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Highlights

o Casualty Collection Points are critical for post-disaster response

¢ Robust stochastic model is used for optimizing casualty collection point locations
o Strategically located facilities can decrease mortality through improved access

e The model is evaluated through a retrospective analysis of a gas tragedy

e Urban city planners may find the model useful in identifying facility locations
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Abstract

In this paper, a Casualty Collection Points (CCPs) location problemis formulated as a two-stage robust
stochastic optimization model in an uncertain environment. In-“this modelling approach, the network
design decisions are integrated with the multi-period response operational decisions where the number of
casualties with different levels of injuries coming from the.affected areas is uncertain. Furthermore, the
transportation capacity for the evacuation of casualties to CCPs and hospitals is also uncertain. To solve
this complex problem, a robust sample average‘approximation method with the feasibility restoration
technique is proposed, and its efficiency is examinedithrough a statistical validation procedure. We then
evaluate the proposed methodology in the backdrop of a hypothetical case of Bhopal gas tragedy (with
the same hazard propagation profile).at the present day. We also report the solution robustness and model
robustness of 144 instances of the  case-study to show the proficiency of our proposed solution approach.
Results analysis reveals that ourhwmodelling approach enables the decision makers to design a
humanitarian logistic network in‘which not only the proximity and accessibility to CCPs is improved, but
also the number of livestlost is decreased. Moreover, it is shown that the proposed robust stochastic
optimization approach convergences rapidly and more efficiently. We hope that our methodology will
encourage urban cityplanners to pre-identify CCP locations, and, in the event of a disaster, help them

decide on'the subset of these CCPs that could be rapidly mobilised for disaster response.

Keywords: humanitarian logistics; casualty collection points; stochastic programming; robust
optimization; OR in disaster relief



1. Introduction

Severe weather events and natural disasters have displaced approximately 32 million people globally in
2012 and numbers are projected to continue rising (IPCC, 2014). According to the Centre for Research
on the Epidemiology of Disasters CRED (2015), over the past ten years, natural disasters affected almost
1.7 billion people, including 0.7 million killed, and resulted in 1.4 trillion dollars in damages worldwide.
Similarly, man-made disasters have human, environmental and economic consequences. Examples of
such disasters include stampede, nuclear or chemical plant explosion, emergencies resulting from
incorrect handling/transportation of hazardous materials, water contamination and oil spill. Man-made
disasters happen mainly due to accidents, negligence or incompetence. With the globaliincrease in the
number and severity of the disasters, researchers from different disciplines are. increasingly paying
attention to disaster management problems.

Alerts and early warning systems are among the tools available to city planners for dealing with
emergencies. These inform the population of an impending disaster, e.g., tsunami warning system of the
Japanese Meteorological Agency (Tatehata, 1997) and COBRA alerts”in, the UK (Thunhurst, Ritchie,
Friend, & Booker, 1992). Although these are useful for the advance warning, it is also essential to have,
in place, existing strategies for humanitarian logistic network design that could be initiated after a
disaster occurs. Analytical models may be developed ta represent population centres with critical
infrastructures like hospitals, power plants and transport networks. This will enable experimentation of
humanitarian logistic operations and inform city, planners if these are fit for purpose and where
improvements can be made. In this paper, we.have developed one such model. The model is motivated
by a disaster which took place in Bhepaly, India, in the year 1984. It is commonly referred to as the
Bhopal gas tragedy and was caused due to a leak of toxic gas (methyl isocyanate) from a pesticide
manufacturing plant. In OR literature, the case study of Bhopal disaster has been used once before to
illustrate a methodology that ean help identify root causes of disasters and facilitating allocation of
resources to prevent their occurrence. In their work, Ishizaka and Labib (2014) propose a hybrid method
consisting of problem. structuring, visualisation, Analytic Hierarchy Process and mathematical
programming, Wwith theiebjective to calculate the optimal allocation of available funds in order to avoid a
disaster.

For our model, we use the backdrop of the propagation of hazard that took place on the night of 2-3rd
December.1984; we use population and other model-specific parameters from the latest available census
data and other municipal reports for the city of Bhopal. We consider a hypothetical case of a gas leak
taking place in Bhopal in today’s date which follows the hazard propagation profile (e.g., wind direction)
reported back in 1984. The number of people dead as a direct consequence of inhaling toxic gas is
estimated to be between 3,700 to 16,000. Considering the catastrophic loss of lives, our objective here is
to design a humanitarian logistic network in which response planning and operations are taken into
account for the evacuation of the entire population of the affected areas to facilities that provide

temporary medical assessment and treatment (these are referred to as Casualty Collection Points or
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CCPs) and to the hospitals. In our model there are two uncertain parameters, namely, the number of
casualties and the transportation capacity. The motivation for using these variables is based on the hazard
profile that was associated with the Bhopal disaster. The direction of the wind determined the number of
people that inhaled the toxic gas. If the wind movement was in the direction of build-up population
centres (called as wards) then this would affect more people. Furthermore, the demographics associated
with a ward could have a bearing on the severity associated with inhaling the gas. For example,
inhalation of the gas had different sensitivities associated with children and elderly people compared to
the rest of the population (Bowonder, 1987). Our model, therefore, considered this uncertainty in the
number and severity of casualties. The motivation for the second uncertain parameter (transport.capacity)
is based on the generally accepted fact that developing countries often have inadequate transportation and
which is likely to affect emergency evacuation (Bisarya & Puri, 2005; Bowonder; 1987): Bisarya & Puri
(2005) recommend that the people living in the vicinity of hazardous plants’should be made aware of the
sources of transportation/ambulances for emergency evacuation. However, in a disaster of such
magnitude, it is important to consider not only public transportwbut@also private vehicles for the
transportation of casualties (as happened in Bhopal). Ownership of private vehicles will usually depend
on the socio-economic status of the people living in different.\wards. Further, public transport capacity
will also be dictated by transport infrastructure available.in different population centres. In order to
account for these variations, our model includes transport eapacity as an uncertain parameter.

In such uncertain environment, decision makers are to act without exact or complete information
about number of casualties from the affected areas'and the transportation capacity for moving casualties
to CCPs and hospitals. These factors ecannot be’confidentially estimated due to the unpredictability of
time, place and severeness of a disaster as'well as the changing roadway infrastructure as a result of
disaster impacts (Bayram & Yaman; 2015). In the context considered here, the number of casualties with
different levels of injuries ceming from the affected areas over the planning horizon and the
transportation capacity“for,moving casualties are uncertain parameters. The uncertainty about future
realizations of these parameters are considered in the form of random sample of scenarios incorporated in
the problem formulation:

The vast'majority/of studies in disaster and emergency management have focussed on the distribution
of relief in the aftermath of disasters (Anaya-Arenas, Renaud & Ruiz, 2014; Paul & Zhang, 2019). In this
context;istock location, resource allocation, and commodity flow from predefined warehouse locations to
affected. areas have been the most impactful variables to optimize for the construction of relief
distribution networks. Casualty management problems, such as the one presented in this paper, can
similarly be construed in terms of CCP location, casualty medical treatments, and casualty flow from the
affected areas to safer places and hospitals. In spite of the importance of casualty management in
humanitarian logistics, relatively little attention has been paid to this subject (Gupta, Starr, Farahani, &
Matinrad, 2016). Our work is, therefore, a contribution to this literature; specifically, we are concerned

with the casualty management functions of disaster management that are caused by human error, such as
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industrial accidents, and which are implemented after a disaster strikes (response phase of disaster
planning).

A disaster may result in numerous lives being lost. However, the severity of potential threats in the
aftermath of a disaster can be mitigated by providing fast and essential aids through intermediary sites.
As mentioned earlier, these sites with short-term missions and temporary locations are referred to as
CCPs. An overall view of CCP establishment and operations is presented in Figure 1. In existing
literature, several terms have been interchangeably used to denote these facilities, such as field treatment
site (Drezner, 2004) or alternative care facilities (Caunhye, Li, & Nie, 2015). However, for consistency,
we have used CCP for casualty collection point or facilities that are functionally similar.to CCPs. CCP
locations are identified before the disaster occurrence, i.e. during the preparedness phase, but selected
after the disaster has occurred, i.e. in the response phase (see Figure 1). After choosingithe right location
and establishing® the CCPs, the following operational and tactical decisions‘are to be made in the
response phase at CCPs: (i) triage, (ii) casualty registration, (iii) casualty ‘medical treatment, (iv) casualty

evacuation, and finally (v) shutting down the site(s) (Koehler, Foley, &dJones, 1992).
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Figure 1. CCP establishment and operations.

Uncertainty affects strategic CCP location decisions, and which have a bearing on tactical and
operational decisions. The network design decisions are strategic decisions that are made when
forecasting uncertain parameters. Planning and operational decisions, on the other hand, are usually made
when parameters are more obvious (e.g., the parts of the city that may be affected due to an unfolding

weather-related event). It is arguable that including strategic decisions would improve the quality of

! The California National Guard announced that establishment of a CCP capable of providing an intermediate-level medical care
requires a minimum of 48 hours to set up.



casualty management and other operational decisions. In particular, optimizing the location and
allocation decisions at the strategic level with the hierarchical integration of the periodical policy
decisions lead us to a two-stage stochastic optimization model. With this motivation, we reflect on a
robust stochastic optimization approach, which simultaneously optimizes the number of CCPs, location,
allocation, and capacity decisions at the strategic level and scenario-based casualty triage, casualty
registration, casualty holding, and casualty transportation decisions in a multi-period planning setting,
while satisfying the system constraints enhancing the problem objective function.

The organization of the remainder of this paper is as follows. In Section 2, we provide a literature review
and highlight the main contributions of this paper. Section 3 represents a generic robust optimization
modelling approach and a two-stage formulation for the problem context presented.in the paper. Section
4 contains a robust stochastic optimization procedure as well as the validation“procedure. In Section 5,
we study the application of the model to the case study; we provide experimental results for extensive
realistic problem instances; we discuss these results and performance of the solution methodology.
Section 6 is the concluding section and discusses future work.

