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Abstract 51 

The indigenous populations of inner Eurasia, a huge geographic region covering the central 52 

Eurasian steppe and the northern Eurasian taiga and tundra, harbor tremendous diversity in their genes, 53 

cultures and languages. In this study, we report novel genome-wide data for 763 individuals from Armenia, 54 

Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine, and Uzbekistan. We furthermore 55 

report additional damage-reduced genome-wide data of two previously published individuals from the 56 

Eneolithic Botai culture in Kazakhstan (~5,400 BP). We find that present-day inner Eurasian populations 57 

are structured into three distinct admixture clines stretching between various western and eastern Eurasian 58 

ancestries, mirroring geography. The Botai and more recent ancient genomes from Siberia show a 59 

decrease in contribution from so-called “ancient North Eurasian” ancestry over time, detectable only in the 60 

northern-most “forest-tundra” cline. The intermediate “steppe-forest” cline descends from the Late Bronze 61 

Age steppe ancestries, while the “southern steppe” cline further to the South shows a strong West/South 62 

Asian influence. Ancient genomes suggest a northward spread of the southern steppe cline in Central Asia 63 

during the first millennium BC. Finally, the genetic structure of Caucasus populations highlights a role of 64 

the Caucasus Mountains as a barrier to gene flow and suggests a post-Neolithic gene flow into North 65 

Caucasus populations from the steppe. 66 

67 

68 
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Present-day human population structure is often marked by a correlation between geographic and genetic 69 

distances1,2, reflecting continuous gene flow among neighboring groups, a process known as “isolation by 70 

distance”. However, there are also striking failures of this model, whereby geographically proximate 71 

populations can be quite distantly related. Such barriers to gene flow often correspond to major geographic 72 

features, such as the Himalayas3 or the Caucasus Mountains4. Many cases also suggest the presence of 73 

social barriers to gene flow. For example, early Neolithic farming populations in Central Europe show a 74 

remarkable genetic homogeneity suggesting minimal genetic exchange with local hunter-gatherer 75 

populations through the initial expansion; mixing of these two gene pools became evident only after 76 

thousands of years in the middle Neolithic5. Present-day Lebanese populations provide another example 77 

by showing a population stratification reflecting their religious community6. There are also examples of 78 

geographically very distant populations that are closely related: for example, people buried in association 79 

with artifacts of the Yamnaya horizon in the Pontic-Caspian steppe and the contemporaneous Afanasievo 80 

culture 3,000 km east in the Altai-Sayan Mountains7,8. 81 

The vast region of the Eurasian inland (“inner Eurasia” herein) is split into distinct ecoregions, 82 

such as the Eurasian steppe in central Eurasia, boreal forests (taiga) in northern Eurasia, and the Arctic 83 

tundra at the periphery of the Arctic Ocean (Fig. 1). These ecoregions stretch in an east-west direction 84 

within relatively narrow north-south bands. Various cultural features show a distribution that broadly 85 

mirrors the eco-geographic distinction in inner Eurasia. For example, indigenous peoples of the Eurasian 86 

steppe traditionally practice nomadic pastoralism9,10, while northern Eurasian peoples in the taiga mainly 87 

rely on reindeer herding and hunting11. The subsistence strategies in each of these ecoregions are often 88 

considered to be adaptations to the local environments12. 89 

At present there is limited information about how environmental and cultural influences are 90 

mirrored in the genetic structure of inner Eurasians. Recent genome-wide studies of inner Eurasians 91 

mostly focused on detecting and dating genetic admixture in individual populations13-16. So far only three 92 

studies have reported recent genetic sharing between geographically distant populations based on the 93 

analysis of “identity-by-descent” segments13,17,18. One study reports a long-distance extra genetic sharing 94 
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between Turkic populations based on a detailed comparison between Turkic-speaking groups and their 95 

non-Turkic neighbors13. The other two studies extend this approach to some Uralic and Yeniseian-96 

speaking populations17,18. However, a comprehensive spatial genetic analysis of inner Eurasian 97 

populations is still lacking. 98 

Ancient DNA studies have already shown that human populations of this region have dramatically 99 

transformed over time. For example, the Upper Paleolithic genomes from the Mal’ta and Afontova Gora 100 

sites in southern Siberia revealed a genetic profile, often called “Ancient North Eurasians (ANE)”, which 101 

is deeply related to Paleolithic/Mesolithic hunter-gatherers in Europe and also substantially contributed to 102 

the gene pools of present-day Native Americans, Siberians, Europeans and South Asians19,20. Studies of 103 

Bronze Age steppe populations found the appearance of additional Western Eurasian-related ancestries 104 

across the steppe from the Pontic-Caspian to the Altai-Sayan regions, here we collectively refer to as 105 

“Western Steppe Herders (WSH)”: the earlier populations associated with the Yamnaya and Afanasievo 106 

cultures (often called “steppe Early and Middle Bronze Age”; “steppe_EMBA”) and the later ones 107 

associated with many cultures such as Potapovka, Sintashta, Srubnaya and Andronovo to name a few 108 

(often called “steppe Middle and Late Bronze Age”; “steppe_MLBA”)8. The steppe_MLBA gene pool 109 

was largely descended from the preceding steppe_EMBA gene pool, with a substantial contribution from 110 

Late Neolithic Europeans.21 Also, recent archaeogenetic studies trace multiple large-scale trans-Eurasian 111 

migrations over the last several millennia using ancient inner Eurasian genomes22,23, including individuals 112 

from the Eneolithic Botai culture in northern Kazakhstan in the 4th millennium BC24. These studies now 113 

provide a rich context to interpret present-day population structure of inner Eurasians and to characterize 114 

ancient admixtures in fine resolution. 115 

In this study, we analyzed newly produced genome-wide data for 763 individuals belonging to 60 116 

self-reported ethnic groups to provide a dense portrait of the genetic structure of inner Eurasians. We also 117 

produced damage-reduced genome-wide data of two ancient Botai individuals, whose genome-wide data 118 

were recently published23, to explore the genetic structure of pre-Bronze Age populations in inner Eurasia 119 

(Table 1). We aimed at characterizing the genetic composition of inner Eurasians in fine resolution by 120 
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applying both allele frequency- and haplotype-based methods. Based on the fine-scale genetic profile, we 121 

further explored if and where the barriers and conduits of gene flow exist in inner Eurasia. 122 

123 

124 

Results 125 

126 

Present-day Inner Eurasians form distinct east-west genetic clines mirroring geography. We 127 

generated genome-wide genotype data of 763 participants who represent a majority of large ethnic groups 128 

in Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine, and Uzbekistan (Fig. 129 

1 and Table S1). We merged new data with published data of present-day20,25,26 and ancient 130 

individuals3,8,19-23,27-42 (Table S2). The final data set covers 581,230 autosomal single nucleotide 131 

polymorphisms (SNPs) in the Affymetrix Axiom® Genome-wide Human Origins 1 (“HumanOrigins”) 132 

array platform43. 133 

In a Principal Component Analysis (PCA) of Eurasian individuals, we find that PC1 separates 134 

eastern and western Eurasian populations, PC2 splits eastern Eurasians along a north-south cline, and PC3 135 

captures variation in western Eurasians with Caucasus and northeastern European populations at opposite 136 

ends (Fig. 2a and Supplementary Figs. 1-2). Inner Eurasians are scattered across PC1 in between, 137 

mirroring their geographic locations. Strikingly, they seem to be structured into three distinct west-east 138 

genetic clines running between different western and eastern Eurasian groups, instead of being evenly 139 

spaced in PC space. The uppermost cline, composed of individuals from northern Eurasia, mostly 140 

speaking Uralic or Yeniseian languages, connects northeast Europeans and the Uralic (Samoyedic) 141 

speaking Nganasans from northern Siberia. The other two lower clines are occupied by individuals from 142 

the Eurasian steppe, mostly speaking Turkic and Mongolic languages. Both clines run into 143 

Turkic/Mongolic-speaking populations in southern Siberia and Mongolia, and further into Tungusic-144 

speaking populations in Manchuria and the Russian Far East in the East; however, they diverge in the west, 145 

one heading to the Caucasus and the other heading to populations of the Volga-Ural area (Fig. 2 and 146 
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Supplementary Fig. 2). Four groups, Daur, Mongola, Tu and Dungans, are located alongside other East 147 

Asian populations and displaced from the three inner Eurasian clines. 148 

A model-based clustering analysis using ADMIXTURE shows a similar pattern (Fig. 2b and 149 

Supplementary Fig. 3). Overall, the proportions of ancestry components associated with eastern or western 150 

Eurasians are well correlated with longitude in inner Eurasians (Fig. 3). Notable outliers include known 151 

historical migrants such as Kalmyks, Nogais and Dungans. The Uralic- and Yeniseian-speaking 152 

populations, as well as Russians from multiple locations, derive most of their eastern Eurasian ancestry 153 

from a component most enriched in Nganasans, while Turkic/Mongolic-speakers have this component 154 

together with another component most enriched in populations from the Russian Far East, such as Ulchi 155 

and Nivkh (Supplementary Fig. 3). Turkic/Mongolic-speakers comprising the bottom-most cline have a 156 

distinct western Eurasian ancestry profile: they have a high proportion of a component most enriched in 157 

Mesolithic Caucasus hunter-gatherers (“CHG”)30 and Neolithic Iranians (“Iran_N”)20 and frequently 158 

harbor another component enriched in present-day South Asians (Supplementary Fig. 4). Based on the 159 

PCA and ADMIXTURE results, we heuristically assign inner Eurasians into three clines: the “forest-160 

tundra” cline includes Russians and all Uralic- and Yeniseian-speakers, the “steppe-forest” cline includes 161 

Turkic- and Mongolic-speaking populations from the Volga and the Altai-Sayan regions and southern 162 

Siberia, and the “southern steppe” cline includes the rest of populations. We separate four groups (Daur, 163 

