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Abstract 31 

 32 

 Well-characterised promoter collections for synthetic biology applications are 33 

not always available in industrially relevant hosts. We developed a broadly applicable 34 

method for promoter identification in atypical microbial hosts that requires no a priori 35 

understanding of cis-regulatory element structure. This novel approach combines 36 

bioinformatic filtering with rapid empirical characterisation to expand the promoter 37 

toolkit, and uses machine learning to improve the understanding of the relationship 38 

between DNA sequence and function. Here, we apply the method in Geobacillus 39 

thermoglucosidasius, a thermophilic organism with high potential as a synthetic 40 

biology chassis for industrial applications.  Bioinformatic screening of G. 41 

kaustophilus, G. stearothermophilus, G. thermodenitrificans and G. 42 

thermoglucosidasius resulted in the identification of 636 100 bp putative promoters, 43 

encompassing the genome-wide design space and lacking known transcription factor 44 

binding sites. 80 of these sequences were characterised in vivo and activities 45 

covered a 2-log range of predictable expression levels. 7 sequences were shown to 46 

function consistently regardless of the downstream coding sequence. Partition 47 

modelling identified sequence positions upstream of the canonical -35 and -10 48 

consensus motifs that were predicted to strongly influence regulatory activity in 49 

Geobacillus, and Artificial Neural Network and Partial Least Squares regression 50 

models were derived to assess if there was a simple, forward, quantitative method for 51 

in silico prediction of promoter function. However, the models were insufficiently 52 

general to predict pre hoc promoter activity in vivo, most probably as a result of the 53 

relatively small size of the training data set as compared to the size of the modelled 54 

design space.  55 

  56 
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Visual Abstract 57 
 58 
  59 
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 The predictable control of genetic modules or engineered metabolic pathways 60 

is a defining aspiration of synthetic biology1 requiring thoroughly characterised, 61 

robust genetic parts. Although synthetic biology parts and tools of increasing 62 

sophistication are available2-5, the majority have been designed for use in a small 63 

number of model organisms6 and characterised only or mainly in these biological 64 

contexts7. Model organisms such as Escherichia coli or Saccharomyces cerevisiae 65 

are invaluable for laboratory-scale, proof-of-principle investigations and are used in 66 

some industrial applications8 but there is a real, practical need to expand the range of 67 

microbial chassis available for industrial applications that present more extreme 68 

environments for the biocatalyst9,6,10-13.  69 

 70 

 Different control points affect the output of gene networks, including levels of 71 

transcription, translation, protein half-life and enzyme kinetics14. On a practical level, 72 

the use of promoters with varied and predictable activation and output characteristics 73 

(“strengths”) are an essential feature of any synthetic biology toolkit3,15,14 and are 74 

particularly useful for balancing differential expression levels in “hard-wired”, steady 75 

state genetic modules16. Promoter collections for synthetic biology applications 76 

should therefore cover a broad range of recombinant gene expression levels for 77 

nuanced tuning of synthetic pathways17, with individual promoters providing 78 

homogeneous, consistent and predictable outputs independently of the associated 79 

downstream coding sequence18. 80 

 81 

 Conventionally, promoters in atypical chassis may be isolated from upstream 82 

of genes or operons15 that are homologous to well-understood regions in model 83 

organisms, or identified using genomic or transcriptomic analyses of the host7 84 

followed by in-depth characterisation in a range of genetic and environmental 85 

contexts. Alternatively, synthetic promoter libraries may be manufactured by 86 

mutagenesis of wild-type promoter sequences, again followed by deep analysis of 87 

novel activity14,19,20, though this approach tends to reduce, rather than enhance, 88 

promoter strength9,21-25. Finally, recent advances in DNA synthesis have facilitated 89 

systematic approaches to promoter and regulatory sequence design by enabling the 90 

production and high-throughput screening of comprehensive sequence libraries26,27. 91 

Due to the scale of DNA synthesis required, however, this approach remains 92 

relatively expensive compared to mutagenesis and dependent on ready access to 93 

appropriate DNA synthesis facilities. 94 

 95 
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 In this investigation, we used a bioinformatic approach to explore the 96 

promoter design space in Geobacillus thermoglucosidasius, a metabolically 97 

versatile11,28-30, thermophilic microbe31 with high potential as a synthetic biology 98 

chassis for industrial applications6,32. To date, engineering projects in Geobacillus 99 

have relied on 1 of 3 endogenous promoter sequences11,33,34, the most widely used 100 

being the oxygen-dependent ldhA promoter9,11,31,35,36.  Mutagenesis-derived, synthetic 101 

promoters have also been reported for the genus9,37,38, though their characterisation 102 

is limited to single genetic contexts.   103 

 104 

 Here, we selected 100 putative promoter sequences from the Geobacillus 105 

core genome encompassing the genome-wide design space and lacking known 106 

transcription factor binding sites. The sequences were synthesised, cloned upstream 107 

of 2 different reporter CDS and their activities assessed in vivo.  This process was 108 

relatively rapid and resulted in a collection of 7 characterised promoter sequences 109 

that displayed a range of activities with low internal variance and that functioned 110 

independently of the downstream reporter sequence. Additionally, to better 111 

understand the relationship between promoter sequence and activity, the data from 112 

the in vivo characterisation were used to train and validate a variety of in silico 113 

models, including Random Forest partition, Artificial Neural Network (ANN) and 114 

Partial Least Squares regression (PLS). 115 

 116 

 The method presented here is broadly applicable to any potential bacterial 117 

chassis and could be used to expand synthetic biology tools for other biocatalysts 118 

and ultimately enhance our fundamental knowledge of genetic regulation in synthetic 119 

and natural systems.   120 
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Results & Discussion  121 

 122 

Bioinformatic identification of putative promoters from the core genome of 4 123 

Geobacillus species 124 

 125 

Different Geobacillus species have the potential to be used as host organisms 126 

for industrial bioproduction6, 9, 33. We therefore aimed to identify promoters that could 127 

potentially be used across the entire genus. To obtain a suite of promoters that were 128 

representative of the Geobacillus genus, we sequenced and assembled de novo the 129 

genomes of 4 Geobacillus species that were available when the project started; G. 130 

kaustophilus (DSM7263), G. stearothermophilus (DSM22), G. thermodenitrificans 131 