2. Literature review

This section presents a brief overview of research on casualty*management and disaster response.
(Drezner, 2004) first introduced the CCP location problem_in a discrete network and its application in
disaster management in Orange County, California. Theny(Drezner, Drezner, & Salhi, 2006) developed
the problem to a multi-objective programming model to find appropriate locations for CCPs. Casualty
transportation in cases of expected disasters and post-disaster, have been widely studied in the form of a
transportation network design problem™{(Shen,” Pannala, Rai, & Tsoi, 2008; Ozdamar, 2011; Yao,
Mandala, & Do Chung, 2009; Ben-<Tal;\Do Chung, Mandala, & Yao, 2011). In this regard, (An, Cui, Li,
& Ouyang, 2013) and (Kulshrestha; Lou, & Yin, 2014) developed a stochastic model that incorporates
mass-transit casualty evacuation planning from pick-up locations. (Najafi, Eshghoi, & Dullaert, 2013),
(Goerigk & Griin, 2014) and (Goerigk, Deghdak, & T’Kindt, 2015) studied the impact of multiple
transportation modes including private vehicles, rapid transit, and mass-transit shuttle buses. (Sacco et
al., 2007), (Wilson, Hawe, Coates, & Crouch, 2013) and (Kilic, Dincer, & Gokce, 2014) focused on
processing-operational decisions involving triage, transportation, and treatment for medical injuries over
the planning period. (He & Peeta, 2014) and (He, Zheng, & Peeta, 2015) underlined the impact of
dynamiciresource allocation on casualty transportation and evacuation.

In logistic network design, there exists temporal hierarchical structure between initial design
considerations and the subsequent planning and operational decisions; this implies that these decisions
are made under uncertainty (Shapiro, 2008; Klibi, Lasalle, Martel, & Ichoua, 2010). (Klibi & Martel,
2013) emphasized that individual optimization of the logistical decisions may not guarantee an optimal
solution for the whole operation. (Amiri-Aref, Klibi, & Babai, 2018) showed that the integration of the
design and planning decisions could improve the quality of solutions in network design when demand is

uncertain. Due to unpredictability concerning the magnitude of a disaster, number and location of
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casualties, the availability of infrastructure, weather conditions, etc., providing a logistical response
encounters a high level of difficulty and uncertainty (Apte, 2010). Thus, for the construction of an
optimization model, to enable the integration of design and planning decisions it is important to consider
temporal hierarchical structures with uncertainty. (Bayram, Tansel, & Yaman, 2015) emphasised that
disaster management models that do not take into account the uncertainties may lead towards inefficient
logistical planning and operational decision making. According to (Gupta et al., 2016), who present the
latest survey in this field, integrating decisions related to locating casualties and moving them to
hospitals (or safer places) can save humerous lives and further research is required in this area.

In the existing literature, only a few authors have addressed the stochasticity in anuintegrated CCP
network design problem with multi-period planning settings. (Li, Nozick, Xus & "Davidson, 2012)
developed a scenario-based bi-level programming model for the shelter Aocationymodel with the
evacuation consideration for a realistic case study of North Carolina and- highlighted the impact of
transportation when selecting the location decisions. (Bayram & Yaman, 2015) proposed a scenario-
based two-stage stochastic shelter location model considering casualties (evacuees) allocation to the
nearest facility to minimize the expected total evacuation time. (Bayram & Yaman, 2017) provided the
exact solution based on Benders-decomposition algorithm“to the”model formulated by (Bayram &
Yaman, 2015). They showed the importance of the inclusien of uncertainty in planning for evacuations.
Despite the contribution of the abovementioned efforts ontthe interdependency of casualty transportation
and shelter (CCP) location decisions in humanitarian logistics network design, the main shortcoming is
the neglect of temporal hierarchy relationship between the strategic and planning decisions and the
dynamicity of casualty arrivals as illustrated. in Figure 1. Strategic decisions are adopted at the beginning
of response phase in an uncertain environment where exact or complete information about the number of
casualties are not available. Then;.Scenario-based multi-period decisions are made during the response
phase in which we assume(theshorizon is composed of a set of discrete operational cycles. Note that a
user makes periodical .decisions on a timely basis (e.g., hourly, 8-hourly, 12-hourly and daily). In fact,
the consideration of casualty state transition from one operational cycle to the next and of hierarchical
setting between decisions results to a multi-period two-stage stochastic program model for the
humanitarian-logistics network design problem.

To the best of our knowledge, a two-stage stochastic modelling for the CCP location problem with
uncertain,number of casualties with different levels of injuries under a multi-period settings and
uncertain transportation capacity is lacking in the literature. Given that this problem has the same NP-
hardness property as a basic facility location problem, we have developed a heuristic robust method for
solving the problem. This paper extends the literature related to the humanitarian logistic network design
in the following three ways.

While several humanitarian logistical problems studied the response network design for providing
medical supply from prepositioned warehouses or staging areas to the affected people through the points

of distribution (POD), this paper focuses on a network design with casualty response planning from the
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affected areas to the evacuation points (EP) or safer places through the temporary CCPs. In the former
context, relief items and supplies move towards affected areas, whereas the model presented in this paper
relies on the flow of victims with life threating conditions from the affected areas to the EPs or hospitals
through the intermediate CCPs in an uncertain environment. The additional contribution of this paper to
the relevant articles in the literature (e.g., Yi & Ozdamar, 2007; Apte et al., 2014) is the explicit inclusion
of the uncertainty inherent in CCP location-allocation decisions made at the design stage of the
optimization model. In fact, the uncertainty is due to the time lag between the strategic design decisions
in the first stage and the dynamic operational decisions in the second stage during the response phase.
Strategic decisions on the number, location and allocation of CCPs are made through=anticipating the
plausible scenarios for the operational decisions in the second stage. Although several studies in the
location-evacuation literature investigated the humanitarian logistic network, design, they almost
considered deterministic or mean-value information. In this paper, we develop.a two-stage stochastic
programming modelling approach to cope adequately with the uncertainty inherent in disaster contexts,
where the value of stochastic information is high. It has been shownsthatithe inclusion of uncertainty at
the strategic level improves the quality of the CCP design decisions (Birge & Louveaux, 2011).

Second, the main aim of the problem considered here is to-optimize CCP design decisions in view of
the existence of the temporal hierarchy structure between the strategic and operational decisions over the
planning period. The time setting between these decisionstas-well as the distinct time-horizon granularity
are incorporated in the proposed model to capture,the-dynamic nature of lifesaving operations in the
response phase. In this research, we deal with an-integrated humanitarian logistic network problem in
which strategic decisions are made in the first-stage model and operational decisions with anticipation of
uncertain factors are made/revised-during the multi-period planning horizon. This problem must not be
confounded with problems whichin fact optimizes the location and evacuation decisions simultaneously
for achieving coordinationyas pointed out in Yi & Ozdamar (2007); Sheu & Pan (2014). It is important
to note that in this modelling approach the objective is to use the anticipated decisions optimized for each
operational cycle .ander. all”’scenarios, so that more efficient and robust CCP design solutions are
generated at the strategic”level. From the practical point of view, strategic decisions include the number
and location“of CCPs to be opened, CCPs capacity allocation, allocation of affected areas to established
CCPs, haspitals’ allocation to established CCPs and alternative CCP locations. These decisions, also
known™as, design decisions, are made immediately following a disaster. Planning decisions such as
casualty triage, casualty registration, casualty medical treatment and casualty transporting, then need to
be made over the whole of the planning period. The number of casualties (with several levels of injuries)
and the available transportation capacity are uncertain throughout the proposed network. Due to the
hierarchical structure of strategic and planning decisions, finding an optimal solution for one activity is
not usually sufficient for the whole of the response phase. Therefore, the focus of this paper is to present

a model that reflects the hierarchical structure of the strategic and planning decisions in the presence of



uncertain parameters in one unique problem in order to provide effective design solutions; Further, to
formulate such a problem in the form of a two-stage robust stochastic optimization model.

Third, we proposed a robust stochastic optimization solution approach to cope with the infeasibility
issues which may occur in the stochastic optimization problems. Our proposed approach returns robust
solutions which are close to any given scenarios with minimum dispersion from the optimal values. This
has been validated by the optimality gap analysis.

Our review of the literature on stochastic programming approaches specific to casualty management
problems has shown that no existing model has taken into consideration the three features presented
above. The main purpose of this study is to provide a specific representation of an integrated.casualty
management structure in an uncertain environment while the system constraints are met. To the best of
our knowledge, the modelling of CCP logistic network design problem~with the characteristics

mentioned above has not been studied in the literature so far.

3. Modelling approach and problem formulation

In this section, we first present a generic robust stochastic optimization modelling approach and then
apply this approach in the proposed CCP logistic network design preblem where the uncertain number of
casualties with different levels of injuries, and uncertain casualty transportation capacity, are described
by a set of realizations or scenarios for their values.

3.1. Modelling approach

This problem is characterized by two decision variable sets: design variables and control variables. Let

us assume x € ]R’11+ denotes the vector of design variables which need to be made here-and-now in the
first-stage of decision-making preblems,with n-dimensional integer space. The design variables have

static nature during the planning horizon and are non-adjustable to the uncertain parameters. Let us

further assume y € ]R{’2‘+ denotes,the vector of control variables in an n-dimensional nonnegative space
that are subjected to.adjustment once the actual data of the uncertain parameters reveals itself. This
decision set is scenario-dependent and adjustable to the optimal value of the design variables. The
control variables which'are made in the second-stage of dynamic decision-making problems are so-called
wait-and-see decisions. Considering the definition of the design and control variables, a general

framework,of a/'two-stage stochastic programming model with uncertain parameters is presented in the

following,

min {¢"x + E[Q(x, )]} (1)
xeRY

st. Ax=b, x>0, )

where C = {c, A, b} is a set of vectors of fixed coefficients of the first-stage decision-making problem
and of free of noise in input data. Objective function (1) represents objective function of the first-stage
decision-making problem and the expected optimal value of the second-stage decision-making problem,

defined by Q(x,1), and equation (2) denotes the structural constraints with fixed parameters.