Mongola, Tu and Dungans) as “others” (Supplementary Table 2). 164 

The genetic barriers splitting the inner Eurasians are also found in the EEMS (“estimated effective 165 

migration surface”) analysis44 (Supplementary Fig. 5). Inferred barriers to gene flow are often co-localized 166 

with geographic features or genetic gaps. We observe a barrier overlapping with the Urals, one separating 167 

Beringian populations from the rest, one separating southern Siberians from central and northern Siberians, 168 

and one separating Caucasus populations from those further to the north. The southern Siberian barrier 169 

matches with our distinction between the steppe-forest and forest-tundra populations, with the exception 170 

of two northern-most Turkic speaking populations, Yakuts and Dolgans. The Caucasus barrier also 171 

matches with our distinction between the southern steppe and steppe-forest populations. A local EEMS 172 
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analysis on the Caucasus shows fine-scale barriers and conduits of gene flow, matching with the fine-scale 173 

structure within Caucasus populations (Supplementary Note 1). 174 

175 

High-resolution tests of admixture distinguish the genetic profile of source populations in the inner 176 

Eurasian clines. We performed both allele frequency-based three-population (f3) tests and a haplotype-177 

sharing-based GLOBETROTTER analysis to characterize the admixed gene pools of inner Eurasian 178 

groups. For these group-based analyses, we manually removed 87 outliers based on PCA results 179 

(Supplementary Table 1). We also split a few inner Eurasian groups showing genetic heterogeneity into 180 

subgroups based on PCA results and their sampling locations (Supplementary Table 1). This was done to 181 

minimize false positive admixture signals. Including two Aleut populations as positive control targets, we 182 

chose a total of 73 groups as the targets of admixture tests and another 260 groups (167 present-day and 93 183 

ancient groups) as the “sources” to represent world-wide genetic diversity (Supplementary Table 2). 184 

Testing all possible pairs of 167 present-day “source” groups as references, we detect highly 185 

significant f3 statistics for 66 of 73 targets (< -3 SE; standard error; Supplementary Table 3). Negative f3 186 

values mean that allele frequencies of the target group are on average intermediate between those of the 187 

references, providing unambiguous evidence that the target population is a mixture of groups related, 188 

perhaps deeply, to the source populations.43 Extending the references to include 93 ancient groups, the 189 

remaining seven groups also have small f3 statistics around zero (-5.1 SE to +2.7 SE). Reference pairs with 190 

the most negative f3 statistics for the most part involve one eastern and one western Eurasian groups 191 

supporting the qualitative impression of east-west admixture from PCA and ADMIXTURE analysis. To 192 

highlight the difference between the distinct inner Eurasian clines, we looked into f3 results with 193 

representative reference pairs comprising two ancient western (Srubnaya to represent MLBA_steppe 194 

ancestry21 and Chalcolithic Iranians (“Iran_ChL”) to represent West/South Asian-related ancestry20; 195 

Supplementary Table 1) and three eastern Eurasian groups (Mixe, Nganasan and Ulchi). In the southern 196 

steppe cline populations, reference pairs with Chalcolithic Iranians tend to produce more negative f3 197 

statistics than those with Srubnaya while the opposite pattern is uniformly observed for the steppe-forest 198 
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and forest-tundra populations (Fig. 4a). Reference pairs with Nganasans mostly result in more negative f3 199 

statistic than those with Ulchi in the forest-tundra populations, but the opposite pattern is dominant in the 200 

southern steppe populations. The steppe-forest cline populations show an intermediate pattern: seven 201 

northern groups (Chuvash, Bashkir_north, Tatar_Zabolotniye, Todzin, Tofalar, Dolgan and Yakut) have 202 

more negative f3 with Nganasans while the others have more negative f3 with Ulchi. Most of these seven 203 

groups are also upward-shifted in PCA toward the forest-tundra cline, suggesting a cross-talk between two 204 

clines. 205 

To perform a higher resolution characterization of the admixture landscape, we performed a 206 

haplotype-based GLOBETROTTER analysis. We took a “regional” approach, meaning that all 73 target 207 

groups were modeled as a patchwork of haplotypes from the 167 reference groups but not those from any 208 

target. The goal of this approach was to minimize false negative results due to sharing of admixture 209 

history between targets. All 73 targets show a robust signal of admixture: i.e. a correlation of ancestry 210 

status shows a distinct pattern of decay over genetic distance in all bootstrap replicates (bootstrap p < 0.01 211 

for all 73 targets; Supplementary Table 4). When the relative contribution of references, categorized to 12 212 

groups (Supplementary Table 2), into the two main sources of the admixture signal (“date 1 PC 1”) is 213 

considered, we observe a pattern comparable to PCA, ADMIXTURE and f3 results (Fig. 4b). The 214 

European references provide a major contribution for the western Eurasian-related source in the forest-215 

tundra and steppe-forest populations while the Caucasus/Iranian references do so in the southern steppe 216 

populations. Similarly, Siberian references make the highest contribution to the eastern Eurasian-related 217 

source in the forest-tundra populations, followed by the steppe-forest and southern steppe ones. Admixture 218 

date estimates from GLOBETROTTER range 7-55 generations (200-1600 BP; years before present; using 219 

29 years per generation45; Supplementary Fig. 6 and Supplementary Note 2). These match with previous 220 

reports using similar methodologies13, but much younger observed admixtures in the Late Bronze and Iron 221 

Ages8,39. 222 

223 
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Admixture modeling of inner Eurasians shows multiple different temporal layers for present-day 224 

admixture clines. Using F-statistic-based approaches, we show that the Eneolithic Botai gene pool was 225 

closely related to the ANE ancestry and substantially contributed to the later Okunevo individuals 226 

(Supplementary Note 3). To test if this ancient layer left a genetic legacy in later populations of inner 227 

Eurasia, we systematically explored diverse qpAdm-based admixture models to inner Eurasian 228 

populations. 229 

Two-way mixture of Ulchi/Nganasan and Srubnaya approximates the steppe-forest populations 230 

surprisingly well (χ2 p ≥ 0.05 and ≥ 0.01 for 12/24 and 18/24 populations, respectively; Supplementary 231 

Table 5). A more complex three-way model of Ulchi+Srubnaya+AG3 fits all steppe-forest populations (χ2 232 

p ≥ 0.05 for 24/24 populations; Fig. 5 and Supplementary Table 5). Similarly, Nganasan+Srubnaya+AG3 233 

provides a good fit to most populations, but with negative contribution from AG3 (χ2 p ≥ 0.05 for 19/24 234 

populations). We interpret this as reflecting a minor heterogeneity in the eastern Eurasian source, with 235 

average affinity to the ANE ancestry is intermediate between Ulchi and Nganasan. Based on this 236 

admixture modeling, we suggest that the steppe-forest cline does not keep a detectable level of 237 

contribution from the older clines, the sources of which have higher ANE ancestry in both western and 238 

eastern Eurasian parts. 239 

In contrast, the southern steppe populations do not match with the Ulchi+Srubnaya model (χ2 p ≤ 240 

1.34×10-7; Supplementary Table 6). Adding Chalcolithic Iranians as the third ancestry significantly 241 

improves model fit with substantial contribution from them (χ2 p ≤ 5.10×10-5 with 7.0-64.6% contribution; 242 

Fig. 5 and Supplementary Table 6), although the three-way model still does not adequately explain data. 243 

Ancient individuals from the Tian Shan region22, dated to 2,200-1,100 BP, show a similar pattern 244 

(Supplementary Table 7). However, older individuals from Central Kazakhstan dated to 2,500 BP 245 

(“Saka_Kazakhstan_2500BP”)22 are adequately modeled as Nganasan+Srubnaya or Ulchi+Srubnaya+AG3 246 

(χ2 p = 0.057 and 0.824, respectively; Supplementary Table 7). 247 

For the forest-tundra populations, the Nganasan+Srubnaya model is adequate only for the two 248 

Volga region populations, Udmurts and Besermyans (Fig. 5 and Supplementary Table 8). For the other 249 
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populations west of the Urals, six from the northeastern corner of Europe are modeled with additional 250 

Mesolithic western European hunter-gatherers (“WHG”) contribution (8.2-11.4%; Supplementary Table 8), 251 

while the rest need both WHG and early Neolithic European farmers (EEF; represented by “LBK_EN”; 252 

Supplementary Table 2)5,21. Nganasan-related ancestry substantially contributes to their gene pools and 253 

cannot be removed from the model without a significant decrease in model fit (4.1% to 29.0% contribution; 254 

χ2 p ≤ 1.68×10-5; Supplementary Table 8). For the four populations east of the Urals (Enets, Selkups, Kets 255 

and Mansi), for which the above models are not adequate, Nganasan+Srubnaya+AG3 provide a good fit 256 

(χ2 p ≥ 0.018; Fig. 5 and Supplementary Table 8). Substituting Nganasan to early Bronze Age populations 257 

from the Baikal Lake region (“Baikal_EBA”; Supplementary Table 2)23, the two-way model of 258 

Baikal_EBA+Srubnaya provides a reasonable fit (χ2 p ≥ 0.016; Supplementary Table 8) and three-way 259 

model of Baikal_EBA+Srubnaya+AG3 are adequate but with negative AG3 contribution for Enets and 260 

Mansi (χ2 p ≥ 0.460; Supplementary Table 8). Bronze/Iron Age populations from southern Siberia also 261 

show a similar ancestry composition with high ANE affinity (Supplementary Table 9). The additional 262 

ANE contribution beyond the Nganasan+Srubnaya model suggests a legacy from ANE-ancestry-rich 263 

clines prior to Late Bronze Age. 264 

265 

266 

Discussion 267 

In this study, we analyzed new genome-wide data of indigenous peoples from inner Eurasia, 268 

providing a dense representation for human genetic diversity in this vast region. Our finding of inner 269 