(K1041) and G. thermoglucosidasius (DSM2542). To identify genes that were 132 

common to all 4 Geobacillus species, single-copy coding sequences (CDS) were 133 

clustered into homologous gene families using the GET_HOMOLOGUES software 134 

package39. To increase calculation robustness, 3 separate clustering algorithms were 135 

used, and the resulting gene families compared. Bidirectional best-hit (BDBH), COG 136 

triangles (COG) and OrthoMCL (OMCL) algorithms returned 1,924, 1,914, and 1,902 137 

CDS clusters respectively, with 1,886 homologous clusters being identified by all 3 138 

algorithms (Figure 1A). The core genome of the selected Geobacillus species 139 

therefore contained 1,886 CDS; i.e. a total of 7,544 homologous core CDS. 140 

 141 

 In prokaryotes, the majority of motifs that affect the initiation of both 142 

transcription and translation occur in the 100 bp sequence window immediately 143 

upstream of the CDS start codon40,41. 100 bp sequences from immediately upstream 144 

of the start codon of the 7,544 core CDS were therefore identified as putative 145 

Geobacillus promoter sequences. BPROM software was subsequently used to 146 

classify the 100 bp sequences as putative promoters based on the presence and 147 

nucleotide composition of known conserved functional motifs42. To isolate sequences 148 

that were likely orthogonal to endogenous regulatory pathways, putative promoters 149 

were screened against BPROMs list of known Transcription Factor Binding Sites 150 

(TFBS, Supporting Table 1), and sequences that contained any known TFBS were 151 

discarded. A phylogeny of the 1,489 putative, generic sequences that remained after 152 

screening was constructed as a representation of the Geobacillus promoter design 153 

space (Figure 1B).  Although BPROMs list of E. coli TFBS may not be exhaustively 154 

representative of binding sites that are functional in Geobacillus, the lack of extensive 155 

genus-specific TFBS characterisation in these non-model organisms renders a 156 

genus-specific approach impractical. Given previous successfully applications of 157 
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BPROM software for promoter identification28, the utilised list of TFBS was judged 158 

likely to provide an adequately generic reference for binding site recognition in 159 

Geobacillus.  160 

 161 

 Multiple studies have used promoters isolated from the genomes of 162 

bacteriophage for the control of heterologous expression in E. coli14. Putative 163 

promoters were therefore also identified from the genomes of 2 bacteriophages, 164 

Thermus phage Phi OH2 and Geobacillus phage GBSV1, which were chosen due to 165 

their ready availability on the GenBank public database. Intergenic regions of at least 166 

100 bp were identified in both genomes. From these intergenic regions, the 100 bp 167 

sequences immediately upstream of the start codon of the adjacent CDS were 168 

extracted. The extracted sequences were subsequently analysed using BPROM 169 

software to identify putative promoters, and any sequences that contained known 170 

TFBS were discarded. 9 putative promoters were identified from Thermus phage Phi 171 

OH2, and 7 putative promoters were identified from Geobacillus phage GBSV1.  172 

 173 

In vivo characterisation of putative promoters 174 

 175 

 A number of studies have considered the effect of genetic context on 176 

promoter function in model organisms such as E. coli and S. cerevisiae18,41,43-45. 177 

However, the drive for composable, modular regulatory elements in non-model 178 

systems is hindered by the fact that many studies still characterise the function of 179 

promoter sequences in a single genetic context. 2 previously published Geobacillus 180 

synthetic promoter libraries, for example, used only GFP to characterise promoter 181 

performance9,37. Putative promoters were therefore characterised upstream of both 182 

Dasher GFP and mOrange fluorescent reporters.  183 

 184 

 A trade-off was required between the desire to empirically explore large 185 

portions of the Geobacillus promoter design space and the experimental feasibility of 186 

characterising large numbers of putative sequences in a host organism with low 187 

transformation efficiencies. The promoter phylogeny (Figure 1B) was therefore used 188 

to rationally select 100 putative promoters from across the Geobacillus promoter 189 

design space for in vivo characterisation using both reporters. 190 

 191 

A sequence alignment of the 100 selected putative promoters revealed a 192 

heavily conserved purine-rich region located at the 3’ terminus of the 100 bp 193 

sequence space (Supporting Figure 1). Given the similarities in both location and 194 
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nucleotide composition of the motif to the canonical Shine-Dalgrano sequence46, this 195 

region was identified as the RBS. We therefore changed the terminology, whereby 196 

“promoter” refers to the complete 100 bp sequence, RBS refers to the 15 bp of 197 

sequence at the 3’ terminus of the sequence space and Distal Regulatory Sequence 198 

(DRS) refers to the sequence from -100 to -15 bp upstream of the start codon.  199 

 200 

To facilitate potential future applications of the promoter sequences in which 201 

disparate DRS and RBS might be required, the 100 selected putative promoters were 202 

split in silico into DRS and RBS parts that were subsequently flanked with type IIs 203 

restriction cloning affixes (Supporting Table 2). In vitro cloning of the DRS and RBS 204 

parts resulted in the insertion of a 4 bp scar sequence at -19 to -16 bp upstream of 205 

the start codon, increasing the length of the promoters to 104 bp. The inclusion of the 206 

scar sequence was empirically shown to have no statistically significant effect on 207 

promoter activity for 20 out of a set of 24 characterised sequences, with significant 208 

alterations in regulatory activity hypothesised to be the result of extreme alterations 209 

to mRNA secondary structure (Supporting Information, Supporting Figure 2).  210 

 211 

 Of the 100 selected putative Geobacillus promoters, 5 promoter::GFP and 9 212 

promoter::mOrange constructs could not be successfully synthesised. Furthermore, 213 

11 promoter::mOrange constructs could not be transformed into G. 214 

thermoglucosidasius; 80 sequences were therefore characterised in vivo upstream of 215 

both reporters (Figure 2A). The characterised sequences covered a 148-fold range of 216 

activity when characterised upstream of GFP, and a 107-fold range of activity when 217 

characterised upstream of mOrange. 45 of the characterised promoters showed 218 

expression levels for both reporter proteins that were not statistically significantly 219 

greater than the negative control, G. thermoglucosidasius transformed with the empty 220 

pS797 vector. We therefore defined these 45 sequences as inactive. 19 out of the 221 