Q(x,¥) = min {q"y} 3)
yERZ
st. Cy=e—Bx (G))]
where, ¥ :={q, B, C, e} defines a set of uncertain parameters, subjected to noisy input data, associated
with the second-stage decision-making problem. Objective function (3) optimizes the control variables in
the second-stage decision-making problem subject to noisy parameters. Equation (4) denotes control
constraints with uncertain parameters adjusted to the first stage variables. Let us denote the set of y as a
random vector with corresponding probability space support ¥ and its particular realization. Suppose the
expected value function E[Q(x, )] with random vector y has finite support ¥. That isto,say ¥ has a

finite number of realizations or scenarios Y(w) :={q(w), B(w),C(w),e(w)} with respective

probabilities w(w),w € Q = {1,2,...,|Q|}, where Z'“' m(w) = 1. Therefore, the expected value

w=1

function is represented as follows:

EQ )] = ) m(@)0(x () ©)

wWEN
where, for each w € Q ={1,2,...,]|Q|}, Q(x,zp(a))) denotes the optimal value of the deterministic-

equivalent linear formulation of the second-stage decision making problem:

(6)
- T
nin,, {a;n(w)q (w)y(w)}
s.t. C(w)y(w) = e(w) — B(w)x, Vw € Q, @)

If the set of constraints (7) has no feasible solution, the second-stage decision making problem is
infeasible. Under this condition, there exists™at least one scenario realization w € Q, for which
qT (w)y(w) = +o0 and so Q(X,ll)(w)) =00, On the other hand, this problem could be unbounded
depending on the first-stage variables and,scenario realizations and hence Q(x, l/)(a))) = —oo,

The classical stochastic programming is likely to be infeasible especially when the distribution of
uncertain parameter is unknown, or the uncertain parameter realizations do not follow a specific
distribution (Khor, Elkamel, Ponnambalam, & Douglas, 2008). Due to the lack of information or
imperfect data in-disasterymanagement, such as, location and time of disaster, it’s severity in terms of
number of casualties, and available transportation capacity subsequent to the disaster, the parameters are
almost unpredictable or are forecasted with a wide range of variability. This, coupled with the need to
execute alarge’ number of scenarios, will most likely produce infeasible solutions to the stochastic
programming (Neyshabouri & Berg, 2017). To tackle possible infeasibility due to the presence of
uncertain parameters and the risk attributed to the decision-maker, robust counterparts problem is
proposed. Its purpose is to find an optimal solution that satisfies all constraints for any uncertainty
realization while reducing the risk of dispersion of the objective function value. In the robust
optimization literature, two performance metrics that have been widely applied are the concept of
solution robustness and model robustness (Mulvey, Vanderbei, & Zenios, 1995). Our robust counterpart

problem studies both solution robustness and the model robustness concepts simultaneously. Since the

10



robust counterpart problem accounts for the second-stage decision-making problem with uncertain
parameter realization, without loss of generality, we mainly focus on the formulations given in (6) —(7).
To achieve solution robustness, (Mulvey & Ruszczynski, 1995) measured the dispersion of the
objective values by minimizing the average of standard deviation (or absolute deviation) of the objective
values over all scenarios. This metric guarantees that the second-stage solutions are close to any scenario
realizations applied in the problem (Ben-Tal, Goryashko, Guslitzer, & Nemirovski, 2004). In order to
avoid nonlinearity resulting from the standard deviation formulation, we instead utilize the absolute

deviation one, denoted by ®(w) in (8) for each scenario w € Q.

®(w) = [¢" (w)y(w) — Z m(w)g" (w)y(w") Yo € Q. (8)
w'eQ—{w}
The model robustness, which focuses on infeasibility issue as a result offa violation of data-driven

parameters, takes into account infeasibility penalty p in the objective” function- of the second-stage

decision-making problem. In this modelling framework, the constraintiviolation is measured by an

infeasibility variable vector z(w), where a positive value of z(w)-show the amount of infeasibility of the

corresponding scenario w € Q in the model. It is clear that z(w).= 0)if the model is feasible. The mean

value of probable infeasibilities is then penalized in the objective function.

C(wy(w) + z(w) = e(w) —B(w)x, VwE€Q, )
Considering both solution robustness and maodel robustness represented in (8) and (9), respectively,

the robust counterpart of the second-stage stochastic programming is given as follows.

(10)
min {z m(0)(q" (@)y(w) + P (w)+ pz(a)))}

y(w)Ele wWEN
s.t. constraints (8) —(9),
where the expected cost functignis-presented in the first term of (10) and solution robustness and model

robustness are given in the/second and third terms of (10), respectively. Since the terms stated in (10)
need to be unified, we\use coefficients f, and B, to provide a compromised objective function, as
denoted in (11).

min {Z 1(@)(4"(@)y(@) + B (@) + Bp2(w))

y((u)ER;‘ wEQN
In the next subsection, an extended formulation of the robust two-stage stochastic programming model to

} (11)

design:the casualty collection logistical network problem is presented.

3.2. Problem formulation

The context of the study is based on the 1984 Bhopal gas tragedy and our methodology for problem
formulation is inspired by the guidelines provided in the technical report of (Haynes & Freeman, 1989).
One of the key recommendations of this report is the importance of designing an efficient logistical
network in cases of disasters with mass causality. With this motivation, a robust two-stage stochastic
programming model is formulated to develop a logistics network design problem for the casualty

collection points in the event of a disaster.
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The first-stage objective function follows the recommendations of the report (Haynes & Freeman,
1989), where the CCP locations should be close enough to both affected areas and hospitals so as to
facilitate the efficient movement of casualties (here, the casualties are people who have been affected by
the disaster). This objective function considers a fixed cost that can be assigned to each potential location
for establishing a CCP and relative cost associated with distance to travel from the affected areas to the
established CCPs and/or to the hospitals. According to the technical report, when injury severity is minor
and the hospitals are in the vicinity of the affected areas, casualties can travel directly to established
CCPs or hospitals without assistance (so-called self-evacuees). On the other hand, casualties with the
need for intermediate or immediate medical care are directed to established CCPs by either emergency,
mass-transit or even private vehicles (so-called emergency-evacuees). The emergency-evacuees go
through four stages— triage, registration, treatment and evacuation. Incoming easualties.to the CCPs are
diagnosed for severity of their injuries (triage) and are registered~ subsequently. Temporary
hospitalization and first aid medical services are then provided to the casualties (treatment). They are
then transferred to the hospitals or other health and care facilities for-further treatment (evacuation). The
distance to travel for both self-evacuees (moving from affected “areas to the established CCPs or
hospitals) and emergency-evacuees (first travelling from affected areas to the CCPs, and then from the
CCPs to the hospitals) is formulated in the form of a travelled distance cost minimization function. The
second-stage objective function minimizes the expected operating costs and the penalty cost due to lives
lost. The expected operating cost consists of theycost incurred by periodical decisions for casualty
holding and transportation as well as the penalty=cost due to system inefficiency and lack of adequate
resources. In this study, the first-stage“objective function incorporates the design decisions, while the
second-stage objective considers the planning decisions incorporated into the design decisions. A typical
CCP logistical network is graphically illustrated in Figure 2.

@ e 0  Affected areas
o '?u-l:l 0P existing hospital location
o ¥ * -0 Pre-identified CCPs but not selected
/| Lo
T Selected CCPs
0 g
N o) v BRREE & J— » Casualty influx to CCPs
’ ;O
J/ "‘ e — —» Casualty evacuation to hospitals
e —— -—" ‘." - -o
o x
e
(o]

Figure 2. CCP logistical network.
3.2.1. The first stage model
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The first-stage of casualty collection logistical network design problem focuses only on the humanitarian
objective optimization with the aim of locating the CCPs where the cost of travelled distance to affected
areas and hospitals are minimal. Let us introduce the set of affected areas by 7 = {1,2,...,|7|}, where the
casualties come from. This set can also be viewed as demand points in the business context. The set of
potential locations for establishing CCPs are denoted by J = {1,2,...,|J|} and the set of existing
hospitals to serve CCPs are indicated by % = {1,2,..., |¥X|}.

The set of first-stage design decisions is composed of (1) determining the number of required CCPs to
meet demand, (2) selecting the location of CCPs among potential locations where €ach CCP is
characterized by its capacity, and (3) allocating the affected areas as well as hospitalsito every
established CCP. The input parameters, according to the first-stage requirements;.contain the distance

matrices in our designated network. Let us denote the distance from affected area)i € Jyto potential CCP

location j € J by Dyy = [dif]lﬂlxldl’ the distance from potential CCP location j €yJ to hospital k € K by
Dy = [df"]ldlxlvcl' and the distance from affected area i € 7 to hospital ku&%C by Dyx = [dise]j71x |-

The binary decision variables used in the first stage model are also represented in the following:

X; = 1 if potential location j is selected as a CCP, and 0 otherwise,

Y;; = 1 if affected area i is allocated to potential location f, and 0-otherwise,

Vi, = 1 if operating CCP j is allocated to hospital k, and:0,otherwise,

U;, = 1if affected area i is allocated to hospital k, and Q-otherwise.