Eurasian populations being structured into three largely distinct clines shows a striking correlation 270 

between genes, geography and language (Figs. 1-2). Ecoregion-wide, the three clines match boreal forests 271 

and tundra, forest-steppe zone and steppe/shrub-land further to the south, respectively. Language-wide, 272 

they match the distribution of the Uralic, northern and southern Turkic-speaking languages. We 273 

acknowledge that the distinction of three clines is far from complete and that there are cases of 274 

intermediate patterns. For example, Turkic- and Uralic-speakers from the Volga region are genetically 275 
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quite similar, but the Uralic speakers still have extra affinity with the Uralic speakers further to the east 276 

(e.g. Nganasans; Supplementary Fig. 4b). Likewise, a number of Turkic-speaking populations (e.g. 277 

Dolgans, Todzins, Tofalars and Tatar_Zabolotniye), living at the periphery or even inside of the taiga belt, 278 

do show a genetic influence from the forest-tundra cline (Fig. 4). 279 

It may be viewed that our sampling scheme is not uniform geographically, although gathering the 280 

vast majority of ethnic groups and quite dense geographically. Indeed, the gaps between distinct genetic 281 

clines (with only a few groups located in between) tend to correspond to the gaps in sampling locations 282 

(Fig. 1-2). Although this non-uniformity of sampling largely results from the non-uniformity in the density 283 

of (language-defined) ethnic groups, it is important to organize a future study for further sampling on 284 

sparsely populated regions between the clines (e.g. central Kazakhstan or East Siberia). 285 

The steppe cline populations derive their eastern Eurasian ancestry from a gene pool similar to 286 

contemporary Tungusic speakers from the Amur river basin (Figs. 2 and 4), thus suggesting a genetic 287 

connection among the speakers of languages belonging to the Altaic macrofamily (Turkic, Mongolic and 288 

Tungusic families). Based on our results as well as early Neolithic genomes from the Russian Far East38, 289 

we speculate that such a gene pool may represent the genetic profile of prehistoric hunter-gatherers in the 290 

Amur river basin. On the other hand, a distinct Nganasan-related eastern Eurasian ancestry in the forest-291 

tundra cline suggests a substantial separation between these two eastern ancestries. Nganasans have high 292 

genetic affinity with prehistoric individuals with the “ANE” ancestry in North Eurasia, such as the Upper 293 

Paleolithic Siberians or the Mesolithic EHG, which is exceeded only by Native Americans and by 294 

Beringians among eastern Eurasians (Supplementary Fig. 7). Also, Northeast Asians are closer to 295 

Nganasans than they are to either Beringians, Native Americans or ancient Baikal populations, and the 296 

ANE affinity in East Asians is correlated well with their affinity with Nganasans (Supplementary Fig. 8). 297 

We hypothesize that Nganasans may be relatively isolated descendants of a prehistoric Siberian meta-298 

population with high ANE affinity, which formed present-day Northeast Asians by mixing with 299 

populations related to the Neolithic Northeast Asians38. 300 
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Forest-tundra populations to the east of the Urals, such as Selkups and Kets, show excess ANE 301 

affinity, suggesting a legacy from the ANE-ancestry-rich pre-Bronze Age gene pools (Supplementary 302 

Table 8). In contrast, admixture modeling finds that no contemporary steppe-forest cline population is 303 

required to have additional ANE ancestry beyond what a mixture model of Bronze Age steppe plus 304 

present-day Eastern Eurasians can explain (Supplementary Table 5). This suggests that both western and 305 

eastern Eurasian ancestries of the steppe-forest populations are largely inherited from later gene flows 306 

since Late Bronze Age: Srubnaya-like WSH ancestry for the western Eurasian part and present-day 307 

Tungusic speaker-related ancestry for the eastern Eurasian part. Additional ancient genomes from Siberia 308 

will be critical to reconstruct changes in the ANE-related ancestries in Siberia over time and to understand 309 

the formation of Nganasan gene pool. 310 

The southern steppe populations differentiate from the steppe-forest ones to the north by having a 311 

strong genetic affinity broadly to West/ South Asian ancestries (Supplementary Fig. 4 and Supplementary 312 

Table 6). Ancient Tian Shan populations dating back up to 2,200 BP show the same property 313 

(Supplementary Table 7), while Sintashta culture-related WSH ancestry was widely reported in this region 314 

during the Late Bronze Age46. Together with the lack of West/South Asian affinity in the Saka culture 315 

individuals in Kazakhstan around 2,500 BP (Supplementary Table 7), we suggest a northward influx of 316 

West/South Asian-related ancestry into the Tian Shan region during the first half of the first millennium 317 

BC and into Kazakhstan further to the north slightly later. 318 

It will be extremely important to expand the set of available ancient genomes across inner Eurasia. 319 

Inner Eurasia has functioned as a conduit for human migration and cultural transfer since the first 320 

appearance of modern humans in this region. As a result, we observe deep sharing of genes between 321 

western and eastern Eurasian populations in multiple layers: the Pleistocene ANE ancestry in Mesolithic 322 

EHG and contemporary Native Americans, Bronze Age steppe ancestry from Europe to Mongolia, and 323 

Nganasan-related ancestry extending from western Siberia into Eastern Europe. More recent historical 324 

migrations, such as the westward expansions of Turkic and Mongolic groups, further complicate genomic 325 

signatures of admixture and have overwritten those from older events. Ancient genomes of Iron Age 326 
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steppe individuals, already showing signatures of west-east admixture in the 5th to 2nd century BC39, 327 

provide further direct evidence for the hidden old layers of admixture, which is often difficult to appreciate 328 

from present-day populations as shown in our finding of a discrepancy between the estimates of admixture 329 

dates from contemporary individuals and those from ancient genomes. 330 

331 

332 

Methods 333 

334 

Study participants and genotyping. We collected samples from 763 participants from nine countries 335 

(Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine, and Uzbekistan). The 336 

sampling strategy included sampling a majority of large ethnic groups in the studied countries. Within 337 

groups, we sampled subgroups if they were known to speak different dialects; for ethnic groups with large 338 

area, we sampled within several districts across the area. We sampled individuals whose grandparents 339 

were all self-identified members of the given ethnic groups and were born within the studied district(s). 340 

Most of the ethnic Russian samples were collected from indigenous Russian areas (present-day Central 341 

Russia) and had been stored for years in the Estonian Biocenter; samples from Mongolia, Tajikistan, 342 

Uzbekistan, and Ukraine were collected partially in the framework of the Genographic project. Most DNA 343 

samples were extracted from venous blood via the phenol-chloroform method. For this study we identified 344 

112 subgroups (belonging to 60 ethnic group labels) which were not previously genotyped on the 345 

Affymetrix Axiom® Genome-wide Human Origins 1 (“HumanOrigins”) array platform43 and selected on 346 

average 7 individuals per subgroup (Fig. 1 and Supplementary Table 1). Genome-wide genotyping 347 

experiments were performed on the HumanOrigins array platform. We removed 18 individuals from 348 

further analysis either due to high genotype missing rate (> 0.05; n=2) or due to being outliers in principal 349 

component analysis (PCA) relative to other individuals from the same group (n=16). The remaining 745 350 

individuals assigned to 60 group labels were merged to published HumanOrigins data sets of world-wide 351 

contemporary populations20 and of four Siberian ethnic groups (Enets, Kets, Nganasans and Selkups)25. 352 
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Diploid genotype data of six contemporary individuals (two Saami, two Sherpa and two Tibetans) were 353 

obtained from the Simons Genome Diversity Panel data set26. We also added ancient individuals from 354 

published studies3,8,19-23,27-42, by randomly sampling a single allele for 581,230 autosomal single nucleotide 355 

polymorphisms (SNPs) in the HumanOrigins array (Supplementary Table 2). 356 

357 

Sequencing of the ancient Botai genomes. We extracted genomic DNA from four skeletal remains 358 

belonging to two individuals and built sequencing libraries either with no uracil-DNA glycosylase (UDG) 359 

treatment or with partial treatment following published protocols47,48 (Table 1). Radiocarbon dating of 360 

BKZ001 was conducted by the CEZ Archaeometry gGmbH (Mannheim, Germany) for one of two bone 361 

samples used for DNA extraction. All libraries were barcoded with two library-specific 8-mer indices49. 362 

The samples were manipulated in dedicated clean room facilities at the University of Tübingen or at the 363 

Max Planck Institute for the Science of Human History (MPI-SHH). Indexed libraries were enriched for 364 

about 1.24 million informative nuclear SNPs using the in-solution capture method (“1240K capture”)5,21. 365 

Libraries were sequenced on the Illumina HiSeq 4000 platform with either single-end 75 bp (SE75) 366 

or paired-end 50 bp (PE50) cycles following manufacturer’s protocols. Output reads were demultiplexed 367 

by allowing up to 1 mismatch in each of two 8-mer indices. FASTQ files were processed using EAGER 368 

v1.9250. Specifically, Illumina adapter sequences were trimmed using AdapterRemoval v2.2.051, aligned 369 

reads (30 base pairs or longer) onto the human reference genome (hg19) using BWA aln/samse v0.7.1252 370 

with relaxed edit distance parameter (“-n 0.01”). Seeding was disabled for reads from non-UDG libraries 371 

by adding an additional parameter (“-l 9999”). PCR duplicates were then removed using DeDup v0.12.250 372 

and reads with Phred-scaled mapping quality score < 30 were filtered out using Samtools v1.353. We did 373 

several measurements to check data authenticity. First, patterns of chemical damages typical to ancient 374 

DNA were tabulated using mapDamage v2.0.654. Second, mitochondrial contamination for all libraries 375 

was estimated by Schmutzi55. Third, nuclear contamination for libraries derived from males was estimated 376 

by the contamination module in ANGSD v0.91056. Prior to genotyping, the first and last 3 bases of each 377 

read were masked for libraries with partial UDG treatment using the trimBam module in bamUtil 378 
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v1.0.1357. To obtain haploid genotypes, we randomly chose one high-quality base (Phred-scaled base 379 

quality score ≥ 30) for each of the 1.24 million target sites using pileupCaller 380 