100 screened promoters showed statistically significant activity with both reporters; 3 222 

sequences were active with GFP only, and 13 sequences were active with mOrange 223 

only (Figure 2B). A comparison of the codon usage of the 2 reporter proteins showed 224 

them to be broadly comparable (Supporting Figure 3). The discrepancies in gene 225 

expression between the 2 reporters were therefore assumed to be a result of 226 

promoter activity, rather than differential codon utilisation.   227 

 228 

 To identify the promoters that functioned predictably and independently of the 229 

downstream CDS, K-means clustering was used to group the characterised 230 

sequences into 5 clusters based on their Euclidean distance from the line of 231 
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equivalence between GFP and mOrange activity, y = x (Figure 2C). No correlation in 232 

in vivo activity between the two reporter proteins was observed for the majority of the 233 

characterised sequences; clusters 2 and 4 contained promoters that resulted in 234 

stronger GFP expression than mOrange expression, whereas clusters 3 and 5 235 

resulted in stronger mOrange than GFP expression. Clustering identified 13 236 

promoters (cluster 1) with activity that fell close to the line of equivalence, of which 7 237 

displayed mean expression levels that were significantly greater than the negative 238 

control. The characterised Geobacillus promoter library therefore contained 7 239 

functionally composable, active sequences, covering activity levels that were 240 

between 1.1 and 4.5 times greater than the G. thermodenitrificans ldhA positive 241 

control.  242 

 243 

 Such functional composability of cis-regulatory sequences is crucial if 244 

information regarding promoter performance derived from laboratory-scale 245 

characterisation experiments is to be applied to the systematic, scalable, bottom-up 246 

engineering of increasingly complex synthetic biological systems4,18. The 247 

development of species-specific insulator mechanisms, that reduce the context-248 

specificity of regulatory parts through either molecular transcript processing47,48 or by 249 

physically separating genetic regulatory parts to disrupt context-specific mRNA 250 

secondary structures18,41, is required if the majority of the identified promoters are to 251 

be used modularly in alternative contexts.  252 

 253 

In addition to being functionally composable, promoter sequences for 254 

synthetic biology applications should ideally yield homogenous, predictable 255 

expression of the protein of interest at the single-cell level49. Flow cytometry was 256 

therefore used to analyse the intra-population variation in fluorescence activity of the 257 

characterised promoter::reporter fusions in transformed, clonal cultures. Compared to 258 

the positive control, the G. thermodenitrificans ldhA promoter, 98% of the 259 

characterised promoter::GFP fusions and 73% of the promoter::mOrange fusions 260 

returned lower coefficients of variance, indicating that the majority of the 261 

characterised sequences offered more predictable regulation of protein expression 262 

than the current benchmark Geobacillus promoter. Furthermore, the 7 promoters that 263 

functioned independently of coding sequence all returned lower coefficients of 264 

variation than the positive control ldhA promoter (Figure 2D). Although 265 

subpopulations of cells expressing the reporters were apparent for 4 of the 266 

characterised promoters, the performance of these promoters was less variable and 267 
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therefore more predictable than that of the ldhA promoter which has been widely 268 

used in studies with potential industrial applications9,11,31,35,36.  269 

 270 

 Analysis of the genes with which the 80 characterised promoters were 271 

natively associated in their source genomes showed that the majority of the 272 

sequences homogeneously regulate basic cellular functions, and were therefore 273 

likely to be constitutive (Supporting Table 3). Cellular functions with which the 274 

promoters were natively associated included biosynthesis, cell membrane formation, 275 

catabolism, transcription and protein folding. However, 11 of the characterised 276 

promoters were natively associated with proteins relating to sporulation, and may 277 

therefore result in altered expression levels under sporulation conditions. The failure 278 

of the bioinformatic screening to identify and exclude these sequences highlights the 279 

limitations of applying bioinformatic tools that were developed in E. coli in non-model 280 

organisms; as E. coli is non-sporulating, a list of E. coli TFBS will naturally not 281 

contain sporulation-specific TFBS. 282 

 283 

Sequence-function modelling  284 

 285 

 Mathematical models with the pre hoc capability to determine promoter 286 

function could potentially reduce the need for in vivo characterisation of large 287 

numbers of individual cis-regulatory elements. Once a training set of sufficient 288 

robustness is established, regulatory elements of the desired strength for a given 289 

application could hypothetically be identified from the genome or designed de novo, 290 

in a manner analogous to tools such as the RBS calculator3. To better understand 291 

the basis of promoter function in Geobacillus, and to assess if there was a simple, 292 

forward method for in silico prediction of promoter function, statistical learning 293 

approaches were used to derive models of the design space.  294 

 295 

 We used a variety of techniques to mathematically describe the relationship 296 

between DNA sequence and function of the promoters characterised above. Partition 297 

modelling was used to identify positions within the sequence space that were having 298 

the greatest impact on promoter activity, and ANN and PLS models were 299 

subsequently used to make quantitative predictions of promoter activity. 300 

 301 

Partition modelling  302 

 303 
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 Recursive partition modelling is a powerful technique for determining the 304 

relationship between a response variable and a set of independent variables without 305 

the use of a mathematical model50. Partition models were fit to both the GFP and 306 

mOrange characterisation data sets. The number of times each promoter sequence 307 

position caused partitions in the data set across 100 random forests was quantified; 308 

the larger the number of partitions caused by a sequence position, the more 309 

important that position was predicted to be in determining promoter activity.  310 

 311 

 Sequence positions across the entirety of the sequence space were predicted 312 

to strongly influence regulatory activity for both reporters (Figure 3). In particular, 313 

sequence positions towards the 5’ terminus of the sequence space were predicted to 314 

be important in determining promoter activity. This result suggested that UP 315 

elements, sequence motifs that are further upstream than the canonical RBS, -10 316 

and -35 motifs and that boost transcription initiation through interactions with the C-317 

terminal domain of the RNA polymerase alpha subunit51,52, are active in Geobacillus.  318 

 319 

Artificial Neural Network & Partial Least squares sequence-function modelling  320 

 321 

 Although the partition models provided useful insights to the relationship 322 

between promoter nucleotide sequence and function, they did not provide 323 

quantitative predictions of regulatory activity. We therefore applied 2 quantitative 324 

modelling approaches, linear Partial Least Squares (PLS) regression and non-linear 325 

Artificial Neural Networks (ANN).  326 

 327 

 To asses the predictive capability of PLS and ANNs when applied to 328 

Geobacillus cis-regulatory sequences, models were trained using data derived from 329 

the 95 characterised promoter::GFP fusions (Supporting Figure 4). In all instances, 330 

each of the 104 nucleotide positions within the promoter sequence was modelled as 331 

an individual x variable and GFP fluorescence was used as the response variable, y.  332 