These strategic decisions are made considering the uncertain parameters for the whole planning period.
The uncertain parameter that is used mest'often in network design is demand value, which corresponds to
the flow of casualties in the humanitarian context. In addition to this, we also incorporated uncertain
transportation capacity into the.model to ‘achieve more realistic and more reliable results. The set of all
possible flow of casualty scenarios and available transportation capacity scenarios are denoted by Y and
T, respectively. At the second stage, while realizing the possible scenarios v € Y and y € T, the response
decisions, including (i):triage, (ii) registration, (iii) treatment, and (iv) evacuation, are adopted over the
planning period. Let Q(x, w) be the solution of planning and operating decisions at the second-stage
depending-on the scenariow = (v,y) € Q =Y x T, where Q represents a set of all combinations of
scenarioscv € Y/ and y € T'. Let assume m(w) is the probability of each scenario occurrence, where
m(w)\= m(v).m(y). Thus, we can introduce m(w)q(x,w) as the expected value of the objective
function of the second stage, where x = (Xj, Yij Viks Ul-k) denotes the vector of the first-stage binary

decision variables. Considering that, we present the first-stage decision-making problem in the

following:

min Z T(w)g(x,w) + a ZZ dijYi; + Z Z dig Vi + z z dir Uik | ¢ (12)
* (Gea i€l jeg j€J kex i€l kex

st: Y <X, Viedje], (13)
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Vi < Xj, VjEJkEX, (14)

Zyij‘*‘zUikZL Vied, (15)

jed kex
Evjk > Xj, Vied, (16)
keX

X, Yij, Vi, Uye € {0,13, viesjegdkex, (17)

where « represents the provisional cost of travelling per distance unit. The objective function of the first
stage model, presented in (12), contains the expected cost of the second-stage problem after uncertainty
realization and the cost related to the travelled distance. Constraints (13) ensure that each affected area
can be allocated to each established CCP. Constraints (14) show that only the established CCPs are
allowed to be allocated to the existing hospitals. Constraints (15) represent thatweach affected area must
be allocated to either established CCPs or existing hospitals. Constraints (16) guarantee that each
operating CCP must be allocated to at least one of the existing hospitals. The binary decision variables
are given in (17).

3.2.2. The second stage model

Once CCP location identification is done, the casualty response.operations, including (i) triage, (ii)
registration, (iii) treatment, and (iv) evacuation, commence with scenario realizations over the planning
period T = {1,2,...,|7|}. However, the purpose of the Second stage stochastic formulation is to generate
a robust design solution by involving different scenarios,at the planning and operational level. To address
the uncertainty of the number of casualties, a setwof possible scenarios are generated and are then used in
the model. Let &;;:(v) be the number~of,casualties identified with the injury severity level [ € £ =
{1,2,...,|£]|} at the affected area i-€ Jwon day t € T under scenario v € Y. Although a wide range of
injury severity level can be used, we divide the set of injury severity £ into the following three subsets,
L™ £im and £, indicating minor injury severity, intermediate injury severity, and immediate injury
severity, respectively. Note that ‘the injury severity subsets are independent pairwise and that {L"“' U
LMy £my = £ and {£7n L™ N L™} = . We are inspired by the fact associated with the case study
that self-evacuation is unlikely to happen for casualties with intermediate and immediate injury severity.
Following to this=point, we assume that casualties with minor injury severity level, i.e. [ € {Lmi}, are
able to reach_CCPs/hospitals by themselves, so-called self-evacuees, and those with intermediate and
immediate’injury severity, i.e. I € {£™ U L™}, are led to the established CCPs. It should be noted that
self-evacuation does not include flow of casualties with intermediate and immediate injury severity
levels, i.e. L € {£™ U £}, and that casualties with minor injury severity level, i.e. I € {£L™}, can either
travel to established CCPs or move directly to the hospitals. On the other hand, casualties with
intermediate and immediate injury severity levels are moved to CCPs. In other words, casualties with
minor severity level that are in the vicinity of a hospital can travel directly to the hospital without

reaching CCPs. , We denote nonnegative continuous decision variable F}}}t(a)) as the flow of casualties
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characterized by all injury severity levels I € {£™" U L™ u L™}, from affected area i to CCP j in period
t under scenario w and F" (w) as the flow casualties with minor injury severity level, i.e. I € L™, from
affected area i directly to hospital k in period t under scenario w. We also denote the outflows of
casualties with injury severity level [ € {£™ u £™} from CCP j to hospital k in period t under scenario
w by nonnegative continuous decision variable Fj‘,’}l‘f (w). Note that, only casualties with intermediate and
immediate severity levels will be evacuated to hospitals for further treatment while casualties with minor
severity level are supposed to be treated by medical services at CCPs and do not require to be evacuated
to hospitals. Let tc;; = 9. d;; be the cost of transporting the casualties from affected areadi t0,CCP j, and
tcik = . dj; be the cost of transporting the casualties from CCP j to hospital k, where ¥ represents the
transportation cost per person per kilometre, on average. It is clear that the transportation cost of self-
evacuees can be ignored as it does not affect the network flow.

The number of casualties with injury severity level [ which are kept at CCP j in period t under
scenario w for temporary hospitalization is indicated by Cj’l‘fs(w) and associated cost of casualty holding

or temporary hospitalization cost at a CCP is indicated by hc. Owing torthe inefficiency in the response
operations or insufficient transportation resources, an injured\person-(i.e. casualty) may subsequently be
dead. The number of lives lost of casualties with injury~severity level [ at CCP j in period t under

scenario w, due to the abovementioned reasons, are denoted by Mﬁt(w) and Mﬁt(m), respectively. As

such, in the model a very high life lost cost B is impesed’in case of mortality. We ignored the cost of rest
of operations, such as casualty triage and registration, as those have a negligible cost comparing to the
mortality costs and casualty temporary-hospitalization and transportation costs.

In the second stage, the set of all*possible scenarios w = (v,y) € Q =Y x I associated with the flow
of casualties v € Y and the available transportation capacity y € I' are randomly generated from the
historical data outside the optimization procedure. For each scenario w € (, the objective function (18)
of the second-stage is the expected value of the total response planning and operational costs, involving
casualty transportation/cost from/to CCPs (18.1), casualty holding cost (18.2), and mortality cost (18.3)
as follows. This objective function is subject to the system constraints (19) to (35), as described in

afterwards:

min { Z T(w)g (X, a))} (18)

WEQ
where, for each w € (,

g(x,w) =

Z Z Z Z tegFif () + Z z 2 Z tjr Fie (w) (18.1)

i€J jeJ leL teT JEJ k€K L teT

+ Z 2 Z he. Gjif* (@) (18.2)

jEJ IEL teT
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+ z Z z B (Mﬁt(w) + Mﬁt(w)) (18.3)

JEJ LEL teT
o Casualty triage and assignment constraints

Casualty assignment constraints refer to the CCP logistical network design and the allowable flow of
casualties throughout the network. This set of constraints depends in large part on triage operations and
the diagnosed level of injury severity. Constraint (19) ensures that self-evacuation is applied to only
casualties with minor injury severity level to be directed to the hospitals by themselves. In other words, it
prohibits the direct flow for intermediate or immediate injury levels [ € {£™ u £™}. Gonstraint (20)
presents that casualties with all injury severity levels, i.e.,l € {L}, are allowed to“be moved to the
established CCPs. Constraint (21) shows that casualties with only intermediate-or. immediate medical
care, i.e. | € {£™ U L™}, are transported to hospitals. Since the casualties with minor injury level are
absolutely treated in CCPs and do not require further medical treatments, they do not need to be
evacuated to hospitals. Note that, constraints (19) —(21) guarantee-that the flow of casualties in the

network is considered where the allocation in the network is certified.

F% (w) < MUy,

Ve kEK,teET,w€EN (29)
tef{cmi}
ZF%(@)SM‘GP vViedjedteT, weq (20)
leL
out
Fikar (@) < MV, VieEJkeEK teT,weQ (21)

le{cinucim}
where M is a positive large number.
e Resource capacity constraints
This set of constraints sefers to“two capacitated resources in the model, i.e. physical capacity
limitations for casualty.treatment at both CCPs and hospitals, and the available transportation capacity to

move casualties in the .network.
The physical capacity for casualty treatment at established CCP j is limited to a; = ﬁ, where A;
n

represents”the area-of that CCP, in square-meter unit, and u indicates the required surface to provide
medical services to an individual, on average. However, the required capacity division for each injury
severity level should be determined at each established CCP. The capacity division, shown by S;; (w),
represents the part of capacity of CCP j dedicated to injury severity level [ € £ under scenario w. This
decision variable is adaptive to the uncertainty inherent in the model. Constraint (22) guarantees that the
capacity division is implemented at the established CCP and constraint (23) assures that the total
capacity divisions do not exceed the total physical area of a CCP. Constraint (24) verifies that the
inflows of casualties from the affected areas to an established CCP do not violate its dedicated capacity

for each injury severity level.
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Si(w) = MX;, VieJleL,weQ (22)

Zsz(ﬂ)) < q;X;, VieJweQ (23)
leL
Z Fiji (@) < Sy(w), ViEJIELLET, weEQ (24)

i€l
Constraint (24) associates the estimation of inflows, Y;¢; Fl-"}}t (w) which also contains information about
the demand realization, with the treatment capacity limitation S;;(w) of CCPs which-have been
established in the first-stage model. However it does not necessarily mean that all allocated inflows will
be registered at that CCP. Thus, the difference between inflows of casualties and number of registered
casualties results in the number of mortalities. In fact, constraint (24) plays an important role to form the
skeleton of the logistical network design. Because, it allows the model to end with-more flexible network
design solutions by altering allocation decisions to the established CCP locations and/or opening
additional CCPs for serving mass casualty flows.

Constraint (25) indicates the maximum treatment capacity of hospitals, indicated by c, k € K, for
providing the required medical services to casualties comingudirectly from the affected areas and
casualties transporting from the established CCPs.