(https://github.com/stschiff/sequenceTools). We used masked reads from libraries with partial UDG 381 

treatment for transition (Ts) SNPs and used unmasked reads from all libraries for transversions (Tv). 382 

Mitochondrial consensus sequences were obtained by the log2fasta program in Schmutzi with the quality 383 

cutoff 10 and subsequently assigned to haplogroups using HaploGrep258. Y haplogroup R1b was assigned 384 

using the yHaplo program59. To estimate the phylogenetic position of the Botai Y haplogroup more 385 

precisely, Y chromosomal SNPs were called with Samtools mpileup using bases with quality score ≥ 30: a 386 

total of 2,481 SNPs out of ~30,000 markers included in the 1240K capture panel were called with mean 387 

read depth of 1.2. Twenty-two SNP positions relevant to the up-to-date haplogroup R1b tree 388 

(www.isogg.org; www.yfull.com) confirmed that the sample was positive for the markers of R1b-P297 389 

branch but negative for its R1b-M269 sub-branch. 390 

The frequency distribution map of this Y chromosomal clade was created by the GeneGeo 391 

software60,61 using the average weighed interpolation procedure with the weight function of degree 3 and 392 

radius 1,200 km. The initial frequencies were calculated as proportion of samples positive for “root” R1b 393 

marker M343 but negative for M269; these proportions were calculated for the 577 populations from the 394 

in-home Y-base database, which was compiled mainly from the published datasets. 395 

396 

Analysis of population structure. We performed principal component analysis (PCA) of various groups 397 

using smartpca v13050 in the EIGENSOFT v6.0.1 package62. We used the “lsqproject: YES” option to 398 

project individuals not used for calculating PCs (this procedure avoids bias due to missing genotypes). We 399 

performed unsupervised model-based genetic clustering as implemented in ADMIXTURE v1.3.063. For 400 

that purpose, we used 118,387 SNPs with minor allele frequency (maf) 1% or higher in 3,507 individuals 401 

after pruning out linked SNPs (r2 > 0.2) using the “--indep-pairwise 200 25 0.2” command in PLINK 402 

v1.9064. For each value of K ranging from 2 to 20, we ran 5 replicates with different random seeds and 403 

took one with the highest log likelihood value. 404 
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405 

F-statistics analysis. We computed various f3 and f4 statistics using the qp3Pop (v400) and qpDstat (v711)406 

programs in the ADMIXTOOLS package43. We computed f4-statistics with the “f4mode: YES” option. For 407 

these analyses, we studied a total of 301 groups, including 73 inner Eurasian target groups and 167 408 

contemporary and 93 ancient reference groups (Supplementary Table 2). We included two groups from the 409 

Aleutian Islands (“Aleut” and “Aleut_Tlingit”; Supplementary Table 2) as positive control targets with 410 

known recent admixture. Aleut_Tlingits are Aleut individuals whose mitochondrial haplogroup lineages 411 

are related to Tlingits31. For each target, we calculated outgroup f3 statistic of the form f3(Target, X; Mbuti) 412 

against all targets and references to quantify overall allele sharing and performed admixture f3 test of the 413 

form f3(Ref1, Ref2; Target) for all pairs of references to explore the admixture signal in targets. We 414 

estimated standard error (SE) using a block jackknife with 5 centiMorgan (cM) block62. 415 

 We performed f4 statistic-based admixture modeling using the qpAdm (v632) program20 in the 416 

ADMIXTOOLS package. We used a basic set of 7 outgroups, unless specified otherwise, to provide high 417 

enough resolution to distinguish various western and eastern Eurasian ancestries: Mbuti (n=10; central 418 

African), Natufian (n=6; early Holocene Levantine)20, Onge (n=11; from the Andaman Islands), Iran_N 419 

(n=5; Neolithic Iranian)20, Villabruna (n=1; Paleolithic European)28, Ami (n=10; Taiwanese aborigine) and 420 

Mixe (n=10; Central American). Prior to qpAdm modeling, we checked if the reference groups are well 421 

distinguished by their relationship with the outgroups using the qpWave (v400) program65. 422 

We used the qpGraph (v6065) program in the ADMIXTOOLS package for graph-based admixture 423 

modeling. Starting with a graph of (Mbuti, Ami, WHG), we iteratively added AG3 (n=1; Paleolithic 424 

Siberian)28, EHG (n=4; Mesolithic hunter-gatherers from Karelia or Samara)5,23,28, and Botai onto the 425 

graph by testing all possible topologies allowing up to one additional gene flow. After obtaining the best 426 

two-way admixture model for Botai, we tested additional three-way admixture models. 427 

428 

GLOBETROTTER analysis. We performed a GLOBETROTTER analysis of admixture for 73 inner 429 

Eurasian target populations to obtain haplotype sharing based evidence of admixture, independent of the 430 
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allele frequency based f-statistics, as well as estimates of admixture dates and a fine-scale profile of their 431 

admixture sources14. We followed the “regional” approach described in Hellenthal et al.14, in which target 432 

haplotypes can only be copied from the haplotypes of 167 contemporary reference groups, but not from 433 

those of the other target groups. This approach is recommended when multiple target groups share a 434 

similar admixture history14, which is likely to be the case for our inner Eurasian populations. 435 

We jointly phased the contemporary genome data without a pre-phased set of reference haplotypes, 436 

using SHAPEIT2 v2.837 in its default setting66. We used a genetic map for the 1000 Genomes Project 437 

phase 3 data, downloaded from: https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html. We used 438 

haplotypes from a total of 2,615 individuals belonging to 240 groups (73 recipients and 167 donors; 439 

Supplementary Table 2) for the GLOBETROTTER analysis. To reduce computational burden and to 440 

provide more balanced set of donor populations, we randomly sampled 20 individuals if a group contained 441 

more than 20 individuals. Using these haplotypes, we performed GLOBETROTTER analysis following 442 

the recommended workflow14. We first ran 10 rounds of the expectation-maximization (EM) algorithm for 443 

chromosomes 4, 10, 15 and 22 in ChromoPainter v2 with “-in” and “-iM” switches to estimate chunk size 444 

and switch error rate parameters67. Both recipient and donor haplotypes were modeled as a patchwork of 445 

donor haplotypes. The “chunk length” output was obtained by running ChromoPainter v2 across all 446 

chromosomes with the estimated parameters averaged over both recipient and donor individuals (“-n 447 

238.05 -M 0.000617341”). We also generated 10 painting samples for each recipient group by running 448 

ChromoPainter with the parameters averaged over all recipient individuals (“-n 248.455 -M 449 

0.000535236”). Using the chunklength output and painting samples, we ran GLOBETROTTER with the 450 

“prop.ind: 1” and “null.ind: 1” options. We estimated significance of estimated admixture date by running 451 

100 bootstrap replicates using the “prop.ind: 0” and “bootstrap.date.ind: 1” options; we considered date 452 

estimates between 1 and 400 generations as evidence of admixture14. For populations that gave evidence 453 

of admixture by this procedure, we repeated GLOBETROTTER analysis with the “null:ind: 0” option14. 454 

We also compared admixture dates from GLOBETROTTER analysis with those based on weighted 455 

admixture linkage disequilibrium (LD) decay, as implemented in ALDER v1.368. As the reference pair, we 456 
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used (French, Eskimo_Naukan), (French, Nganasan), (Georgian, Ulchi), (French, Ulchi) and (Georgian, 457 

Ulchi) for the target group categories 1 to 5, respectively, based on their genetic profile (Supplementary 458 

Table 2). We used a minimum inter-marker distance of 1.0 cM to account for LD in the references. 459 

460 

EEMS analysis. To visualize the heterogeneity in the rate of gene flow across inner Eurasia, we 461 

performed the EEMS (“estimated effective migration surface”) analysis44. We included a total of 1,214 462 

individuals from 98 groups in the analysis (Supplementary Table 2). In this dataset, we kept 101,370 SNPs 463 

with maf ≥ 0.01 after LD pruning (r2 ≤ 0.2). We computed the mean squared genetic difference matrix 464 

between all pairs of individuals using the “bed2diffs_v1” program in the EEMS package. To reduce 465 

distortion in northern latitudes due to map projection, we used geographic coordinates in the Albers equal 466 

area conic projection (“+proj=aea +lat_1=50 +lat_2=70 +lat_0=56 +lon_0=100 +x_0=0 +y_0=0 467 

+ellps=WGS84 +datum=WGS84 +units=m +no_defs”). We converted geographic coordinates of each468 

sample and the boundary using the “spTransform” function in the R package rgdal v1.2-5. We ran five 469 

initial MCMC runs of 2 million burn-ins and 4 million iterations with different random seeds and took a 470 

run with the highest likelihood. Starting from the best initial run, we set up another five MCMC runs of 2 471 

million burn-ins and 4 million iterations as our final analysis. We used the following proposal variance 472 

parameters to keep the acceptance rate around 30-40%, as recommended by the developers44: 473 

qSeedsProposalS2 = 5000, mSeedsProposalS2 = 1000, qEffctProposalS2 = 0.0001, mrateMuProposalS2 = 474 

0.00005. We set up a total of 532 demes automatically with the “nDemes = 600” parameter. We visualized 475 

the merged output from all five runs using the “eems.plots” function in the R package rEEMSplots44. 476 

We performed the EEMS analysis for Caucasus populations in a similar manner, including a total 477 

of 237 individuals from 21 groups (Supplementary Table 2). In this dataset, we kept 95,442 SNPs with 478 

maf ≥ 0.01 after LD pruning (r2 ≤ 0.2). We applied the Mercator projection of geographic coordinates to 479 

the map of Eurasia (“+proj=merc +datum=WGS84”). We ran five initial MCMC runs of 2 million burn-480 

ins and 4 million iterations with different random seeds and took a run with the highest likelihood. Starting 481 

from the best initial run, we set up another five MCMC runs of 1 million burn-in and 4 million iterations 482 
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as our final analysis. We used the default following proposal variance parameters: qSeedsProposalS2 = 0.1, 483 

mSeedsProposalS2 = 0.01, qEffctProposalS2 = 0.001, mrateMuProposalS2 = 0.01. A total of 171 demes 484 

were automatically set up with the “nDemes = 200” parameter. 485 

486 

Life Science Reporting Summary. Further information on experimental design is available in the Life 487 