 333 

 ANNs have previously been shown to return insufficiently accurate predictions 334 

when the response surface under investigation is complex and the number of 335 

observations in the training data set is small53. Furthermore, although the PLS 336 

algorithm was specifically designed to model data sets in which the number of 337 

predictor variables is greater than the number of observations in the training set 54, 338 

the extreme scale of the promoter design space (there are 4100 potential 100 bp 339 

nucleotide sequences) compared to the number of empirically characterised 340 
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promoters was thought likely to result in models with limited predictive power. A 341 

reduction in the dimensionality of the modelled design space was therefore deemed 342 

necessary. 343 

 344 

 Characterising promoters of shorter length would have immediately reduced 345 

the dimensionality of the modelled design space. For example, 50 bp sequences 346 

would have been of sufficient length to contain the canonical location of the RBS, -10 347 

and -35 consensus motifs. However, the partition results showed that sequence 348 

positions upstream of the -50 position were likely to be important in determining 349 

regulatory activity (Figure 3). Sequences of reduced length would therefore not have 350 

contained vital upstream regulatory motifs and may therefore have shown reduced 351 

activity as compared to the longer sequences. 352 

 353 

 The results of the partition modelling were therefore used to reduce the 354 

dimensionality of the modelled design space. PLS and ANN sequence-function 355 

models were derived that modelled GFP fluorescence as a function of varying 356 

number of nucleotide positions. Sequence positions were selected in descending 357 

order of the number of partitions caused in the 100 partition models (Figure 3). In all 358 

instances, model performance was quantified using an independent test set of 10 359 

promoter sequences that were held-back from model training and validation.  360 

 361 

 The optimum PLS model that was obtained inferred promoter activity as a 362 

function of 20 nucleotide positions (Supporting Figure 5). The model returned an R2 363 

value of 0.6024 when applied to the training and validation data sets, and an R2 364 

value of 0.8901 when applied to the test set (Figure 4). These results suggested that 365 

the obtained PLS model provided a reasonable fit of the training data and had good 366 

predictive power when applied to previously unseen data.  367 

 368 

 A Design of Experiments (DoE) approach was used to optimise ANN 369 

architecture (Supporting Information). In total, over 113,500 single-layer ANNs were 370 

fit, varying in terms of the personality of the activation function used, the number of 371 

nodes in the hidden layer, the cross validation methodology and the number of 372 

promoter sequence positions modelled.  373 

 374 

 The optimal obtained ANN was an ensemble model that contained 2 375 

constituent ANNs. Each of the constituent models used sigmoidal activation functions 376 

with 5 nodes in the hidden layer, and modelled promoter activity as a function of 20 377 
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nucleotide sequence positions. The optimal model returned an R2 value of 0.9746 378 

when applied to the training and validation data sets, and an R2 value of 0.9691 379 

when applied to the test set, suggesting a good fit of the training data and strong 380 

predictive power (Figure 4). For both ANN and PLS, models that inferred promoter 381 

activity as a function of complete 100 bp sequences showed lower predictive 382 

accuracy than models of reduced numbers of sequence positions (Supporting 383 

Information). This result validated the use of partition modelling to reduce the size of 384 

the modelled design space.   385 

 386 

Predicting the function of previously uncharacterised promoters 387 

 388 

 To further test the predictive power of the putatively high-performing PLS and 389 

ANN models, a secondary test set of previously uncharacterised Geobacillus 390 

promoters was selected. 10 putative regulatory sequences were selected at random 391 

from across the promoter phylogeny (Figure 1A) and characterised in G. 392 

thermoglucosidasius upstream of GFP. However, despite the strong performance of 393 

the 2 models on the primary test set, neither model returned accurate predictions of 394 

promoter activity for the selected sequences (Figure 4); the PLS model returned an 395 

R2 value of 0.3595 and the ANN returned an R2 value of 0.2283. Consequently, the 396 

derived models were insufficiently general to permit accurate predictions of 397 

endogenous promoter activity or facilitate rational, forward promoter design.  398 

 399 

Future applications of promoter sequence-function modelling  400 

 401 

 The lack of generality shown by the models derived in this investigation was 402 

probably the result of the limited number of characterised promoter sequences as 403 

compared to the scale of the design space, resulting in training set that does not 404 

adequately capture the complexity of the response surface. Although PLS and ANN 405 

promoter sequence-function models using comparatively small data sets have been 406 

described 55-57, the promoter libraries used in these studies contained considerable 407 

sequence homology, thereby restricting the complexity of the response surface under 408 

investigation. If accurate predictive models of more complex promoter design spaces 409 

are to be obtained, a training data set that contains several orders of magnitude more 410 

promoter sequences than the 80 sequences used here is likely necessary7, 26, 43. 411 

However, the scale of the required promoter libraries might be impractical in non-412 

model organisms.  413 

 414 
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 Although high-throughput characterisation of libraries containing thousands of 415 

genetic parts using techniques such as a combination of flow cytometry and 416 

multiplexed DNA or RNA sequencing has been previously described7, 26, 43, such 417 

approaches require the acquisition of large numbers of transformants; approximately 418 

50-fold library coverage is necessary to achieve accurate characterisation of 419 

individual promoters43. However, low transformation efficiencies in many non-model 420 

organisms, including Geobacillus, preclude the production of libraries of the required 421 

scale, potentially limiting the usefulness of statistical sequence-function modelling in 422 

these contexts.  423 

 424 

 In lieu of a massive increase in the number of characterised sequences, the 425 

novel bioinformatic approach to promoter identification that was developed in this 426 

investigation, coupled with partition modelling to identify those sequence positions 427 

that are key for determining promoter activity, could be used to provide an initial 428 

screen of the design space in organisms for which understanding of cis-regulatory 429 

sequences is limited. This information could subsequently be used for DoE inspired 430 

promoter optimisation in future studies by facilitating the rational design of limited 431 

sequence libraries that vary only at the identified key positions. In vivo 432 

characterisation and in silico modelling of the designed libraries could potentially 433 

yield models of greater predictive power than those derived here without the need for 434 

a large-scale increase in characterisation throughput. 435 

 436 

 The models that were derived in this study were based purely on the 437 

statistical likelihood of a given nucleotide occurring at a given position within the 438 