2, 0 @Y D @) =g vkeKiET0ED (29
i€7 1e{rmi) J€J 1efLimuLim}

Moreover, we consider the situation whereinsthe available transportation capacity at CCP j to cover
inflows and outflows of casualties at injury sewverity level [ € £ is uncertain due to failures, traffic
congestion, accident, etc., in the roadways. This uncertain parameter is denoted by ¢;;(y), where y € T is
the set of scenarios for the available transportation capacity. Constraint (26) indicates that the inflows

and outflows of casualties,i.e. F}}l‘t(w) and Fjf (w), respectively, at CCP j for injury severity level

1 € {£™ u £™} cannot'exceed the available transportation capacity under scenario y.
D Fin @)+ ) BB @) < Gu),
ieJg kEK
viegle{mruLmteT, 0 eQy€erl (26)
e Uncertainflow of casualties
Constraint (27) takes into account the current uncertain flow of casualties under scenariov € Y with
injury severity level [ transporting from the affected areas to the established CCPs and the hospitals.
Z Fii () + Z FI (@) = & (v) VielleLl e{LM},teT,weQveY  (27)

j€J kexX
e Casualties management constraints

Casualty management operations emphasize the necessary functions including (i) registration, (ii)
temporary hospitalization, and (iii) evacuation to hospitals or safer places, in the humanitarian logistics

(Lejeune & Margot, 2018). Considering this sequence of operations explained in the context of the
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problem, we define the scenario-based decision variables accordingly. Let Cflfg (w) indicate the number

of casualties registered with injury severity level [ at CCP j in period t under scenario w. Constraint (28)
guarantees that this latter does not exceed the inflows of casualties from the affected areas to a CCP.

G’ (@) < z Fili(w), VieJleLteT,weQ (28)

i€eJ

For the medical treatment, the available capacity dedicated to each injury severity level of a CCP should
be taken into account. This matter is represented in constraint (29). Let us recall that C ]’;;’S(w) represents
the number of casualties for temporary hospitalization. It states that the number of casualties receiving
temporary hospitalization services cannot be more than the dedicated capacity divisiens at a CCP. Note

that C]’;fs(w) refers to the cumulative hospitalized individuals that corresponds to constraint (32).

Clie*(w) < Sj(w), Vji€EJ,lELtET,weD (29)
The medical services are immediately provided to the registered casualties diagnosed with injury severity
level 1. Depending on the severity of injuries [, the length of the hospitalization period, during which the
casualties have to be kept and treated at CCPs, is denoted by t;.“After-completing the hospitalization
period t;, these casualties become ready-to-evacuate to the corresponding hospitals. Constraint (30)

reflects on the evacuation operations.

Gt () = €7, (w), ViedlELtET|t>T,wEQ (30)
where C/7;“(w) denotes the number of ready-to-evacuate casualties with injury severity level [ at CCP j
in period t under scenario w. Constraint (31) certifies that the number of casualties transported from a
CCP to the allocated hospitals cannot exceed the number of ready-to-evacuates. Note that only casualties
with injury levels of intermediateand immediate have to be evacuated to hospitals, since they require
further medical treatments.

e 2 ) F ), Vjedle{tnuLm)eT,0e 0 (31)
kEXK

Constraints (32) verifies.the equilibrium casualty state transition in the consecutive periods in which the
number of hospitalized casualties from the previous period plus the number of registered casualties of the
current period is.equal to the number of ready-to-evacuate casualties and the hospitalized casualties of
the current period.

Chi* (W)= €, (W) + Cgf (w) — €52 (w), ViEJIELLET, w€EQ (32)
The maost impactful output of humanitarian logistic network design is to save lives and reduce human
suffering. This critical output is measured in our model by the following variables, M ]lt(a)) indicating
the number of lives lost with injury severity level [ € £ due to facility capacity limitation at CCP j in
period t under scenario w and Mﬂt(w) indicating the number of lives lost with injury severity level
le {Li” UL“”} due to transportation capacity limitation passing through CCP j in period t under

scenario w. Constraint (33) states that when casualty inflows are more than the CCP capacity to register,
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lives lost due to facility capacity limitation occurs. Similarly, Constraint (34) states that when the number
of ready-to-evacuate exceeds the casualty outflows, lives lost due to the limitation in transportation

capacity occurs.

Mf, (w) = 2 Jie(@) = €% (w), VieJlELLET, weQ (33)
ied
Ml (0) = G (@) = ) i), vjedleLnuLm) e weq (34)
kEXK
The nonnegative continuous decision variables are given in (35).
Fift (@), T, (), F4 (@), Che (@), M5 (@), S (@) = 0 (35)

ViedjeJleLl e{Lm}l" e{L" LM ket ET, weEQ,

r € {reg,hosyeva},s € {R, T}
Number of constraints in the first-stage model and the second-stage model is¢bounded to |7| X |J| +
|JI x| and Q] X (7] % |J| X |K| X |T| + 7] X |J| X | L] X |T]), " respectively. This two-stage

stochastic model contains |Q] X <|J| x L] x (|IT] % (J7] + 2) + 1) ¥K)x |T| x (|7| X [£™| 4+ |J] x

(let| + |Lim|))) nonnegative continuous and |7| x |J] +4J| XJF| + || x |K| + |7| binary decision

variables, which represents a complex large-scale optimization problem. The solvability of this problem
is highly dependent on the number of constraints and binary.decision variables.
4. Solution approach
The solution approach proposed in this section.is'partly inspired from the sample average approximation
(SAA) technique (Shapiro, 2008), which®is based on an approximation of the stochastic model by an
equivalent deterministic mixed-integersprogramming (MIP) model. The methodology incorporates the
SAA method, the robust counterpart problem and the feasibility restoration technique to solve the
stochastic CCP network designiproblem with uncertain parameters.

4.1. Sample average approximation method
The scenario-based(two-stage stochastic programming model represented above is a complex large-scale
optimization problem, as‘a large number of scenarios is involved for uncertain parameters realization. To
solve the two-stage stochastic CCP network design problem represented above, we are inspired by the
SAA technique,/(Shapiro, 2008), which is based on an approximation of the stochastic model by an
equivalent, deterministic mixed-integer programming (MIP) model. The SAA model incorporates the
equivalent deterministic mixed-integer program of the second-stage decision-making problem into the
first-stage decision-making problem. The SAA method has mainly been used to find near-optimal
solutions for two-stage stochastic problems (Schitz, Tomasgard, & Ahmed, 2009 ; Klibi & Martel, 2013;
Amiri-Aref et al., 2018).
Since two sets of uncertain parameters are concerned in this paper, i.e. the number of casualties and
available transportation capacity, two sets of scenario generation should be realized in this model. By

generating N; independent number of casualty scenarios given as {v!,v?,..., vV} =YN1 c Y, and N,
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independent available transportation capacity scenarios as {y*,y?2, ...,y"2} = I'V2 < T', we produce a pool

of N; x N, equiprobable scenarios {w!, w?, ...,0"} = QN c Q, where Q¥ = YN1 x N2 and N = N,. N,

with the occurrence probability of each scenario as(w) = n(v).n(y) = (Ni)(Ni) = % Given the
1 2

original two-stage stochastic model (12) — (35), the SAA program is constructed in the following:

min ZZadUYU+ZZad]ijk+ZZadlkUlk

i€] jeJ j€J kex i€] keX

s A S S ey E @Y > Y e Fiit )

weQlN \ i€7 jeJ IeL teT j€J kex €L teT

£ D he g @)+ )Y > B (M (@) + M () (36)

jEJ IEL tET jEJ IEL tET
s.t. constraints sets (13) — (17), and
constraints sets (19) — (35).

where, the first three terms in (36) denote the first-stage objective function and the last term denotes the
expected objective function of the second-stage problem.

The SAA method is performed when a feasible solution exists and-the problem has a finite objective
value (Shapiro, 2008). However, the uncertain parameters in“humanitarian logistics may not have an
identical distribution or a known distribution parameter=in such a situation, the SAA method is prone to
return infeasible solutions by violating some of the constraints in at least one scenario. To tackle this
challenge, we provide a robust counterpart-problem for the represented SAA method, involving robust
solution and robust model, proposed by (Mulvey et al., 1995), in the following subsection.

4.2.Robust SAA method

A robust solution is characterized by its proximity to the optimal solution of a stochastic programming
model. We incorporate solution robustness by the inclusion of the mean absolute deviation of the second-
stage solutions, indicated by @ (w), over the number of scenarios in the SAA model, as follows:

o) = |ax )N Y m(@)ax ). eV 37)
w'€QN—{w}
Let us recallrthat g (X, w) is the second-stage decision-making problem. As discussed earlier, expression

(37) has'to be /minimized to achieve solution robustness. Therefore, it is included in the objective
functionsef the SAA model. As it contains the absolute function which makes the SAA model nonlinear,
we apply a linearization approach to guarantee the convexity of the solution space.

Proposition 1. As the expression (37) is included in the minimization objective function, we can
substitute it by the following expressions:

Y@ =axe)= Y w@)axe)+24) e QN 38)

w'€QN —{w}
where,
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Alw) = g(x,w) — z T(w")g(x, w), w e QN (39)
w'eaN-{w}

Alw), @' (w) =0 w € QN (40)

where g (x, w) is given in (18.1) —(18.3). Now we consider two possible cases to verify the proposition.

Case 1 is where g (%, 0) — ¥ ,reqn—(o3 T (0" )g (%, w) = 0, then according to (39), we have A(w) = 0. It
is clear that A(w)=0, when minimizing expression (38). In this case,
?'(w) = g%, w) = X yreaV—(w T(@)g (X w) = P (w). Case 2 is where
g(X, ®) = XyreaN—(wT(w')g(X, w) < 0. Considering the minimization of ®'(w), we then have
Aw) =X yreav—{w}T(@)g (%, w) — g(x, w) which results in
P = g(x,w) — Xyreav—(o} T (0 )g(x, w) = P(w). For more information regarding this linearization
method, refer to (Yu & Li, 2000).