Sciences Reporting Summary. 488 

489 

Ethics Statement. The study protocol was approved by the Ethics Committee of the Research Centre for 490 

Medical Genetics, Moscow, Russia. All 763 participants who contributed their genetic materials provided 491 

a signed written informed consent. 492 

493 

Data Availability. Genome-wide sequence data of two Botai individuals (BAM format) are available at 494 

the European Nucleotide Archive under the accession number PRJEB31152 (ERP113669). Eigenstrat-495 

format array genotype data of 763 present-day individuals and 1240K pulldown genotype data of two 496 

ancient Botai individuals are available at the Edmond data repository of the Max Planck Society 497 

(https://edmond.mpdl.mpg.de/imeji/collection/Aoh9c69DscnxSNjm?q=). 498 

499 

500 
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Figure Legends 665 
666 

Fig. 1. Geographic locations of the Eneolithic Botai site (red triangle), 65 groups including newly 667 
sampled individuals (filled diamonds) and nearby groups with published data (filled squares). Mean 668 
latitude and longitude values across all individuals under each group label were used. Two zoom-in plots 669 
for the Caucasus (blue) and the Altai-Sayan (magenta) regions are presented in the lower left corner. A list 670 
of new groups, their three-letter codes, and the number of new individuals (in parenthesis) are provided at 671 
the bottom. Present-day populations are color-coded based on the language family for Figs. 1-3, following 672 
key codes listed in Fig. 2. Corresponding information for the previously published groups is provided in 673 
Supplementary Table 2. The map is overlayed with ecoregional information, divided into 14 biomes, 674 
downloaded from https://ecoregions2017.appspot.com/ (credited to Ecoregions 2017 © Resolve). The 675 
main inner Eurasian map is on the Albers equal area projection and was produced using the spTransform 676 
function in the R package rgdal v1.2-5. 677 

678 
Fig. 2. The genetic structure of inner Eurasian populations. (a) The first two PCs of 2,077 Eurasian 679 
individuals separate western and eastern Eurasians (PC1) and Northeast and Southeast Asians (PC2). Most 680 
inner Eurasians are located between western and eastern Eurasians on PC1. Ancient individuals (color-681 
filled shapes) are projected onto PCs calculated based on contemporary individuals. Present-day 682 
individuals are marked by grey dots, with their per-group mean coordinates marked by three-letter codes 683 
listed in Supplementary Table 2. Individuals are colored by their language family. (b) ADMIXTURE 684 
results for a chosen set of ancient and present-day groups (K = 14). The top row shows ancient inner 685 
Eurasians and representative present-day eastern Eurasians. The following three rows show forest-tundra, 686 
steppe-forest and southern steppe cline populations. Most inner Eurasians are modeled as a mixture of 687 
components primarily found in eastern or western Eurasians. Results for the full set of individuals are 688 
provided in Supplementary Fig. 3. 689 

690 
Fig. 3. Correlation of longitude and ancestry proportion across inner Eurasian populations. Across 691 
inner Eurasian populations, mean longitudinal coordinates (x-axis) and mean eastern Eurasian ancestry 692 
proportions (y-axis) are strongly correlated. Eastern Eurasian ancestry proportions are estimated from 693 
ADMIXTURE results with K=14 by summing up six components maximized in Surui, Chipewyan, 694 
Itelmen, Nganasan, Atayal and early Neolithic Russian Far East individuals (“Devil’s Gate”), respectively 695 
(Supplementary Fig. 3). The yellow curve shows a probit regression fit following the model in Sedghifar 696 
et al.69. Three groups (Kalmyks, Dungans, Nogai2) are marked with grey square due to their substantial 697 
deviation from the curve as well as their historically known migration history. 698 

699 
Fig. 4. Characterization of the western and eastern Eurasian source ancestries in inner Eurasian 700 
populations. (a) Admixture f3 values are compared for different eastern Eurasian references (Mixe, 701 
Nganasan, Ulchi; left) or western Eurasian ones (Srubnaya, Iran_ChL; right). For each target group, darker 702 
shades mark more negative f3 values. (b) Weights of donor populations in two sources characterizing the 703 
main admixture signal (“date 1 PC 1”) in the GLOBETROTTER analysis. We merged 167 donor 704 
populations into 12 groups, as listed on the top right side. Target populations are split into five groups: 705 
Aleuts, the forest-tundra cline populations, the steppe-forest cline populations, the southern steppe cline 706 
populations and the rest of four populations (“others”), from the top to bottom. 707 

708 
Fig. 5. qpAdm-based admixture models for the forest-tundra and steppe-forest cline populations. 709 
For the forest-tundra population to the west of the Urals, Nganasan+Srubnaya+WHG+LBK_EN or its 710 
submodel provides a good fit, while additional ANE-related contribution (AG3) is required for those to the 711 
east of the Urals (Enets, Selkups, Kets, and Mansi). For the steppe-forest populations, Srubnaya+Ulchi, 712 
Srubnaya+Ulchi+AG3, or Srubnaya+Nganasan provides a good fit. 5 cM jackknifing standard errors are 713 
marked by the horizontal bar. Models with p-value between 0.01 and 0.05 are marked by grey color and 714 
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those with p-value < 0.01 are marked by grey color and italic font. Details of the model information are 715 
presented in Supplementary Tables 5 and 8. 716 
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Table 1. Sequencing statistics and radiocarbon dates of two Eneolithic Botai individuals analyzed in this study. For Botai individuals we 717 
produced additional data, we provide corresponding individual ID from a previous publication23 (“Published ID”), radiocarbon date, the number of 718 
total reads sequenced, mean autosomal coverage for the 1240K target sites, the number of SNPs covered at least once for the 1240K and 719 
HumanOrigins panels, uniparental haplogroup and contamination estimates. 720 

721 

ID 
Published 

ID 
Genetic 

Sex 
Uncal. 

14C Date 

Cal. 
14C Date 

(2-sigma)b 

# of reads 
sequenced 

Mean 
autosomal 
coverage 

# of SNPs 
coveredc 

MT / Y 
haplogroup 

MT.contd X.conte

TU45 BOT14 M 4620 ± 80a 
3632-3100 
cal. BCE 

84,170,835 0.827x 
169,053 
(77,363) 

K1b2 / 
R1b1a1 

0.02 
(0.01-0.03) 

0.0122 
(0.0050) 

BKZ001 BOT2016 F 4660 ± 25 
3517-3367 
cal. BCE 

69,678,735 2.420x 
825,332 

(432,078) 
Z1 / NA 

0.01 
(0.00-0.02) 

NA 

a The uncalibrated date of TU45 was published in Levine (1999) under the ID OxA-431670. 722 
b The calibrated 14C dates are calculated based on uncalibrated dates, by the OxCal v4.3.2 program71 using the INTCAL13 atmospheric curve72. 723 
c The number of SNPs in the 1240K panel (out of 1,233,013) or autosomal SNPs in the HumanOrigins array (out of 581,230; within the parenthesis) covered at 724 
least by one read. Only transversion SNPs are considered for the non-UDG libraries (both of the TU45 libraries, one of two BKZ001 libraries). 725 
d The contamination rate of mitochondrial reads estimated by the Schmutzi program (95% confidence interval in parentheses) 726 
e The nuclear contamination rate for the male (TU45) estimated based on X chromosome data by ANGSD software (standard error in parentheses) 727 