promoter sequence. Measures of biophysical promoter properties, such as mRNA 439 

secondary structures, AT content or the free energy barrier for promoter-RNA 440 

polymerase binding were not included on the basis that unsupervised ANN models 441 

could potentially learn the effect of biophysical promoter properties without specific 442 

terms being explicitly defined in the model. The inclusion of biophysical terms in 443 

future modelling attempts may facilitate the derivation of more accurate predictive 444 

models26,43,58 by providing more information about promoter function than can be 445 

gleaned from sequence data alone. Alternatively, the use of distance metrics59 as 446 

model terms to quantitatively define differences in nucleotide sequence between 447 

promoters might also allow for more accurate mapping of the promoter sequence-448 

function design space60. 449 

 450 
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 Finally, although the quantitative sequence-function models derived in this 451 

investigation were insufficiently general to determine pre hoc in vivo promoter 452 

activity, the potential for statistical modelling to enhance our fundamental knowledge 453 

of genetic regulation in complex systems cannot be overlooked. For example, 454 

partition modelling of the relationship between nucleotide sequence and in vivo 455 

promoter function yielded potentially useful insights into the structure of cis-regulatory 456 

elements in Geobacillus; regions of sequence upstream of the likely position of 457 

canonical promoter motifs were predicted to be important in determining promoter 458 

activity (Figure 3).  459 

 460 

Conclusion  461 

 462 

 We developed a generally applicable method for the identification of 463 

constitutive promoters that combines bioinformatic filtering, empirical characterisation 464 

and machine learning to expand promoter toolkits in atypical host organisms and 465 

increase the understanding of the relationship between DNA sequence and function. 466 

The method was used to identify 80 promoters, covering a 2-log range of predictable 467 

expression levels, in G. thermoglucosidasius, of which 7 were shown to function 468 

consistently regardless of downstream coding sequence. Although sufficiently 469 

general in silico models of promoter activity could not be obtained using ANN or PLS, 470 

partition modelling identified regions of sequence upstream of the canonical 471 

prokaryotic promoter consensus regions that strongly influenced regulatory activity in 472 

Geobacillus.  473 

 474 

Materials & Methods 475 

 476 

Bacterial strains & plasmids   477 

 478 

 Type strains of Geobacillus kaustophilus (DSM7263), G. stearothermophilus  479 

(DSM22) and G. thermoglucosidasius (DSM2542) were obtained from the DSMZ 480 

(Brunswick, Germany). Cultures were freeze-dried ampoules and rehydrated as 481 

required following the DSMZ standard protocol. G. thermodenitrificans (K1041) was 482 

obtained from ZuvaSyntha Ltd. (Hertfordshire, UK). 483 

 484 

 NEB 5-alpha (New England Biolabs, Massachusetts, United States of 485 

America) chemically competent Escherichia coli strain (genotype: fhuA2 D(argF-486 



 16 

lacZ)U169 phoA glnV44 f80D(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17) 487 

was used for microbiological cloning, storage and amplification of plasmid vectors. 488 

 489 

E. coli S17-1 (genotype: recA pro hsdRm RP4-Tc::Mu-Km::Tn7) was used as 490 

the mobilisation host for the conjugal transformation of Geobacillus spp. Transfer 491 

genes from the RP4 plasmid are integrated into the genome of E. coli S17-1, allowing 492 

for the conjugal transfer of plasmids containing the requisite mobilisation 493 

elements7,61.  494 

 495 

 All putative promoter sequences were characterised in vivo using the pS797 496 

vector (Supporting Figure 6). To facilitate conjugal transformation of Geobacillus 497 

spp., pS797 contained an origin of transfer (ORI T), comprised of the Nic region and 498 

traJ gene from the conjugal plasmid RP4. pS797 also contained 2 origins of 499 

replication, ColE and BST1, to allow for propagation in E. coli and Geobacillus spp., 500 

respectively. 2 antibiotic selection markers were also present, allowing for selection 501 

by Ampicillin in E. coli and by Kanamycin in Geobacillus.  502 

 503 

 Both E. coli S17-1 and pS797 were obtained from ZuvaSyntha Ltd. 504 

(Hertfordshire, UK).  505 

 506 

Growth media 507 

 508 

 All complex growth media were purchased from Becton Dickson UK 509 

(Berkshire, UK). E. coli cultures were propagated in Lysogeny Broth (LB; 10 g l-1 510 

tryptone, 10 g l-1 NaCl, 5 g l-1 yeast extract). Lennox Lysogeny Broth (LLB; 10 g l-1 511 

tryptone, 5 g l-1 NaCl, 5 g l-1 yeast extract) was used for co-culture of E. coli and G. 512 

thermoglucosidasius during conjugal transformation of G. thermoglucosidasius. All 513 

Geobacillus species were propagated in modified LB (mLB). mLB used a basal 514 

composition of LLB, supplemented with 1.05 mM C6H9NO6, 0.91 mM CaCl2, 0.59 mM 515 

MgSO4 and 0.04 mM FeSO4
62.  516 

 517 

 For all media types, agar was supplemented as required to 15 g l-1. When 518 

required, E. coli growth media was supplemented with 100 µg ml-1 ampicillin. G. 519 

thermoglucosidasius growth media was supplemented with 12.5 µg ml-1 kanamycin.  520 

 521 

Bioinformatic identification of putative promoters from the core genome of 4 522 

Geobacillus species 523 
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 524 

 The genomes of 4 Geobacillus species, G. kaustophilus (DSM7263), G. 525 

stearothermophilus (DSM22), G. thermodenitrificans (K1041) and G. 526 

thermoglucosidasius (DSM2542) were sequenced and de novo assembled. 527 

Genomes were sequenced using an Illumina MiSeq system, using reads with 300 bp 528 

paired end sequencing. The resulting raw sequencing reads were trimmed based on 529 

quality score using the fastq-mcf tool63 and assembled using SPAdes software 530 

(Version 3.564). Following assembly, the genome scaffolds were annotated using 531 

Prokka software (Version 1.965). 532 

 533 

 The GET_HOMOLOGUES software package39 was used to identify gene 534 

families with homologues in all 4 of the Geobacillus species of interest. To increase 535 

calculation robustness, 3 disparate algorithms were used to cluster homologous gene 536 

families: Bidirectional best-hit (BDBH), COGtriangles (COG) and OrthoMCL (OMCL). 537 