A robust model is regarded as a model that returns solutions which are feasiblexfor any given scenario
realizations. Due to the variability of the uncertain parameters, a stochasti¢,programming model might be
infeasible for some scenario realizations. One of the most probable reasons for infeasibility in a
stochastic programming model is the variability of scenario,realizations, which corresponds to the
inflows of casualties (Birge and Louveaux, 2011). This issue, which is coupled with the limited
available physical capacity of each potential node for establishing a CCP, corresponds to constraint (23).
In fact, this constraint verifies the additional CCP. nodes’are required for accommodating the inflows, as
the existing areas of potential CCP nodes are not sufficient. To overcome this issue, we apply a model
robustness approach, in which an infeasibility variable z;(w) is taken into account in the system
constraints, as represented in (9). The infeasibility variable z;(w) shows the amount of infeasibility of
each scenario w € Q in the model” Itiis clear that z;(w) = 0 if the model is feasible. Otherwise, it returns
a positive value. However, auge penalty number p is assigned to the infeasibility variable z;(w) in the
objective function of the-model toravoid being infeasible for all scenarios. We then modify the constraint

(23), which refers to the j:th CCP capacity limitation, by adding the infeasibility variable z;(w), as

follows:
N
leL
3j(w) =0 weQN (42)

Considering that, the SAA model with the robust optimization techniques, namely solution robustness
and model robustness, is represented in the following:
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min ﬁO ZZ(deYLJ+ZZad]ijk+ZZadlkUlk

ie] jeJ J€J kex i€] keEX
1 .
2 3 YYD @) + DY e EgE @)+ Y YD he Gl (@)
wealN \i€7 jeJ IeL teT JEJ kEX 1EL teT jeg 1eL teT
£ B (M) + ML) | |+ 510 @) 48, Y pzy@)y, (@3)
jE€J IEL tET JjEJ

s.t. constraints (13) —(17),
constraints (19) —(22),
constraints (24) —(35), and
constraints (38) —(42),
where 8y, B1, and 3, are the coefficients to compromise the objective function elements. The first term in

(43) corresponds to the objective function represented in (36) with the compremising coefficient. The
second term refers to the mean absolute deviation of the second-stage selutions which is formulated in
(37). The last-term penalizes the casualty flow violation. Note that fer5, = 1 and g, = B, = 0, the
objective function (43) becomes the classical one represented in (36). Cempromising coefficients Sy, S,
B, are adjusted based on the decision-maker’s risk attitude..The solutions obtained from the
abovementioned robust counterpart problem of the SAA method are reliable and efficient as long as the
infeasibility variables return zero for all scenarios w\=%(w,y) € Q =Y X I. If there exists at least one
infeasibility variable with a nonzero value for any.seenarios, the results are meaningless and inapplicable.
That is to say, the model does not guarantee  that-ebtaining solutions satisfy the system constraints for all
scenario realizations and do not convergesto the optimal solution. This failure can be partly due to the
inappropriate set of location and allocation decisions or inadequate capacity acquisitions in the network

structure in the first-stage decision-making problem. In other words, not all choices of design decisions

X € ]R’f' give rise to feasible solutions. To achieve feasible solutions when the infeasibility variables
return nonzero values,-we apply a feasibility restoration technique on the non-algebraic constraints, i.e.
design decisions, whichis discussed in the following section.

4.3. Feasibility/restoration technique

As casualty flow. in.humanitarian logistics is unpredictable, in case of failure in the robust SAA model,
the feasibility restoration technique proposed in this paper allows us to reconsider the CCP logistic
netwarksstructure and adopt appropriate design decisions accordingly. It is clear that the operational
decisions at the second stage will improve as a result of improvement in the design decisions.

The feasibility restoration technique is inspired from the work of (Abramson & Randall, 1999), which
has been further developed in (Casey & Sen, 2005), and applied in (Huang & Mehrotra, 2016; Kim &
Wright, 2016; Lee, Liu, Mehrotra, & Bie, 2015) . This technique is characterized by detecting
infeasibility and incorporating auxiliary design decision variables in the two-stage program to tackle the

issue while considering all scenario realizations. The key feature of this technique is to expand the
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network configuration so that feasible solution is enhanced and can reproduce more efficient objective
value.

Proposition 2. Let us recall that x = (Xj, Yiis Vik, Uik) € ]R?J' denotes the vector of the first-stage binary
decision variables, wherej € J ={1,2,...,|J|} represents potential locations to establish CCPs. To
redesign the network structure, we need a modified set of potential locations. We introduce x” =
(ij, Yiio Vi ko Uik) € IRQ“ as a vector of feasibility restoration variables to the design decision variables
(i.e. the non-algebraic constraints) in which j,. € J,- = {1,2, ...,|J,-|} represents the set of restoration
locations to establish emergency CCPs. From the practical point of view, these set of paints,address the
spots in the open space area, for example. Using the operator @ to indicate merge, we represent the
supplementary design decision variables by x* = x @ x”, such that x* = (Xjé, Yiio Vik Uik) € ]R{’l1+ isa
vector of binary variables where j, € J, = {1,2,...,1J|} represents the modified set of potential
locations. Note that J and J,- are independent sets and that 7 n J,- = @. Also, note that J U J,. = J,
and that |7,| = |J| + |JI.

As a result of Proposition 2, the new pooling of design decision variables gives rise to the evolution of
the control variables accordingly. We introduce the evolving control variables by y?(w) € ]RQL+ as a
vector of non-negative variables and subsequently the. evolving absolute deviation function and
infeasibility variable, ®*(w) and z*(w), respectively=.According to the Proposition 2, we then
reconstruct the robust SAA programming, as represented.in (44) — (48).

min {ﬁo (ch5+ > n(w)qT(w)yﬁ(w))wl D @) ()

"
SeRT y4(w)ERD
X 1Y () 2 weON weON

44

+8, ) pr@) zé(w)} @4

St AX® = b, x*=0, (45)

B(w)x? + C(w)y?*(w)+ z%(w) = e(w), Vw €OV, (46)

@ (w) = |q" @)y (W)~ z m(wgq" (w)y* ("], Vo € OV, (47)
w'eQ—{w}

% (w) >(0,z°(w) >0, VoweQl. (48)

As the extended (44) — (48) are partly similar to those already described, we avoid repeating the
description of the above model. Increasing the size of feasibility restoration variable set to |7,./|, where
7' > 7pallows the model to choose the most appropriate locations among the available nodes, although
it increases the problem complexity.

A general computational framework for the robust stochastic optimization under uncertainty is outlined

in Figure 3.

Input: whv?, oMY =YN ey, (L2, Ly} =TV e T, and {w?, w?, ..., 0"} = QN c Q, where
QN = YN1 x N2

Step 1: Solve the SAA model, with objective function (36) subject to constraints (13) -(17) and (19) -
(35).

Step 2: If the model is feasible,
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Add the absolute deviation function to the model,
Expression (38) —(40), with (18.1) —(18.3),
Else,
Add infeasibility variable to the constraint, and
Replace constraints (23) by constraints (41) —(42),
End if.
Step 3: Add compromising coefficients S,, 8;, and S,, and solve the robust SAA model,
with objective function (43) subject to constraints (13) —(17), (19) —(22), (24) —(35), and (38) —
(42).
Step 4: Set|J-| =0
While there exists at least one infeasibility variable with nonzero value,
Add | J,-| restoration locations to the network structure,
Add feasibility restoration variables with size |J,-| to the design decisionivariables,
Update all decision variables in the network,
Solve the updated robust SAA model,
End while.
Step 5: Stop.
Output:  Robust design and control solution are found.

Figure 3. The proposed robust stochastic optimization procedure.

4.4.Validation analysis

In this section, we discuss a validation analysis which is based on optimality gap estimation between the
objective value at a solution found by the proposed algorithmsand the optimal value of the true problem.
The optimality gap estimation is a way to evaluate.the quality of stochastic solutions in two-stage
programming where the true objective value is finite and the second-stage solution is feasible for almost
every realization of the random data.

We suppose x” and y” denote the true optimal selutions of the first-stage and the second-stage problem
and f(x7,yT) is the true optimal objective value. According to (Shapiro, 2008), since finding the value
of £(xT,yT) is almost impossible, as’'enormously large number of scenarios are required, statistical lower
and upper bounds for the true,optimal‘objective value using the valid inequality can qualify the solution
procedure. The statistical lower bound is estimated by averaging the solutions of the algorithm in M
independent times based on,N generated scenarios and a valid statistical upper bound for the true optimal
objective value is-given by sampling. This latter can be done through solving the second-stage problem
using a large enough sample of scenarios N’ > N, where the solution of the first-stage problem is given
as input.
e Averagingprocedure

Let xj¥ and yy', m = 1, ..., M, denote the optimal solution vector of the two-stage stochastic problem
found by the algorithm with scenario sample size N in the m-th replication of sample generation, and
f(xy, yah) be the optimal objective value corresponding solution values. We then provide average and
standard-deviation estimators for the true objective values. An unbiased estimator of the statistical lower
bound of the expected true objective value, denoted by f(x¥,yM), can be the average of M f(x3, yi)

values, as follows:

24



M
_ 1
Foyi =22 D £V (49)
m=1

Considering M independent scenario generations, the standard deviation is estimated in the following:

M
< 1 F
o} = mmzzl(f(x;,",ym - Fexl,yin)’ *

Using the average and standard deviation estimators for M replications of samples of size N, an
approximate (1 — &) X 100% confidence lower bound of the true objective value, denoted by £¥, is
given as follows:

Lif1—q = fxN,¥N) — tam—10N (51)
where t,, )y, represents the a-critical value of the t-distribution with M — 1 degrees of freedom.

e Sampling procedure

The statistical upper bound of the expected true optimal objective value can be estimated by sampling
procedure. Let X be the best optimal solution vector of the first-stage problem found by the algorithm
with a scenario sample size N among M replications. We then_solve.thesproblem with X as an input and
generate sample scenarios {w!, w?, ...,w”'} € QN < Q, Where™N’ > N, which are independent to
samples used in computing X. It is clear that when X is given as an input, the problem can be decomposed
into N’ deterministic problems. We denote the optimal 6bjective value based on a sample size N’ by
f(x yx) and the optimal objective value solved ‘one ata time by o (X v, where w € V' < Q. Note
that yy, and y;, represent the solution of the, second-stage problem when N’ sample scenarios are
involved and the scenario-wise solutign of the second-stage problem, respectively. One can calculate the

standard deviation of £ (%,y;) by

Nl
A 1 - ,
Iy(X) = m;(ﬁu(ﬁ. vo) = f &) 2

An approximate (1= a) X 100% confidence upper bound of the true objective value, denoted by U, is
then given as

Uyt 1-a & R Vi) + nady ®) (53)
where ngrepresents the standard normal critical value with (1 —a) x 100% confidence level.
Therefore;jan approximate (1 — a) x 100% confidence interval for the expected true objective value is
represented in the form of (L,"\f 1_a,uNr,1_a), using equations (51) and (53). A statistically valid interval
on the true objective value (with confidence at least 1 — 2a), denoted by g/a\pII‘V/I'N,, and the statistical
optimality gap percentage, denoted by gia\p%' v’ %, are given in equations (54) and (55), respectively, as
follows:

gapy = Unr 1o — LN 1-a (54)
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M Gy 1 (55)
gapy y% = m—— X 100%
N 1i-a

The validation procedure discussed above is then summarized in Figure 4.