728 



Ale

Atl
Ent

Est
Fin

Hun

Ket

Mns

Saa

Slk

Dau

Klm

Mgl

Tuu

Dlg

Tfl

Ykt

Blk

Kmk

Kyg

Ng1

Tjp

Tra

Try
Trb Tri

Trk
Trt

Tkm

Ugr
Uzb

Abk

Abn

Ami

Arm

Asy

Aty

Blc

BdaBdb

Blr

Bng

Brn

Btw

Brh

Blg

Brs

Cmb

Cch

Chk

Crt

Cyp

Cze

Dai

Drz

EcsEnk

Evn

Ger

Grk

GjaGjbGjcGjd

HanHnn

Hzr

Hzh

Ira
Ifa

Izr

Itn

Its

Ite

Jap

Jas

Jcc

Jgr

Jir

Jiq

Jtk

Jor

Kls

Khr

Kin

Kor

Kry

Ksd

Lah

LbnLbcLbm

Lzg

Lth

Ldh

Mkr

Mla

Mmw

Mia

Mix

Nax

Nga

Ong

Orq

Pls

Pth

Pol

Pjb

Rom

Sar

Smd

SheShp

Sdp

Srb

Syr

Tha

Tib
Tuj

Ulc

Vbh

Xib

Yii

Ykg

Bes

Krl

Mdv

Rus Rak

RalRap

Udm

Vep

Bry

Kmn

Mon

Alt
Ack

Bsc
Bsn

Bss

Cvs

Dng

Khk

Khb

Khs
SkhSmn

Ttk
Ttm

Tts
Ttz

Tdz
TblTbr

Tvn

Azr

Ggz

Krc

Krk

Kzk

Ng2

Tjl
Tjm

Uzk

Uzt

Abz

Adg

Ahm

Avr

Ccs

Drg

Evf

Evt

Ezd

Grg IgsKbd

KtgKbc

Krd

Lak

Mld

Nan

Ngd

Nvh
Ost

Tbs

Ukr

Bot

Tropical & Subtropical Coniferous Forests

Temperate Broadleaf & Mixed Forests

Temperate Conifer Forests

Boreal Forests/Taiga

Temperate Grasslands, Savannas & Shrublands

Flooded Grasslands & Savannas

Montane Grasslands & Shrublands

Tundra

Mediterranean Forests, Woodlands & Scrub

Deserts & Xeric Shrublands

Bes

Mns

Mdv

Rak

Ral

Rap

Udm

Klm

Bsc

Bsn

Bss

Cvs

Dng

Ttk
Ttm

Tts

Ttz

Azr

Blk

Krc

Krk

Kzk

Kmk
Kyg

Ng1

Ng2

Tjl

Tjm

Tjp

Trt

Tkm

Uzb
Uzk

Uzt

Abz

Abk

Adg

Arm

Ahm

Asy

Avr

Brs

Cch

Ccs

Drg

Ezd

Grg

Hzr

Igs

Ira

Ifa

Jgr

Jir

Jiq

Kbd

Ktg

Kls

Kbc

Krd

Lak Lzg

Ost

Pth

Tbs

Ent

Ket

Slk

Bry

Dau

Kmn

Mon

Alt

Ack

Dlg

Khk

Khb

Khs

Skh

Smn

Tdz

Tfl

Tbl
Tbr

Tvn

Ykt

Evt

Nga

Orq

New groups

Abz Abazin (8)
Ack Altaian_Chelkans (6)
Adg Adygei (14)
Ahm Armenian_Hemsheni (7)
Alt Altaian (17)
Avr Avar (9)
Azr Azeri (17)
Bes Besermyan (6)
Bry Buryat (36)
Bsc Bashkir_central (16)
Bsn Bashkir_north (18)
Bss Bashkir_south (19)
Ccs Circassian (9)
Cvs Chuvash (4)
Dng Dungan (13)
Drg Darginian (8)
Evf Evenk_FarEast (2)
Evt Evenk_Transbaikal (8)
Ezd Ezid (8)
Ggz Gagauz (7)
Grg Georgian (12)
Igs Ingushian (10)

Kbc Kubachinian (6)
Kbd Kabardinian (8)
Khb Khakass_Koibals (5)
Khk Khakass_Kachins (7)
Khs Khakass_Sagai (9)
Kmn Khamnegan (8)
Krc Karachai (11)
Krd Kurd (8)
Krk Karakalpak (14)
Krl Karelian (15)
Ktg Kaitag (8)
Kzk Kazakh (18)
Lak Lak (10)
Mdv Mordovian (22)
Mld Moldavian (10)
Mon Mongol (34)
Nan Nanai (10)
Ng2 Nogai2 (13)
Ngd Negidal (3)
Nvh Nivh (10)
Ost Ossetian (6)
Rak Russian_Krasnoborsky (6)

Ral Russian_Leshukonsky (5)
Rap Russian_Pinezhsky (5)
Rus Russian (49)
Skh Shor_Khakassia (5)
Smn Shor_Mountain (6)
Tbl Tubalar1 (3)
Tbr Tubalar2 (2)
Tbs Tabasaran (10)
Tdz Todzin (3)
Tjl Tajik_Lowland (11)
Tjm Tajik_Mountain (12)
Ttk Tatar_Kazan (13)
Ttm Tatar_Mishar (10)
Tts Tatar_Siberian (18)
Ttz Tatar_Zabolotniye (5)
Tvn Tuvinian (10)
Udm Udmurt (10)
Ukr Ukrainian (12)
Uzk Uzbek_Khorezm (6)
Uzt Uzbek_Tashkent (9)
Vep Veps (9)
Bot Botai (2)



−0.02 −0.01 0.00 0.01 0.02 0.03

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06

PC 1 (5.02 %)

P
C

 2
 (

0.
67

 %
)

KrcAdg

Ack
Tbr Tbl

Alt
Nvh

Ngd

Nan

Evf

Ahm Azr

BssBscBsn BryKmn

Ccs
TbsDrgKbcLakAvrKtg

Evt

Ezd

Ggz

Grg

IgsKbd

KrlVep

Abz

SkhKhs
KhbKhk

Krk

Krd

Kzk

Mdv

Mld
MonNg2

Ost

Rak

Ral

Rus

Rap
Smn

Tts

Ttz

TjmTjl

TtkTtm

Cvs
Tvn

Tdz

Udm
Bes

Ukr

Uzt
Uzk

Dng

Ykg

ChkEnk

Nga

Ulc

EcsKry

Evn

Ite

Atl

Fre

Sar

Cmb

Jap

Han

Orc

Ykt

Tuj

Itn

Yii

Mia

Orq

Dau

Mgl

Hzh

Xib

Hnn

Ugr

Dai

Lah
She

Nax

Tuu

Bsq

Saa

BrnSmd

Blg
Hun

Lth

BlkCch

AbkArm

Lzg Ng1
Kmk

Klm

Dlg

Slk

Blr
Est

UzbTjp Tkm

AtyAmi

CzeIce

Grk

Kor

SctEng

Spa
Spn

Fin

Kin
Tha

Mlt

Crt

Jas

Nwg

SclIts Trk
Abn

Mns

Trb

Cyp

Try
Tri

Jgr
Tra

Trt

Kyg

Ale

PolIruIriStlSrbGer

EntKet

Tfl

Rom

ShpTib
Language Family

Afroasiatic
Austroasiatic
Austronesian
Chukoto−Kamchakan
Eskimo−Aleut
Hmong−Mien
Indo_European
Isolate
Japonic
Koreanic
Mongolic

Nivkh
Northeast Caucasian
Northwest Caucasian
Sino−Tibetan
South Caucasian
Tai−Kadai
Tungusic
Turkic
Uralic
Yeniseian
Yukagir

a Ancients

MA−1
AG3
EHG
Botai
Okunevo
CentralSteppe_EMBA
Yamnaya_Samara
Afanasievo
Srubnaya
Sintashta
Andronovo
Karasuk
Iran_ChL
Alan
Sarmatian
Saka_Kazakhstan_2500BP
Saka_TianShan_2150BP
Wusun_TianShan_2200BP
Kangju_1800BP
Hun_TianShan_1700BP
Baikal_EN
Baikal_EBA
Saqqaq
Late Dorset

Ma1Ag3 Ehg Bot Okn Yms Afn Srn Stt Adr Krs Ntf Ann Irn Irc Aln Srm Skz Sts Wts Kgj Hts Ben Beb SqqLds Pim Chk Nga Ulc Ami

Hun Est Fin Saa Krl Vep Rus Mdv Rap Ral Rak Bes Udm Mns Slk Ent Ket

Cvs Ttm Ttk Bsn Bsc Bss Ttz Tts Alt Ack Tbl Tbr Smn Khk Khs Khb Skh Tvn Tdz Tfl Bry Kmn Dlg Ykt

Trb Try Ggz Tri Tra Trk Trt Ng1 Krc Blk Ng2 Klm Kmk Azr Krk Tkm Uzk Tjm Uzb Uzt Tjl Tjp Kzk Kyg Ugr Mon

b



20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

longitude

E
as

te
rn

 E
ur

as
ia

n 
an

ce
st

ry

Bes

Ent

Est
Fin

Hun

Krl

Ket

Mns

Mdv
Rus

Rak

Ral
Rap

Saa

Slk

Udm

Vep

Bry

Dau

Klm

Kmn
Mon

Mgl
Tuu

Alt

Ack

Bsc
Bsn

Bss

Cvs

DlgDng

KhkKhb

KhsSkhSmn

Ttk
Ttm

Tts
Ttz

Tdz
Tfl

Tbl

Tbr

Tvn

Ykt

AzrBlk
Ggz

Krc

Krk

Kzk

Kmk

Kyg

Ng1

Ng2

Tjl
Tjm

TjpTra

TryTrb

Tri Trk
Trt

Tkm

Ugr

Uzb
Uzk Uzt

Bes Besermyan
Ent Enets
Est Estonian
Fin Finnish
Hun Hungarian
Krl Karelian
Mns Mansi
Mdv Mordovian
Saa Saami
Slk Selkup
Udm Udmurt
Vep Veps
Ket Ket
Alt Altaian
Ack Altaian_Chelkans
Bsc Bashkir_central
Bsn Bashkir_north
Bss Bashkir_south
Cvs Chuvash
Dlg Dolgan
Dng Dungan
Khk Khakass_Kachins
Khb Khakass_Koibals
Khs Khakass_Sagai
Skh Shor_Khakassia
Smn Shor_Mountain
Ttk Tatar_Kazan
Ttm Tatar_Mishar
Tts Tatar_Siberian
Ttz Tatar_Zabolotniye
Tdz Todzin
Tfl Tofalar
Tbl Tubalar1
Tbr Tubalar2
Tvn Tuvinian
Ykt Yakut

Azr Azeri
Blk Balkar
Ggz Gagauz
Krc Karachai
Krk Karakalpak
Kzk Kazakh
Kmk Kumyk
Kyg Kyrgyz
Ng1 Nogai1
Ng2 Nogai2
Tra Turkish_Adana
Try Turkish_Aydin
Trb Turkish_Balikesir
Tri Turkish_Istanbul
Trk Turkish_Kayseri
Trt Turkish_Trabzon
Tkm Turkmen
Ugr Uygur
Uzb Uzbek
Uzk Uzbek_Khorezm
Uzt Uzbek_Tashkent
Bry Buryat
Dau Daur
Klm Kalmyk
Kmn Khamnegan
Mon Mongol
Mgl Mongola
Tuu Tu
Rus Russian
Rak Russian_Krasnoborsky
Ral Russian_Leshukonsky
Rap Russian_Pinezhsky
Tjl Tajik_Lowland
Tjm Tajik_Mountain
Tjp Tajik_Pomiri