In all instances, the “-t” option was used to isolate only those clusters that contained 538 

single-copy proteins. All other software parameters were set as default. Only those 539 

clusters that were common to all 3 algorithms were selected for further analysis.  540 

 541 

 Once identified, the core coding sequences were extracted from the 4 542 

genomes. Output files were parsed, reformatted to GenBank file format and imported 543 

into the Artemis genome browser66. For each entry, the 100 bp immediately upstream 544 

of the start codon was extracted. BPROM software42 was subsequently used to 545 

screen the extracted 100 bp sequences for the presence and nucleotide composition 546 

of functional regulatory motifs. Additionally, putative promoters were screened 547 

against BPROM’s list of known Transcription Factor Binding Sites (TFBS, Supporting 548 

Table 2). Any putative promoters containing TFBS were discarded.  549 

 550 

 The nucleotide sequences of the putative promoters were aligned using 551 

MUSCLE software67 and the resultant alignments were used to construct a 552 

phylogenetic tree using FastTree software68. Putative promoters were subsequently 553 

manually clustered into 21 clades using FigTree software69. Putative regulatory 554 

sequences sequences were selected at random for in vivo characterisation from 555 

these 21 clades. True randomness was achieved by using a random number 556 

generator that converted atmospheric noise into numerical values70. Initially, those 557 

promoters that were selected for in vivo characterisation were manually checked 558 

using the Artemis genome browser to ensure that they did not overlap with any 559 



 18 

adjacent coding sequences. Later, to expedite this process, BEDTools intersect71 560 

was used to identify those putative promoters which were non-overlapping.  561 

 562 

 Putative promoters were aligned to transcripts of each of the 4 Geobacillus 563 

species using Bowtie 2 software72. Indexes of the genome files were prepared using 564 

the “build” command. Putative regulatory sequences were subsequently aligned to 565 

each Geobacillus genome using Bowtie 2, with the resultant alignments provided in 566 

.sam format. The alignment .sam files were converted to .bam format, sorted and 567 

indexed using SAMtools73. The resultant alignments were compared against the 4 568 

selected Geobacillus genomes using BEDTools intersect. The “-v” command was 569 

used to report only those putative promoters that were non-overlapping with any 570 

annotated features in the genome transcripts. Output files were provided in .bam 571 

format, and were subsequently converted to FASTA format using bam2fastx 572 

software74.  573 

 574 

Bioinformatic identification of putative promoter sequences from bacteriophage 575 

 576 

 The genomes of 2 bacteriophages, Thermus phage Phi OH2 (NC_021784) 577 

and Geobacillus phage GBSV1 (NC_00837675) were selected for analysis based on 578 

their ready availability from the GenBank database. The retrieved GenBank files 579 

were loaded into the Artemis genome browser66 and suitable intergenic regions of at 580 

least 100 bp length were manually identified. The 100 bp nucleotide sequences 581 

immediately upstream of the adjacent CDS were extracted and analysed using 582 

BPROM software42 to identify putative promoters. Putative promoter sequences were 583 

screened against BPROMs list of known TFBS, and any sequences that contained 584 

known TFBS were discarded.  585 

 586 

Selection, synthesis and cloning of putative promoters for in vivo characterisation 587 

 588 

 Following bioinformatic filtering, putative promoters were synthesised and 589 

independently cloned upstream of the coding sequences of 2 reporter proteins, 590 

Dasher GFP and mOrange76 (Supporting Figure 6). The Geobacillus promoter 591 

phylogeny (Figure 1B) was used to rationally select putative regulatory sequences for 592 

in vivo characterisation in G. thermoglucosidasius. To maximise the portion of the 593 

design space that was empirically explored, at least 2 putative promoters were 594 

selected at random from each of the 13 clades of the phylogeny that contained more 595 

than 50 sequences. 2 putative promoters were also selected from each of the 596 



 19 

analysed phage genomes. Initial characterisation of the bacteriophage promoters 597 

showed that only 1 out of the 4 selected sequences was active in G. 598 

thermoglucosidasius (Supporting Figure 7). This 1 active bacteriophage promoter 599 

was added to 99 putative promoters from the Geobacillus phylogeny to create a set 600 

of 100 putative regulatory sequences. 601 

 602 

 The 100 selected putative promoters were synthesised and cloned into the 603 

pS797 vector (Supporting Figure 6). In all instances, the reporter CDS (GFP or 604 

mOrange) was followed by the S718 terminator from the G. thermodenitrificans 605 

NG80 2-oxoglutarate ferrodoxin oxioreductase subunit beta77. Putative regulatory 606 

sequences were either directly synthesised upstream of the relevant reporter CDS in 607 

pS797 by ATUM (Previously DNA 2.0, California, USA), or were synthesised as 608 

double stranded fragments by IDT (Illinois, USA) and cloned in vitro upstream of the 609 

relevant reporter CDS.  610 

 611 

A type IIs restriction cloning methodology 78,79 was used to join DNA parts. 612 

Parts were flanked with unique cloning affixes (Supporting Table 3) containing BsaI 613 

restriction sites. Part-specific post-digestion overhangs ensured that digested 614 

fragments were only able to ligate in a defined manner. In instances where putative 615 

promoters were synthesised by ATUM, the scar sequences that would have resulted 616 

form in vitro cloning of DRS and RBS were inserted into the sequence in silico prior 617 

to synthesis.  618 

 619 

 For in vitro cloning, terminator and reporter sequences were synthesised by 620 

ATUM in the pJ201 cloning vector. Cloning reactions consisted of 20 fmol of each of 621 

the pS797 destination vector and the relevant cloning vectors, with 10 U Bsa1 622 

restriction endonuclease and 1 U T4 DNA ligase in 2 μl ligation buffer (10x Thermo 623 

Scientific FastDigest buffer supplemented with 0.5 mM ATP). Final reactions were 624 

made up to 20 μl with ddH2O. Reactions were incubated for 50 cycles of 37 °C for 2 625 

min then 20 °C for 5 min. This was followed by final incubation steps of 50 °C for 5 626 

min then 80 °C for 5 min. 10 μl of the incubated cloning reaction mix was used to 627 

transform chemically competent NEB 5-alpha E. coli, following the protocol described 628 

below. Plasmid construction was verified by diagnostic digest, gel electrophoresis 629 

and Sanger sequencing.    630 

 631 

 632 

Transformation of chemically competent E. coli  633 
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 634 