Validation procedure:
Step 1. Averaging procedure (N, M, @)
For replicationm =1, ..., M
Generate sample scenario QY
Solve the proposed algorithm outlined in Figure 3 and save f (X}, yi*)
Compute the approximate (1 — ) x 100% confidence lower bound L}/, using (51)
Next
Step 2. Sampling procedure (X, N', a)

Generate sample scenario Q,“,’l'
For scenariow =1, ..., N’
Calculate the objective value £, (X, y;,) with the given solution X

Next

Calculate the objective value f (X, yy+) with the given solution X and all scenarios w € v’

Compute the approximate (1 — a) x 100% confidence upper bound Uy, using (53)
Step 3. Calculate Optimality gap

Calculate the statistical optimality gap percentage given in (55).

If the gap is acceptable, stop; otherwise increase N and/or Myand return to step 1
Output Statistically valid bounds on the true objective value (with.confidence at least 1 — 2a).

Figure 4. Validation procedure
5. Computational study
The robust stochastic optimization modelling appreach'described in Section 3 is implemented through a
computational study using data scenarios modelled on the Bhopal gas tragedy that occurred in India over
three decades ago. More specifically, wesconsider a hypothetical case of a gas leak in Bhopal in today’s
date and which follows the hazard. prepagation profile (e.g., wind direction, affected wards) reported
back in 1984. The underlying“data for’the study, which includes the population of specific wards
(population areas/catchments);, available transportation in the city, existing infrastructure (including
schools and hospitals),«pen spaces, and other model-specific parameters, was obtained through census
data and from local municipal reports. We conducted one field trip to get access to some of this
information. The data thus obtained was used to estimate the required parameters, which were then used
to model the.scenarios for the computational study. In this section, we also discuss the efficiency of our
proposed modelling approach and present the solution sensitivity analysis to provide further insights to
humanitarian logistics planners and practitioners.
5.1. Context for study
This section briefly describes the Bhopal Tragedy in India, often known as the worst industrial accident
in the world and provides a computational investigation into the humanitarian logistics network design
for establishing CCPs in the affected areas. On December 3, 1984, a highly toxic cloud of methyl
isocyanate (MIC) leaked from a pesticide plant in Bhopal, the capital city of the state of Madhya
Pradesh, the second largest state in India. The leak was the consequence of a large volume of water

entering one of the methyl isocyanate storage tanks around 9:30 pm the day before. This triggered off a
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chemical reaction resulting in a tremendous increase of temperature and pressure in the tank and
consequently led to an explosion. More than thirty years have passed since the gas explosion, but the
Bhopal saga is far from over. During our trips to the plant site and conversations with the volunteers at
the NGO clinics as well as the local slum dwellers, we were told that of the 800,000 people living in
Bhopal at that time, no one knows exactly how many people were affected that night.

The geographical scope of our study focuses on the affected areas in the city of Bhopal. According to the
technical report of the Indian Council of Medical Research (ICMR, 1985) on the Bhopal disaster, |7| =
33 wards have been identified as affected areas with more than 700,000 population (each ward is shown
as an orange icon in Figure 5). Within this area, a set of predesignated locations have been selected as the
candidate points to establish CCPs. These CCP points are usually sites that can<accommodate a large
number of casualties (Drezner, 2004), for example, college and university campuses, high schools with a
football field, mosques, malls and large parks. We identified a total ,of~65,CCP candidate points,
including existing buildings and open-spaces (shown as blue icons in Figure 5). The capacity of each
potential CCP location to provide medical services to casualties is ‘estimated by its total available area
divided by the space required to treat per person. We considered the latter equal to 4 = 7m?2 per person as
reported in the statistical report (Moore, Levit, & Elixhauser, 2014). Moreover, the network
includes |%| = 9 hospitals and medical care centres as safe_places to evacuate the casualties for further
treatment (hospitals are shown as a white cross in a purplescircle). Union Carbide plant, i.e. the disaster

point, is shown using a yellow icon. For more details.about the case study, refer to Appendix A.
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Figure 5. Geographical locations of the affected wards and CCPs.

27



We assume that the available transportation capacity by means of ambulances for immediate severity
injury level is 500 people per trip? which was far below the required capacity to move mass casualty in
the disaster we considered. Therefore, we considered the public/private vehicles (including mini buses,
standard buses, and private cars) into the transportation capacity to move mass casualty with minor and
intermediate severity injury level to CCPs and hospitals. Using both public and private modes of
transport, the available transportation capacity reached more than 200,000 people. To generate random
number of casualties, we utilized the simulation procedure provided in (Singh & Ghosh, 1987).
Analysing the data, we observed that the coefficient of variation of generated number of gasualties of 7
wards out of 33 was about 80%, while it was above 120% for 26 wards out of 33, which represents a
considerable uncertainty inherent in the generated number of casualties.

In order to provide a comprehensive perspective of results, we test the problem-across different values of
the compromising coefficients and the available transportation capacity for each instance problem. A
wide range of S, ;, and 3, as the compromising coefficients of objective function elements have been
used for each instance problem which are given in the following, 8, = {1071,1,10,10%}, B, =
{1,10,10%}, and B, = {1073,5x 1073,1072,1071,1,10}. We represent two available transportation
capacity scenario sets usable after the disaster, percentage-wise by ¢7, and test with two sets of scenarios
given in the following: try = {85%,90%, 95%} and tr;, "= {70%, 75%, 80%}. Note that try and tr;
refers to high and low transportation capacity scenarios,jrespectively. Therefore, the combination of
various values of compromising coefficients Sy B84, and B,, and two usable transportation capacity
percentages try and tr; yields 144 problem instances. For each problem instance, we generated, based
on the population of each ward and the'number of casualties reported in Singh and Ghosh (1987), N; = 5
independent number of casualty scenarios in |£| = 3 level of injury severity for each ward and N, = 3
independent available transportation capacity scenarios for each CCP, over a planning period of |T| = 7
days. In other words, for each preblem instance, N;. N,. |T|.|£| = 315 sample scenarios are generated to
represent the number of casualties for each ward.

5.2.Numerical results/and discussion

The instances described’in Section 4.1 are solved after scenario generations on a 64-bit operating system
server with a 2.7xgigahertz CPU on Intel(R) processor and 72 gigabytes of RAM. The proposed robust
stochastic eptimization approach, shown in Figure 3, is performed using the optimization solver GAMS
with ‘a MIP Relative Tolerance of 0.005 within a 5-hour computation time. The detailed numerical
results,’including the solution value and computational time, related to the 144 instances are represented
in Tables B1-B8 of Appendix B.

The California National Guard announced that establishment of a CCP capable of providing an intermediate-level medical care
requires a minimum of 48 hours to set up.

4-hour with the average speed of 60 km/h and the average two-way distance between demand points and CCPs
(Kumar & Jain, 2013).
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In order to measure the efficiency of the proposed logistic network design and related operations, we
applied important metrics related to disaster management. We present the results in the following
sections.

5.2.1. Locational decisions

We compare CCP location decisions found by SAA method and the proposed robust stochastic
optimization with feasibility restoration variables with respect to coefficients of g, = {0.1,1,10,100}.
This comparison is illustrated in Figures 6(a) and 6(b) showing two levels of available transportation
capacity after a disaster strikes. In these figures, the coefficients of S, can be considered as the risk
aversion attitude of a decision maker (DM), where 0.1 attributes to a risk incentive DMvand 100 relates
to a risk aversive DM and is represented on the x-axis. The average number of opened CCPs over the
number of involved instances is represented on the y-axis. Results illustrated-in)Figure 6(a) show that,
when on average 90% of casualty transportation capacity is available;“the "SAA method opens 39
locations for establishing CCPs, on average, and is not sensitive to the risk aversion attitude of a DM.
Compared to this, our proposed methodology suggests opening up=to 43, on average, locations for
establishing CCPs and is fairly relative to the risk aversion attitude of.a DM. CCP location decisions are
more of the essence when the available casualty transportation capacity decreases to 80%, on average.
Our findings show that the output of the SAA method remains unchanged even when casualty
transportation capacity is reduced by 10%. However, bypusing our proposed algorithm a significant
increase in the number of CCPs is observed, whichycontributes to 47 locations for establishing CCPs in
the case of risk averse DM (B, = 100) — refer toFigure 6(b). In other words, the results reveal that the
more conservative a DM is, the more_the number of CCPs that will need to be operationalised. Further,
using our proposed algorithm, as“the“coefficients of S, increases, the number of existing building
selected for establishing CCPs.decreased and instead more potential locations are chosen from open-
space spots as locations to set-up. CCPs. The information on buildings and open spaces was based on data

from our Bhopal case study.
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Figure 6. The impact of DM risk aversion attitude on the locational decisions.