S
ru

bn
ay

a+
M

ix
e

S
ru

bn
ay

a+
N

ga
na

sa
n

S
ru

bn
ay

a+
U

lc
hi

S
ru

bn
ay

a+
U

lc
hi

Ir
an

_C
hL

+
U

lc
hi

Aleut
Aleut_Tlingit

Hungarian
Estonian

Finnish
Saami

Karelian
Veps

Russian
Mordovian

Russian_Pinezhsky
Russian_Leshukonsky

Russian_Krasnoborsky
Besermyan

Udmurt
Mansi

Selkup
Enets

Ket

Chuvash
Tatar_Mishar
Tatar_Kazan

Bashkir_north
Bashkir_central

Bashkir_south
Tatar_Zabolotniye

Tatar_Siberian
Altaian

Altaian_Chelkans
Tubalar1
Tubalar2

Shor_Mountain
Khakass_Kachins

Khakass_Sagai
Khakass_Koibals
Shor_Khakassia

Tuvinian
Todzin
Tofalar
Buryat

Khamnegan
Dolgan

Yakut

Turkish_Balikesir
Turkish_Aydin

Gagauz
Turkish_Istanbul

Turkish_Adana
Turkish_Kayseri
Turkish_Trabzon

Nogai1
Karachai

Balkar
Nogai2
Kalmyk
Kumyk

Azeri
Karakalpak

Turkmen
Uzbek_Khorezm

Tajik_Mountain
Uzbek

Uzbek_Tashkent
Tajik_Lowland

Tajik_Pomiri
Kazakh
Kyrgyz
Uygur

Mongol

Dungan
Tu

Mongola
Daur

a b

0.0 0.2 0.4 0.6 0.8 1.0
Weight for the source 1

0.67
0.56

0.94
0.91
0.79
0.45
0.94
0.33
0.87
0.88
0.70
0.72
0.90
0.91
0.25
0.92
0.35
0.96
0.95

0.48
0.65
0.28
0.45
0.47
0.48
0.18
0.18
0.57
0.32
0.54
0.91
0.36
0.37
0.60
0.47
0.42
0.93
0.87
0.88
0.76
0.73
0.31
0.93

0.85
0.85
0.95
0.38
0.66
0.34
0.54
0.47
0.92
0.81
0.71
0.77
0.84
0.93
0.50
0.18
0.22
0.84
0.11
0.46
0.67
0.62
0.22
0.94
0.15
0.67

0.46
0.54
0.61
0.83

0.67
0.56

0.94
0.91
0.79
0.45
0.94
0.33
0.87
0.88
0.70
0.72
0.90
0.91
0.25
0.92
0.35
0.96
0.95

0.48
0.65
0.28
0.45
0.47
0.48
0.18
0.18
0.57
0.32
0.54
0.91
0.36
0.37
0.60
0.47
0.42
0.93
0.87
0.88
0.76
0.73
0.31
0.93

0.85
0.85
0.95
0.38
0.66
0.34
0.54
0.47
0.92
0.81
0.71
0.77
0.84
0.93
0.50
0.18
0.22
0.84
0.11
0.46
0.67
0.62
0.22
0.94
0.15
0.67

0.46
0.54
0.61
0.83

0.67
0.56

0.94
0.91
0.79
0.45
0.94
0.33
0.87
0.88
0.70
0.72
0.90
0.91
0.25
0.92
0.35
0.96
0.95

0.48
0.65
0.28
0.45
0.47
0.48
0.18
0.18
0.57
0.32
0.54
0.91
0.36
0.37
0.60
0.47
0.42
0.93
0.87
0.88
0.76
0.73
0.31
0.93

0.85
0.85
0.95
0.38
0.66
0.34
0.54
0.47
0.92
0.81
0.71
0.77
0.84
0.93
0.50
0.18
0.22
0.84
0.11
0.46
0.67
0.62
0.22
0.94
0.15
0.67

0.46
0.54
0.61
0.83

0.67
0.56

0.94
0.91
0.79
0.45
0.94
0.33
0.87
0.88
0.70
0.72
0.90
0.91
0.25
0.92
0.35
0.96
0.95

0.48
0.65
0.28
0.45
0.47
0.48
0.18
0.18
0.57
0.32
0.54
0.91
0.36
0.37
0.60
0.47
0.42
0.93
0.87
0.88
0.76
0.73
0.31
0.93

0.85
0.85
0.95
0.38
0.66
0.34
0.54
0.47
0.92
0.81
0.71
0.77
0.84
0.93
0.50
0.18
0.22
0.84
0.11
0.46
0.67
0.62
0.22
0.94
0.15
0.67

0.46
0.54
0.61
0.83

0.67
0.56

0.94
0.91
0.79
0.45
0.94
0.33
0.87
0.88
0.70
0.72
0.90
0.91
0.25
0.92
0.35
0.96
0.95

0.48
0.65
0.28
0.45
0.47
0.48
0.18
0.18
0.57
0.32
0.54
0.91
0.36
0.37
0.60
0.47
0.42
0.93
0.87
0.88
0.76
0.73
0.31
0.93

0.85
0.85
0.95
0.38
0.66
0.34
0.54
0.47
0.92
0.81
0.71
0.77
0.84
0.93
0.50
0.18
0.22
0.84
0.11
0.46
0.67
0.62
0.22
0.94
0.15
0.67

0.46
0.54
0.61
0.83

0.67
0.56

0.94
0.91
0.79
0.45
0.94
0.33
0.87
0.88
0.70
0.72
0.90
0.91
0.25
0.92
0.35
0.96
0.95

0.48
0.65
0.28
0.45
0.47
0.48
0.18
0.18
0.57
0.32
0.54
0.91
0.36
0.37
0.60
0.47
0.42
0.93
0.87
0.88
0.76
0.73
0.31
0.93

0.85
0.85
0.95
0.38
0.66
0.34
0.54
0.47
0.92
0.81
0.71
0.77
0.84
0.93
0.50
0.18
0.22
0.84
0.11
0.46
0.67
0.62
0.22
0.94
0.15
0.67

0.46
0.54
0.61
0.83

0.67
0.56

0.94
0.91
0.79
0.45
0.94
0.33
0.87
0.88
0.70
0.72
0.90
0.91
0.25
0.92
0.35
0.96
0.95

0.48
0.65
0.28
0.45
0.47
0.48
0.18
0.18
0.57
0.32
0.54
0.91
0.36
0.37
0.60
0.47
0.42
0.93
0.87
0.88
0.76
0.73
0.31
0.93

0.85
0.85
0.95
0.38
0.66
0.34
0.54
0.47
0.92
0.81
0.71
0.77
0.84
0.93
0.50
0.18
0.22
0.84
0.11
0.46
0.67
0.62
0.22
0.94
0.15
0.67

0.46
0.54
0.61
0.83

0.67
0.56

0.94
0.91
0.79
0.45
0.94
0.33
0.87
0.88
0.70
0.72
0.90
0.91
0.25
0.92
0.35
0.96
0.95

0.48
0.65
0.28
0.45
0.47
0.48
0.18
0.18
0.57
0.32
0.54
0.91
0.36
0.37
0.60
0.47
0.42
0.93
0.87
0.88
0.76
0.73
0.31
0.93

0.85
0.85
0.95
0.38
0.66
0.34
0.54
0.47
0.92
0.81
0.71
0.77
0.84
0.93
0.50
0.18
0.22
0.84
0.11
0.46
0.67
0.62
0.22
0.94
0.15
0.67

0.46
0.54
0.61
0.83

0.67
0.56

0.94
0.91
0.79
0.45
0.94
0.33
0.87
0.88
0.70
0.72
0.90
0.91
0.25
0.92
0.35
0.96
0.95

0.48
0.65
0.28
0.45
0.47
0.48
0.18
0.18
0.57
0.32
0.54
0.91
0.36
0.37
0.60
0.47
0.42
0.93
0.87
0.88
0.76
0.73
0.31
0.93

0.85
0.85
0.95
0.38
0.66
0.34
0.54
0.47
0.92
0.81
0.71
0.77
0.84
0.93
0.50
0.18
0.22
0.84
0.11
0.46
0.67
0.62
0.22
0.94
0.15
0.67

0.46
0.54
0.61
0.83

0.67
0.56

0.94
0.91
0.79
0.45
0.94
0.33
0.87
0.88
0.70
0.72
0.90
0.91
0.25
0.92
0.35
0.96
0.95

0.48
0.65
0.28
0.45
0.47
0.48
0.18
0.18
0.57
0.32
0.54
0.91
0.36
0.37
0.60
0.47
0.42
0.93
0.87
0.88
0.76
0.73
0.31
0.93

0.85
0.85
0.95
0.38
0.66
0.34
0.54
0.47
0.92
0.81
0.71
0.77
0.84
0.93
0.50
0.18
0.22
0.84
0.11
0.46
0.67
0.62
0.22
0.94
0.15
0.67

0.46
0.54
0.61
0.83

0.67
0.56

0.94
0.91
0.79
0.45
0.94
0.33
0.87
0.88
0.70
0.72
0.90
0.91
0.25
0.92
0.35
0.96
0.95

0.48
0.65
0.28
0.45
0.47
0.48
0.18
0.18
0.57
0.32
0.54
0.91
0.36
0.37
0.60
0.47
0.42
0.93
0.87
0.88
0.76
0.73
0.31
0.93

0.85
0.85
0.95
0.38
0.66
0.34
0.54
0.47
0.92
0.81
0.71
0.77
0.84
0.93
0.50
0.18
0.22
0.84
0.11
0.46
0.67
0.62
0.22
0.94
0.15
0.67

0.46
0.54
0.61
0.83

0.67
0.56

0.94
0.91
0.79
0.45
0.94
0.33
0.87
0.88
0.70
0.72
0.90
0.91
0.25
0.92
0.35
0.96
0.95

0.48
0.65
0.28
0.45
0.47
0.48
0.18
0.18
0.57
0.32
0.54
0.91
0.36
0.37
0.60
0.47
0.42
0.93
0.87
0.88
0.76
0.73
0.31
0.93

0.85
0.85
0.95
0.38
0.66
0.34
0.54
0.47
0.92
0.81
0.71
0.77
0.84
0.93
0.50
0.18
0.22
0.84
0.11
0.46
0.67
0.62
0.22
0.94
0.15
0.67