 E. coli S17-1 were made chemically competent using a modified version of 635 

the protocol described by Hanahan80. 5 ml overnight cultures of E. coli S17-1 were 636 

used to inoculate 40 ml LB at a 1:1000 dilution. Inoculated cultures were incubated at 637 

37 °C, with shaking at 220 rpm, until an OD600 of 0.4-0.5 was reached. Cells were 638 

harvested by centrifugation at 4,500 g for 8 min at 4 °C and resuspended in 8 ml 639 

transformation buffer 1 (TF1: 150 g l-1 Glycerol; 30 ml l-1 1 M CH3CO2K pH 7.5; 0.1 M 640 

KCl; 0.01 M CaCl2.2H2O. Adjusted to pH 6.4 with CH3COOH, autoclaved, then 641 

supplemented with 50 ml l-1 filter sterilised 1 M MnCl2.4H2O). Resuspended cells 642 

were subsequently incubated on ice for 15 min, and harvested as above. The 643 

resulting cell pellet was resuspended in 4 ml transformation buffer 2 (TF2: 150 g l-1 644 

Glycerol; 0.075 M CaCl2.2H2O; 0.01 M KCl. Autoclaved, then supplemented with 20 645 

ml l-1 filter sterilised 0.5 M MOPS-KOH pH 6.8). 100 μl aliquots of competent cells 646 

were flash frozen in liquid nitrogen and stored at -80 °C until required.  647 

 648 

 For transformation, 100-200 ng plasmid DNA was added to chemically 649 

competent E. coli of the relevant strain. Samples were incubated on ice for 40 min, 650 

then heat shocked at 42 °C for 2 min and incubated on ice for a further 5 min. 700 µl 651 

LB was added and the resulting samples were incubated at 37 °C, with shaking at 652 

220 rpm, for 60 min. After incubation, samples were harvested by centrifugation at 653 

4,300 g for 5 min, and 500 µl of the supernatant was removed. The cell pellet was 654 

resuspended in the remaining supernatant, 200 µl of which was subsequently plated 655 

out onto LB agar plates, with antibiotic selection as required. Plates were incubated 656 

at 37 °C for 16 h.  657 

 658 

Conjugal transformation of G. thermoglucosidasius 659 

 660 

 Approximately 5 µl of transformed E. coli S17-1 was collected from a 661 

confluent plate-culture using a microbiological loop, suspended in 600 µl LLB and 662 

centrifuged at 4,300 g for 5 min. The supernatant was removed, and the resultant 663 

pellet re-suspended in a further 600 µl LLB. Approximately 10-15 µl wild-type G. 664 

thermoglucosidasius was collected from a confluent plate-culture using a 665 

microbiological loop, added to the E. coli suspension and re-suspended. The 666 

resulting bacterial mix was dispensed onto LLB agar plates, in drops of 667 

approximately 10 µl.  668 

 669 
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 LLB plates were incubated at 37 °C for 7 h, followed by incubation at 60 °C 670 

for 1 h. The resulting biomass was re-suspended in 1 ml LLB, and used to create 671 

dilutions of 1:10 and 1:5 biomass to sterile LLB. 200 µl aliquots of each dilution were 672 

spread onto separate mLB agar plates containing 12.5 µg ml-1 kanamycin. Plates 673 

were incubated at 55 °C for approximately 65 h.  674 

 675 

In vivo characterisation of promoter activity 676 

 677 

 To prepare starter cultures of G. thermoglucosidasius for promoter 678 

characterisation, transformants were picked and restreaked on mLB agar plates, with 679 

antibiotic selection as required. Plates were incubated at 55 °C for 16 h. The resulting 680 

biomass was subsequently re-suspended in 5 ml mLB. Bacterial suspensions were 681 

then used to inoculate mLB to an OD600 of 0.1, with antibiotic selection as required.  682 

 683 

 3 200 μl sample aliquots per transformant were loaded onto 96-well plates 684 

using either a Corbett Robotics CAS-1200 (Qiagen, Netherlands) or a Gilson 685 

Pipetmax 268 (Gilson Inc., Wisconsin, USA). To minimise the effect of position 686 

dependant bias, to which assays performed in a 96-well plate format can be 687 

susceptible81, sample aliquots were loaded in a Latin rectangle design; no 688 

transformant was represented more than once on any given row or column of the 689 

microplate (Supporting Figure 8). 96-well plates with lid covers have been shown to 690 

suffer from significant loss of culture in the outermost wells through evaporation82. To 691 

account for such edge effects, wells at the plate periphery were filled with 200 μl 692 

aliquots of sterile growth media. Microplates were incubated using PHMP 693 

Thermoshakers (Grant Instruments, UK). Incubation was at 60 °C, with shaking at 694 

800 rpm.  695 

 696 

 Population-level measurements of culture absorbance and fluorescence were 697 

taken using a Tecan Infinite 200 PRO microplate reader (Tecan, Switzerland). For 698 

measurements of GFP activity, fluorescence excitation and emission values were 699 

477 nm and 515 nm respectively. For measurements of mOrange activity, excitation 700 

and emission values were 546 nm and 576 nm respectively. In both cases, the gain 701 

of the instrument was set at 56. Absorbance of all cultures was measured at 600 nm.  702 

 703 

 Single-cell measurements of fluorescence activity were obtained using a BD 704 

FACS Aria II Fluorescence Activated Cell Sorter (FACS), equipped with a 100 μm 705 

nozzle. A sheath fluid of Phosphate Buffered Saline was used. Culture fluorescence 706 
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was excited at 488 nm and fluorescence intensity was recorded using a 530/30 nm 707 

detector in the case of GFP fluorescence, and a 585/42 detector in the case of 708 

mOrange fluorescence. 100,000 events were recorded per population.  709 

 710 

Promoter sequence-function modelling 711 

 712 

 All sequence-function modelling was performed using JMP pro versions 12 & 713 

13 (SAS Institute Inc., North Carolina, USA).  714 

 715 

Partition modelling 716 

 717 

 100 random forest models were generated for each of the GFP and mOrange 718 

characterisation data sets. In all instances, 20% of the available promoter sequences 719 

were randomly selected and withheld from model training to serve as a validation set. 720 

Each random forest contained a maximum of 100 decision trees, with early stopping 721 

if the addition of further trees to the forest did not improve the validation statistic. 722 