From Figure 6(a) and (b), it can be concluded that our proposed methodalogy, which is based on robust
stochastic programming model, enables a DM to cope with the infeasibility issues due to the dispersion
of scenarios and generates more efficient solutions which are'feasible for any scenarios. Furthermore,
being more risk averse in an uncertain decision-making environment results in opening more CCPs
among the existing buildings and open-spaces and therefore being closer to the affected areas. This fact
emphasizes the necessity of providing fast and_ efficient medical services to the casualties from the
shortest possible distance. In the following section;:the’role of accessibility to the services in CCPs and
its impact on the number of lives lost is explored.

5.2.2. Network structure decisions

In order to measure the quality of*a complex emergency network design, we introduce the proximity
metric which is defined as the*total distance travelled in the network to the number of links associated
with all pair nodes, i.e. from the affected areas to the established CCPs, also known as the average path
length. Proximity is an“important metric in humanitarian logistics and has been extensively used in this
context (Muggy & Stamm, 2017). Let us indicate the solution value of allocation decision variables by
?l-j. The proximity metric is then formulated as ; 3’ dl-j?ij XN ﬁ-j which represents the average path
length to reach a=CCP. Results illustrated in Figure 7 reveal that our proposed robust optimization
method designs’ a network in which the average path length (shown as a dash-line in Figure 7) has
improved in comparison to the SAA method. This can be confirmed by the results of increasing in the
number-of CCPs that are opened, as illustrated in Figure 6. We then investigate the number of lives loss,
also known as mortality in this work, to see whether it is influenced by the average path length
improvement. As shown in Figure 7, on average, the mortality rate experienced a significant reduction
from 438 individuals to 294 individuals due to the decrease in the average path length. In general, Figure
7 suggests that a small improvement in proximity to CCPs can result in a significant decrease in the

number of lives saved.
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Figure 7. Proximity vs mortality.
This analysis also addresses the Equity, also known as fairness, which tackles the discoordination of
operational decisions for providing appropriate emergency services toscasualties. When it comes to relief
contexts, this metric measures the unsatisfied demand associated with,each operational decision over the
planning period (Marsh & Schilling, 1994), which refers to mertality in our case. Moreover, the average
path length which denotes the rapidity is also widely considered as the equity metric (Anaya-Arenas,
Ruiz, & Renaud, 2013). It can be interpreted from Figure 7 that overall, the equity metric has been
improved by the modelling approach we proposed, in,this'work.
5.2.3. Robust performance metrics
As discussed earlier, robust optimizatien approach enables DMs to generate solutions while reducing the
risk of dispersion and ensuring the“solution/concentration in an uncertain environment. In this work, we
measure the dispersion of the objective function values over all given scenarios, found by the proposed
model, as a metric to evaluate the solution robustness. This metric gives rise to the standard deviation of
the objective values whieh represents the closeness between them. Results illustrate that the dispersion of
objective values indhe uncertain environment increases, as the transportation capacity contributes to 10%
reduction, on average. Results also suggest that the standard deviation of our proposed optimization
approach .is slightly” larger than the stochastic programming method; this can be due to network
expansion,and the resultant distribution of entities throughout the optimized network. Overall, the
dispersion,of the objective value in both cases, i.e. SAA method and the proposed stochastic robust
optimization method, are negligible (less than 107).
Another important factor that is used in robust optimization approaches, also known as model robustness,
is to generate solutions values which satisfy all system constraints for any given scenarios. Due to the
uncertainty inherent in mass casualty flow management, it is very likely to observe the infeasible
solutions. We also evaluate the infeasibility produced in the model for the 144 instances when using the
stochastic modelling approach and compare with the corresponding values when applying our proposed

solution algorithm by the usable transportation capacities. It has been observed that the stochastic
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programming (SAA method) approach results in solutions where positive values of infeasibility exist, on
average 3.5907445x10°, whereas the proposed approach ended up with zero infeasibility values. It is also
found out that the infeasibility values corresponding to the SAA method increase as transportation
capacity tends to decrease. For detailed information, refer to Tables B1-B8 of Appendix B.

In relation to robust optimization, the overall performance and reliability of solutions are measured by
calculating the coefficient of variation, i.e. standard deviation-to-mean ratio, through all the scenarios
(Birge, 1982). We then calculate the coefficient of variation corresponding to decision variables used in
the model over 144 instances and represent the minimum, mean, and maximum value of the coefficient
of variation of each variable over all instances (see Table 1). Results show that the coefficient of
variation of all operational decisions are considerably low, such that, for the majarity of them it is less
than 1%. However, the coefficient of variation value corresponding to the stratégic decision of capacity
allocation is 2.15% on average and which is not too large. In general, it shows: that the solution values
have low variability and are quite reliable.

Table 1. Coefficient of variation of decision variables.

Fi(@)  Firw) @  Gfle) N Gi'w)  Eiff@)  Si(w)
Minimum 0.26% 0.75% 0.41% 0.38% 0.51% 0.57% 1.71%
Mean 0.27% 0.82% 0.44% 0:40% 0.55% 0.64% 2.15%
Maximum 0.33% 0.88% 0.46% 0.43% 0.59% 0.67% 3.12%

5.2.4. Validation metrics

In this section, the validation procedure, represented in Figure 4, is used to examine the accuracy of the
solutions found by the proposed robust optimization solution method. All instances are tested and their
associated statistical optimality gap values are computed according to the validation procedure. A lower
bound solution with 95% confidence-level is computed using the averaging procedure with replication
size M =4 and scenario size N =)15. Then, using the best solution found from the average, the
sampling procedure is applied with sample evaluation scenario size N’ = 150 to generate an upper
bound with 95% confidence level. We then calculate the statistical optimality gap percentage for each
instance. The resultstare/reported in Tables B1-B8, in Appendix B. To provide a clear view of the
optimality gap percentage over the instances and its relationship with DM risk aversion attitude, we
represent the average of optimality gap percentage over the instances for each corresponding value of
Bo =+£0.1,1,10,100} in Figure 8. As can be observed, the optimality gap has a decreasing trend as the
weight{corresponding to DM risk aversion attitude increases. It is due to the fact that instances with
higher weight of DM risk aversion attitude have the objective function with low variability and therefore
with less optimality gap. It can be concluded that the more conservative the DM is, the less the
optimality gap that exists.
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Optimality gap percentage

We finally compare the convergence rate of the proposed solution methodology to that'of SAA method
by reporting the dual objective value and the best integer bound found by the solver in each iteration
corresponding to an instance in Figure 9. Results represent that the.proposed algorithm converges to
optimal solutions after about 100,000 iterations while the corresponding number related to the SAA
method is over 200,000, which shows the fast convergence rate,of the\proposed algorithm. This is due to
the fact that the feasibility restoration technique is able to-facilitate the proposed stochastic robust

optimization approach to perform more efficiently and rapidly.
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Figure 9. Convergence rate comparison.
6. Conclusion
In this paper, a two-stage stochastic programming model has been formulated for the casualty collection
point network design problem that is based on the 1994 Bhopal gas tragedy. The number of causalities
and the available transportation capacity were the uncertain parameters of this problem; they were
generated using an existing simulation model from literature and resulted in a high variability of number

of casualty scenario realization. To tackle this issue, we have proposed a stochastic robust optimization
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approach with the feasibility restoration technique, inspired by the SAA method, and an extensive
computational experiment has been conducted for this case problem. The performance of the solution
approach has been tested by the validation procedure commonly used in stochastic programming.

The experimental results reveal some practical and managerial insights confirming the importance of
CCP logistical network design and operational response decisions in an uncertain environment. The
findings show that the network configuration obtained by our proposed methodology has a significant
difference with the SAA method. More specifically, the proposed approach opens more CCPs and is
more sensitive to the transportation capacity; this can be contrasted with the SAA method where no
significant sensitivity has been observed. We notice that a conservative decision makeri(DM),with risk
aversion attitude, tends to open more CCPs in an uncertain decision-making environment.

The proximity metric has been quantified as the average path length to a CCP“in the network structure
for all instances. It has been observed that the network configuration by our-methodology enables a DM
to improve the proximity metric in a CCP logistical network design. We notify that a small improvement
in the proximity metric can result in a significant increase in the number of lives saved. Results also
show that reduction in transportation capacity in stochastic qprogramming can lead to increasing the
dispersion of the solutions, however, our stochastic robust optimization approach is able to achieve
solution and model robustness approaching the optimal solutions. We realize that the optimality gap in
the stochastic programming can be improved by takingsrisk aversion attitude which results in less
variability of the objective values.

Our future research will investigate a hybrid simulation-optimization approach for casualty evacuation
based on CCP network structures that*has,been identified in this work. The inclusion of the medical
supply flow from the multiple available hospitals to the established CCPs for the purpose of casualty
treatment can be another direction.to develop this problem towards a more realistic context (Haynes &
Freeman, 1989). In this regard, simulation approaches like Discrete-event Simulation (DES) could be
used for modelling of healthcare 'supply chains (Mustafee et al., 2009). Yet area of interest is the use of
gualitative system<dynamic-at the tactical level as an alternative to the scenario generation in the
optimization model to-evercome the complexity of the problem (Powell, Mustafee, Chen, & Hammond,
2016). An-extension to the robust minmax regret stochastic programming model can be another
interesting, research topic to consider in the humanitarian logistics network problem (Feizollahi &
Averbakh;,2013). As the casualty accessibility to CCPs plays an important role in humanitarian logistics,
a maximal accessibility network design can be further extended (Aboolian, Berman, & Verter, 2015).
These are all future directions to the work presented in this paper.
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