0.46
0.54
0.61
0.83

0.0 0.2 0.4 0.6 0.8 1.0
Weight for the source 2

0.33
0.44

0.06
0.09
0.21
0.55
0.06
0.67
0.13
0.12
0.30
0.28
0.10
0.09
0.75
0.08
0.65
0.04
0.05

0.52
0.35
0.72
0.55
0.53
0.52
0.82
0.82
0.43
0.68
0.46
0.09
0.64
0.63
0.40
0.53
0.58
0.07
0.13
0.12
0.24
0.27
0.69
0.07

0.15
0.15
0.05
0.62
0.34
0.66
0.46
0.53
0.08
0.19
0.29
0.23
0.16
0.07
0.50
0.82
0.78
0.16
0.89
0.54
0.33
0.38
0.78
0.06
0.85
0.33

0.54
0.46
0.39
0.17

0.33
0.44

0.06
0.09
0.21
0.55
0.06
0.67
0.13
0.12
0.30
0.28
0.10
0.09
0.75
0.08
0.65
0.04
0.05

0.52
0.35
0.72
0.55
0.53
0.52
0.82
0.82
0.43
0.68
0.46
0.09
0.64
0.63
0.40
0.53
0.58
0.07
0.13
0.12
0.24
0.27
0.69
0.07

0.15
0.15
0.05
0.62
0.34
0.66
0.46
0.53
0.08
0.19
0.29
0.23
0.16
0.07
0.50
0.82
0.78
0.16
0.89
0.54
0.33
0.38
0.78
0.06
0.85
0.33

0.54
0.46
0.39
0.17

0.33
0.44

0.06
0.09
0.21
0.55
0.06
0.67
0.13
0.12
0.30
0.28
0.10
0.09
0.75
0.08
0.65
0.04
0.05

0.52
0.35
0.72
0.55
0.53
0.52
0.82
0.82
0.43
0.68
0.46
0.09
0.64
0.63
0.40
0.53
0.58
0.07
0.13
0.12
0.24
0.27
0.69
0.07

0.15
0.15
0.05
0.62
0.34
0.66
0.46
0.53
0.08
0.19
0.29
0.23
0.16
0.07
0.50
0.82
0.78
0.16
0.89
0.54
0.33
0.38
0.78
0.06
0.85
0.33

0.54
0.46
0.39
0.17

0.33
0.44

0.06
0.09
0.21
0.55
0.06
0.67
0.13
0.12
0.30
0.28
0.10
0.09
0.75
0.08
0.65
0.04
0.05

0.52
0.35
0.72
0.55
0.53
0.52
0.82
0.82
0.43
0.68
0.46
0.09
0.64
0.63
0.40
0.53
0.58
0.07
0.13
0.12
0.24
0.27
0.69
0.07

0.15
0.15
0.05
0.62
0.34
0.66
0.46
0.53
0.08
0.19
0.29
0.23
0.16
0.07
0.50
0.82
0.78
0.16
0.89
0.54
0.33
0.38
0.78
0.06
0.85
0.33

0.54
0.46
0.39
0.17

0.33
0.44

0.06
0.09
0.21
0.55
0.06
0.67
0.13
0.12
0.30
0.28
0.10
0.09
0.75
0.08
0.65
0.04
0.05

0.52
0.35
0.72
0.55
0.53
0.52
0.82
0.82
0.43
0.68
0.46
0.09
0.64
0.63
0.40
0.53
0.58
0.07
0.13
0.12
0.24
0.27
0.69
0.07

0.15
0.15
0.05
0.62
0.34
0.66
0.46
0.53
0.08
0.19
0.29
0.23
0.16
0.07
0.50
0.82
0.78
0.16
0.89
0.54
0.33
0.38
0.78
0.06
0.85
0.33

0.54
0.46
0.39
0.17

0.33
0.44

0.06
0.09
0.21
0.55
0.06
0.67
0.13
0.12
0.30
0.28
0.10
0.09
0.75
0.08
0.65
0.04
0.05

0.52
0.35
0.72
0.55
0.53
0.52
0.82
0.82
0.43
0.68
0.46
0.09
0.64
0.63
0.40
0.53
0.58
0.07
0.13
0.12
0.24
0.27
0.69
0.07

0.15
0.15
0.05
0.62
0.34
0.66
0.46
0.53
0.08
0.19
0.29
0.23
0.16
0.07
0.50
0.82
0.78
0.16
0.89
0.54
0.33
0.38
0.78
0.06
0.85
0.33

0.54
0.46
0.39
0.17

0.33
0.44

0.06
0.09
0.21
0.55
0.06
0.67
0.13
0.12
0.30
0.28
0.10
0.09
0.75
0.08
0.65
0.04
0.05

0.52
0.35
0.72
0.55
0.53
0.52
0.82
0.82
0.43
0.68
0.46
0.09
0.64
0.63
0.40
0.53
0.58
0.07
0.13
0.12
0.24
0.27
0.69
0.07

0.15
0.15
0.05
0.62
0.34
0.66
0.46
0.53
0.08
0.19
0.29
0.23
0.16
0.07
0.50
0.82
0.78
0.16
0.89
0.54
0.33
0.38
0.78
0.06
0.85
0.33

0.54
0.46
0.39
0.17

0.33
0.44

0.06
0.09
0.21
0.55
0.06
0.67
0.13
0.12
0.30
0.28
0.10
0.09
0.75
0.08
0.65
0.04
0.05

0.52
0.35
0.72
0.55
0.53
0.52
0.82
0.82
0.43
0.68
0.46
0.09
0.64
0.63
0.40
0.53
0.58
0.07
0.13
0.12
0.24
0.27
0.69
0.07

0.15
0.15
0.05
0.62
0.34
0.66
0.46
0.53
0.08
0.19
0.29
0.23
0.16
0.07
0.50
0.82
0.78
0.16
0.89
0.54
0.33
0.38
0.78
0.06
0.85
0.33

0.54
0.46
0.39
0.17

0.33
0.44

0.06
0.09
0.21
0.55
0.06
0.67
0.13
0.12
0.30
0.28
0.10
0.09
0.75
0.08
0.65
0.04
0.05

0.52
0.35
0.72
0.55
0.53
0.52
0.82
0.82
0.43
0.68
0.46
0.09
0.64
0.63
0.40
0.53
0.58
0.07
0.13
0.12
0.24
0.27
0.69
0.07

0.15
0.15
0.05
0.62
0.34
0.66
0.46
0.53
0.08
0.19
0.29
0.23
0.16
0.07
0.50
0.82
0.78
0.16
0.89
0.54
0.33
0.38
0.78
0.06
0.85
0.33

0.54
0.46
0.39
0.17

0.33
0.44

0.06
0.09
0.21
0.55
0.06
0.67
0.13
0.12
0.30
0.28
0.10
0.09
0.75
0.08
0.65
0.04
0.05

0.52
0.35
0.72
0.55
0.53
0.52
0.82
0.82
0.43
0.68
0.46
0.09
0.64
0.63
0.40
0.53
0.58
0.07
0.13
0.12
0.24
0.27
0.69
0.07

0.15
0.15
0.05
0.62
0.34
0.66
0.46
0.53
0.08
0.19
0.29
0.23
0.16
0.07
0.50
0.82
0.78
0.16
0.89
0.54
0.33
0.38
0.78
0.06
0.85
0.33

0.54
0.46
0.39
0.17

0.33
0.44

0.06
0.09
0.21
0.55
0.06
0.67
0.13
0.12
0.30
0.28
0.10
0.09
0.75
0.08
0.65
0.04
0.05

0.52
0.35
0.72
0.55
0.53
0.52
0.82
0.82
0.43
0.68
0.46
0.09
0.64
0.63
0.40
0.53
0.58
0.07
0.13
0.12
0.24
0.27
0.69
0.07

0.15
0.15
0.05
0.62
0.34
0.66
0.46
0.53
0.08
0.19
0.29
0.23
0.16
0.07
0.50
0.82
0.78
0.16
0.89
0.54
0.33
0.38
0.78
0.06
0.85
0.33

0.54
0.46
0.39
0.17

0.33
0.44

0.06
0.09
0.21
0.55
0.06
0.67
0.13
0.12
0.30
0.28
0.10
0.09
0.75
0.08
0.65
0.04
0.05

0.52
0.35
0.72
0.55
0.53
0.52
0.82
0.82
0.43
0.68
0.46
0.09
0.64
0.63
0.40
0.53
0.58
0.07
0.13
0.12
0.24
0.27
0.69
0.07

0.15
0.15
0.05
0.62
0.34
0.66
0.46
0.53
0.08
0.19
0.29
0.23
0.16
0.07
0.50
0.82
0.78
0.16
0.89
0.54
0.33
0.38
0.78
0.06
0.85
0.33

0.54
0.46
0.39
0.17

West Asia

Caucasus/Iran

SE Europe

SW Europe

Europe

South Asia

East Asia

NE Asia

Siberia

Beringia

America

Others



WHG LBK_EN Srubnaya

Ulchi Nganasan AG3

0.0 0.2 0.4 0.6 0.8 1.0

Ancestry proportion

Hungarian

Buryat

Russian

Selkup

Ket

Tatar_Mishar

Estonian

Mordovian

Russian_Krasnoborsky

Finnish

Saami

Karelian

Veps

Russian_Pinezhsky

Russian_Leshukonsky

Besermyan

Udmurt

Mansi

Enets

Chuvash

Tatar_Kazan

Bashkir_north

Bashkir_central

Bashkir_south

Tatar_Siberian

Tatar_Zabolotniye

Altaian

Altaian_Chelkans

Khakass_Kachins

Khakass_Koibals

Khakass_Sagai

Shor_Khakassia

Shor_Mountain

Tofalar

Todzin

Tubalar1

Tubalar2

Tuvinian

Dolgan

Yakut

Khamnegan


	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5



