C-TAEA becomes evident otherwise. More specifically, we
find that Variant-I fails to maintain a good diversity when the feasible region is a small segment, e.g.,
C2-DTLZ2, DC1-DTLZ1/DTLZ3, DC3-DTLZ1/DTLZ3. Fig. 13 shows a comparison of the solutions
found by C-TAEA and Variant-I on C2-DTLZ2 with r = 0.1. From this figure, we can see that the
solutions found by Variant-I are sparsely distributed within the feasible region. This is because the
purely fitness-based selection strategy tends to drive solutions toward the corresponding weight vector
within the feasible region as much as possible.

As for Variant-II, its random mating selection mechanism does not take enough advantage of the
complementary effect of the CA and DA, thus it fails to help the algorithm overcome the locally
infeasible barrier, e.g., C1-DTLZ3, DC2-DTLZ1/DTLZ3, DC3-DTLZ1/DTLZ3.
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Figure 13: Comparative results on the two-objective C2-DTLZ2.

5.4 Case Study: Water Distribution Network Optimization

Having tested C-TAEA’s ability in solving various kinds of constrained benchmark problems, this
section tends to investigate the performance of C-TAEA and the other peer algorithms on a real-
world case study about optimal design of the water distribution network (WDN). In the past decade,
multi-objective optimal design and rehabilitation of a WDN has attracted an increasing attention [44].
The shift from the least-cost design to a multi-objective performance-based design advances decision
makers’ understanding of trade-off relationship between conflicting design objectives [45].

This paper uses the Anytown WDN, one of the most popular benchmark networks, as the case
study. Anytown WDN has many typical features and challenges that can be found in real-world
networks, e.g., pump scheduling, tank storage provision, and fire-fighting capacity provision. The
network layout is shown in Fig. 14, where it has 35 pipes, 2 storage tanks, and 3 identical pumps
delivering water from the treatment plant into the system. To meet the city expansion and increasing
demands, 77 decision variables are considered, including 35 variables related to the existing pipes (with
options of cleaning and lining or duplication with a parallel pipe), six new pipe diameters, 12 variables
for two potential tanks, and 24 variables for the number of pumps in operation during 24 hours of a
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Figure 14: Layout of the anytown WDN.

day. In this paper, the WDN design problem is formulated as a four-objective optimization problem
with two constraints. In particular, we consider costs, resilience index, statistical flow entropy and
water age as the objective functions. More detailed descriptions of the problem formulation can be
found in Section IV of the supplementary document.
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Figure 15: Box plots of HV obtained by different algorithms.

In the experiment, C-TAEA and the other five peer algorithms use the solution encoding scheme
as suggested in [46]. The population size is set to N = 100, and the number of function evaluations
used for each algorithm is set to 10, 000 × N . The reproduction operators and their corresponding
parameters are still set the same as before. Since the true PF is unknown for this real-world WDN
model, we only use the HV as the performance metric where zr = (1.1, · · · , 1.1)T . In particular, we
normalize the objective functions before calculating the HV metric. From the box plots (with respect
to 51 independent runs) shown in Fig. 15, we can clearly see that our proposed C-TAEA shows better
performance than the other five peer algorithms.
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6 Conclusions and Future Directions

In this paper, we have suggested a parameter-free constraint handling technique, a two-archive evo-
lutionary algorithm (C-TAEA), for constrained multi-objective optimization. In C-TAEA, we simul-
taneously maintain two co-evolving archives. Specifically, one population, denoted as CA, mainly
focuses on driving the population toward the PF; while the other one, denoted as DA, mainly tends
to explore the areas under-exploited by the CA (even those infeasible regions) thus provide more
diversified information. In this case, the CA and DA have different behaviors and complementary
effects. In particular, they complement each other via a restricted mating selection mechanism which
selects complementary mating parents for offspring reproduction. The performance of C-TAEA has
been investigated on a series of benchmark problems with various types of constraints and up to 15
objectives. The empirical results fully demonstrate its competitiveness on CMOPs, in comparison
to five state-of-the-art constrained EMO algorithms. In addition to artificial benchmark problems,
the effectiveness of C-TAEA has also been validated on a real-world case study of the WDN design
optimization.

As previously also demonstrated in [15–17], we believe that C-TAEA is more than a specific
algorithm. Instead, its basic idea, co-evolving multiple complementary archives, can be widely used
in the general EMO algorithm design. In future, it is worth further investigating its underlying
mechanisms from both algorithm design and theoretical foundation perspectives. Furthermore, we
plan to investigate the effectiveness of this two-archive co-evolving framework on a wider range of
problems, such as unconstrained MOP including those with complex properties (e.g., problems with
complecated PSs [47] and imbalanced convergence and diversity [48]), dynamic optimization (e.g.,
problems with a changing number of objectives or constraints [49]), and other real-world applications.
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