Each tree was trained on a data set of 26 randomly selected promoter sequence 723 

positions, drawn with replacement.  724 

 725 

 To generate partition trees, the selected sequences were divided into groups 726 

that differed maximally in terms of the response of interest. For example, the 727 

maximum difference in expression activity between 2 groups of promoters might be 728 

obtained by splitting the training data into a group of sequences with guanine 729 

residues at the -15 position, and another group where adenine, cytosine or thymine 730 

residues are present at the -15 position (Supporting Figure 9). The resulting sub-731 

groups were further divided, resulting in the formation of a tree like structure. By 732 

repeating the process multiple times on different, randomly selected portions of the 733 

training data, a “forest”83 of decision trees was formed. Across the entire forest, the 734 

more times a given factor caused a split in the data set, the better that factor was 735 

predicted to be at explaining variation in the response of interest.  736 

 737 

Selection of an independent test set for PLS & ANN modelling 738 

 739 

 To provide an independent test set on which to measure the predictive power 740 

of the derived models, 10 promoter sequences were selected and withheld from 741 

model training and validation. So that the test set contained promoters with a range 742 

of activity levels, the distribution of GFP expression levels of the 95 characterised 743 
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sequences was analysed. 2 sequences were subsequently selected at random from 744 

the 1st distribution quartile, 5 promoters were selected from the interquartile range 745 

and 3 sequences were selected from the 4th quartile. 746 

 747 

Partial Least squares sequence-function modelling 748 

 749 

 PLS models were trained that modelled GFP fluorescence as a function of 750 

varying numbers of sequence positions. The number of sequence positions modelled 751 

was systematically increased from 10 to 50 in increments of 5. Models that fit 752 

fluorescence as a function of the complete 104 bp promoters were also generated. 753 

For each of the 10 potential groups of x variables, multiple PLS models were fit using 754 

the non-iterative linear PLS (NIPALS) algorithm and using either KFold or holdback 755 

cross validation to optimise the number of latent variables that were extracted from 756 

the original data, with a maximum of 10 latent variables permitted per model. Once 757 

trained and validated, the models were used to make predictions of activity for the 10 758 

promoters in the withheld test set (Supporting Figure 5). The optimum model was 759 

judged to be the one that returned the highest R2 and lowest Root Average Squared 760 

Error (RASE) value when applied to the test set; i.e. the model that had the lowest 761 

prediction error.  762 

 763 

Artificial Neural Network sequence-function modelling 764 

 765 

 ANNs were fit using the multilayer perceptron algorithm of JMP software with 766 

sigmoidal activation functions. Network architecture was optimised using a Design of 767 

Experiments approach (Supporting Information).  768 

 769 

  770 
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 771 

Figure 1: Bioinformatic identification of putative promoter sequences. 772 

 773 

A) Venn diagram showing the number of homologous gene families identified in the 774 

genomes of the 4 selected Geobacillus species by Bidirectional best-hit (BDBH), 775 

COG triangles (COG) and OrthoMCL (OMCL) clustering algorithms. 776 

 777 

B) Phylogeny of putative promoters, rooted at the midpoint. At least 2 putative 778 

promoters were selected at random for in vivo characterisation from each of the 779 

clades containing > 50 sequences (highlighted in yellow).  780 

  781 
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 782 

Figure 2: In vivo characterisation of bioinformatically identified promoter 783 

sequences. 784 

 785 

Bioinformatically identified putative promoter sequences were synthesised upstream 786 

of GFP and mOrange reporter sequences, and promoter activity in G. 787 

thermoglucosidasius was characterised after 24 h growth. In all instances, the 788 

positive control, the G. thermodenitrificans ldhA promoter is shown in dark grey, and 789 

the negative control, G. thermoglucosidasius transformed with an empty pS797 790 

vector, is shown in red.  791 

 792 

A) Heat map of GFP and mOrange expression levels of the 80 characterised 793 

promoters. Each column represents a disparate promoter. To account for differences 794 

in intensity between GFP and mOrange fluorescence signals, the mean fluorescence 795 

output of each promoter::reporter fusion was normalised to the fluorescence output of 796 

the negative control, G. thermoglucosidasius transformed to express the empty 797 

pS797 vector, at the relevant excitation and emission wavelengths. Regulatory 798 

sequences were defined as active if reporter fluorescence was statistically 799 

significantly greater than the negative control at the relevant wavelengths. 800 
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Significance was determined by ordinary one-way ANOVA with Dunnett’s multiple 801 

comparisons test and a significance level of 0.05. 802 

 803 

B) Expression levels of the promoters for which fluorescence activity was statistically 804 

significant. Bars represent the mean of n = 3 independent starter cultures arising 805 

from independent transformation events, except in the case of the negative controls, 806 

where n = 14, and the positive controls, where n = 11. Error bars represent standard 807 

deviation.  808 

 809 

C) GFP and mOrange expression levels are normalised to the negative control. 810 

Points represent individual promoter sequences. Promoter groupings were 811 

determined by K-means clustering based on the Euclidian distance of the points from 812 

the line of equivalence, y = x, which is represented by the dashed line.  813 

 814 

D) Expression levels of the 7 promoters that functioned consistently regardless of 815 

CDS, as determined by flow cytometry. For each promoter::reporter fusion and the 816 

negative control, 100,000 events from each of 3 independent starter cultures arising 817 

from independent transformation events were combined to form a single “meta” 818 

population of 300,000 events. + = ldhA positive control; - = negative control.   819 
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 820 

 821 

Figure 3: Heat map showing the number of data set partitions caused in 100 822 

random forests by individual regulatory sequence nucleotide positions when 823 

either GFP or mOrange fluorescence was used as the response variable. 824 

 825 

The grey region represents the ACCT cloning scar between the Distal Regulatory 826 

Sequence (DRS) and RBS regions. As all of the characterised promoters were 827 

identical in these locations, these 4 positions were not included in the partition 828 

modelling.  829 

  830 
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 831 

Figure 4: Empirically measured promoter activity levels plotted against activity 832 

levels as predicted by the optimum obtained PLS and ANN models 833 

 834 

Points represent individual promoter sequences. Promoters that were used in model 835 

training and validation are shown in black, promoters that were part of the primary 836 

test set are shown in red, and sequences from the secondary test set are shown in 837 

blue. Empirical values are the mean of n = 3 starter cultures arising from independent 838 

transformation events. Standard deviation error bars are shown for both primary and 839 

secondary test sets, unless hidden by the points. The dashed lines represent the 840 

lines of equivalence, where empirically measured and predicted values are equal.  841 

842 
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